Ch01: 概率与随机事件

概型与计算 (Probability and Calculation)

August 28, 2025

本节提要

本节课的几个概念:

• 概型: 古典概型、超几何概型、几何概型

•问题: 生日问题、抓球问题、夫妻匹配问题等

•十二重计数

回忆: 例 0.6

例 0.15 (Poker Hands)

- Decks of 52 cards:
 - 13 ranks: $2, 3, 4, \dots, J, Q, K, A$
 - 4 suits: S, H, C, D
- Gaming:
 - a one-pair hand consists of 5 cards
- Questions: the probability of a one-pair hand is
 - count less than point 12
 - · all cards are "S"

回忆:例 0.6

回到 Poker Hands 的例子:

- Gaming: a one-pair hand that draws 5 cards from 52 cards
- 这个游戏的特点:
 - 1. a one-pair hand consists of 5 cards, such as $\omega_i = \{2S, 3H, 4D, 6C, 10C\}$
 - •试验结果只有有限种可能, 即 $\binom{52}{5}$ = 2,598,960
 - 2. computing the probability of any one-pair hand ω_i
 - •每种结果发生的 可能性相同, 即 $P(\omega_i) = \frac{1}{2,598,960}$
- •这样的试验称为等可能概型,即古典概型 (classical).
 - $\cdot w_i$ 也被称为基本事件
 - •若事件 A 包含 k 个基本事件, 则 $P(A) = \frac{k}{2,598,960}$

古典概型: 例 0.16

例 0.16 (comparison: 15-7) 将 n 个不同的球随机放入 N ($N \ge n$) 个不同的盒子中, 每个盒子足够大, 可以容纳多个球。请问:

- •事件 A 表示恰有 n 个盒子且每盒一球
- 事件 B 表示指定的 n 个盒子中各有一球
- •事件 C 表示 n 个球都在同一个盒子里的概率
- 事件 D 表示 n 个球都在不同盒子里的概率
- 事件 E 表示指定一个盒子恰有 m 个球

求事件 A, B, C, D, E 发生的概率.

解答: 例 0.16

问题: 将 n 个不同的球随机放入 N ($N \ge n$) 个不同的盒子。

- 基本事件的个数 N^n
- 事件 A 表示恰有 n 个盒子且每盒一球: 球不动, 排盒子 $|A|_{\#} = (N)_n$
- 事件 B 表示指定的 n 个盒子中各有一球: 仅需排列指定的 n 个球和盒子的关系即可, $|B|_{\#} = n!$
- 事件 C 表示 n 个球都在同一个盒子里的概率: 选出这个盒子即可 $\binom{N}{1}$
- 事件 D 表示 n 个球都在不同盒子里的概率: D 同于 A
- 事件 E 表示指定一个盒子恰有 m 个球: 先给这个盒子挑出球来 $\binom{n}{m}$, 再将剩下的 n-m 个球分配到其他的 N-1 个盒子里 (the latter is a sub-problem). 因此, 有 $\binom{n}{m}(N-1)^{n-m}$

古典概型: 例 0.17

例 0.17 (生日问题) 有 K 个人 (K < 365), 每个人的生日等可能地出现于 365 天中的任意一天。

请问:

- 至少两人生日相同的概率
- ·恰好有两人生日相同的概率(思考ing)

解答: 例 0.17

问题: 有 K 个人 (K < 365), 每个人的生日等可能地出现于 365 天中的任意一天。

- 基本事件的个数 365K
- "至少两人生日相同的概率"的反问题 (逆问题): "K 个人在 365 天中完全不相同". 后者是一个排列问题: $(365)_K$. 所以, 原问题的势为 $365^K (365)_K$
- "恰好有两人生日相同的概率": 首先选出这两个人 $\binom{K}{2}$, 选择这两人生在哪一天 $\binom{365}{1}$, 剩下的 K-2 个人的生日在其他的 364 天里完全不相同 (the latter is a subproblem of the first problem). 因此, 原问题的势为 $\binom{K}{2}\binom{365}{1}(364)_{K-2}$

超几何概率:例 0.18

例 0.18 设一批 N 件产品中有 M 件次品.

- •现从N 件产品中有放回地任选n 件,记事件A 为"取出的产品种恰有m 件次品",求事件A 的概率.
- •现从N 件产品中无放回地任选n 件,记事件B 为"取出的产品种恰有m 件次品",求事件B 的概率.

