
Multi-Instance Learning with Key Instance Shift∗

Ya-Lin Zhang and Zhi-Hua Zhou
National Key Laboratory for Novel Software Technology, Nanjing University

Collaborative Innovation Center of Novel Software Technology and Industrialization
Nanjing 210023, China

{zhangyl, zhouzh}@lamda.nju.edu.cn

Abstract
Multi-instance learning (MIL) deals with the tasks
where each example is represented by a bag of in-
stances. A bag is positive if it contains at least one
positive instance, and negative otherwise. The pos-
itive instances are also called key instances. Only
bag labels are observed, whereas specific instance
labels are not available in MIL. Previous studies
typically assume that training and test data follow
the same distribution, which may be violated in
many real-world tasks. In this paper, we address the
problem that the distribution of key instances varies
between training and test phase. We refer to this
problem as MIL with key instance shift and solve
it by proposing an embedding based method MIKI.
Specifically, to transform the bags into informative
vectors, we propose a weighted multi-class model
to select the instances with high positiveness as in-
stance prototypes. Then we learn the importance
weights for transformed bag vectors and incorporate
original instance weights into them to narrow the
gap between training/test distributions. Experimen-
tal results validate the effectiveness of our approach
when key instance shift occurs.

1 Introduction
Multi-instance learning (MIL) [Herrera et al., 2016] deals
with the tasks where each example is represented by a bag of
instances. A bag is positive if it contains at least one positive
instance, and negative otherwise. The instances that trigger the
positive labels are also called key instances. Only bag labels
are observed, whereas instance labels are unknown in MIL.
MIL has been applied in many domains, including image clas-
sification [Zhang et al., 2002], text categorization [Andrews
et al., 2002], and web mining [Zhou et al., 2005], etc.

Previous studies of MIL typically assume that the training
and test data are drawn from the same distribution, which may
be violated in many real-world tasks. The distribution dis-
crepancy may arise when training and test data are collected
in different time, location or with different labeling cost, etc.
∗This research was supported by the NSFC (61333014) and

Huawei Fund (YBN2017030027).

Take text categorization for example, supposing that we want
to judge whether a text is about ‘sport’ and the training/test
data are collected in 2012/2016, respectively. Then compared
with training data, test data may have less texts about ‘Kobe
Bryant’, but more about ‘Stephen Curry’. Here the paragraphs
containing ‘Kobe Bryant’ or ‘Stephen Curry’ can be regarded
as key instances. In this case, the distribution of key instances
changes between training and test phase due to different col-
lection time. Also, if the training/test data are collected in
America/China respectively, then compared with training data,
test data may have less texts about ‘baseball’, but more about
‘table tennis’. Here the paragraphs with ‘baseball’ or ‘table
tennis’ can be regarded as key instances. The distribution of
key instances varies due to different collection locations. In
this paper, we formalize this problem as MIL with key instance
shift and propose the MIKI (Multi-Instance with Key Instance
shift) method to solve it.

MIKI follows the embedding based manner [Chen et al.,
2006], which transforms bags into single instance vectors via
embedding. Instance prototypes are selected to encode both
bag-level information and key instance shift information. First,
a weighted multi-class model is trained to select the instances
with high positiveness as instance prototypes, and the bags are
transformed into informative vector representations with se-
lected instance prototypes. Then, we learn the weights for the
transformed bag vectors and incorporate the original instance
weights into them to narrow the gap between training/test
distributions. Finally, a model is learned by using the new rep-
resentations and their weights. Experiments on different data
sets demonstrate the effectiveness of our approach when key
instance shift occurs. Even without key instance shift, MIKI
still works comparable with the state-of-the-art methods.

The rest of this paper is organized as follows. Section 2
reviews related work. Section 3 presents the proposed method.
Section 4 reports the experimental results. Section 5 applies
the proposed method to moving object localization problem
and Section 6 concludes.

2 Related Work
Multi-instance learning was first proposed in [Dietterich et
al., 1997]. Since then, many approaches have been proposed,
which mainly fall into two categories: some try to directly
solve the MIL problem in either instance level [Maron and
Lozano-Pérez, 1998; Li et al., 2009; Faria et al., 2017] or bag

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3441



level [Gärtner et al., 2002; Zhou et al., 2009], while the others
transform MIL into single instance learning via embedding,
among which MILES [Chen et al., 2006] is a typical represen-
tative, and many methods [Amores, 2015; Yuan et al., 2016;
Wei et al., 2017] have been proposed recently following this
manner. It is noteworthy that previous MIL methods typically
assume that the training and test data follow the same distribu-
tion. In contrast, we consider the key instance shift problem,
which has not been thoroughly studied to our best knowledge.

