

Bifurcation Spiking Neural Network

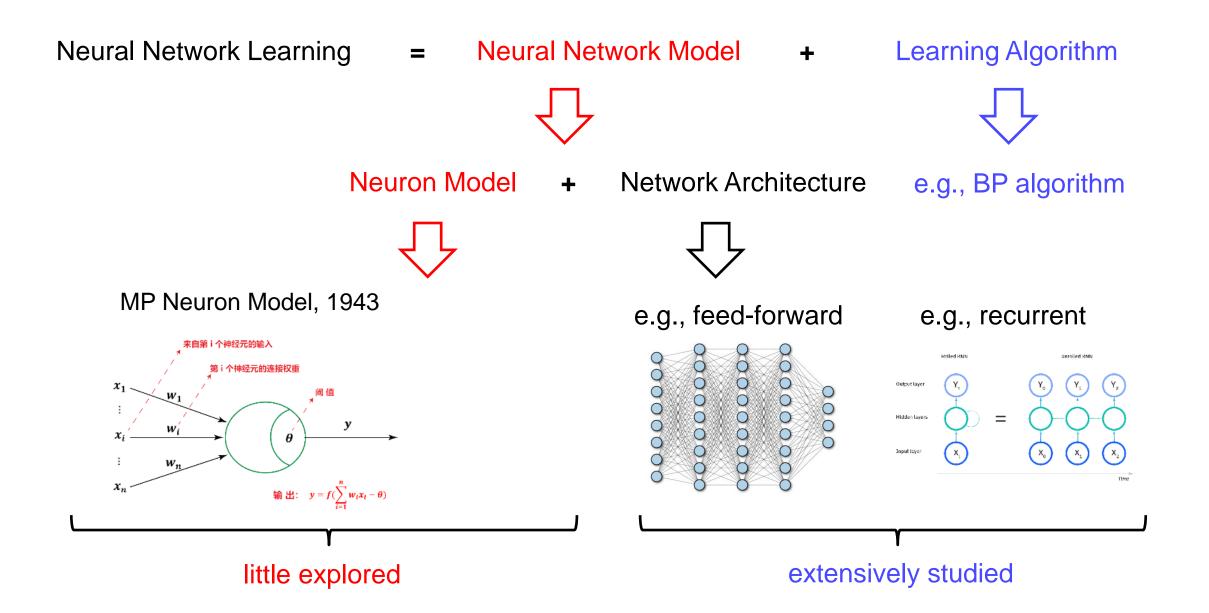
Journal: Journal of Machine Learning Research (2021)

Authors: Shao-Qun Zhang, Zhao-Yu Zhang, and Zhi-Hua Zhou

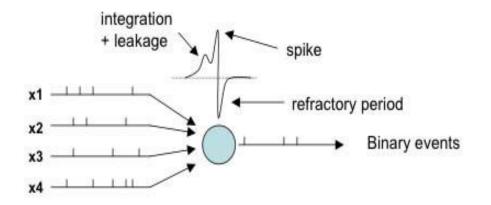
<u>Speaker</u>: Shao-Qun Zhang (张绍群)

Institution: Nanjing University

<u>Date</u>: 2022/11/19



Spiking neuron model

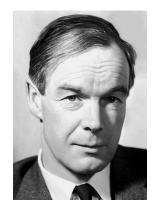


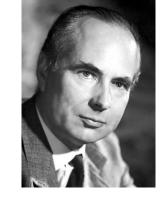
spiking neuron model

Leaky Integrate-and-Fire equation (LIF)

$$\tau_m \frac{\mathrm{d}u}{\mathrm{d}t} = \left[-u\right] + \sum_{i=1}^m w_i x_i$$

denotes the "leak" term





Alan L. Hodgkin (1914 - 1998)

Andrew F. Huxley (1917 - 2012)1963 Nobel Prize 1963 Nobel Prize

Louis Lapicque (1866 – 1952)

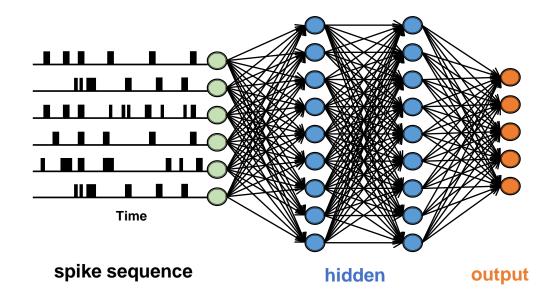
Marcelle Lapicque (1873 – 1960)

