Part IV - Ch04: 连续型随机变量

Ch04: 连续型随机变量

Distribution Functions, Probability Density Functions, and Statistical Quantity

September 4, 2025

提纲: 连续型随机变量

- 分布函数
- •密度函数
- 数字特征
 - •期望
 - ·函数期望 (Jensen 不等式)
 - •方差
- 常见的连续型随机变量和分布
 - •均匀分布:分布函数、密度函数、数字特征
 - 指数分布: 分布函数、密度函数、无记忆性、数字特征
 - •正态分布:分布函数、密度函数、数字特征、标准正态分布

随机变量的分布函数

定义 0.27 给定任意随机变量 X 和实数 x, 函数

$$F(x) = P(X \le x)$$

称为随机变量 X 的分布函数, 分布函数的本质是概率.

- 分布函数 F(x) 定义在 $(-\infty, +\infty)$ 的普通函数, 将概率与普通函数联系起来, 有利于利用数学分析的知识来研究随机变量;
- 分布函数不限制随机变量的类型,无论是离散型随机变量还是非离散型随机变量,都有各自的分布函数;
- •对任意实数 $x_1 < x_2$, 有

$$P(x_1 < X \le x_2) = P(X \le x_2) - P(X \le x_1) = F(x_2) - F(x_1)$$

分布函数的性质

分布函数 F(x) 具有如下性质:

- 单调性: 若 $x_1 < x_2$, 则 $F(x_1) < F(x_2)$
- 规范性: $F(x) \in [0,1]$ 且 $F(-\infty) = 0$, $F(+\infty) = 1$
- 右连续性: F(x+0) = F(x)

任何分布函数都需要满足上述三性质,满足上述三性质的函数必是某随机变量的分布函数.分布函数可由上述三性质完全刻画.

概率的计算

有了分布函数 F(x), 就很容易计算随机变量 X 的概率, 如:

$$P(X > a) = 1 - F(a)$$

$$P(X < a) = F(a - 0) = \lim_{x \to a} F(x)$$

$$P(X = a) = F(a) - F(a - 0)$$

$$P(X \ge a) = 1 - F(a - 0)$$

$$P(a \le X \le b) = F(b) - F(a - 0)$$

分布函数: 例 0.80

对离散型随机变量 X , 设其分布列为 $p_k = P(X = x_k)(k = 1, 2, ...)$, 可得 X 的分布函数为:

$$F(x) = P(X \le x) = \sum_{k: x_k \le x} p_k$$

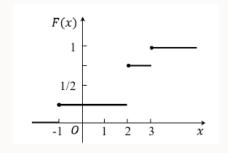
例 0.80 随机变量 X 的分布列如下, 求 X 的分布函数.

$$\begin{array}{|c|c|c|c|c|c|} \hline X & -1 & 2 & 3 \\ P & 1/4 & 1/2 & 1/4 \\ \hline \end{array}$$

题目: 随机变量 X 的分布列为 P(X = -1) = P(X = 3) = 1/4 和 P(X = 2) = 1/2, 求 X 的分布函数

解答:

- 对离散型随机变量 X , 设其分布列为 $p_k = P(X = x_k)(k = 1, 2, ...)$, X 的分布函数为 $F(x) = P(X \le x) = \sum_{k:x_k \le x} p_k$.
- 当 x < -1,有 $F(x) = P(X \le x) = P(\emptyset) = 0$;当 $-1 \le x < 2$,有 $F(x) = P(X \le x) = P(X = -1) = \frac{1}{4}$;当 $2 \le x < 3$,有 $F(x) = P(X \le x) = P(X = -1) + P(X = 2) = \frac{3}{4}$;当 $x \ge 3$,有 $F(x) = P(X \le x) = P(X = -1) + P(X = 3) = 1$.
- 如下图所示, 分布函数 F(x) 是一条阶梯形的曲线, 在 x = -1, 2, 3 处有跳跃点.



分布函数: 例 0.81

例 0.81 随机变量 X 的分布函数为 $F(x) = A + B \arctan x, x \in (-\infty, +\infty)$, 求 $P(X \le 1)$.

题目: 随机变量 X 的分布函数为 $F(x) = A + B \arctan x, x \in (-\infty, +\infty)$, 求 $P(X \le 1)$. 解答:

- 直接代入定义: $F(1) = A + B \arctan 1 = A + B\pi/4$.
- 由分布函数的性质可知, $F(-\infty) = 0$ 和 $F(+\infty) = 1$.
- 求解下列式子:

$$0 = F(-\infty) = \lim_{x \to -\infty} A + B \arctan x = A - \pi B/2$$
$$1 = F(+\infty) = \lim_{x \to +\infty} A + B \arctan x = A + \pi B/2$$

可得 A = 1/2 和 $B = 1/\pi$, 从而得到 $P(X \le 1) = 3/4$.

回顾: 随机变量

根据取值类型,可以将随机变量进行分类:

- \bullet 离散型随机变量: X 的取值是有限的、无限可列的
 - 抛一枚骰子的点数: 1,2,...,6 ——有限的

$$X \mid 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$$

•国家一年出生的婴儿数: $1,2,\ldots,n$ ——有限的或者无限可列的

$$X \mid 1 \quad 2 \quad \dots \quad n \mid \dots$$

• 非离散型随机变量: X 的取值是无限不可列的

连续型随机变量 - 概率密度函数

定义 0.28 设随机变量 X 的分布函数为 F(x),如果存在可积函数 f(x),使得对任意实数 x 有

$$F(x) = \int_{-\infty}^{x} f(x) \, \mathrm{d}x$$

成立,则称X为连续型随机变量,函数f(x)为随机变量X的概率密度函数,简称密度函数.