In addition, due to the differences in gathering data, dis-
tribution change between training and test data may always
arise, among which covariate shift [Shimodaira, 2000] has at-
tracted much attention. In covariate shift, the input distribution
P (x) is different between training and test phase but the con-
ditional distribution of output P (y|x) remains unchanged. A
common approach for covariate shift is importance reweight-
ing, which assigns each training instance x with a weight
w(x) = pte(x)/ptr(x) to diminish the discrepancy of training
and test marginals by some criteria [Sugiyama et al., 2012].
Note that test data is needed to estimate the difference of dis-
tribution. Many methods have been proposed to estimate the
weight, such as KMM [Huang et al., 2006], KLIEP [Sugiyama
et al., 2008], LSIF and uLSIF [Kanamori et al., 2009], etc.
However, all of these studies focus on single-instance learning.

The most related literature of our work is [Zhang and Zhou,
2014], which considers the setting when MIL encounters dis-
tribution change and proposes the MICS method. In contrast
to considering situations where the bag label is decided by
multiple instances and their relations [Zhang and Zhou, 2014],
in this paper, we follow the standard MIL setting that bag
labels are determined by the key instances, and consider the
distribution change problem of key instances.

3 MIL with Key Instance Shift
3.1 Problem Statement and Notations
Let X = Rd denote the instance space and Y = {−1,+1}
denote label space. The learner is given a data set withm train-
ing bags Btr = {(Xtr

1 , y1), . . . , (X
tr
i , yi), . . . , (X

tr
m , ym)},

where Xi = {xi1, . . . ,xij , . . . ,xini} is a bag with xij ∈ X
representing an instance. If there exists any positive instance
in Xi, then Xi is a positive bag with yi = +1; otherwise Xi

is negative with yi = −1. Those positive instances are also
called key instances, which trigger the positive labels. Note
that only bag labels are available, yet specific instance labels
are unknown. The learner is also given a set of n unlabeled
test bags Bte = {Xte

1 , . . . , X
te
n }. In MIL with key instance

shift problem, the distributions of key instances in training
and test phase are different. Let P (·) denote the distribution,
x∗ refer to the key instances, then we have P (xtr∗ ) 6= P (xte∗ )
in this setting. In this work, we focus on transductive setting:
given Btr and Bte, where P (xtr∗ ) 6= P (xte∗ ), our goal is to
learn a mapping f : 2X → Y that works fine for test data.

3.2 Proposed Method
MIKI follows the embedding based manner [Chen et al., 2006],
which transforms bags into single instance vectors via embed-
ding. To handle the key instance shift problem, we try to
select key instance candidates from both training and test sets

Instance Prototype Learning

Feature Mapping

Weight Learning

Weight Incorporation

Model Training

Model Training

Instance Weight
Learning Instance Prototypes 

Training Bags
Test Bags

Mapped Training Vectors 
Mapped Test Vectors 

Training Bag Weights 

Final Model 

Training Instance Weights

Figure 1: Block diagram for the proposed method.

as instance prototypes so that both bag-level information and
key instance shift information can be encoded. Specifically,
assuming that the positive instances belong to different sub-
concepts, then key instance shift may fall into any of these
sub-concepts. Supposing that there are K sub-concepts, to-
gether with the negative concept, we build a (K + 1)-class
model to distinguish different sub-concepts and the negative
concept. If an instance belongs to any sub-concept with a
high score, it would be regarded as a key instance candidate
with high probability. In this way, different shift information
can be captured. Moreover, in order to alleviate the influence
of key instance shift, we introduce the instance weights to
balance different distributions (i.e., higher/lower weights for
underrepresented/overrepresented instances), so that the se-
lected instance prototypes may include more key instances and
encode more key instance shift information. Similarly, after
getting the transformed bag vectors, we learn the weights for
them to narrow the gap of training/test distributions. Note that
if an instance is important, the bag containing it should also
be valued, so we further incorporate weights of the original
instances into the weights of the transformed bag vectors. The
final model is learned with the transformed bag vectors and
their weights. Figure 1 summarizes our MIKI approach.

Instance Prototype Learning
In instance prototype learning phase, a weighted multi-class
model is trained to select key instance candidates as instance
prototypes. We use an iterative framework to alternately build
the multi-class model and optimize the selected key instance
candidates, and then update the instance weights1. Algorithm 1
summarizes the instance prototype learning framework.

Specifically, in each iteration, a weighted (K + 1)-class
modelMD is trained for the K sub-concepts of positive in-
stances and the negative concept. If an instance belongs to
any sub-concept with a high score, it would be regarded with
high positiveness. To represent the positiveness, we denote
the probability of instance xij belonging to class k as Prkij ,
and calculate the positiveness score Sij for each instance xij :

Sij = max
k∈{1,...,K}

(Prkij − Pr0ij) . (1)

1The importance weighting technique is same to the one intro-
duced in the next section.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3442



Algorithm 1 Instance Prototype Learning for MIKI

Input: Training bags Btr = {(Xtr
i , yi)}mi=1, Testing bags Bte =

{Xte
j }nj=1, Instance selection parameters ntrθ and nteθ .

