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Research Interests

My current research interests mainly include Machine Learning and Data Mining. More specifically, I am interested in the following topics:
= Neural Computation & Deep Neural Networks

= with Spiking Neural Networks. Spiking neural networks (SNNs) take into account the time of spike firing rather than simply
relying on the accumulated signal strength in conventional neural networks, and thus offering the possibility for modeling time-
dependent data. Here, we provide a theoretical framework for investigating spiking neural models from the perspective of
dynamical systems.

= with Neuroscience. Recently, we proposed a novel bio-plausible neuron model, the Flexible Transmitter (FT) model. The FT
model iz inspired by the one-way communication neurotransmitter mechanism in nervous systems, and has the formation of a
two-variable two-valued function, which takes the commeonly-used MP neuron model as its special case. We empirically show its
potential with handling spatio-temporal data and present theoretical understandings on the advantages of FT model.

= with Complex-valued Neural Networks. Recent vears have witnessed an increasing interest on complex-valued neural
networks. Here, we formulate a practical formation of complex-valued neural networks and provide theoretical understandings on
the merits of complex-valued neural networks in comparison with real-valued ones, especially in terms of approximation and
optimization dynamics.

= Deep Learning Theory

I am focusing on the theoretical understanding of deep learning in terms of approximation, optimization and generalization.
Especially, I care more about the following issues:

= about Representation Learning. Recently, I am working on theoretically investigate Feature Space Transformation, Spatio-
Temporal Representation, Approximate Capability, and Computational Complexity, which might be a key to understand the
mysteries behind the success of deep neural networks.

= about Geometry and Dynamics within Optimization.

= Time Series Analysis

= about Forecasting Algorithm. I am interested in time series forecasting, including Accurate Forecasting, Quantitative

Analysis, Uncertainty Estimation, ete.

= about Forecasting Theory. I also make some efforts on the forecasting theory, including Predictable PAC Learning Theory
and Long/Short-term Causal System.
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Outline

1. Introduction to Deep Learning
2. Approximation
3. Optimization

4. Generalization
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Deep Learning & Deep Neural Networks

Neural Network Learning =  Neural Network Model ~ +  Learning Algorithm

O

Ju— e.g., BP algorithm
e gy (Sweo)
A (o Y Neuron Model + Network Architecture
The 2 generation of NNs L @ @
b~ N T e.g., MP model e.g., feed-forward
55‘ O e Spiking Neural Model
The 3" generation of NNs
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Architectures

WAR ERE il =
HEn—AMAET R HEME—AMRETH A
(b) CCN (c) CNN
WiHE =
Wi BE
r’b)’a
V//V/‘V\‘
(=15
\\ .\\
BE
k2N =
(d) RNN (e) SOM (f) Boltzmann #1 (9) RBM
zhangsq

Leaning And Minng from DatA


http://www.lamda.nju.edu.cn/zhangsq/

Introduction to Deep Learning 1-3

Concerns

1. Approximation

» Universal Approximation
» Approximation Complexity (paras, time )
» Representation Theory

2. Optimization

» Training Algorithms (GD, SGD)
» Local Minima (landscape)

3. Generalization (OOD)
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Introduction to Deep Learning

Journals & Conferences

1 AlJ, JMLR

[] Neural Computation (NCJ), Neural Networks, TNNLS
[-] Neurocomputing

] TPAMI, TKDE, Machine Learning (MLJ)

[] COLT, ITCS
[] NeurlPS, ICML
[J ICLR, AISTATS
[ AAAIL IJCAI
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Outline - Approximation

Hypothesis Space .
7 ) _
i.e., DNNs Unknown Function

fr

1. Universal Approximation
2. Approximation Complexity
3. Representation Theory
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Universal Approximation

Universal Approximation Theorem

Let K < R™ be a compact set. If the activation function o is well-posed (e.g.,
I-finite), then for all r € [/], the set of scalar functions f : K — R of the form

f(x) = Z v,-a(w,Tx — bj),
ie[n]

is dense in C"(K,R).

activations, connection weights (paras), architectures (FNN, ResNet, RNN)

provides a legitimate guarantee for neural networks, corresponding to PAC
identification for statistical learning.
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Approximation 2-3

Key Refs

oc K.-l. Funahashi. On the Approximate Realization of Continuous Mappings
by Neural Networks. Neural Networks. 1989.

oc K. Hornik. Approximation Capabilities of Multilayer Feedforward
Networks. Neural Networks. 1991.

oc M. Leshno, V. Lin, A. Pinkus, S. Schocken. Multilayer feedforward
networks with a nonpolynomial activation function can approximate any
function. Neural Networks. 1993.

oc A. Barron. Approximation and Estimation Bounds for Artificial Neural
Networks. Machine Learning. 1994.

oc P. Kidger, T. Lyons. Universal Approximation with Deep Narrow
Networks. In COLT'2016.
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Approximation Complexity

1. Computational Complexity
» FLOPS: floating point operations
» flops: Floating-point Operations Per Second
» MACCs: multiply-accumulate operations