Remarks:

- 随机变量的取值 x 的取值为连续型, 通常整个区间 [a,b] 或 (a,∞) , 例如火车的到站时间、或一盏灯泡的寿命等.
- •随机变量的分布函数由一元积分表示 why?

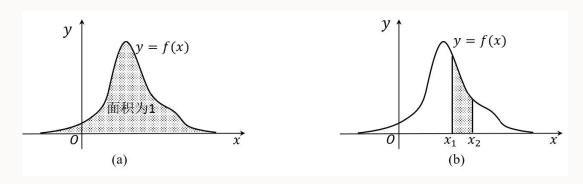
密度函数的几何解释 for 分布函数由一元积分表示

密度函数 f(x) 满足非负性 $f(x) \ge 0$ 和规范性 $\int_{-\infty}^{+\infty} f(x) dt = 1$.

•根据规范性可知曲线 y = f(x) 与 x 轴所围成的面积为 1. 对任意 $x_1 \le x_2$, 有

$$P(x_1 < X \le x_2) = F(x_2) - F(x_1) = \int_{x_1}^{x_2} f(x) dt$$

• <u>几何解释</u>: X 落入区间 $(x_1, x_2]$ 的概率等于 x 轴, $x = x_1$, $x = x_2$ 和 y = f(x) 所围成的曲边梯形的面积. f(x) 指向 x 点处的可能性.



密度函数: 例 0.82

例 0.82 设连续随机变量 X 的密度函数为 f(x), 且 f(x) = f(-x). 令 F(x) 为 X 的分布函数,则对于任意实数 a,有

- (a) $F(-a) = 1 \int_0^a f(x) dx$
- (b) $F(-a) = 1/2 \int_0^a f(x) dx$
- $\bullet (c) F(-a) = F(a)$
- (d) F(-a) = 2F(a) 1

题目: 设连续随机变量 X 的密度函数为 f(x), 且 f(x) = f(-x). 令 F(x) 为 X 的分布函数,则对于任意实数 a, 有

• (a)
$$F(-a) = 1 - \int_0^a f(x) dx$$

• (b)
$$F(-a) = 1/2 - \int_0^a f(x) dx$$

• (c)
$$F(-a) = F(a)$$

• (d)
$$F(-a) = sF(a) - 1$$

解答: 这里的核心在于计算 F(-a). 根据定义,有

$$F(-a) = \int_{-\infty}^{-a} f(x) dx$$
$$= -\int_{+\infty}^{a} f(y) db = \int_{a}^{+\infty} f(y) dy \quad (let y = -x)$$

所以 $F(-a) + F(a) = \int_{-\infty}^{+\infty} f(x) dx$, 进而

$$F(-a) = 1 - F(a)$$
 或者 $= 1/2 - \int_0^a f(x) dx$

密度函数: 例 0.83

例 0.83 设连续随机变量 X 的密度函数

$$f(x) = \begin{cases} x, & 0 < x < 1 \\ a - x, & 1 < x \le 2 \\ 0, & \text{others} \end{cases}$$

求分布函数 F(x).

题目: 如上所述.

解答:

- •考察密度函数的规范性及分布函数与密度函数的函数关系.
- 根据概率密度的规范性有

$$1 = \int_{-\infty}^{+\infty} f(t) dt = \int_{0}^{1} t dt + \int_{1}^{2} (a - t) dt = a - 1$$

从而求解出 a=2, 于是得到具体的密度函数 f(x).

• 当 $x \le 0$ 时, 有 F(x) = 0; 当 $0 < x \le 1$ 时, 有

$$F(x) = \int_0^x f(t) dt = x^2/2;$$

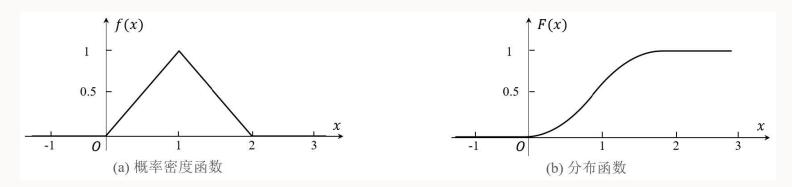
当 $1 < x \le 2$ 时,有

$$F(x) = \int_0^1 f(t) dt + \int_1^x f(t) dt = 1/2 + \int_1^x (2-t)dt = -x^2/2 + 2x - 1;$$

当 $x \ge 2$ 时,有 F(x) = 1.综合可得

$$f(x) = \begin{cases} 0 & x \le 0, \\ x^2/2 & 0 < x \le 1, \\ -x^2/2 + 2x - 1 & 1 < x \le 2, \\ 1 & x \ge 2. \end{cases}$$

随机变量 X 的密度函数和分布函数如下图所示.



密度函数: 例 0.84

例 0.84 对连续随机变量 X, 当 $x \in (0,3)$ 时密度函数 $f(x) = cx^2$, 在其它点的密度函数 f(x) = 0. 设随机变量

$$Y = \begin{cases} 2, & X \le 1 \\ X, & X \in (1, 2) \\ 1, & X \ge 2 \end{cases}$$

求概率 $P(Y \ge X)$.

题目: 如上所述.