Output: Instance Prototype Set D.
1: Initialize all training instance weights w.
2: repeat
3: Train multi-class modelMD by Algorithm 2;
4: Calculate positiveness score for all instances by Eq. 1;
5: Separate instances into Ctrp , Ctrn , Ctep and Cten by Eq. 4;
6: Reestimate the weights wp (wn) for instances in Ctrp (Ctrn )

to approximate instances in Ctep (Cten );
7: until max iteration is reached.
8: Output D = Cptr ∪ C

p
te.

Algorithm 2 shows the details of learningMD. We first
run k-means on all instances from positive bags and initialize
their labels as the associated cluster numbers, and assign all
instances from negative bags with label 0. A multi-class SVM
model M is trained with the weighted instances and their
assigned labels. Given an instance xij , the model M will
output the probability Prkij of xij belonging to class k. Then
for each instance xij from positive bags, its label is updated
to be

yij = argmax
k∈{0,1,...,K}

Prkij . (2)

The labels of instances in negative bags stay unchanged. For
each positive bag Xi, if all instances are labeled negative, the
label of the instance (denote as xip) with the highest positive-
ness score is adjusted to be

yip = argmax
k∈{1,...,K}

Prkip , (3)

so that each positive bag contains at least one positive instance
and the initialized false positives are calibrated through itera-
tion. The step sequence interleaves until no label changes or
max iteration is reached, then the modelMD is obtained.

With the obtained model MD, the positiveness score of
each instance is estimated and key instance candidates are
selected. Specifically, let Strθ (Steθ ) denote the ntrθ -th (nteθ -th)
highest score of all training (test) instances, we then sepa-
rate the instances into key instance candidates and negative
instance candidates according to their positiveness scores:

Ctrp = {xij |Sij ≥ Strθ ,xij ∈ Btr} ,
Ctrn = {xij |Sij < Strθ ,xij ∈ Btr} ,
Ctep = {xij |Sij ≥ Steθ ,xij ∈ Bte} ,
Cten = {xij |Sij < Steθ ,xij ∈ Bte} .

(4)

Here, Ctrp andCtep are those instances with higher positiveness
scores, so they are more likely to be potential key instances
and carry the key instance shift information.

After the separation, we reestimate the weights for training
instances in key (negative) instance candidates correspond-
ingly, i.e., reestimate the weights for Ctrp (Ctrn ) by using Ctep
(Cten ). Thus, all training instance weights are updated. Then
the model MD will be trained again with updated weights
and the key instance candidates will be updated. This step
sequence interleaves until the max iteration is reached, and the

Algorithm 2 Learning algorithm for multi-class modelMD

Input: Training bags Btr = {(Xtr
i , yi)}mi=1, Training instance

weights w, Positive cluster number K.
Output: Multi-class modelMD

1: Initialize the labels for all training instances;
2: repeat
3: Train multi-class model with the weighted training instances;
4: Update the labels of all instances from positive bags by Eq. 2;
5: For each positive bag, if all instances are labeled negative,

select the most positive one and adjust its label by Eq. 3;
6: until no label changes or max iteration is reached.
7: Output the final model asMD .

selected instance prototypes (i.e., Ctrp ∪ Ctep ) are outputted as
instance prototype set D.

With D, we map both training and test bags into new vector
representations following the typical procedure [Chen et al.,
2006]. Concretely, each bag Xi is mapped into a (ntrθ + nteθ )-
dimensional vector vi, and the j-th attribute vij is

vij = max
xik∈Xi

exp(−γ‖xik −Dj‖2) , (5)

where Dj is the j-th term of D. The new representations keep
both bag-level information and key instance shift information.

Weight Learning
In this section, we present the details of learning the weights
for transformed training vectors. Given transformed training
vectors {vtri }mi=1 with density ptr(v) and transformed test
vectors {vtei }ni=1 with density pte(v), we want to estimate
the importance w(v) = pte(v)/ptr(v) for all transformed
training vectors. Following [Kanamori et al., 2009], we model
the weight w(v) by the following linear model:

ŵ(v) =

b∑
l=1

αlϕl(v) , (6)

where α = (α1, . . . , αb)
T are parameters to be learned and

{ϕl(v)}bl=1 are basis functions satisfying ϕl(v) ≥ 0 for all
v and l. Here we choose a fixed number of Gaussian kernels
centered at test points as the basis functions. We need to
estimate the parameters {αl}bl=1 to make ŵ(v) approximate
to w(v). To achieve this, we minimize the following squared
error L0(v):

L0(v) =
1

2

∫
(ŵ(v)− w(v))2ptr(v)dv

=
1

2

∫
(ŵ(v)2ptr(v)− 2ŵ(v)w(v)ptr(v)

+ w(v)2ptr(v))dv ,

(7)

since the last term in Eq. 7 is a constant given the training
set, it can be safely ignored. Using pte(v) = w(v)ptr(v), we
denote the first two terms by L(v):

L(v) =
1

2

∫
ŵ(v)2ptr(v)dv −

∫
ŵ(v)pte(v)dv

=
1

2

b∑
l,l′=1

αlαl′(

∫
ϕl(v)ϕl′(v)ptr(v)dv)

−
b∑
l=1

αl(

∫
ϕl(v)pte(v)dv) .