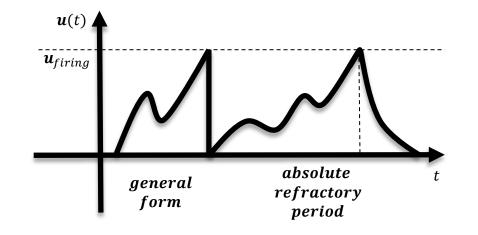
Step 1: Integration

$$\tau_m \frac{\mathrm{d}u}{\mathrm{d}t} = -u + \sum_{i=1}^m w_i x_i$$

Step 2: Firing

$$f_e: u \to S$$
, where $S(t) \triangleq \left\lfloor \frac{u(t)}{u_{firing}}
ight
floor$

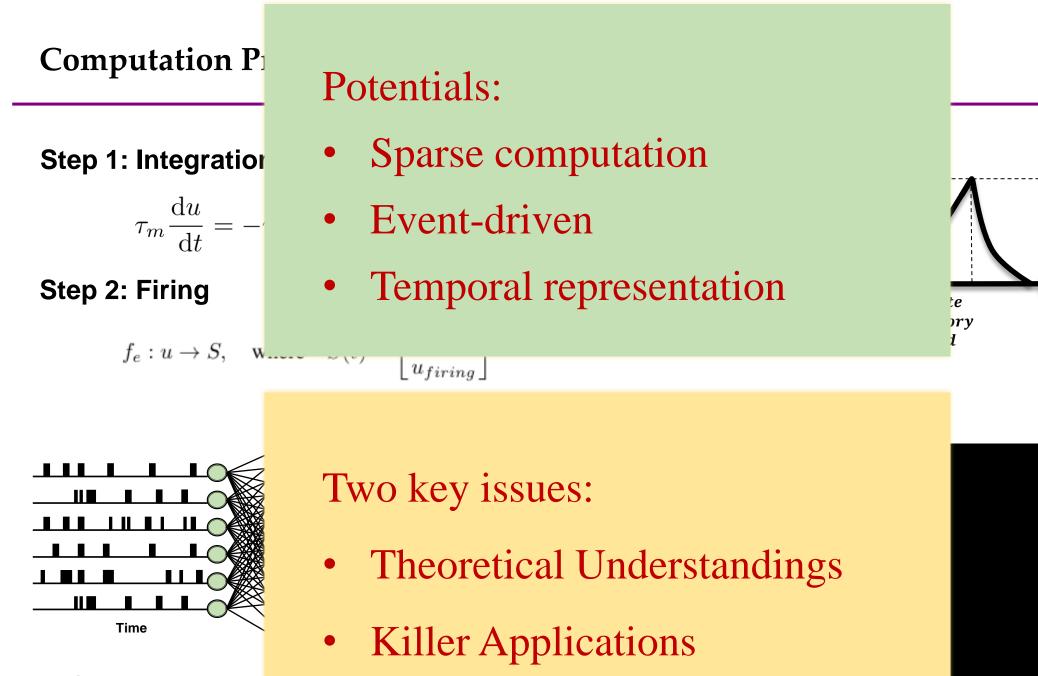




Raster Illustration

AYERS	: 4								
lst Lay	yer = 7 In	puts							
Hidden	Layers: 2								
th Lay	yer = 7 01	tputs							
IEURON:	5								
otal 1	Jumber = 2	8							
Thresh	olds Value	s are R	andom	fro	m 4 t	08			
ecay =	= 0,002								
Refract	cory Perio	d = 15	Clocks						
ENDRI	TES\SYNAP:	ES							
Total I	Number = :	47							
)elays	are Rando	m from	20 to	55	Clock	s			
Inhibit	cory Proba	bility	= 10%						