后者被称为超几何概率 (hypergeometric).

解答: 例 0.18

- "有放回": 基本事件的个数 N^n , 取到 m 件次品 $\binom{n}{m}M^m$, 剩下的都是良品 $(N-M)^{n-m}$. 因此, $\binom{n}{m}M^m(N-M)^{n-m}$.
- "无放回": 基本事件的个数 $\binom{N}{n}$, 取到 m 件次品 $\binom{M}{m}$, 剩下的都是良品 $\binom{N-M}{n-m}$. 因此, $\binom{M}{m}\binom{N-M}{n-m}$.

思考: 例 0.19

例 0.19 (抽签问题) 袋中有 a 个不同的白球, b 个不同的红球, 假设有 k 个人依次随机

- 有放回地
- 无放回地

从袋中取一个球, 问第 i 个人 ($i \le k$) 取出红球的概率?

提醒:该问题是否是等可能概型?

解: 例 0.19

问题: 袋中有 a 个不同的白球, b 个不同的红球, 假设有 k 个人依次随机无放回地从袋中取一个球, 问第 i 个人 ($i \le k$) 取出红球的概率?

提问:

- •基本事件是什么?
- 如何计数该事件中所包含的基本事件个数?
- $\bullet a, b, i, k$ 的大小关系会影响结果吗?
- •抽签的公平性

解答: 例 0.19

问题: 袋中有 a 个不同的白球, b 个不同的红球, 假设有 k 个人依次随机有放回地从袋中取一个球, 问第 i 个人 ($i \le k$) 取出红球的概率?

• 有放回的问题里, 第几个人取都是相互不影响的, 所以 $\frac{b}{a+b}$.

问题: 袋中有 a 个不同的白球, b 个不同的红球, 假设有 k 个人依次随机无放回地从袋中取一个球, 问第 i 个人 ($i \le k$) 取出红球的概率?

- 基本事件: $(a + b)_i$
- 第 i 个人一定会取到红球 b
- 我们现在需要讨论前 i-1 个人怎么取? 该问题可以表述为"前 i-1 个人无放回地取 a+b-1 个球, 这是原问题的子问题. $(a+b-1)_{i-1}$.
- 因此, $b(a+b-1)_{i-1}$. 因而, 可以得到概率 $\frac{b}{a+b}$.

拓展: 当 $a \le i$ 或者 $b \le i$ 时,可能会出现"第 i 个人必然取得或者一定不会取得红球"的情况. 当前的技术进行计算有点麻烦,可以通过计算机模拟来实现.

超几何概率:例 0.20

例 0.20 (匹配问题) 将 n 对夫妻任意分成 n 组, 每组一男一女, 问至少有一对夫妻被分到同一组的概率是多少?

思考: 这个题和生日题的联系和区别在哪里?

解答:例 0.20

问题: 将 n 对夫妻任意分成 n 组, 每组一男一女, 问至少有一对夫妻被分到同一组的概率是多少?

- •基本事件是什么? $(n!)^2$ or n!
- •如何计数该事件中所包含的基本事件个数?

总数 =
$$S(n) + \binom{1}{n} S(n-1) + \dots + \binom{n-1}{n} S(1) + 1$$

•
$$S(1,1) = 0$$
, $S(2) = 1$, $S(3) = 2$, ...

•
$$P=1-\frac{S(n)}{$$
总数

• Other way?

解答: 例 0.20

问题: 将 n 对夫妻任意分成 n 组, 每组一男一女, 问至少有一对夫妻被分到同一组的概率是多少?

- 基本事件的个数 n!
- 考虑 "1 对夫妻匹配成功" 的情况: 任取 1 对 $\binom{n}{1}$, 其余的任意排列 (子问题: n-1 队夫妻任意分成 n-1 组) (n-1)!
- 考虑 "2 对夫妻匹配成功" 的情况: 任取 2 对 $\binom{n}{2}$, 其余的任意排列 (子问题: n-2 队夫妻任意分成 n-2 组) (n-2)!

• . . .

• 易发现, 上述事件满足容斥原理. 即

$$\sum_{i} |A_{i}|_{\#} - \sum_{i < j} |A_{i}A_{j}|_{\#} + \dots \Rightarrow \binom{n}{1}(n-1)! - \binom{n}{2}(n-2)! + \dots$$

Appendix: 例 0.21

例 0.21 (匹配问题) 将 n 对夫妻任意分成 n 组, 每组 2 人, 不限男女, 问至少有一对夫妻被分到同一组的概率是多少?