解答:

- •考察密度函数的规范性及分布函数与密度函数的函数关系.
- 根据概率密度的规范性有 $1 = \int_{-\infty}^{+\infty} f(t) dt = 9c$, 由此可得 c = 1/9.
- 用 $F_Y(y)$ 表示随机变量 Y 的分布函数. 当 y < 1 时, 有 $F_Y(y) = P(Y \le y) = 0$; 当 $y \ge 2$ 时, 有 $F_Y(y) = P(Y \le y) = 1$; 当 $1 \le y < 2$ 时, 有

$$F_Y(y) = P(Y \le y) = P(Y = 1) + P(1 < Y \le y)$$

$$= P(X \ge 2) + P(1 < X \le y) = \int_2^3 t^2 / 9 \, dt + \int_1^y t^2 / 9 \, dt = (18 + y^3) / 27$$

由此可得随机变量 Y 的分布函数为

$$F_Y(y) = \begin{cases} 0 & y < 1, \\ (18 + y^3)/27 & y \in [1, 2), \\ 1 & y \ge 2. \end{cases}$$

可以观察到随机变量 Y 不是连续型随机变量, 也不是离散型随机变量. 最后计算概率

$$P(X \le Y) = P(X < 2) = \int_0^2 t^2 / 9dt = 8/27$$

概率密度函数相关定理

定理 0.9 对连续随机变量 X, 其分布函数 F(x) 在整个实数域上连续; 若 f(x) 在 x 点连续, 则 F(x) 在 x 点可导, 且 F'(x) = f(x).

分布函数的导数是概率密度函数, 概率密度函数的积分是分布函数?

定理 0.10 对连续型随机变量 X 和常数 x, 有 P(X = x) = 0.

Remarks:

- •事件是孤点的:一个事件的概率为 0, 不能推出该事件是不可能事件; 一个事件的概率为 1, 也不能推出该事件是必然事件.
- $P(a \le X \le b) = P(a < X < b) = P(a \le X < b) = P(a < X \le b).$
- •注意: 概率密度函数不是概率, 即 $P(X = x) = 0 \neq f(x)$.

概率与密度函数的关系

若 f(x) 在点 x 连续, 根据连续性有

$$\lim_{\Delta x \to 0} \frac{P(x - \Delta x \le X \le x + \Delta x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x - \Delta x}^{x + \Delta x} f(t) dt}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{2\Delta x f(\xi)}{\Delta x}$$
$$= 2f(x)\Delta x$$

其中 $\xi \in (x - \Delta x, x + \Delta x)$, 由此可得

$$P(x - \Delta x \le X \le x + \Delta x) \approx 2f(x)\Delta x$$

概率密度 f(x) 越大, 则 X 在 x 附近取值的概率越大.

统计量一: 期望

定义 0.29 设连续随机变量 X 的密度函数为 f(x), 若积分 $\int_{-\infty}^{+\infty} |x| f(x) dx$ 收敛, 称 $\int_{-\infty}^{+\infty} x f(x) dx$ 为随机变量 X 的期望, 记为 $\mathbb{E}(X)$, 即

$$\mathbb{E}(X) = \int_{-\infty}^{+\infty} x f(x) \, \mathrm{d}x$$

例 0.85 物理学中用到的柯西分布为: 随机变量 的密度函数是

$$f(x) = 1/\pi(1+x^2) \quad (x \in \mathbb{R}) ,$$

求期望 $\mathbb{E}(X)$.

题目: 物理学中用到的柯西分布为: 随机变量 X 的密度函数是 $f(x) = 1/\pi(1+x^2)(x \in \mathbb{R})$, 求期望 $\mathbb{E}(X)$.

解答:

• 根据随机变量 X 的期望 $\mathbb{E}(X) = \int_{-\infty}^{+\infty} |x| f(x) dx$, 有

$$\int_{-\infty}^{+\infty} \frac{|x|}{\pi (1+x^2)} \, \mathrm{d}x = 2 \int_{0}^{+\infty} \frac{x}{\pi (1+x^2)} \, \mathrm{d}x = \frac{1}{\pi} \left[\ln(1+x^2) \right]_{0}^{+\infty} = +\infty$$

• 由上可知柯西分布的期望不存在.

连续期望的性质

- •对任意常数 a, b 和连续随机变量 X, 有 $\mathbb{E}(aX + b) = a\mathbb{E}(X) + b$.
- 对常数 c_1, \ldots, c_n 和连续函数 $g_1(x), \ldots, g_n(x)$, 有

$$\mathbb{E}\left(\sum_{i=1}^{n} c_i g_i(X)\right) = \sum_{i=1}^{n} c_i \mathbb{E}\left(g_i(X)\right)$$

- •对连续随机变量 X 和凸函数 f(x), 有 $f(\mathbb{E}(X)) \leq \mathbb{E}(f(X))$.
- 对连续随机变量 X 和凹函数 f(x), 有 $f(\mathbb{E}(X)) \geq \mathbb{E}(f(X))$.

非负随机变量期望的等价定义

定义 0.30 对非负随机变量 X, 有

$$\mathbb{E}[X] = \int_0^{+\infty} P(X > t) \, \mathrm{d}t$$

证明: 概率 = 积分, 积分换序

<u>推论</u>: 对非负随机变量 g(X), 有 $\mathbb{E}[g(X)] = \int_0^{+\infty} P(g(X) > t) dt$.

