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OCO Framework and Regret

O Online Convex Optimization

At each iteration t € T,

e learner makes a decision z; € A;

e learner suffers a loss f;(x;) and observes f(-).

e environments reveal the convex online function f;(-);

O (Static) Regret
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Adaptivity and Non-stationarity

O Adaptivity: exploit benign environments while safeguard worst-case guarantee

& variance bound Regy < O (\/ S IV ilws) = Vs ||£-)
¢ gradient variation bound Regj < O (\/ > sup || V/ilx) - V./}._l(—-r>||3>

& predictable sequencesbound  Regi <0 (VDr). Dr =3 Vi) = M2

Adaptivity

O Non-stationarity: competing with dynamic comparators

T T
Dynamic regret: Reg/ = Zt:_l fi(xy) — thl fi(x)), af =argmin f;(x)

reX

Non- ¢ path-length bound Regy < O(VT(1+Cr)). Cr = Z; [Er

' ' L S K Nr2/37 1/ , 1 ,
stationarity | &4 temporal variability bound — Regj < O(T**V,/%). Ve =" swlfi(x) = fi-1(x)

Q: Can we exploit adaptivity in non-stationary environments?



Fully Adaptive Bound

O Fully adaptive bound : combining adaptivity with non-stationarity

complexity measure regret bound T .

plexity g Cr = Z’__Q ey — ]
path-length bound O/T(1+Cr)) -~
temporal variability bound O(T?/3 Vq{/g) Vi = Z,_o sup | fi(x) — fr—1(x)
adaptive bound O(min{ /T (1 + Cr), T?/3V1) o

fully adaptive bound ~ O(y/Dy + min{\/(1 + Dy)(1 + Cy), (1 + _D';‘)l/zi'Tl/"-*l/’:,fﬂ%}) Dy = |1V i) — M3

O AOMD : a doubling trick based method

Algorithm 1 AOMD Jadbabaie et al. (2015)

fort =1to T do % update Dy, C(ny, Vin) and Ay A simple and computationally

% check doubling condition Dny = Dyy + |V — M2
2/3 A 2/3 ~—1/3 () () x x efficient online algorithm
if L2, < fymin{C(N) VAR D }+ Covy = Oy + ot —aiql g ,
4R2 _ then Vivy = Vi) +supgex [ fi(z) — fim1(z) > enjoys fully adaptive bound;
max AN — AN+ 1
o o » avoids non-convex program.
end if non-convex!

end for




Optimistic Mirror Descent

O OptimisticMD: online mirror descent with an extra gradient step to exploit M,

{.%},H — arg Hl?l’lxgx (V fi(xe), z) + DR(/ZE? 7t) —> Reg; <0 (ﬁ)

Typ1 = argming, .y (M1, 2) + Dr(x,T41)

| Path-]ength Bound [Lemma 1] D1, C; are unknown in advance!
d 77DT R?nax f}/CT * ernax + f}/OT ( )
Regr = 5=+ 2 Wpath:\/ » —) O \/1+Cii)(1+DT)J

Path-Bound

O Temporal Variability Bound [Lemma 2]

= Cy+ Cy|T/A,] |:> O (1 + D )1/3T1/3V1/3) D, V; are unknown
var 1 i DT -~ in advance!
Var-Bound

A, is a constant relative to Dy, Vr and T. Q: how to tune the step size?




Master-Base aggregation

O Running OptimisticMDs with multiple step sizes and aggregating the predictions

n g () (&)

Ty — Z "U,?i . I;
1€[N]
» Base algorithm (OptimisticMDs): there exists a base algorithm enjoys
& path-length: Base-regret < O(Path-Bound)

O(min{Path-Bound, Var-Bound })
& temporal variability: Base-regret < O(Var-Bound)

» Master algorithm: we design a novel algorithm based on Optimistic Hedge

& regret w.r.t. any base algorithm: Master-regret < O(y/1+ Dyp)



Algorithm

Algorithm 1 Master Algorithm Algorithm 2 OMD (Base Algorithm)
Input: step size e, parameter pools P Input: step size n; € P
I: Initiate N base algorithms & = {S; | i € [N]} by I: Let x be any point in A’
running Algorithm 2 with each step sizen; € P 2: fort =1to T do
2: Initialize: L}, = 0 for all i € [N], and receive M, track 3:  Submit z} to the master, then receive the gradient
3: fort =1to T do V fi(x;) and current predictable sequence M,
4:  Receive x! from base and update weights by (9) Z> 4:  Prepare the prediction for the next iteration as,
50 Playxy = ) i cin wit » ' »
6:  Observe the function f;(-), query the gradient Tiq = argminn;(V f(2¢), x) + Dr(2,23),

.'i‘e.—t'
V fi(xy) and receive M ; _ "
Ji(@e) g xy, = argminn;(Miy1,x) + Dr(v, 7y, 4)

7:  Update L! = L!_| + (V fi(xy), 2t — x4) TEX
8:  Send V f;(x;) and M, to base algorithms
9: end for 5: end for
Master-regret < O(\/1+ D7) + Base-regret < O(Path-Bound, Var-Bound)

—>O(VDr + min{\/(1+ Dr)(1+ Cr), (1 + DT)l/?’T]/?’Vg{/S}) Fully adaptive bound

O Our algorithm does not involve non-convex optimization problem solving

O We further accelerate the algorithm by reducing the gradient querying times to 1



Experiments
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(a) Comparison on instantaneous loss
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(b) Comparison on running time

» Non-stationarity (Figure a): Ours * AOMD > OMD
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(c) Different qualities of M,

» Adaptivity (Figure c):Better quality of M,, greater performance.

O Efficiency

» Running time (Figure b): 24 seconds for our algorithm while around 6 hours for AOMD



Summary

O We design a computationally efficient method with the fully adaptive

dynamic regret bound.

O Our method is based on the master-base framework, and a novel master

algorithm is carefully designed to achieve the compatible bound.

O Empirical results validate the effectiveness and efficiency.

Thanks!
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