几何概型

古典概型考虑有限的样本空间,即有限个等可能的基本事件,在很多实际应用中受到限制.

接下来, 我们讨论另一种特殊的随机现象, 具有如下特征:

- **样本空间无限可测**. 样本空间包含无限不可列个样本点,可以用几何图形(如一维线段、二位平面区域、或三维空间区域等)来表示,其相应的几何测度(如长度、面积、体积等)是一个非零有限的实数
- 基本事件等可能性. 每个基本事件发生的可能性大小相等, 从而使得每个事件发生的概率与该事件的几何测度相关, 与具体位置无关

称为几何概型.

几何概型与测度

定义 0.4 在一个测度有限的区域 Ω 内等可能性投点, 落入 Ω 内的任意子区域 A 的可能性与 A 区域的测度成正比, 与 A 的位置与形状无关, 这样的概率模型称之为几何概型.

事件 A 发生的概率为

$$P(A) = \frac{A \text{ 的测度}}{\Omega \text{ 的测度}} = \frac{\mu(A)}{\mu(\Omega)}$$

这里 $\mu(\cdot)$ 表示区域的测度.

几何概型: 例 0.22

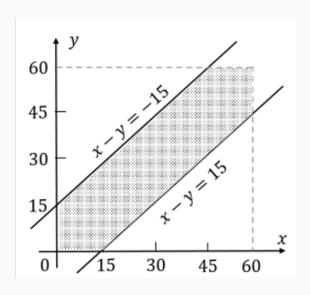
例 0.22 (时间约定问题) 两银行经理约定中午 12:00 - 13:00 到某地会面, 两人到达时间随机, 先到者等另一人 15 分钟后离开.求两人见面的概率.

几何概型: Monte-Carlo 模拟法

通过计算机模拟近似计算几何概型的概率. 具体地,

- 构造概率模型
- 进行计算机模拟试验
- •用统计的方法计算其估计值近似概率

```
n_A \leftarrow 0
For i = 1 : N
x \leftarrow \text{Random}(0, 60)
y \leftarrow \text{Random}(0, 60)
If |x - y| \leq 15 then
n_A \leftarrow n_A + 1
Endif
Endfor
Return n_A/N
```



几何概型: 例 0.23

例 0.23 (公交车发车班次) 假设一乘客到达汽车站的时间是任意的, 客车间隔一段时间发班, 请规划最长的间隔发车时间, 才能确保乘客候车等待时间不超过 20 分钟的概率大于 80%.

解答:例 0.23

题目: 假设一乘客到达汽车站的时间是任意的,客车间隔一段时间发班,请规划最长的间隔发车时间,才能确保乘客候车等待时间不超过 20 分钟的概率大于 80%.

解答:

• 设客车的间隔时间为 l(l > 20), 选择特定的连续的 l 分钟为样本空间, 则乘客到达时间的样本空间为 $\Omega = \{x: 0 < x \le l\}$. 用 B 表示乘客的等待时间超过 20 分钟的事件, 而事件 B 发生则可知乘客到达车站的时间在 0 与 l-20 之间, 即

$$B = \{x : 0 < x < l - 20\}.$$

• 可知事件 B 发生的概率小于或等于 20%, 即

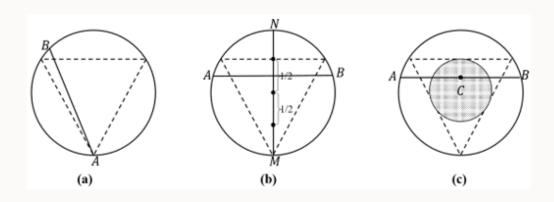
$$P(B) = \frac{l - 20}{l} \le 0.2,$$

求解可得 $l \leq 25$.

几何概型: 例 0.24

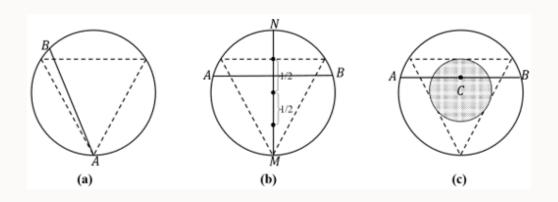
例 0.24 (贝特朗 (Bertrand) 奇论) 在半径为 1 的圆内随机地取一条弦, 求其弦长超过该圆内接等边三角形边长 $\sqrt{3}$ 的概率.