2. Parameter Capacity/Capability
The number of learnable parameters, i.e., ZIG[L](|weights'|# + |bias'|4).
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Examples for Computational Complexity

Kernel Size: Kheight X Kuwidth Number of Input Channel: Cipue
Output Size: Lpeight X Luwidtn Number of Output Channel: Coutpur

Then we have
‘ FLOPS: 2 x (Cinput X Kheight X Kwidth - 1) X I—height X I—width X Coutput.
& flops: 2 x Cinput X Kheight X Kuidth X Lheight X Lyidth C‘outputy

‘ MACCs: Cinput X Kheight X Kwidth X I—height X I—width X Coutput-
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Approximation 2-6

Example for Parameter Capability

Theorem 1 Suppose the activation function o(-) satisfies assumption 1 with constant ¢4, as well
as assumption 2. Then there exist universal constants ¢, C > 0 such that the following holds: For
every dimension d > C, there is a probability measure pp on RY and a function g : RY — R with the
Jollowing properties:

1. g is bounded in [—2, 42|, supported on {x : |x|| < Cﬁ} and expressible by a 3-layer
network of width C'cgd'®/4,

cd

2. Every function [, expressed by a 2-layer network of width at most ce®™, satisfies

By (f(x) = g(x))* > c.
There exists some radial function that can be approximated by a 3-layer FNN of

width polynomial neurons, whereas approximated by a 2-layer FNN of width at least

exponential neurons.

OC R. Eldan and O. Shamir. The power of depth for feedforward neural networks. In COLT’'2016.
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Representation Theory

& & Kernel Learning,
such as deep multiple kernels, neural network Gaussian process (NNGP),
neural tangent kernel (NTK), etc.

& from Dynamical Systems, such as Neural ODE

OC R. TQ. Chen, Y. Rubanova, J. Bettencourt, D. K. Duvenaud. Neural Ordinary Differential
Equations. In NIPS'2018 (best paper).

& from Functional Analysis, such as transforming features layer by layer.
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Approximation 2-8

DNN & Kernel

Kernel: input space — higher-dimensional feature space, such that the feature
space is linearly separable.

& Cascading multiple kernels layer by layer

%..7 & Diversity (heuristic)

Input space Feature space

Fig. 1. Kerel mapping from input space to feature space.

¢ x = P(x),
F(x) = ) aild(x), $(xi))-
i€[n]
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Approximation 2-9

NTK

a kernel mapping built on the tangent space of deep neural networks.

OC A. Jacot, G. Franck, H. Cléement. Neural Tangent Kernel: Convergence and Generalization in

Neural Networks. In NIPS'2018.

OC M. Belkin, M. Siyuan, M. Soumik. To Understand Deep Learning We Need to Understand Kernel
Learning. In ICLR'2018.

Feed-forward Procedure: Tangent Approximation:
Z(O) (x;0) = x Primary: x — f(x;0) nonlinear
1 Tangent: 0 +— Vyf(x;0) linear

3D (6 0) = — w20 (x:0) + gp»
Ve gradient-based kernel
20 (x;0) =0 (2(2) (x; 6))
Ko (6, x') = (Vo (x:0), Vo' (x':0) ),
y = fr(x;0) with z((x0) = fé(x;0)
and as ny — o0, the following holds from CLT

lim Eyyoxe) [/cﬁtk] = KX,

ng—0
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Approximation 2-10

NTK

& regarding one layer of neurons as a kernel, contributing to representation
learning

# a well-formulated cornerstone for theory. For example, bounding errors by
calculating the eigenvalues of this kernel

& CLT holds as n — o0, that is, infinite width, beyond computation

& all layers and architectures (e.g., RNN, ResNet, FTNet, etc.) are Gaussian
kernels with the same mean and covariance.
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Approximation 2-11

NNGP

regard the primary DNN as a cascade compound of Gaussian kernels.

OC J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Pennington, J. Sohl-dickstein. Deep Neural

Networks as Gaussian Processes. In ICLR'2018.

Feed-forward Procedure: NNGP:
z(o)(x;G) — x {Primary: x — f(x;0) nonlinear
. £ N YAV e (. r.
S gy = L 0,0 gy 4 pp®  INGP Kipgy(x,x') = (£ (xi0), £ (x:0)),
Ve

RO) (x:0) = o (2([) (x; 9)) as ny — o0, the following holds from CLT

. *
lim E,_, = Kongp-

0
y= fL(x; 0) with z(e)(x; 0) = fz(x;e) np—00 (O,Ze) [’C”"gp]
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Approximation 2-12

Our Work: Deep NNGP

- ] Comparison:
,’L'_.].'_. @l .
Feed-forward Procedure: m

0

zZm =X L,
2 = (W21 4 b)) - ;

) — 1K {h+rh lj+rh
f(xi0) = A=Y o1 z .

Conclusion: with mild assumptions on connection

parameters and h, this network induces a kernel via

generalized CLT.