非负随机变量期望的等价定义

<u></u> 菜证: $\mathbb{E}[X] = \int_0^{+\infty} P(X > t) \, \mathrm{d}t$ for $X \ge 0$

证明: It is observed that

$$x = \int_0^x 1 \, \mathrm{d}s = \int_0^x \mathbb{I}(s \le x) \, \mathrm{d}s = \int_0^{+\infty} \mathbb{I}(s \le x) \, \mathrm{d}s.$$

Thus, we have

$$\mathbb{E}[X] = \mathbb{E}\left[\int_{0}^{+\infty} \mathbb{I}(s \le X) \, \mathrm{d}s\right]$$

$$= \int_{0}^{+\infty} \left[\int_{0}^{+\infty} \mathbb{I}(s \le x) \, \mathrm{d}s\right] f(x) \, \mathrm{d}x$$

$$= \int_{0}^{+\infty} \left[\int_{0}^{+\infty} \mathbb{I}(x \ge s) f(x) \, \mathrm{d}x\right] \, \mathrm{d}s$$

$$= \int_{0}^{+\infty} \left[\int_{0}^{s} \mathbb{I}(x \ge s) f(x) \, \mathrm{d}x\right] \, \mathrm{d}s + \int_{0}^{+\infty} \left[\int_{s}^{+\infty} \mathbb{I}(x \ge s) f(x) \, \mathrm{d}x\right] \, \mathrm{d}s$$

$$= \int_{0}^{+\infty} \left[\int_{s}^{+\infty} f(x) \, \mathrm{d}x\right] \, \mathrm{d}s = \int_{0}^{+\infty} P(X \ge s) \, \mathrm{d}s.$$

统计量二: 函数期望

定理 0.11 设随机变量 X 的密度函数为 f(x)、且 $\int_{-\infty}^{+\infty} g(t)f(t)dt$ 绝对可积,则随机变量 Y=g(X) 的期望

$$\mathbb{E}\left[g(X)\right] = \int_{-\infty}^{+\infty} g(t)f(t) dt$$

函数期望: 例 0.86

例 0.86 古人运送粮草,如果早到每天需要的存储费用 c 元,如果晚到每天需要的延期费用为 C 元. 粮草在运送过程中存在天气、路况等不确定因素,因此运送需要的天数是随机的,概率密度函数为 f(x),问什么时候出发才能使费用的期望值最小?

解答:

- 先列出所需费用的分布函数, 再求期望的表达式及其最小值.
- 用随机变量 X 表示实际的运送天数, 分布函数为 F(x). 不妨假设提前了 t 天出发 (t 也表示运粮约定时间), 那么所需费用为

$$\ell_t(X) = \begin{cases} c(t - X) & X \le t, \\ C(X - t) & X > t. \end{cases}$$

• 因此可得

$$\mathbb{E}\left[\ell_t(X)\right] = \int_0^{+\infty} \ell_t(x)f(x) \, \mathrm{d}x = \int_0^t c(t-x)f(x) \, \mathrm{d}x + \int_t^{+\infty} C(x-t)f(x) \, \mathrm{d}x$$
$$= ctF(t) - c \int_0^t xf(x) \, \mathrm{d}x + C \int_t^{+\infty} xf(x) \, \mathrm{d}x - Ct(1-F(t))$$

• 该函数是一个关于运粮约定时间或者提前出发事件 t 的函数

• 对上式中的 t 求导、并令导数为零可得

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbb{E}\left[\ell_t(X)\right] = cF(t) - C(1 - F(t)) = (c + C)F(t) - C$$

求解可得期望最小的天数 * 满足

$$F(t^*) = C/(c+C)$$

统计量三: 方差

定义 0.31 设连续随机变量 X 的密度函数为 f(x), 称

$$\mathbb{VAR}(X) = \mathbb{E}(X - \mathbb{E}(X))^2 = \int_{-\infty}^{+\infty} (t - \mathbb{E}(X))^2 f(t) dt$$

等价地

$$\mathbb{VAR}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \int_{-\infty}^{+\infty} t^2 f(t) \, \mathrm{d}t - \left(\int_{-\infty}^{+\infty} t f(t) \, \mathrm{d}t\right)^2$$

为随机变量 X 的方差.

连续函数方差的性质: (证明留作作业)

- •对任意常数 a, b 和连续随机变量 X, 有 $VAR(aX + b) = a^2VAR(X)$
- 对于常数 c, 有 $\mathbb{VAR}(X) = \mathbb{E}(X \mathbb{E}(X))^2 \le (X c)^2$
- 对于 $X \in [a,b]$,有 $\mathbb{VAR}(X) \leq (b-\mathbb{E}(X))(\mathbb{E}(X)-a) \leq \frac{(b-a)^2}{4}$

方差: 例 0.87

例 0.87 设随机变量 X 的密度函数为

$$f(x) = \begin{cases} \frac{2}{3}x, & 1 < x < 2 \\ 0, & \cancel{\cancel{x}} = \cancel{\cancel{x}} \end{cases}$$

求 X 的方差 $\mathbb{VAR}(X)$ 和 -2X+3 的方差 $\mathbb{VAR}(-2X+3)$.

题目: 设随机变量 X 的密度函数为

$$f(x) = \begin{cases} \frac{2}{3}x, & 1 < x < 2\\ 0, & 其它 \end{cases}$$

求 X 的方差 $\mathbb{VAR}(X)$ 和 -2X + 3 的方差 $\mathbb{VAR}(-2X + 3)$.

解答:

• 根据方差的定义可知, 因为 $\mathbb{VAR}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$, 且

$$\mathbb{E}(X) = \int_{-\infty}^{+\infty} x f(x) \, dx = \int_{1}^{2} x \cdot \frac{2}{3} x \, dx = \frac{14}{9}$$

$$\mathbb{E}(X^2) = \int_{-\infty}^{+\infty} x^2 f(x) \, \mathrm{d}x = \int_{1}^{2} x^2 \cdot \frac{2}{3} x \, \mathrm{d}x = \frac{5}{2}$$

由此可得 $\mathbb{VAR}(X) = \frac{13}{162}$.