解法: 贝特朗 (Bertrand) 奇论



- •解法一: 通过三角形任意一个顶点 A 做圆的切线, 由该顶点做一条弦, 弦的另一端在圆上任意一点 B. 此时概率为 P=1/3.
- •解法二: 在垂直于三角形任意一边的直径 MN 上随机取一个点, 并通过该点做一条垂直于该直径的弦 AB. 此时概率为 P=1/2.
- 解法三: 当弦的中点在阴影标记的圆内时, 弦 AB 的长度大于三角形的边长. 此时概率为 P=1/4.

解法: 贝特朗 (Bertrand) 奇论



提示:同一问题有三种不同答案,究其原因在于圆内"取弦"时规定尚不够具体,不同的"等可能性假定"导致了不同的样本空间.

- 解法一: 概率为 P = 1/3 ——假设弦的端点在圆周上均匀分布.
- •解法二: 概率为 P=1/2 ——假设弦的中心在直径上均匀分布.
- •解法三: 概率为 P=1/4 ——假设弦的中心在圆内均匀分布.

Summary: 古典概型和几何概型的关系

本节课的几个概念:

- •古典概型——等可能性
- •超几何概型——有放回 vs 无放回
- •几何概型——样本空间与几何测度

十二重计数

概率的计算往往与组合计数密切相关,且组合计数在人工智能、计算机等领域具有广泛的应用。

十二重计数 (the twelvefold way), by G.- C.Rota (1932-1999).

•问题简述: 将n 只球放入m 个箱子, 有多少种不同的放法?

<i>n</i> 只球	m 个箱子	无任何限制	每个箱子至多 1 球 $(m \ge n)$	每个箱子至少 1 球 $(n \ge m)$
不同	不同	?	?	?
相同	不同	?	?	?
不同	相同	?	?	?
相同	相同	?	?	?

问题 1: 将 n 只不同的球放入 m 个不同的箱子:?

问题 2: 将 n 只相同的球放入 m 个不同的箱子, 每个箱子至多 1 球 $(m \ge n)$: ?

n 只球	<i>m</i> 个箱子	无任何限制	每个箱子至多 1 球 $(m \ge n)$	每个箱子至少 1 球 $(n \ge m)$
不同	不同	?		
相同	不同		?	
不同	相同		?	?
相同	相同			

问题 1: 将 n 只不同的球放入 m 个不同的箱子: m^n

问题 2: 将 n 只相同的球放入 m 个不同的箱子, 每个箱子至多 1 球 $(m \ge n)$:

• 解答 2: 从m 个箱子里挑n 个箱子装球,每个箱子装一个球: $\binom{m}{n}$

n 只球	m 个箱 子	无任何限制	$ig $ 每个箱子至多 1 球 $(m \ge n)$	每个箱子至少 1 球 $(n \ge m)$
不同	不同	m^n	?	?
相同	不同	?	$\binom{m}{n}$?
不同	相同	?	?	?
相同	相同	?	?	?

问题 3: 将 n 只不同的球放入 m 个不同的箱子, 每个箱子至多 1 球 $(m \ge n)$

问题 3: 将 n 只不同的球放入 m 个不同的箱子, 每个箱子至多 1 球 $(m \ge n)$

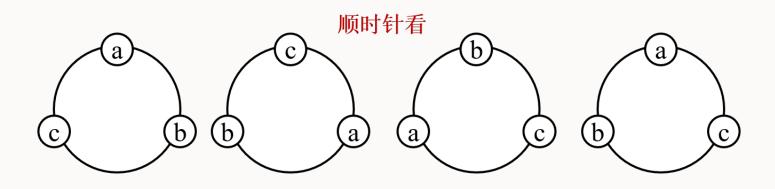
解析 3:

- 因为球和箱子都不相同,所以放法依赖于球、球的数量、箱子
- 从m 个箱子里挑n 个箱子进行排列装球,每个箱子装一个球;其他的m-n 个箱子没有球所以不用区分
- •因此,计数为:

$$C_m^n n! = (m)_n$$

环排列

- (直线) 排列: n 个不同的元素中无放回取出 r 个元素进行排列; 有 $(n)_r = n(n-1)...(n-r+1)$ 种不同的排法
- 全排列: 若 r = n 时; 有 n! 种不同的排法
- 环排列: n 个不同的元素中无放回地取出 r 个元素排成一个圆环



- •每一个环排列对应于r种不同的直线排列
- •不同的环排列的直线排列互不相同

环排列

定义 0.5 (环排列数) 从 n 个不同的元素中无放回地取出 r 个元素排成一个圆环,有

$$\frac{(n)_r}{r}$$

种不同的排法, 称为 环排列数。这里, 记号 $(n)_r$ 表示 C_n^r r!

