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ABSTRACT
In this paper, we consider the problem of anomaly detection. Pre-
vious studies mostly deal with this task in either supervised or
unsupervised manner according to whether label information is
available. However, there always exists settings which are differ-
ent from the two standard manners. In this paper, we address the
scenario when anomalies are partially observed, i.e., we are given
a large amount of unlabeled instances as well as a handful labeled
anomalies. We refer to this problem as anomaly detection with
partially observed anomalies, and proposed a two-stage method
ADOA to solve it. Firstly, by addressing the difference between
the anomalies, the observed anomalies are clustered, while the un-
labeled instances are filtered to get potential anomalies and reli-
able normal instances. Then, with the above instances, a weight
is attached to each instance according to the confidence of its la-
bel, and a weightedmulti-class model is built, which will be further
used to distinguish different anomalies to the normal instances. Ex-
perimental results show that in the aforementioned setting, exist-
ing methods behave unsatisfactorily and the proposed method per-
forms significantly better than all these methods, which validates
the effectiveness of the proposed approach.
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1 INTRODUCTION
Anomaly detection [5] is a broadly used technique which aims at
identifying the unexpected patterns from the usual behavior in a
dataset. These unexpected patterns are always called anomalies or
outliers, which are always generated by some kind of malicious
purpose or illegal activity. Anomaly detection is important and can
provide significant and critical help in various applications, such as
intrusion detection [10], fraud detection [16], fault detection [14],
suspicious transaction detection [23] and abnormal moving activ-
ity detection [11], etc.

To deal with this task, machine learning based techniques have
been widely employed during the past few years, and these tech-
niques can be roughly classified into two categories: unsupervised
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learning based approaches [18] and supervised learning basedmeth-
ods [12]. Traditionally, unsupervised learning based methods are
developed, in which only unlabeled data are accessible. Distance
based approaches [26], density based approaches [3] and isolation
based methods [23] are typical representatives along this way.

On the other hand, if sufficient labeled data are available, super-
vised learning based methods are explored, in which a classifica-
tion model, such as support vector machine [33], decision tree [35]
and k-nearest neighbor [31], etc., can be trained to further classify
unseen samples. Note that compared to unsupervised approaches,
supervised methods can always provide better performance with
the help of sufficient labeled data. In addition, by using both labeled
and unlabeled data, semi-supervised learning based methods [30]
are explored, and by combining different techniques, hybrid ap-
proaches [27] have also been developed to handle this problem.

However, there are some conditions in which adequate labeled
samples are difficult to obtain, while we can access a small num-
ber of recognized anomalies, along with sufficient unlabeled sam-
ples. Let’s take the task of malicious URL detection as an exam-
ple, in some scenarios, apart from a large amount of unlabeled
URL records, we can only obtain a handful of labeled malicious
URLs, with the help of existing rule based systems. Different to su-
pervised setting in which both positive and negative samples are
provided, we only get a small set of positive (malicious) samples
here, thus the supervised methods can not be directly employed.
On the other hand, when compared to unsupervised learning set-
ting, we additionally have some labeled samples, which may offer
great help with proper utilization. In this paper, we refer to the
this special anomaly detection setting as anomaly detection with
partially observed anomalies).

There is one paradigm named PU (Positive and Unlabeled) learn-
ing [17, 19], which has seemingly similar setting with the afore-
mentioned one. However, in PU learning, the positive samples al-
ways belong to one concept center, which means that the positive
samples are similar to each other, whereas in anomaly detection,
the so-called positive samples (anomalies) are usually not simi-
lar to each other, and they can be seriously disparate. In another
word, we can not claim that the difference between two outliers are
smaller than that of an anomaly and a non-anomaly. Thus, direct
applying of PU learning based techniques for anomaly detection
task may not lead to satisfactory performance.

Another paradigm called semi-supervised clustering [1, 34] deals
with the cluster setting where the data are partially labeled or with
other types of preliminary information, and the objective is to clus-
ter the unlabeled samples to the appropriate clusters. It seems that
semi-supervised learning dealswith the similar task aswe described.
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However, just as PU learning, the samples labeled in the same clus-
ter should be similar to each other in semi-supervised clustering,
while in anomaly detection, the observed anomalies do not con-
form to this.

In this paper, we consider the setting of anomaly detection with
partially observed anomalies, and propose a method called ADOA
(Anomaly Detection with partial Observed Anomalies) to solve it.
ADOA follows a two-stage manner. In the first stage, we address
that the observed anomalies should not be simply regarded into
one concept center, and by assuming that the anomalies belong to
k different concept centers, the anomalies are firstly clustered into
k clusters. After that, both potential anomalies and reliable nor-
mal samples are selected from the unlabeled samples according to
the isolation degree and the similarity to the nearest anomaly clus-
ter center. In stage two, a weight is set to each sample according
to the confidence of its attached label, and a weighted multi-class
classification model is built to distinguish different anomalies from
the normal samples, using original anomalies and the selected sam-
ples. Experiments on different datasets and a real application task
demonstrate the effectiveness of our approach.