(8)

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3443



Approximating to the expectations in L(v) by empirical aver-
ages, we obtain L̂(v):

L̂(v) =
1

2

b∑
l,l′=1

αlαl′(
1

m

m∑
i=1

ϕl(v
tr
i )ϕl′(v

tr
i ))

−
b∑
l=1

αl(
1

n

n∑
j=1

ϕl(v
te
j ))

=
1

2
αT Ĥα− ĥTα ,

(9)

where Ĥ is the b× b matrix with the (l, l′)-th element Ĥl,l′ =∑m
i=1 ϕl(v

tr
i )ϕl′(v

tr
i )/m and ĥ is the b-dimensional vector

with the l-th element ĥl =
∑n
j=1 ϕl(v

te
j )/n. Based on Eq. 9,

we get the following optimization problem:

min
α∈Rb

[
1

2
αT Ĥα− ĥTα+

λ

2
αTα] . (10)

Eq. 10 is an unconstrained convex quadratic program, so the
solution can be analytically computed as α = (Ĥ + λIb)

−1ĥ,
where Ib is the b-dimensional identity matrix, thus the parame-
ters can be efficiently estimated and the weight of each training
sample can be obtained. This importance weighting technique
is exactly the one used in Algorithm 1 with v replaced by x.

With the aforementioned method, we can get the weights for
all transformed training vectors, and we denote the weights as
W 0. Moreover, we address that if a bag contains an instance
that should be valued, the bag should be valued too, thus we
further incorporate instance weights into the transformed bag
weights. Note that when we learn the instance prototypes, the
instances are separated into Ctrp (Ctep ) and Ctrn (Cten ) accord-
ing to their positiveness. We follow the same procedure to
learn the weights for instances inCtrp (Ctrn ) to approximate the
instances in Ctep (Cten ), separately. Thus, all training instance
weights are estimated and they are further integrated into the
transformed bag weights. Concretely, for training bagXtr

i and
its transformed vector vtri , denote the weight learned from the
transformed bag vectors as W 0

i and the weights for instances
in this bag as {wij}ni

j=1, the final weight of vtri is set to be:

Wi = max
j∈{1,...,ni}

wij ·W 0
i . (11)

At the end of MIKI, we use the transformed training feature
vectors and their corresponding weights to learn the classifica-
tion model, which is employed it to classify the transformed
test feature vectors.

Note that the number of selected instance prototypes in
MIKI is much smaller than that used in MILES and many other
embedding based methods, and thus, MIKI is more efficient in
this aspect. The iterative instance prototype learning process
of MIKI is similar to miSVM [Andrews et al., 2002], and thus,
mechanisms for time cost control and acceleration for miSVM
can be applied.

4 Experiments
The experiments are performed on both synthetic data and real
world datasets. We compare the proposed method with many

state-of-the-art algorithms, including instance-level methods
miSVM and MISVM [Andrews et al., 2002], and bag-level
methods miGraph [Zhou et al., 2009], MILES [Chen et al.,
2006] and MILDE [Amores, 2015]. We also derive three
variants for comparison. The first one miSVM+, works by es-
timating the weights for all instances, and incorporating them
directly to miSVM. The second one MILES+, is a variant of
MILES and the weights are obtained based on the transformed
feature vectors. In addition, since we have used instances
from test bags in MIKI, we derive the third variant MILES++,
using all instances from both training and test bags for feature
mapping with importance weighting technique incorporated.
Furthermore, we also compare with MICS [Zhang and Zhou,
2014], which focuses on the setting of MIL with distribution
change. RBF kernel is used for all SVM-based methods. For
MIKI, we simply set K to 5 for synthetic dataset and 10 for
the other datasets without any tuning, and set max iteration to
5 to accelerate the method. Other parameters are selected via
5-fold cross validation.

4.1 Experiments on Synthetic Data
We first perform experiments on synthetic dataset. We gen-
erate two sub-concepts of positive instances which are rep-
resented by Gaussian distribution P1 = N (µ1, σ

2) and
P2 = N (µ2, σ

2), and one negative concept represented by
P3 = N (µ3, σ

2). Here we set µ1 = (1, 1), µ2 = (2, 2),
µ3 = (3.5, 2.5), σ2 = (0.5, 0.5). Each bag contains 10 in-
stances, and each positive bag contains 1 positive instance,
which is from one of the sub-concepts (i.e., P1 or P2). We
generate 200 negative and 200 positive bags. Half of the posi-
tive bags contain positive instances from one sub-concept, and
the other half from another.

We follow the typically deliberately biased sampling pro-
cedure [Zadrozny, 2004] to separate the bags into disjoint
training and test sets. Specifically, we define a random vari-
able si for each bag, where si = 1 means that the i-th bag is
selected into training set, and si = 0 otherwise. For positive
bag Xi, denote the key instance as xi∗, then the positive bags
are sampled following the rules below:

Pr(si = 1|xi∗ ∈ SC1) = a ,

Pr(si = 1|xi∗ ∈ SC2) = b .
(12)

Here, SC1 and SC2 denote different sub-concepts (i.e.,P1 and
P2) and a = 0.8, b = 0.2. In other words, compared with test
data, there are more positive bags in training data containing
positive instances from sub-concept P1, but less from P2.