特别地, n 个不同元素的环排列数为 (n-1)!

例 0.25 将 n 对夫妻安排在一张圆桌,任何夫妻两人需安排在一起,有多少种不同的安排方法。

解法: 例 0.25

问题: 将 n 对夫妻安排在一张圆桌, 任何夫妻两人需安排在一起, 有多少种不同的安排方法?

- 基本事件的个数 (2n-1)!
- 考虑 "n 对夫妻排在一起"的情况: (n-1)!
- 考虑"每一对夫妻的座位顺序可以调换"的情况: 2ⁿ
- 因此, $|A|_{\#} = 2^n(n-1)!$

问题 3: 将 n 只不同的球放入 m 个不同的箱子, 每个箱子至多 1 球 $(m \ge n)$

解答 3:

• 从m个箱子里挑n个箱子进行排列装球,每个箱子装一个球: $(m)_n$

n 只球	加 个箱子	无任何限制	每个箱子至多 1 球 $(m \ge n)$	每个箱子至少 1 球 $(n \ge m)$
不同	不同	m^n	$(m)_n$?
相同	不同	?	$\binom{m}{n}$?
不同	相同	?	?	?
相同	相同	?	?	?

问题 4: 将 n 只相同的球放入 m 个不同的箱子, 有多少种不同的放法?

考虑一个简单的子问题:

例 0.26 将 10 只相同的球放入 3 个不同的箱子, 有多少种不同的放法?

解析: 例 0.26

问题:将 10 只相同的球放入 3 个不同的箱子,有多少种不同的放法?

解答:

- 该题目中,箱子是不同的,球是相同的,所以区别不同放法主要凭靠箱子中球的 数量、箱子
- 设 3 个不同的箱子中依次有 x_1 , x_2 , x_3
- \$\mathre{4}: $x_1, x_2, x_3 \ge 0 \ \text{L} \ x_1 + x_2 + x_3 = 10 \end{array}$
- ●隔板法: 在10+3-1个空(需要考虑箱子的顺序)中插入3-1个隔板即可

整数的有序分解

问题 4: 考虑将 n 只完全相同的球放入 m 个不同的箱子 $(n \ge m)$

解析 4:

•转化: 第一个箱子有 x_1 个球, 第二个箱子有 x_2 个球, ..., 第 m 个箱子有 x_m 个球, 其中 x_1, x_2, \ldots, x_m 为非负的整数, 并满足

$$x_1 + x_2 + \dots + x_m = n$$

• n 只相同的球放入 m 个不同的箱子等价于上述方程的非负整数解

定理 0.1 (整数的有序分解: 非负解) 方程

$$x_1+x_2+\cdots+x_m=n\quad \text{s.t.}\quad x_i\in\mathbb{N},\quad i\in[m]$$
解的个数为 $\binom{n+m-1}{m-1}$ 。

问题 4: 将 n 只相同的球放入 m 个不同的箱子: 隔板法 $\binom{n+m-1}{m-1}$

n 只球	<i>m</i> 个箱子	无任何限制	$ig $ 每个箱子至多 1 球 $(m \geq n)$	每个箱子至少 1 球 $(n \ge m)$
不同	不同	m^n	$(m)_n$?
相同	不同		$\binom{m}{n}$?
不同	相同	?	?	?
相同	相同	?	?	?

整数的有序分解: 例 0.27

问题 5: 考虑将 n 只完全相同的球放入 m 个不同的箱子 $(n \ge m)$,每个箱子至少有一个球

例 0.27 将 10 只相同的球放入 3 个不同的箱子, 每个箱子至少有一个球, 有多少种不同的放法?

解析: 例 0.27

问题:将 10 只相同的球放入 3 个不同的箱子,每个箱子至少有一个球,有多少种不同的放法?