• 根据方差的性质得, $\mathbb{VAR}(-2X+3) = 4 \cdot \mathbb{VAR}(X) = \frac{26}{81}$

本节内容: 几种常见的连续型随机变量和分布

类型	知识点
均匀分布	分布函数、密度函数、数字特征
指数分布	分布函数、密度函数、无记忆性、数字特征
正态分布	分布函数、密度函数、数字特征、标准正态分布
相关的经典例题	

均匀分布

定义0.32 若连续随机变量X的密度函数为

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & \sharp \dot{\mathcal{C}} \end{cases}$$

称 X 服从区间 [a,b] 上的均匀分布, 记为 $X \sim U(a,b)$.

若随机变量 $X \sim U(a,b)$, 则 X 落入内任一子区间 $[x,x+\Delta]$ 的概率

$$P(x \le X \le x + \Delta) = \int_{x}^{x+\Delta} \frac{1}{b-a} dt = \frac{\Delta}{b-a}$$

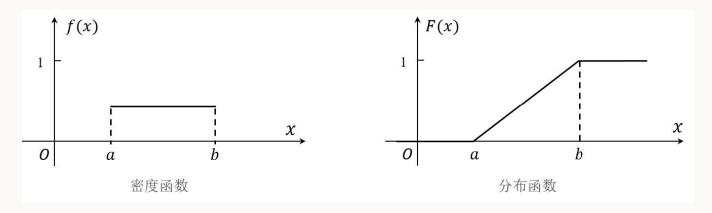
<u>几何解释</u>: 若 X 落入 [a,b] 内任一子区间的概率与该区间的长度成正比,与位置无关.

均匀分布的分布函数和数字特征

若随机变量 $X \sim U(a,b)$ 的分布函数为

$$F(x) = \begin{cases} 0, & x \le a \\ \frac{x-a}{b-a}, & a < x < b \\ 1, & x \ge b \end{cases}$$

•密度函数和分布函数的示意图



• 若随机变量 $X \sim U(a,b)$, 则有 $\mathbb{E}(X) = \frac{a+b}{2}$ 和 $\mathbb{VAR}(X) = \frac{(b-a)^2}{12}$.

均匀分布: 例 0.88

例 0.88 已知随机变量 $X \sim U(a,b)$, 则 a < c < d < b. 求 $P(X \le c \mid X \le d)$.

解答: 例 0.88

题目: 己知随机变量 $X \sim U(a, b)$, 则 a < c < d < b, 求 $P(X \le c | X \le d)$.

解答:

•根据条件概率的定义及均匀分布的密度函数可知,

$$P(X \le c \mid X \le d) = \frac{P(\{X \le d\} \cap \{X \le c\})}{P(X \le d)} = \frac{P(X \le c)}{P(X \le d)} = \frac{c - a}{d - a}$$

即在 $X \leq d$ 的条件下, 随机变量 $X \sim U(a,d)$.

均匀分布: 例 0.89

例 0.89 设随机变量 $Y \sim U(-3,6)$, 试求方程 $4x^2 + 4Yx + Y + 2 = 0$ 有实根的概率.

解答:例 0.89

题目: 设随机变量 $Y \sim U(-3,6)$, 试求方程 $4x^2 + 4Yx + Y + 2 = 0$ 有实根的概率.

解答:

●根据均匀分布的密度函数和一元二次方程有实数根的条件可知, 随机变量 Y 的密度函数为

$$f(x) = \begin{cases} 1/9, & x \in [-3, 6] \\ 0, & \sharp \dot{\Xi} \end{cases}$$

设事件 A 表示方差有实根, 于是有,

$$P(A) = P[(4Y)^{2} - 4 \times 4 \times (Y + 2) \ge 0] = P[(Y + 1)(\xi - 2) \ge 0]$$

$$= P(\{Y \ge -1\} \cap \{Y \ge 2\} \ge 0) + P(\{Y \le -1\} \cap \{Y \le 2\} \ge 0)$$

$$= P(Y \le -1) + P(Y \ge 2) = \int_{-3}^{-1} \frac{1}{9} dt + \int_{2}^{6} \frac{1}{9} dt = \frac{2}{3}$$

指数分布

指数分布常用于电话的通话时间和银行的服务等待时间,也可以用于描述动物和电子元件的寿命,在可靠性理论和排队论中具有广泛的应用.

定义 0.33 给定常数 $\lambda > 0$, 若连续随机变量 X 的密度函数为

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & \text{#} \hat{\mathbf{c}} \end{cases}$$

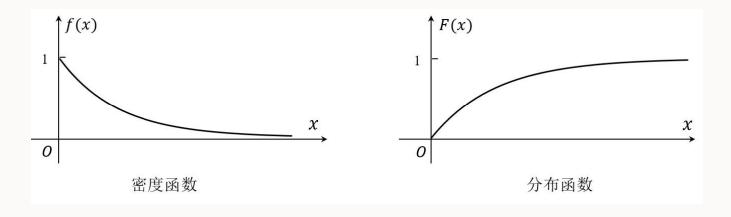
称 X 服从参数 λ 的指数分布, 记为 $X \sim e(\lambda)$.

指数分布的分布函数

若随机变量 $X \sim e(\lambda)$ 的分布函数为

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

随机变量 $X \sim e(\lambda)$ 的密度函数和分布函数的示意图为:



指数分布: 例 0.90

例 0.90 设随机变量 X 服从参数为 2 的指数分布, 求证: $Y = 1 - \exp(-2X)$ 在区间 (0,1) 上服从均匀分布.

解答:例 0.90

题目: 设随机变量 X 服从参数为 2 的指数分布, 求证: $Y = 1 - \exp(-2X)$ 在区间 (0,1) 上服从均匀分布.