The rest of this paper is organized as follows. In section 2, we
review the related work.In section 3, we state the problem setting
and present the proposed method. In section 4, we report the ex-
perimental results on different datasets. In section 5, we apply the
proposed method to the problem of malicious URL detection and
validate the effectiveness of the proposed method. Finally, we con-
clude the paper in section 6.

2 RELATEDWORK
Anomaly detection [5] deals with the task of recognizing unex-
pected patterns from normal behavior. The detection of anomalies
has significant influence and can provide critical help in many dif-
ferent fields. During its development,manymachine learning based
methods have been proposed to handle this problem [28], and it
has been widely applied in many applications, such as intrusion
detection [10], fraud detection [16], fault detection [14], suspicious
transaction detection [23] and abnormalmoving activity detection [11],
etc.

Among the developed methods, unsupervised learning based
methods [4, 37] build themodel with unlabeled data. To name some
representative, distance based approaches [15], density based ap-
proaches [3], isolation based methods [22, 23], and so on. These
methods can be widely used since there is no need for labeling of
the data. However, in many application fields, the unsupervised
methods may not succeed to achieve the require performance.

On the other hand, with labeled data provided, supervised learn-
ing basedmethods are explored.Many supervised algorithms, such
as support vector machine [33], decision tree [35] and k-nearest
neighbor [31] are successively adopted to the task of anomaly de-
tection. With proper use of the label information, supervised learn-
ing basedmethods can always achieve better performance. Beyond
these two standard paradigms, othermethods, including semi-supervised
learning based methods [30] and hybrid approaches [27] have also
been explored based on these techniques to handle this task.

In some conditions, only the samples following the normal be-
havior are provided [32], while the anomalies are unseen. Methods

like one-class learning [7] and support vector data description [21]
are developed for this setting. These methods focused on learning
the hypersphere to describe the normal samples or learning a hy-
perplane to divide the data points from the origin with maximum-
margin.

PU (Positive and Unlabeled) learning [17] is a special case of
semi-supervised learning [6, 36], which copeswith the settingwhen
only positive and unlabeled data are available, while no negative
sample is labeled. During the past few years, a mass of methods
have been proposed to deal with this task. Roughly speaking, these
methods can be divided into three families. Two-step approaches [19,
20] try to recognize some reliable negative samples from the unla-
beled data, then a traditional supervised learning or semi-supervised
learning technique can be applied. Cost-sensitive learning tech-
niques [24] for binary classification with unequal misclassification
cost are also readily available for handling this problem [8].What’s
more, convex methods have also been proposed to deal with this
task [9]. Note that if we regard anomalies as positive samples here,
PU learning is somewhat similar to anomaly detection with par-
tially observed anomalies. However, the most striking difference is
that, the positive samples in PU learning are similar to each other,
thus we can find one positive concept for them, while in anomaly
detection, the anomalies are always diversified, and they can rarely
cluster into one concept cluster, making the standard PU learning
technique not suitable to handle anomaly detection task.

Semi-supervised clustering [1] deals with the problemwhen the
provided data are partially labeled or with other types of prelimi-
nary information, and the goal is to try to assign the unlabeled sam-
ples to the proper clusters. Many methods [2, 34] for this task are
generalized from the traditional clustering algorithms, withmodifi-
cation tomake sure that the constraints are satisfied. However, just
as PU learning, the samples labeled in the same cluster should be
similar to each other in semi-supervised clustering, while in anom-
aly detection, the observed anomalies do not conform to this.

In this paper, we focus on a special setting of anomaly detection,
i.e., anomaly detection with partially observed anomalies. Differ-
ent to totally unsupervised anomaly detection scenario, we have
some preliminary information, i.e., the observed anomalies. Differ-
ent to supervised setting, we only have a small amount of anom-
alies, while the other samples are totally unlabeled. Different to PU
learning and semi-supervised clustering, the labeled anomalies are
usually not similar to each other.

3 ANOMALY DETECTIONWITH PARTIALLY
OBSERVED ANOMALIES

In this section, we will first state our problem setting, and then
present the proposed method ADOA (Anomaly Detection with
partial Observed Anomalies) .