解答:

- 该题目中,箱子是不同的,球是相同的,所以区别不同放法主要凭靠箱子中球的 数量、箱子
- 设 3 个不同的箱子中依次有 x_1 , x_2 , x_3
- 条件: $x_1, x_2, x_3 \ge 1$ 且 $x_1 + x_2 + x_3 = 10$
- 转化: $y_1 = x_1 1, y_2 = x_2 1, y_3 = x_3 1 \ge 0$ 且 $y_1 + y_2 + y_3 = 7$
- ●隔板法: 在7+3-1个空中插入3-1个隔板即可

整数的有序分解

问题 5: 考虑将 n 只完全相同的球放入 m 个不同的箱子 $(n \ge m)$,每个箱子至少有一个球

解析 5:

•转化: 第一个箱子有 x_1 个球, 第二个箱子有 x_2 个球, ..., 第 m 个箱子有 x_m 个球, 其中 $x_1, x_2, ..., x_m$ 为正整数, 并满足

$$x_1 + x_2 + \dots + x_m = n$$

• n 只相同的球放入 m 个不同的箱子等价于上述方程的正整数解

定理 0.2 (正整数解) 方程

$$x_1+x_2+\cdots+x_m=n$$
 s.t. $x_i\in\mathbb{Z}^+,$ $i\in[m]$ 解的个数为 $\binom{n-1}{m-1}$ 。

问题 5: 将 n 只相同的球放入 m 个不同的箱子, 每个箱子至少 1 球 $(n \ge m)$: 隔板法 $\binom{n-1}{m-1}$

n 只球	加 个箱子	无任何限制	每个箱子至多 1 球 $(m \ge n)$	每个箱子至少 1 球 $(n \ge m)$
不同	不同	m^n	$(m)_n$?
相同	不同	$ \left \begin{array}{c} n+m-1 \\ m-1 \end{array} \right $	$\binom{m}{n}$	$\binom{n-1}{m-1}$
不同	相同	?	?	?
相同	相同	?	?	?

整数的有序分解: 例 0.28

例 0.28 思考题 to 作业

- 推论: 求方程 $x_1 + x_2 + \cdots + x_m \le n$ 非负整数解、正整数解的个数
- •问题: 在多项式 $(x_1 + x_2 + \cdots + x_m)^n$ 的展开式中, 一共有多少种不同的展开项?
- •证明: 根据隔板法的思路, 尝试形式化定理 0.1 和定理 0.2 的证明

多重组合

- •组合: n 个不同的元素中无放回地取出 r 个元素; 有 $\binom{n}{r}$ 种.
- **多重组合:** 将 n 个不同的元素分成 k 组, 组内元素无顺序关系; 假设每组分别有 r_1, r_2, \ldots, r_k 个元素, 即 $n = r_1 + r_2 + \cdots + r_k$, 则有

$$\binom{n}{r_1, r_2, \dots, r_k} = \binom{n}{r_1} \binom{n - r_1}{r_2} \binom{n - r_1 - r_2}{r_3} \dots \binom{r_k}{r_k} = \frac{n!}{r_1! r_2! \dots r_k!}$$

种不同的分组方法, 称为 $\binom{n}{r_1, r_2, \ldots, r_k}$ 多重组合数.

Remark:

• 多组合数又称多项式系数, 因为

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{n=r_1+r_2+\dots+r_k} {n \choose r_1, r_2, \dots, r_k} x_1^{r_1} x_2^{r_2} \dots x_k^{r_k}$$

•组合数本质上也属于多重组合数.

多重排列

多重集:假设集合中的元素可以重复,且重复的元素之间不可分辨。

- 例如, 多重集 $A = \{1, 1, 1, 2, 2, 2, 3, 3, 4\}$.
- 多重集 A 有 k 类不同的元素, 每类元素的个数分别为 $r_1, r_2, ..., r_k$, 即 $n = r_1 + \cdots + r_k$ 。将多重集 A 中的所有元素排列成一排, 然后
 - •从 n个位置中选取出 r_1 个位置放第一类元素
 - •再从剩下的从 $n-r_1$ 个位置中选取出 r_2 个位置放第二类元素
 - . . .
 - ·最后 r_k 个位置放第 k 类元素

因此,
$$A$$
 有 $\binom{n}{r_1, r_2, \ldots, r_k}$ 种不同的排列方法, 即多重组合数。

问题 6: n 只不同的球放入 m 个完全相同的箱子, 且每个箱子至少 1 球,有多少种不同的放法?