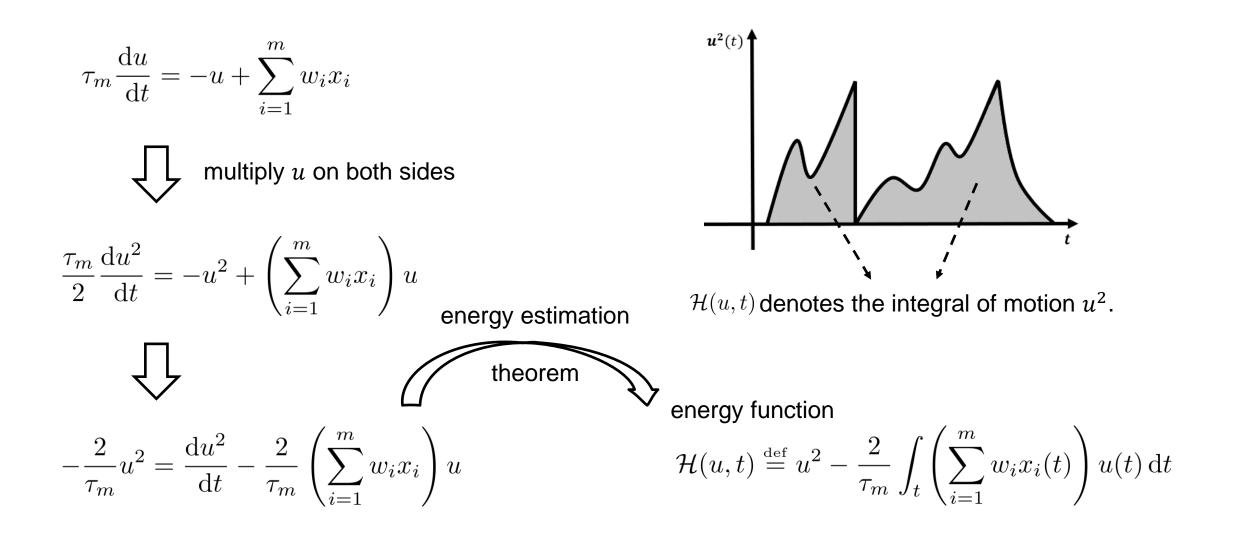
oftware Created By Mior Roberto [Ver.1.1] 27/08/2010



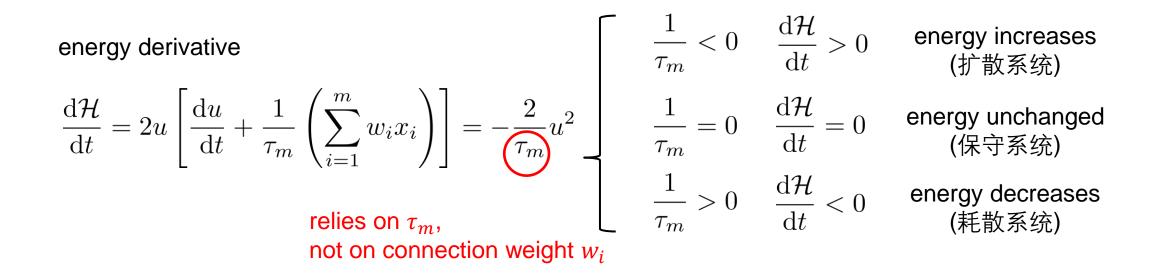
spike sequence

8/2010

Investigation from dynamical systems



Bifurcation

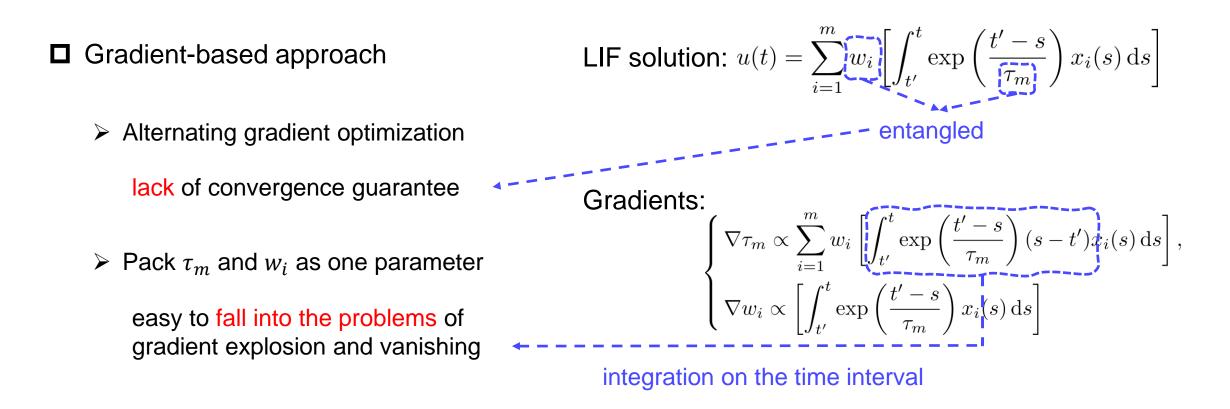


Theorem 1. Given the initial condition $u_0 = 0$, the dynamical system led by one layer of LIF neurons is a bifurcation dynamical system, and τ_m is the corresponding bifurcation hyper-parameter.