3.1 Problem Statement and Notations
Let X = Rd denotes the instance space and Y = {−1,+1} de-
notes label space, respectively. Let y = +1 indicates the anomalies
and y = −1 for normal samples. We are given a data set with m
training samples D = {(x1,y1), . . . , (xl ,yl ),xl+1, . . . ,xm }, where
xi ∈ X representing a sample. The first l samples are labeled
as anomalies, which are denoted by Dl = {(x1,y1), . . . , (xl ,yl )},
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Figure 1: The overall framework of the proposed method.

and the otherm − l samples are unlabeled, which are denoted by
Du = {xl+1, . . . ,xm }. Note that although the first l samples are
all with the label y = +1, the can be totally different to each other.
The goal is to build a model f : X → Y, so that it can be further
used to distinguish the diversified anomalies from the normal ones
for future-coming data, thus the anomalies can be recognized.

3.2 Proposed Method
ADOA follows the two-stage manner. In the first stage, both ob-
served anomalies and unlabeled samples are manipulated. We ad-
dress that the observed anomalies are different to each other, and
they should not be simply classified into one concept center. Since
the anomalies are really diversified, we first try to separate them
into different clusters, so that the samples in each cluster are simi-
lar to each other. For unlabeled data, we aim at sufficiently explor-
ing the information of them. Thus, we try to filter both potential
anomalies and reliable normal samples from them, with consider-
ation of the isolation score (to be explained shortly) and their simi-
larity score to the observed anomalies. The intuition is that, on one
hand, the potential anomalies should be different to normal sam-
ples (i.e., can be easily isolated); on the other hand, they should be
similar to some observed anomalies. In the second stage, we build a
weightedmulti-classmodel to distinguish different anomalies from
the normal samples. For the observed anomalies, the weights are
set to 1, and for the filtered samples, the weights are set according
to the confidence of their attached labels. The overall procedure is
shown in Figure 1, and the details of ADOA are presented below.

In stage one, by addressing the difference of the anomalies,
we first cluster observed anomalies in Dl into k clusters C =
{C1,C2, . . . ,Ck }. We can employ different cluster algorithms. Here
we simply run k-means algorithm (with normalization performs
in advance). Specifically, the distance between each two samples
is measured using squared Euclidean distance, which is as below

dist(xi ,xi′) =
d∑
j=1

(xi j − xi′j )2 , (1)

in which d is the dimension of the samples. The following square
error is minimized to learn the centers and the assignments of the
samples,

E =
k∑
i=1

∑
x ∈Ci

dist(x − µi ) , (2)

in which µi =
1

|Ci |
∑
x ∈Ci x is the center of the i-th anomaly clus-

ter, i.e., the anomaly concept center. Note that other cluster algo-
rithms, such as hierarchical clustering and density-based cluster-
ing, can also be explored, and thismay lead to further improvement
of the performance.

For samples in unlabeled set Du , we select the potential anom-
alies and reliable normal samples based on the isolation score and
the similarity score to the nearest cluster center.

Isolation Score: The concept of isolation was first proposed
in [22]. They showed that an extremely random tree forest can
be used for isolating samples. Each tree in the forest is built by



randomly choosing an attribute and a corresponding split value
for subsequent growing at each node. Since the anomalies are few
and different, they are always isolated closer to the root of the tree,
whereas normal samples will go to the deeper leaf of the tree. To
get the isolation score, each sample is delivered to a tree until it
arrives at a leaf, the path length in each tree is then obtained, and
the average path length can be calculated for the isolation forest.
Based on the average path lengths on the trees, the isolation score
IS(x) can be calculated to describe the probability of a sample x
being anomaly. Let h(x) denotes the path length of a sample x on
a tree, and E(h(x)) indicates the average path length of a collection
of isolation trees. Assume that there are n samples, and let

c(n) = 2H (n) − (2(n − 1)/n) (3)

denotes the average path length of unsuccessful search in Binary
Search Tree, which is the same as the estimation of average h(x)
for external node terminations. HereH (n) is the harmonic number,
which can be estimated by ln(n)+ 0.5772156649 (Euler’s constant).
c(n) is used as the normalization parameter to calculate the isola-
tion score IS(x), which is as following:

IS(x) = 2−
E(h(x ))
c (n) . (4)

The higher is the score IS(x) (close to 1), the more likely that x
being an anomaly.

Similarity Score: On the other hand, it is reasonable that the
closer is a sample to a known anomaly concept center, the more
likely that the sample being a potential anomaly, thus we calcu-
late the similarity score SS(x) between a sample x and its nearest
anomaly concept center. Specifically, SS(x) is calculate as follow-
ing:

SS(x) = kmax
i=1

e−(x−µi )
2
, (5)

in which µi denotes the i-th concept center, and k is the number
of anomaly concept centers.