考虑一个简单的子问题:

例 0.29 集合 $\{1,2,3\}$ 不同的划分数.

解答: 例 0.29

问题: 集合 {1,2,3} 不同的划分数.

解答:

- ◆分成1个集合 (m = 1): {1,2,3},1种
- 分成 2 个集合 (m=2): $\{A\} \oplus \{B,C\}$, 3 种
- 分成 3 个集合 (m=3): $\{1\}, \{2\}, \{3\}, 1$ 种

总共5种情况.

问题 6: n 只不同的球放入 m 个完全相同的箱子, 且每个箱子至少 1 球,有多少种不同的放法?

解答 6:

- •该题目中,球是不同的,箱子是相同的,所以区别不同放法主要凭 靠球的不同和数量
- 递归法

问题 6: n 只不同的球放入 m 个完全相同的箱子, 且每个箱子至少 1 球,有多少种不同的放法?

解答 6:

- •该题目中,球是不同的,箱子是相同的,所以区别不同放法主要凭 靠球的不同和数量
- 递归法

定义 0.6 (第二类 Stirling 数) 将 n 个不同的元素分成 m 个非空的子集,不同的划分数称为 第二类 Stirling 数,记为 S(n,m).

第二类 Stirling 数

S(n,m): 将 n 个不同的元素分成 m 个非空的子集.

- $i \exists S(0,0) = 1, S(n,1) = 1, S(n,n) = 1$
- 当 $m > n \ge 1$ 时,有 S(n,m) = 0

定理 **0.3** 对 $n \ge m \ge 1$, 有

$$S(n,m) = mS(n-1,m) + S(n-1,m-1)$$

进而,有

$$\begin{cases} S(n,k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^i \binom{k}{i} (k-i)^n \\ \sum_{k=1}^{n} S(n,k)(x)_k = x^n, \quad (x)_k = x(x-1)\dots(x-k+1) \end{cases}$$

第二类 Stirling 数: 证明思路

对 $n \ge m \ge 1$, 有 S(n,m) = mS(n-1,m) + S(n-1,m-1).

- 如果指定元素 A 单独占用一个集合, 那么有子问题 S(n-1,m-1).
- 如果指定元素 A 并未单独占用一个格子, 将其分到 m 个集合中 $\binom{m}{1}$, 那么有子问题 S(n-1,m).

S(1,1) = 1	0	0	•••	0
S(2,1) = 1	S(2,2)	0		0
:	:	··.	:	0
S(n-1,1) = 1	S(n-1,2)	•••	S(n-1,m-1)	0
S(n,1) = 1	S(n,2)		S(n, m-1)	$\int S(n,m)$

问题 6: 将 n 只不同的球放入 m 个相同箱子

解答 6: 通过箱子中球、球的数量来识别箱子

- •每个箱子至少 1 球 $(n \ge m)$: S(n, m)
- •每个箱子至多 1 球 $(m \ge n)$: 有箱子有 1 个球, 有箱子没有球, 有球的箱子通过球来识别箱子: 1
- 无任何限制: 可以分解为m个子问题, $\sum_{k=1}^{m} S(n,k)$

n 只球	<i>m</i> 个箱子	无任何限制	每个箱子至多 1 球 $(m \ge n)$	每个箱子至少 1 球 $(n \ge m)$
不同	不同	m^n	$(m)_n$?
相同	不同	$ \left($	$\binom{m}{n}$	$\binom{n-1}{m-1}$
不同	相同	$\sum_{k=1}^{m} S(n,k)$	1	S(n,m)
相同	相同	?	?	?

问题 7: 将 n 只相同的球放入 m 个相同的箱子,有多少种不同的放法?

考虑一个简单的子问题:

例 0.30 考虑整数 7 的各种无序划分.

解答: 例 0.30

问题: 考虑整数7的各种无序划分.

解答:

m = 1	7	p(7,1) = 1
m=2	6+1, 5+2, 4+3	p(7,2) = 3
m=3	5+1+1, $4+2+1$, $3+3+1$, $3+2+2$	p(7,3) = 4
m=4	4+1+1+1, $3+2+1+1$, $2+2+2+1$	p(7,4) = 3
m=5	3+1+1+1+1, $2+2+1+1+1$	p(7,5) = 2
m=6	2+1+1+1+1+1	p(7,6) = 1
m=7	1+1+1+1+1+1+1	p(7,7) = 1

问题 7: 将n 只相同的球放入m 个相同的箱子,有多少种不同的放法?