解答:

- ◆本题的关键是求解 X 和 Y 之间的双射关系
- X 的分布函数 $F(x) = 1 \exp(-2X)$ for x > 0. 而 $Y = 1 \exp(-2X)$ 是单调增函数, 所以有反函数 $X = -\ln(1 Y)/2$. 令 G(Y) 为随机变量 Y 的分布函数, 则

$$G(Y) = P(Y \le y) = P\{1 - \exp(-2X) \le y\} = \begin{cases} 0, & y \le 0 \\ P\{X \le -\ln(1-y)/2\}, & 0 < y < 1 \\ 1, & y \ge 1 \end{cases}$$

$$= \begin{cases} 0, & y \le 0 \\ y, & 0 < y < 1 \\ 1, & y \ge 1 \end{cases}$$

指数分布: 例 0.91

例 0.91 证明: 若随机变量 X_1, \ldots, X_n 相互独立的、且分别服从参数为 $\lambda_1, \ldots, \lambda_n$ 的指数分布,则有

$$X = \min\{X_1, \dots, X_n\} \sim e(\lambda_1 + \lambda_2 + \dots + \lambda_n)$$

解答: 例 0.91

题目: 证明: 若随机变量 X_1, \ldots, X_n 相互独立的、且分别服从参数为 $\lambda_1, \ldots, \lambda_n$ 的指数分布,则有

$$X = \min\{X_1, \dots, X_n\} \sim e(\lambda_1 + \lambda_2 + \dots + \lambda_n)$$

解答:

- 随机变量 $X_1, ..., X_n$ 相互独立的可以理解为随机变量取不同值的随机事件相互独立.
- 随机变量 X 的分布函数为

$$F_X(x) = P(X \le x) = P(\min(X_1, \dots, X_n) \le x) = 1 - P(\min(X_1, \dots, X_n) > x)$$
$$= 1 - \prod_{i=1}^n P(X_i > x) = 1 - \prod_{i=1}^n \exp(-\lambda_i x) = 1 - \exp\left(-x \sum_{i=1}^n \lambda_i\right)$$

由此证明完毕.

指数分布的期望、方差、无记忆性

若随机变量 $X \sim e(\lambda)$, 则

$$\mathbb{E}(X) = \frac{1}{\lambda} \quad \text{fil} \quad \mathbb{VAR}(X) = \frac{1}{\lambda^2}$$

定理 0.12 若随机变量 $X \sim e(\lambda)$, 则对任意 s > 0, t > 0, 有

$$P(X > s + t \mid X > t) = P(X > s)$$

Remarks:

- 指数分布是唯一具有无记忆性的连续型随机变量
- 联想到: 离散型随机变量 几何分布也是无记忆性的

$$P(X > m + n \mid X > m) = P(X > n)$$

正态分布

正态分布是概率统计中最重要的一种分布,最早由法国数学家棣莫弗在 1730s 提出,用于近似抛硬币试验中随机事件的概率.

高斯在 1800s 首次将正态分布应用于预测天文学中星体的位置,由此才展示出正态分布的应用价值,正态分布因此被称为高斯分布.

正态分布的重要性主要体现在以下三个方面:

- 现实生活中很多随机现象可用正态分布进行描述, 如人的身高等;
- 很多分布可以通过正态分布来进行近似计算;
- •数理统计中常用的统计分布都是由正态分布导出的,如 χ^2 分布、t—分布和 F—分布.

正态分布的定义

定义 0.34 给定 $u \in (-\infty, +\infty)$ 和 $\sigma > 0$, 若连续随机变量 X 的密度函数为

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \qquad x \in (-\infty, +\infty)$$

称 X 服从参数 μ, σ^2 的正态分布, 记为 $X \sim \mathcal{N}(\mu, \sigma^2)$.

特别地, 若 $\mu = 0$ 和 $\sigma = 1$, 称 $\mathcal{N}(0,1)$ 为标准正态分布, 密度函数

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \qquad x \in (-\infty, +\infty)$$

正态分布的期望和方差

若 $X \sim \mathcal{N}(\mu, \sigma^2)$, 则有

$$\mathbb{E}(X) = \mu$$
 for $\mathbb{VAR}(X) = \sigma^2$

若 $X \sim \mathcal{N}(0,1)$, 则有

$$\mathbb{E}(X) = 0$$
 $\mathbb{P}(X) = 1$

标准正态分布与一般分布的相互转换:

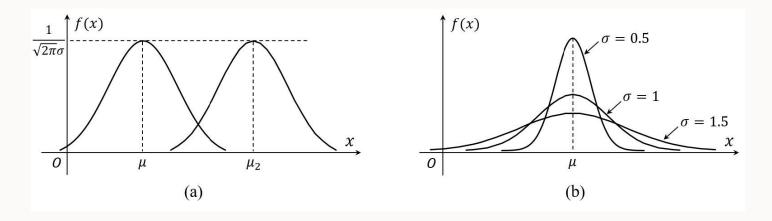
若 $X \sim \mathcal{N}(\mu, \sigma^2)$, 则有

$$Y = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

若 $X \sim \mathcal{N}(0,1)$, 则有

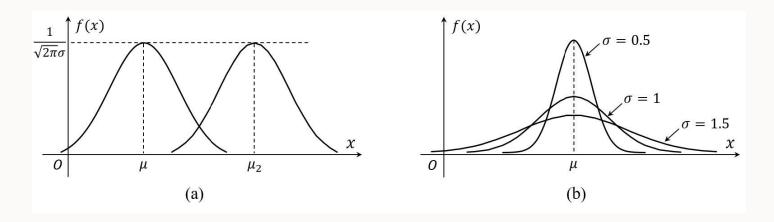
$$Y = \sigma X + \mu \sim N(\mu, \sigma^2)$$