We repeat experiments for 30 times by using the sampling
procedure to generate training and test sets. As shown in
Table 1, our method outperforms all other ones. Though
distribution change is considered, miSVM+, MILES+ and
MILES++ do not show significant improvement, verifying that
simply applying single-instance distribution shift approaches
to MIL does not work. MICS does not get favorable result too.

Furthermore, we examine the influence of parameter K. In
MIKI, we simply set K to 5, but not the ground-truth number
of sub-concepts. The results in Figure 2 show that the behavior
tends to get better as the value of K getting closed to the
ground-truth. However, our method is not that sensitive to K.
Moreover, we observe that almost 88% of the selected instance

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3444



Table 1: Testing accuracy (%, mean ± std.) on synthetic dataset. The highest average accuracy is marked in bold.

miSVM MISVM miGraph MILES MILDE miSVM+ MILES+ MILES++ MICS MIKI
Accuracy 77.2±1.7 82.6±1.3 81.4±1.9 83.4±1.9 83.7±1.4 80.3±1.4 83.0±2.0 83.0±2.1 78.8±4.5 88.3±1.1

K value
2 4 6 8 10

Te
st

in
g 

A
cc

ur
ac

y 
(%

)

87

87.5

88

88.5

89

Figure 2: Testing accuracy with different K values.

prototypes of MIKI are positive, verifying the effectiveness of
selecting ‘positive’ instances in MIKI.

4.2 Experiments on Text Categorization
We then perform experiments on text categorization tasks. We
derive 25 data sets from the popularly used 20 Newsgroups
corpora. The documents belong to 6 main classes and 20 sub-
classes. For each dataset, we set one main class (e.g., ‘comp’)
as positive, and the others as negative. For positive class, two

sub-classes (e.g., ‘comp.sys.ibm.pc’ and ‘comp.windows.x’)
are used as different sub-concepts. 200 positive and 200 nega-
tive bags are generated. Each positive bag contains averagely
1.5 instances from positive class, and the negative instances
are randomly and uniformly drawn from the negative classes.
Half of the positive bags contain positive instances from one
sub-concept, and the other half from another sub-concept. An
instance is a post represented by 100-dimensional LDA fea-
ture [Blei et al., 2003].

Similarly, the biased sampling procedure is used to separate
bags. Eq. 12 is used to sample the bags, with SC1 and SC2

being different sub-classes, and a = 0.8, b = 0.2. Thus,
compared with test data, there are more positive instances in
training bags from SC1, but less from SC2.

We repeat experiments for 30 times by using the sampling
procedure to generate training and test sets. The results are
reported in Table 2, with the win/tie/loss counts in the last row.
As we can see, MIKI achieves 22 times the best performance,
which is significantly better than other algorithms. MICS does
not work well because as we have mentioned in the end of
related work, it is designed to handle other types of distribution
shift rather than key instance shift. It is interesting to see that
miSVM+ and MILES+/MILES++ are not necessarily better

Table 2: Testing accuracy (%, mean ± std.) on text categorization tasks. The highest average accuracy is marked in bold. The last row shows
the win/tie/loss counts of MIKI versus other methods (paired t-tests at 95% significance level).

Instance-level method Bag-level method Variant of state-of-the-art method
and distribution change method