An improper setting of τ_m will disable the possibility of proper learning.

Before learning, one can hardly know how to set a proper τ_m .

To make the bifurcation hyper-parameter adaptive



D Zero-order approach

succeeds on an apposite initialization and larger computation and storage

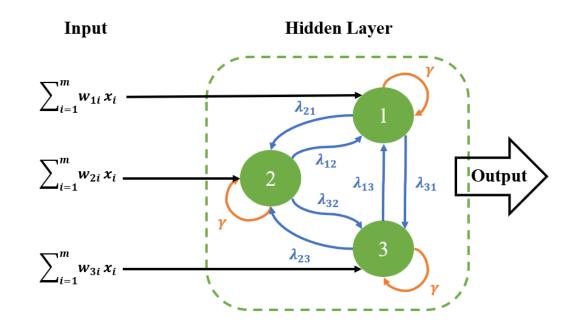
BSNN (Bifurcation Spiking Neural Network)

employs the self-connection structure

$$\frac{\partial u_k}{\partial t} = -\frac{1}{\tau_m} u_k + \sum_{j \neq k} \lambda_{kj} u_j + \frac{1}{\tau_m} \sum_{i=1}^m w_{ki} x_i$$

mutual promotion between neurons

I leaves learnable connection weights and mutual promotion parameters



BSNN (Bifurcation Spiking Neural Network)



Theorem 2. If the bifurcation parameters λ_{ij} are all great than 0, there are at most 2^{n-1} bifurcation solutions, where *n* is the number of hidden spiking neurons.

BSNN is calculable and has enough solutions to be adaptive to data/environment.

Experimental Results

Fastest Convergency Robustness Best Accuracy Table 2: The comparative performance of the contenders and BSNN. -BSNN Data Sets Contenders Control Rate (γ) Epochs SI AVERUI Accuracy (%) Setting -SLAYER-U, 50 Deep SNN (O'Connor and Welling, 2016) 97.80 28×28-300-300-10 ♠ -HM2-BP Deep SNN-BP (Lee et al., 2016) 98.71 28×28-800-10 200 -SLAYER HM2-BF SNN-EP ♡ 97.63 28×28-500-10 25 -SLAYER-U, -SI AYER ____SLAYER-U HM2-BP (Jin et al., 2018) 98.84 ± 0.02 28×28-800-10 100 ____SLAYER-U, ____SLAYER-U. -BSNN MNIST SNN-L (Rezaabad and Vishwanath, 2020) 98.23 ± 0.07 28×28-1000-R28-10 -SLAYER (Shrestha and Orchard, 2018) 98.39 ± 0.04 28×28-500-500-10 50 SLAYER-U1 & 98.53 ± 0.03 28×28-500-500-10 SLAYER-U2 28×28-500-500-10 98.59 ± 0.01 -BSNN (this work) 99.02 ± 0.04 28×28-500-500-10 -0.2150 -68 -0.4 -0.2 Values (~) -0.2 Epoches Epoches SKIM (Cohen et al., 2016) 92.87 2*28×28-10000-10 --98.78 Deep SNN-BP 2*28×28-800-10 200 spike raster plots HM2-BP 2*28×28-800-10 60 98.84 ± 0.02 N-MNIST SLAYER 98.89 ± 0.06 2*28×28-500-500-10 50 SLAYER-U1 2*28×28-500-500-10 99.01 ± 0.01 Laver 2 Layer Output 2*28×28-500-500-10 SLAYER-U2 99.07 ± 0.02 -2*28×28-500-500-10 50 BSNN (this work) 99.24 ± 0.12 -0.49HM2-BP 88.99 28×28-400-400-10 15 SLAYER 50 88.61 ± 0.17 28×28-500-500-10 SLAYER-U1 90.53 ± 0.04 28×28-500-500-10 ID: 6429 ID: 4881 Fashion-MNIST SLAYER-U2 90.61 ± 0.02 28×28-500-500-10 ST-RSBP (Zhang and Li. 2019) 90.00 ± 0.13 28×28-400-R400-10 ◊ 30 28×28-500-500-10 -0.32 50 BSNN (this work) 91.22 ± 0.06 78.17 28×28-200-200-47 30 eRBP (Neftci et al., 2017) HM2-BP 28×28-400-400-10 20 84.43 ± 0.10 SNN-L 83.75 ± 0.15 28×28-1000-R28-10 -EMNIST Encoding SLAYER 85.73 ± 0.16 28×28-500-500-47 50 Encodin 50 SLAYER-U2 86.62 ± 0.03 28×28-500-500-47 (b) example 6429 BSNN (this work) 87.51 ± 0.23 28×28-500-500-47 -0.37 50 (a) example 4881