解答 7:

- •该题目中,球和箱子都是相同的,所以区别不同放法主要凭靠球的数量
- 无序拆分

整数的无序分拆

- •问题:将正整数 n 划分成 m 个无序的正整数之和
- •转k: 将正整数 n 划分成 m 个无序的正整数之和,等价于

$$x_1 + x_2 + \dots + x_m = n$$
 s.t. $x_1 \ge x_2 \ge \dots \ge x_m \ge 1$

- •形式化:将正整数n划分成m个无序的正整数之和,不同的划分数记为p(n,m)
 - 记 p(0,0) = 1, p(n,1) = 1, p(n,n) = 1
 - 当 $m > n \ge 1$ 时,有 p(n,m) = 0
 - 定理 **0.4** (递推关系) 对 $n \ge m \ge 1$, 有

$$\begin{cases} p(n,m) = p(n-1,m-1) + p(n-m,m) \\ p(n,m) = \sum_{i=1}^{m} p(n-m,i) \end{cases}$$

整数的无序分拆:证明思路

对 $n \ge m \ge 1$, 有 p(n,m) = p(n-1,m-1) + p(n-m,m).

- •如果有单元素的划分,那么有子问题 "n-1 个球装 m-1 个箱子":
- p(n-1, m-1).
- •如果无单元素的划分,默认所有箱子都有一个球了,则所有划分子集内元素数量减 1, 那么有子问题"把剩下的 n-m 个球装 m 个箱子":
- $\bullet p(n-m,m).$

p(1,1) = 1	0	0	•••	0
p(2,1) = 1	p(2,2)	0	•••	0
:	:	· · .	:	0
p(n-1,1) = 1	p(n-1,2)		p(n-1,m-1)	0
p(n,1) = 1	p(n,2)		p(n, m-1)	p(n,m)

整数的无序分拆

对正整数 $n \ge 1$ 和 $m \ge 1$, 有

$$\frac{1}{m!} \binom{n-1}{m-1} \le p(n,m) \le \frac{1}{m!} \binom{n-1+m(m-1)/2}{m-1}$$

给定 $m \ge 1$, 当 n 非常大或趋于无穷的极限中有

$$p(n,m) \approx \frac{n^{(m-1)}}{m!(m-1)!}$$

问题 7: 将 n 只相同的球放入 m 个相同箱子

解答 7: 只能通过箱子中球的数量来识别箱子

- •每个箱子至少 1 球 $(n \ge m)$: p(n, m)
- •每个箱子至多 1 球 $(m \ge n)$: 有箱子有 1 个球, 有箱子没有球, 通过有无球来识别箱子: 1
- 无任何限制: 可以分解为m个子问题, $\sum_{k=1}^{m} p(n,k)$

n 只球	<i>m</i> 个箱子	无任何限制	每个箱子至多 1 球 $(m \ge n)$	每个箱子至少 1 球 $(n \ge m)$
不同	不同	m^n	$(m)_n$	m!S(n,m)
相同	不同	$\binom{n+m-1}{m-1}$	$\binom{n}{m}$	$\binom{n-1}{m-1}$
不同	相同	$\sum_{k=1}^{m} S(n,k)$	1	S(n,m)
相同	相同	$\sum_{k=1}^{m} p(n,k)$	1	p(n,m)

总结: 十二重计数

- •不同球 不同箱子: 球、球数量、箱子——排列
- •相同球 不同箱子: 球数量、箱子——组合
- 不同球 相同箱子: 球、球数量——第二类 Stirling 数 S
- •相同球 相同箱子: 球数量——无序分解 p

n 只球	<i>m</i> 个箱子	无任何限制	$oxed{$ 每个箱子至多 $oldsymbol{1}$ 球 $(m \geq n)$	每个箱子至少 1 球 $(n \ge m)$
不同	不同	m^n	$(m)_n$	m!S(n,m)
相同	不同	$\binom{n+m-1}{m-1}$	$\binom{n}{m}$	$\binom{n-1}{m-1}$
不同	相同	$\sum_{k=1}^{m} S(n,k)$	$\begin{cases} 1 & n \le m \\ 0 & n > m \end{cases}$	S(n,m)
相同	相同	$\sum_{k=1}^{m} p(n,k)$	$\begin{cases} 1 & n \le m \\ 0 & n > m \end{cases}$	p(n,m)