Proposed
method

miSVM MISVM miGraph MILES MILDE miSVM+ MILES+ MILES++ MICS MIKI
comp gra ibm 64.0±5.1 59.9±7.6 69.9±4.7 67.7±3.8 68.9±3.7 63.7±4.9 67.4±4.1 67.6±4.1 69.7±4.8 74.1±5.2
comp gra mac 62.8±4.6 61.1±8.0 65.7±3.4 69.1±4.5 67.7±3.8 62.9±4.4 68.2±5.0 69.6±4.1 65.1±3.0 71.1±4.9
comp gra os 79.0±3.0 63.5±10.9 75.0±3.3 78.7±2.9 80.1±2.8 79.1±3.0 78.7±3.0 78.6±3.1 74.4±3.3 82.5±3.3
comp gra win 76.0±4.7 62.2±7.1 70.9±3.1 75.2±3.0 76.7±3.2 76.0±4.3 75.3±3.3 75.8±3.5 69.7±5.3 79.0±3.5
comp ibm mac 73.6±5.1 62.4±10.7 72.2±3.6 77.0±3.0 78.1±2.8 73.9±5.0 76.9±2.7 77.2±3.2 72.2±3.9 79.2±2.7
comp ibm win 69.6±4.5 56.0±5.2 68.7±4.0 69.3±3.3 65.9±4.0 70.2±4.2 66.4±4.5 68.4±4.3 68.9±4.0 77.9±4.7
comp mac win 67.9±6.7 57.9±5.3 65.0±3.9 63.7±4.4 63.1±3.3 66.5±7.9 63.9±5.1 67.4±4.2 65.0±3.8 76.5±4.8
comp os ibm 70.1±5.2 62.1±9.0 73.6±3.7 71.6±2.8 71.7±4.5 69.8±5.3 71.6±3.0 72.0±3.7 74.0±3.6 79.3±3.5
comp os mac 68.3±6.7 62.2±9.6 70.4±3.4 73.0±3.5 74.0±3.6 67.5±7.1 72.9±3.7 73.1±3.8 69.9±3.8 76.9±3.0
comp os win 77.3±3.7 62.8±9.8 71.8±3.7 75.1±3.1 76.5±2.7 77.4±3.4 75.8±3.2 75.1±2.8 71.9±3.7 79.8±4.0
rec auto baseball 68.8±9.8 58.0±5.4 63.0±5.1 63.2±6.3 58.7±3.8 69.1±9.6 60.1±5.9 69.8±5.4 62.2±4.8 81.1±4.4
rec auto hockey 78.4±9.9 61.6±7.3 64.0±3.2 70.3±5.7 59.6±3.4 78.2±9.7 68.7±6.1 71.5±7.0 63.0±4.2 85.6±3.9
rec auto moto 59.0±5.8 57.3±4.0 59.8±3.6 63.0±2.6 64.6±3.7 57.6±4.8 63.1±2.6 63.0±2.5 59.7±4.0 68.9±4.9
rec baseball hockey 92.0±2.4 74.9±4.9 73.8±4.0 87.4±2.7 89.1±2.2 92.2±2.3 88.4±2.3 88.6±2.9 73.6±4.0 93.8±2.0
rec moto baseball 62.5±5.9 59.5±5.0 59.6±3.2 66.2±3.8 71.5±6.6 62.7±6.1 66.0±3.8 65.8±4.5 59.4±3.7 74.6±6.8
rec moto hockey 71.1±7.5 61.6±7.4 62.5±3.9 67.6±5.2 77.7±5.3 70.9±7.1 69.4±4.2 71.9±3.9 63.5±3.1 83.0±3.3
sci crypt elec 57.3±3.4 54.2±3.7 56.2±3.6 58.5±2.5 60.1±2.2 57.4±3.0 59.2±2.1 59.4±2.5 55.4±3.9 59.3±3.4
sci crypt med 58.1±4.0 55.7±3.7 58.4±4.4 59.8±3.8 58.1±2.3 57.9±3.4 60.1±4.3 63.0±4.2 58.0±4.2 66.3±6.6
sci crypt space 56.1±2.0 55.3±4.0 55.1±4.8 58.6±2.1 58.7±2.3 56.9±1.4 59.1±2.6 59.3±2.9 56.9±3.4 61.5±3.7
sci elec med 53.8±4.2 53.4±4.3 55.5±3.4 59.2±5.8 61.4±5.8 52.6±3.1 60.6±4.5 60.0±5.6 55.6±3.3 60.1±5.6
sci elec space 51.3±3.6 52.5±3.9 54.7±3.8 59.6±3.5 60.8±3.5 51.8±3.8 58.3±4.5 59.4±3.9 54.4±3.7 58.6±4.7
sci med space 53.7±2.3 54.5±3.4 53.2±3.3 57.2±3.4 56.8±3.4 53.7±2.7 57.6±3.9 56.9±3.3 54.0±2.6 57.7±5.5
talk guns mideast 63.5±8.8 59.4±4.0 64.3±4.0 73.5±3.4 76.6±2.8 64.2±7.5 73.5±3.4 74.1±3.1 64.3±4.0 77.1±3.8
talk guns misc 54.3±5.3 57.2±4.0 59.7±3.8 68.3±3.5 69.9±3.3 54.2±5.5 68.4±3.4 68.8±3.4 60.5±3.1 70.1±3.9
talk mideast misc 60.1±4.5 56.3±3.8 61.0±3.6 67.0±2.5 67.6±2.5 59.9±4.3 67.3±3.4 67.0±3.0 61.2±3.6 69.5±5.3
MIKI:W/T/L 25/0/0 25/0/0 25/0/0 21/4/0 18/6/1 25/0/0 21/4/0 20/5/0 25/0/0 -

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3445



Table 3: Testing accuracy (%, mean ± std.) on Moving Object Localization experiments. The highest average accuracy is bold.

miSVM MISVM miGraph MILES MILDE miSVM+ MILES+ MILES++ MICS MIKI
Accuracy 70.5±11.8 60.5±6.7 71.1±5.4 75.4±4.7 75.7±4.4 67.7±10.2 73.7±5.2 74.8±3.6 72.8±5.0 79.9±5.1

than miSVM and MILES, respectively. This suggests that
a simple extension by applying single-instance distribution
shift approach does not work. One important reason is that
in multi-instance learning there is no accurate information of
instance label, and thus, instance weighting approach which is
effective for single-instance setting may become misleading
in multi-instance setting.