Strengths: 1. This kernel is uniformly tight;

2. We can bound its smallest eigenvalue A, (KD’D) = O(d).
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Approximation

Our Work: Deep NNGP

FMNIST CIFAR-10
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Figure 1: The performance of the NNGP(9)
and NNGP(™) kernels constructed by dif-
ferent number of samples on FMNIST and
CIFAR-10.

Fitting Curves viaNNGP and NNGP™)
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Figure 2: The fitting curves of the NNGP(?)
and NNGP(") kernels for a sine function

over [0, ].

OC S.-Q. Zhang, F.-L. Fan. Neural Network Gaussian Processes by Increasing Depth.

arXiv:2108.12862. 2021. (submitted to TNNLS)
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Approximation

Future Issues

& whether the depth is more important than width?
& approximation complexity

& white-box representation learning (for science)
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Optimization 3-1

Optimization

In contrast to the Approximation theory that concerns about
& the expressive power led by architectures and learnable parameters

& 3 some points (including architecture and a group of paras), such that the
concerned neural network is apposite.

Optimization theory in neural networks focuses on
& can we (algorithms) find this point or these points?
& how find? (algorithms, mechanisms, etc.)
& how fast?
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Optimization 3-2

Observations

& extremely non-convex landscape & local minima usually is sufficient.
30st. |f(x;0) — F(x;0%)| < e

where 6% is the optimal point.

OC S. Ruder. An Overview of Gradient Descent Optimization Algorithms. arXiv:1609.04747. 2016.

OC H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the loss landscape of neural nets.
NIPS’2018.
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Optimization 3-3

Future Issues

[Q1:] developing (fast and stable) algorithms for DNNs

[ mvjn F(w): =%Z(f(W.xi) —y)? ]

‘ Tensor Decomposition
ﬂ ‘ Half Space
1 .
[ Wee1 = argming 5 [If + Jew —wp) — yt”z ] # Sparse Connection

ﬂ Q Kernel-based Method

‘ Implicit Bias

— . — HUT(F
[ Werr = We = HiJe (fe =) ] ‘ Margin Maximization
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Optimization

Future Issues

[Q2:] investigating SGD from dynamical systems
It is observed that

GD: 6(t+1) =0(t) —nVelL(0(t)) with L(0)

can be regarded as
ODE: df = —V,L(6(t))dt.

Further, we have

SGD:  O(t +1) = 0(t) — nVel,(A(t)) with L.(0) =

can be regarded as

3-4

sl Z

xeS

|‘; Z L(x;0)

’| xeS, =S

SDE: df = —VeL(0(t))dt + o dé(t), where £(t) ~ N(0,5°).
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Generalization

L] L]
* ,* X o ) °
e ® ° ° .
® ® g Y LN ]
P 3 [ ]
[ ] ]
% e o . ®
. « * %
L4 %
. B . *
LI e o .
% g
learn a classifier via training data performance on testing data
(x,y)ED

Ltesting (0) < ]I/:'training (9) + something .
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Generalization 4-2

Underfitting VS Overfitting

under-fitting over-fitting

Optimum Modsl Covplocity Total Bmr

Evrors

classical machine learning:

Vaviance . .
Errors = Bias 4+ Variance + €

Biﬂs

Mo del O"WP"%H?I'
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Generalization

Generalization

Qr‘ﬂm Model c«?lmg Totial B

Evrorg

| Bias
i
|

Mo del C""”FWHg

classical machine learning:

Errors = Bias + Variance + ¢

4-3

Evnwg Ch"!fr'tbl Lowm F[@\HZ

i
i
|
i
{

Test  Enrors
ralriy Emn

i
Mode| varlwg

deep neural networks:

Double Descents against Overfitting

OC M. Loog, T. Viering, A. Mey, J. H. Krijthe, D. MJ. Tax. A brief prehistory of double descent. In
Proceedings of the National Academy of Sciences 117(20): 10625-10626. 2020.
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Generalization

Common form of generalization bound

ILtesiring(g) < f[\Jtrafnfng(e) + 4/ |7-[|/n .

In depth, |H| can be bounded by

VC O(|edges| log(|edges|)) or oc depth x width
e-covering number O((AL)HEHD) /g2ty
Rademacher Average Rm(H) < O(uh)
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Generalization 4-5

Generalization

Margin theory and norms (nearly no dependence on the parameter capacity)

-

OC P. L. Bartlett, D. J. Foster, M. J. Telgarsky. Spectrally-normalized Margin Bounds for Neural
Networks. In NIPS'2017.

OC S.-H. Lyu, L. Wang, Z.-H. Zhou. Improving Generalization of Neural Networks by Leveraging
Margin Distribution. Neural Networks, in press. 2022.

zhangsq

Leaning And Minng from DatA


http://www.lamda.nju.edu.cn/zhangsq/

Generalization 4-6

Future Issues

& Double Descents against Overfitting.
OC Z.-H. Zhou. Why over-parameterization of deep neural networks does not overfit? Science China
Information Sciences, 64(1):1-3, 2021.

& Lacking a formal description, there are some efforts from NTK.

& Impact Regularization
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appendix 5-1

Thank you!

Q & A and Continuing...
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