Further Research

□ adaptive dynamical systems

Theorem 1. If the bifurcation hyper-parameters λ_{ij} are all great than 0, there are at most 2^{n-1} bifurcation solutions in BS the neuron model.

Theorem 2. Let H(n) denote the maximum possible number of bifurcation solutions of dynamical systems in BS the neuron model with n-order polynomial bifurcation fields in BS the neuron model. Then H(n) is calculable, and we have $H(n) \in$ $\Omega((n+1)^2 \ln(n+1))$.

calculable enough adaptive solutions!

- Shao-Qun Zhang and Zhi-Hua Zhou. Theoretically Provable Spiking Neural Networks. In: Advances in Neural Information Processing Systems 36 (NeurIPS'22), in press. 2022.
- Gao Zhang and Shao-Qun Zhang. Structural Stability of Spiking Neural Networks. arXiv:2207.04876. 2022.

approximation to discrete-time dynamical systems

Theorem 3. Let $K \subset \mathbb{R}^m$ be a compact set. If the spike excitation function f_e is *l*-finite and $w_i \in \mathbb{R}$ for any $i \in [n]$, then for all $r \in [l]$, there exists some time t such that the set of IFR functions $f(\cdot, t) : K \to \mathbb{R}$ of the form $f(x, t) = \sum_{i \in [n]} w_i f_i(x, t)$, is dense in $C^r(K, \mathbb{R})$.

Theorem 4. Given a compact set $K^m \subset \mathbb{R}^m$, a probability measure μ , and a radial function $g : K^m \to \mathbb{R}$. For some apposite spike excitation function f_e and any $\epsilon > 0$, there exists some time t such that the radial function g can be well approximated by a one-hidden-layer scSNN of $\mathcal{O}(Cm^{15/4})$ spiking neurons, that is,

 $\|f(x,t) - g(x)\|_{L^{2}(\mu)} < \epsilon$. **Theorem 5.** Let $n \ge m$. Let $x_{k}(t) \in \pi(\lambda_{k})$ and $\mathbb{E}(x_{k}) = \lambda_{k}$ for $\lambda_{k} > 0$, $k \in [m]$, and $t \in [T]$. If \mathbf{V} is a non-degenerate matrix, then for any $\epsilon > 0$ and matrix $\mathbf{G} \in \mathbb{R}^{m \times n}$ with $\|\mathbf{G}\|_{2} < \infty$, when the time complexity satisfies

$$T \ge \Omega\left(\frac{\sqrt{n} \, \|\mathbf{G}\|_2}{\epsilon \sqrt{\|\mathbf{V}\|_2}}\right) \;,$$

there exists some one-hidden-layer scSNNs with the IFR vector $f = (f_1, \ldots, f_n)^\top$ such that

 $\left\|\mathbb{E}_{\boldsymbol{x}}\left[\mathbf{V}\boldsymbol{f}(\boldsymbol{x},T)\right]-\mathbf{G}\boldsymbol{\lambda}\right\|_{2}<\epsilon$.

universal approximation

polynomial parameter complexity

polynomial time complexity

上述结论首次证明了脉冲神经元模型的数理功能和计算优势!

Focus:

Shao-Qun Zhang, Zhao-Yu Zhang, and Zhi-Hua Zhou. Bifurcation Spiking Neural Network. Journal of Machine Learning Research (JMLR), 22(253):1-21. 2021.

Others:

- Shao-Qun Zhang and Zhi-Hua Zhou. Theoretically Provable Spiking Neural Networks. In: Advances in Neural Information Processing Systems 35 (NeurIPS'22), in press. 2022.
- Sea Zhang and Shao-Qun Zhang. Structural Stability of Spiking Neural Networks. arXiv:2207.04876. 2022.

You can find the detailed proofs and codes on the Homepage of Shao-Qun Zhang.

Contact me by email at zhangsq@lamda.nju.edu.cn

Thank you !