4.3 Experiments on non-Shift Data
We also run experiments on the popularly used benchmark
datasets to validate the robustness of MIKI in no key instance
shift setting. We conduct ten times 10-fold cross validations
as previous studies done. As shown in Table 4, our method
behaves comparable with state-of-the-art methods. The re-
sults indicate that although it is designed for key instance shift
setting, our method still works fine in non-shift setting, demon-
strating the robustness of MIKI. This is reasonable, since if
there is no change of distribution, the estimated weights should
be approximately equal to 1, thus the results of our method
should be similar to other embedding based methods.

Table 4: Testing accuracy (%) on benchmark datasets. The compared
results are from related literatures.

Dataset miSVM MISVM miGraph MILES MILDE MIKI
Musk1 87.4 77.9 88.9 84.2 87.1 88.2
Musk2 83.6 84.3 90.3 83.8 91.0 84.3

Elephant 82.0 81.4 86.8 89.1 85.0 86.5
Fox 58.2 59.4 61.1 76.0 66.5 66.5

Tiger 78.9 84.0 86.0 86.0 83.0 82.5

5 Application to Moving Object Localization
With the help of RFID or wireless LAN, moving object lo-
calization is widely applied in many areas such as locating
cleaning robot, tracing livestock in the farm, tracking inmate
in prison [Ferrer et al., 2010], and it has been studied by using
machine learning techniques [Senta et al., 2007]. However,
sometimes, we only care about if an entity has been to a target
region, but not the exact location at each moment. Thus, in-
vesting too much efforts in gathering numerous sensing data
and their exact location is not necessary. Instead, we only
need to know whether the trajectory is intersected with the
target region. However, even with the data collected in this
way, there may still exist inconsistencies between training and
test data, leading to key instance shift. For example, as shown
in Figure 3, it’s the top view of a room. Some RFID readers
(the rectangles) are placed in the room to locate an moving
entity with a RFID tag (the triangle) attached. A particular
region (the circle) is marked as the target region. The entity
is moving in the room and the sensing data of its location is
collected by the readers. If it goes through the target region,
then the trajectory is marked positive. However, if the environ-
ment changes between training and test phase, say, training

data is collected from the entities with faster speed, whereas
test data is collected from slower entities, then distribution
discrepancy may arise between training and test phase, leading
to the performance degradation of the obtained model.

RFID	reader

RFID	tag

target	region

trajectory

Figure 3: Diagram of moving object localization experiment

In this section, we formalize the aforementioned setting as
an MIL problem. It’s natural to regard each trajectory as a bag
and the data from different location as instances, and the data
collected from the target region is regarded as key instance.
In addition, the inconsistencies of data collection result in the
problem of key instance shift, which may seriously debase
the performance of traditional MIL algorithms and make it
necessary to consider the distribution change between training
and test phase. In this paper, we apply MIKI to this problem
and run experiments to verify its effectiveness.

We sample 80 bags from training data and test data each
time, and we collect 30 sets of data in this way. As the results
in Table 3 show, MIKI outperforms all other algorithms. The
performances of the variants are even worse than miSVM and
MILES, verifying again that direct adaptation of importance
weighting technique can not work. Moreover, MICS behaves
unfavorable, which inspires us that the distribution change of
key instances should be addressed.

6 Conclusion
Previous studies of multi-instance learning (MIL) typically
assume I.I.D. distribution, which may be violated in many ap-
plications. In this paper, we address the problem of MIL with
key instance shift and propose an embedding based method
MIKI to solve it. Experiments demonstrate the effectiveness
of MIKI when key instance shift happens.

We mainly address the key instance shift problem of MIL in
this work. We can also consider the scenario that distribution
of negative instances varies. More sophisticatedly, distribution
of both positive and negative instances may change in some
tasks. The success of our proposed methods suggest that it is
helpful to make good use of the instances in test bags.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3446



References
[Amores, 2015] Jaume Amores. MILDE: multiple instance

learning by discriminative embedding. Knowledge and
Information Systems, 42(2):381–407, 2015.

[Andrews et al., 2002] Stuart Andrews, Ioannis Tsochan-
taridis, and Thomas Hofmann. Support vector machines
for multiple-instance learning. In Advances in Neural In-
formation Processing Systems 15, pages 561–568, 2002.

[Blei et al., 2003] David M Blei, Andrew Y Ng, and
Michael I Jordan. Latent dirichlet allocation. Journal
of Machine Learning Research, 3:993–1022, 2003.

[Chen et al., 2006] Yixin Chen, Jinbo Bi, and James Ze Wang.
MILES: Multiple-instance learning via embedded instance
selection. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 28(12):1931–1947, 2006.

[Dietterich et al., 1997] Thomas G Dietterich, Richard H
Lathrop, and Tomás Lozano-Pérez. Solving the multiple
instance problem with axis-parallel rectangles. Artificial
Intelligence, 89(1–2):31–71, 1997.