正态分布的性质



- 如图 (a) 所示, 曲线 f(x) 关于直线 $x = \mu$ 对称, 即 $f(\mu x) = f(\mu + x)$; 当 $x = \mu$ 时函数 f(x) 取最大值 $f(\mu) = 1/(\sqrt{2\pi}\sigma)$;
- 如图 (a) 所示, 根据 $\lim_{x\to +\infty} f(x) = 0$ 可得曲线 f(x) 的渐近线为 y = 0; 根据正态分布密度函数的二阶导数 f''(x) = 0, 可得其拐点为 $x = \mu \pm \sigma$;

正态分布的性质



- 如图 (a) 所示, 固定标准差 σ 而改变期望 μ 的值, 曲线 f(x) 形状不变, 仅沿 x 轴左右平行移动;
- 如图 (b) 所示, 当 μ 固定改变 σ 的值, 根据 f(x) 最大值 $f(\mu) = 1/\sqrt{2\pi}\sigma$ 可知: 当 σ 越小, 图形越陡, X 落入 μ 附近概率越大; 反之 σ 越大, 图 形越平坦, X 落入 μ 附近的概率越小.

正态分布: 例 0.92

例 0.92 设随机变量 X 服从正态分布 $\mathcal{N}(\mu, \sigma^2)$, 且二次方程 $y^2+4y+X=0$ 无实根的概率为 0.5, 求 μ .

解答: 例 0.92

题目: 设随机变量 X 服从正态分布 $\mathcal{N}(\mu, \sigma^2)$, 且二次方程 $y^2 + 4y + X = 0$ 无实根的概率为 0.5, 求 μ .

解答:

- 二次方程无实根, 则 $\Delta = 4^2 4X < 0$, 即 X > 4.
- \emptyset P(X > 4) = 0.5.
- 根据正态分布的对称性, 则 $\mu = 4$.

正态分布的估计

定理 **0.13** 若 $X \sim \mathcal{N}(0,1)$, 对任意 $\epsilon > 0$ 有

$$\begin{cases} P(X \ge \epsilon) \le \frac{1}{2} e^{-\epsilon^2/2} \\ P(|X| \ge \epsilon) \le \min\left(1, \sqrt{\frac{2}{\pi}} \frac{1}{\epsilon} e^{-\frac{\epsilon^2}{2}}\right) \end{cases}$$

在上面的定理中,第一个不等式具有广泛的应用,在 $\epsilon \in (0,1)$ 时对真实的概率有更好的估计;第二个不等式被称为 Mill 不等式,在 $\epsilon \in (1,+\infty)$ 时对真实的概率有更好的估计.

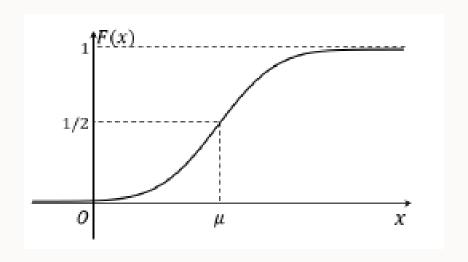
这两个不等式都可以通过定义的放缩求得. (该证明作为作业)

正态分布的分布函数

若随机变量 $X \sim \mathcal{N}(\mu, \sigma^2)$ 的分布函数为

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}\sigma} e^{-(t-\mu)^2/2\sigma^2} dt$$

该分布函数没有显示的表达式,只能求数值解.



正态分布的分布函数

若随机变量 $X \sim \mathcal{N}(\mu, \sigma^2)$ 的分布函数为

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}\sigma} e^{-(t-\mu)^2/2\sigma^2} dt$$

为了便于研究正态分布函数,可将一般正态分布转化为标准正态分布 $\mathcal{N}(0,1)$,

•设 $X \sim \mathcal{N}(0,1)$ 且其分布函数为:

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{t^2/2} dt$$

•若 $X \sim \mathcal{N}(0,1)$, 则 $Y = \sigma X + \mu \sim N(\mu, \sigma^2)$ 满足一般正态分布下表给出标准正态分布 $\Phi(x)$ 的函数表, 在计算具体概率时可供查询.

附:标准正态分布表 P91

\boldsymbol{x}	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

标准正态分布函数的性质

- 根据对称性, 有 $\Phi(x) + \Phi(-x) = 1$;
- •若随机变量 $X \sim \mathcal{N}(\mu, \sigma^2)$,则对任意实数 a < b 有

$$\begin{split} P(X < a) &= P\left(\frac{X - \mu}{\sigma} \leq \frac{a - \mu}{\sigma}\right) = \Phi(\frac{a - \mu}{\sigma}) \\ P(X > b) &= 1 - P\left(\frac{X - \mu}{\sigma} \leq \frac{b - \mu}{\sigma}\right) = 1 - \Phi(\frac{b - \mu}{\sigma}) \\ P(a \leq X \leq b) &= P\left(\frac{a - \mu}{\sigma} \leq \frac{X - \mu}{\sigma} \leq \frac{b - \mu}{\sigma}\right) = \Phi(\frac{b - \mu}{\sigma}) - \Phi(\frac{a - \mu}{\sigma}) \end{split}$$