[Faria et al., 2017] AWC Faria, FGF Coelho, AM Silva,
HP Rocha, GM Almeida, AP Lemos, and AP Braga.
MILKDE: A new approach for multiple instance learning
based on positive instance selection and kernel density esti-
mation. Engineering Applications of Artificial Intelligence,
59:196–204, 2017.

[Ferrer et al., 2010] Geraldo Ferrer, Nicholas Dew, and Uday
Apte. When is RFID right for your service ? International
Journal of Production Economics, 124(2):414–425, 2010.

[Gärtner et al., 2002] Thomas Gärtner, Peter A Flach, Adam
Kowalczyk, and Alexander J Smola. Multi-instance kernels.
In Proceeding of the 19th International Conference on
Machine Learning, volume 2, pages 179–186, 2002.

[Herrera et al., 2016] Francisco Herrera, Sebastián Ventura,
Rafael Bello, Chris Cornelis, Amelia Zafra, Dánel Sánchez-
Tarragó, and Sarah Vluymans. Multiple Instance Learning:
Foundations and Algorithms. Springer, 2016.

[Huang et al., 2006] Jiayuan Huang, Arthur Gretton,
Karsten M Borgwardt, Bernhard Schölkopf, and Alex J
Smola. Correcting sample selection bias by unlabeled data.
In Advances in Neural Information Processing Systems 19,
pages 601–608, 2006.

[Kanamori et al., 2009] Takafumi Kanamori, Shohei Hido,
and Masashi Sugiyama. A least-squares approach to di-
rect importance estimation. Journal of Machine Learning
Research, 10:1391–1445, 2009.

[Li et al., 2009] Yu-Feng Li, James T Kwok, Ivor W Tsang,
and Zhi-Hua Zhou. A convex method for locating regions
of interest with multi-instance learning. In Proceeding ot
20th European Conference on Machine Learning, pages
17–32, 2009.

[Maron and Lozano-Pérez, 1998] Oded Maron and Tomás
Lozano-Pérez. A framework for multiple-instance learning.
In Advances in Neural Information Processing Systems 10,
pages 570–576, 1998.

[Senta et al., 2007] Yosuke Senta, Yoshihiko Kimuro, Syuhei
Takarabe, and Tsutomu Hasegawa. Machine learning ap-
proach to self-localization of mobile robots using RFID
tag. In Proceedings of the IEEE/ASME International Con-
ference on Advanced Intelligent Mechatronics, pages 1–6,
2007.

[Shimodaira, 2000] Hidetoshi Shimodaira. Improving pre-
dictive inference under covariate shift by weighting the
log-likelihood function. Journal of Statistical Planning and
Inference, 90(2):227–244, 2000.

[Sugiyama et al., 2008] Masashi Sugiyama, Shinichi Naka-
jima, Hisashi Kashima, Paul V Buenau, and Motoaki
Kawanabe. Direct importance estimation with model se-
lection and its application to covariate shift adaptation. In
Advances in Neural Information Processing Systems 21,
pages 1433–1440, 2008.

[Sugiyama et al., 2012] Masashi Sugiyama, Taiji Suzuki, and
Takafumi Kanamori. Density Ratio Estimation in Machine
Learning. Cambridge University Press, 2012.

[Wei et al., 2017] Xiu-Shen Wei, Jianxin Wu, and Zhi-Hua
Zhou. Scalable algorithms for multi-instance learning.
IEEE Transactions on Neural Networks and Learning Sys-
tems, 28(4):975–987, 2017.

[Yuan et al., 2016] Jiazheng Yuan, Xiankai Huang, Hongzhe
Liu, Bing Li, and Weihua Xiong. Submil: Discriminative
subspaces for multi-instance learning. Neurocomputing,
173:1768–1774, 2016.

[Zadrozny, 2004] Bianca Zadrozny. Learning and evaluating
classifiers under sample selection bias. In Proceeding of
the 21st International Conference on Machine Learning,
pages 114–121, 2004.

[Zhang and Zhou, 2014] Wei-Jia Zhang and Zhi-Hua Zhou.
Multi-instance learning with distribution change. In Pro-
ceeding of the 28th AAAI Conference on Artificial Intelli-
gence, pages 2184–2190, 2014.

[Zhang et al., 2002] Qi Zhang, Sally A Goldman, Wei Yu,
and Jason E Fritts. Content-based image retrieval using
multiple-instance learning. In Proceeding of the 19th Inter-
national Conference on Machine Learning, pages 682–689,
2002.

[Zhou et al., 2005] Zhi-Hua Zhou, Kai Jiang, and Ming Li.
Multi-instance learning based web mining. Applied Intelli-
gence, 22(2):135–147, 2005.

[Zhou et al., 2009] Zhi-Hua Zhou, Yu-Yin Sun, and Yu-Feng
Li. Multi-instance learning by treating instances as non-iid
samples. In Proceeding of the 26th International Confer-
ence on Machine Learning, pages 1249–1256, 2009.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3447