•形成由 μ 和 $k\sigma$ 划分的概率空间

标准正态分布函数的性质

• 若随机变量 $X \sim \mathcal{N}(\mu, \sigma^2)$, 则对任意实数 k > 0 有

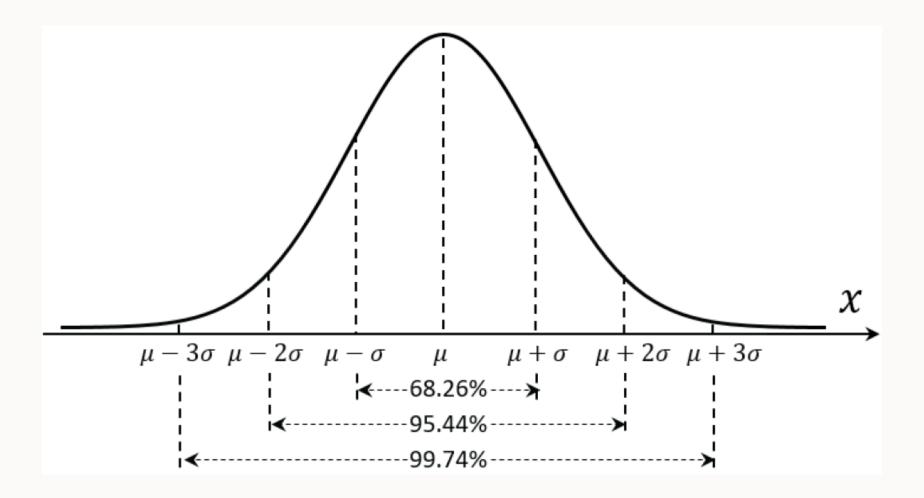
$$P(|x - \mu| < k\sigma) = \Phi(k) - \Phi(-k) = 2\Phi(k) - 1,$$

特别的, 当 k = 1, 2, 3 时, 通过查标准正态分布的函数表可知:

$$P(|x - \mu| < \sigma) = 0.6826$$

 $P(|x - \mu| < 2\sigma) = 0.9544$
 $P(|x - \mu| < 3\sigma) = 0.9974$

随机变量 $X \sim N(\mu, \sigma^2)$ 的取值落在 $[\mu 3\sigma, \mu + 3\sigma]$ 之外的概率不超过千分之三,即 X 的取值几乎总在 $[\mu 3\sigma, \mu + 3\sigma]$ 之内,这就是人们所说的 3σ 原则,在实际的统计推断,特别是产品质量检测中具有重要的应用.



标准正态分布函数的性质

• 若随机变量 $X \sim \mathcal{N}(\mu, \sigma^2)$, 且已知 P(X < c) = p, 则有

$$p = P(X < c) = P\left(\frac{X - \mu}{\sigma} < \frac{c - \mu}{\sigma}\right) = \Phi(\frac{c - \mu}{\sigma})$$

由此可反解出 $c = \mu + \sigma \Phi^{-1}(p)$.

- •这里 $\Phi^{-1}(x)$ 表示标准正态分布函数 $\Phi(x)$ 的反函数
- •可根据表由里向外查得, 例如 $\Phi^{-1}(0.5871) = 0.22$.

正态分布: 例 0.93

例 0.93 已知某公司员工每个月的工资服从正态分布 $\mathcal{N}(6000, \sigma^2)$, 试求:

- i) 若已知标准差 $\sigma = 500$, 求工资在 5000 与 7000 之间的员工在公司中 占比多少?
- ii) 当标准差 σ 为何值时, 工资在 5000 与 7000 之间的员工在公司中占比为 0.803?

解答: 例 0.93

题目: 已知某公司员工每个月的工资服从正态分布 $\mathcal{N}(6000, \sigma^2)$, 试求:

- i) 若已知标准差 $\sigma = 500$, 求工资在 5000 与 7000 之间的员工在公司中占比多少?
- ii) 当标准差 σ 为何值时, 工资在 5000 与 7000 之间的员工在公司中占比为 0.803?

解答:

- 将一般正态分布转换成标准正态分布后查表求解.
- 设随机变量 X 的表示公司员工每个月的工资, 则 $X \sim \mathcal{N}(6000, \sigma^2)$. 针对问题 i), 当 $\sigma = 500$ 时通过查询标准正态分布函数表有

$$P(5000 \le X \le 7000) = P\left(-2 \le \frac{X - 6000}{500} \le 2\right) = \Phi(2) - \Phi(-2) = 2\Phi(2) - 1 = 0.9544.$$

针对问题 ii), 有

$$P(5000 \le X \le 7000) = P\left(-\frac{1000}{\sigma} \le \frac{X - 6000}{500} \le \frac{1000}{\sigma}\right) = 2\Phi(\frac{1000}{\sigma}) - 1 = 0.803.$$

于是得到 $\Phi(1000/\sigma) = 0.9015$, 通过查表可知 $\sigma \approx 775.2$.

正态分布: 例 0.94

例 0.94 一工厂生产的电子管寿命 X (单位: 小时) 服从参数为 $\mu = 160$ 和标准差 σ 的正态分布. 若 $P(120 < X \le 200) \ge 0.8$, 则允许 σ 最大为 多少?

解答: 例 0.94

题目: 一工厂生产的电子管寿命 X (单位: 小时) 服从参数为 $\mu = 160$ 和标准差 σ 的正态分布. 若 $P(120 < X \le 200) \ge 0.8$, 则允许 σ 最大为多少?

解答:

• 展开 $P(120 < X \le 200) \ge 0.8$

$$\Phi\left(\frac{200-160}{\sigma}\right) - \Phi\left(\frac{120-160}{\sigma}\right) = \Phi\left(\frac{40}{\sigma}\right) - \Phi\left(\frac{-40}{\sigma}\right) = 2\Phi\left(\frac{40}{\sigma}\right) - 1 \ge 0.8$$

• 可以求得

$$\Phi\left(\frac{40}{\sigma}\right) \ge 0.9$$

• 通过查表, 则有 $40/\sigma \ge 1.28$, 则 $\sigma \le 31.25$.