Total Score:To filter the potential anomalies and reliable nor-
mal samples from the unlabeled samples, we take both the isola-
tion score and the similarity score into consideration, and the total
score for an instance is denoted as

TS(x) = θ IS(x) + (1 − θ )SS(x) , (6)

in which θ ∈ [0, 1] is a parameter to balance the importance of
isolation score and similarity score.

Let

α =
1
l

l∑
i=1

TS(xi ) (7)

indicates the average score of observed anomalies. We then select
the instances with

TS(x) ≥ α (8)
as potential anomalies, and put them into their nearest anomaly
clusters. We select the instances with

TS(x) ≤ β (9)

as reliable normal samples, where β is a predefined parameter. The
smaller is β , the more reliable are the selected samples.

So far, we have not only the observed anomalies, but also the
selected potential anomalies and the reliable normal samples, and
the anomalies are separated intok different clusters, so that in each

cluster, the anomalies are with high similarity to each other within
the cluster.

In stage two,we first set weights for all selected samples and
the observed anomalies. Specifically, all observed anomalies are
with weight 1, and for the selected anomalies, as shown in Eq. 10,
the higher is the score TS(x) , the more weight will the instance
get.

w(x) = TS(x)
maxx TS(x)

. (10)

For selected reliable normal samples, the smaller is the score, the
more weight it will get. The details are as below:

w(x) = maxx TS(x) −TS(x)
maxx TS(x) −minx TS(x)

. (11)

With the abovementioned samples and theirweights, aweighted
(k+1)-class model can be trained to separate different anomalies to
the normal samples. Particularly, each anomaly cluster is regarded
as one class, so there are k + 1 classes in all (k anomaly classes and
one normal class). The following objective is minimized,∑

i
wi l(yi , f (xi )) + λR(w) , (12)

in which wi denotes the weight of the instance xi , l(yi , f (xi )) is
the loss term, and R(w) the the regularization term. In this work,
support vector machine is used, so the loss term and regularization
term are set to be hinge-loss and L2-norm.

After obtaining the multi-class model, the new-coming samples
can be classified. When applying this model to an unseen instance,
no matter which of the k anomaly clusters is the new-coming in-
stance classified to, it will be regarded as an anomaly.

4 EXPERIMENTS
In this section, we run experiments on both synthetic data and real-
world data to validate the performance of the proposed method.
We compare the proposed method with different baselines includ-
ing unsupervised approach, supervised approach and PU learn-
ing approach. Firstly, unsupervised method Isolation Forest [22]
is considered, since it has been proved as a powerful method for
anomaly detection. Secondly, supervised method support vector
machine [13] is considered. By simply regarding all unlabeled sam-
ples as negative ones, supervised method is tested. Thirdly, PU
learning based method, i.e., the cost sensitive strategy [25], is com-
pared too, since the setting is somewhat similar to the setting of PU
learning, and we want to validate whether PU learning is suitable
for the problem of anomaly detection.

4.1 Experiments on Synthetic Data
We first perform experiments on synthetic dataset, to test the per-
formance of each method in the scenario that the anomalies are
diversified. To generate the dataset for anomaly detection, we first
generate the normal examples, which are sampled from the multi-
variate Gaussian distribution P0 = N(µ0, Σ0), in which µ0 = [5, 5]
is the mean vector, and Σ0 = [[5, 0], [0, 5]] is the covariance matrix.
For anomalies, we assume that there are three different concept
clusters, and they are sampled from multivariate Gaussian distri-
bution P1 = N(µ1, Σ), P2 = N(µ2, Σ) and P3 = N(µ3, Σ), in which
µ1 = [1, 1], µ2 = [1, 10], µ3 = [9, 0] and Σ = [[0.6, 0], [0, 0.5]]. The



Table 1: Details of the datasets information and experiments setups. ‘Dimension’ denotes the dimension of the datasets. ‘Ob-
served’, ‘Unlabeled’ and ‘Test’ denotes the number of observed anomalies, training unlabeled samples and test samples, respec-
tively. ‘Class prior’ denotes the proportion of anomalies in unlabeled and test data.

Dimension Observed Unlabeled Test Class prior
synthetic 2 20 10000 10000 0.01
arrhythmia 274 10 200 200 0.1

vowel 12 10 500 500 0.02
letter 32 10 500 500 0.08
musk 166 10 1000 1000 0.04
thyroid 6 10 1000 1000 0.03
speech 400 10 1500 1500 0.013
satimage 36 10 2500 2500 0.01
smtp 3 10 40000 40000 0.00025

ionosphere 33 20 150 150 0.33
breastw 9 20 300 300 0.33
optdigits 64 20 2000 2000 0.025
pendigits 16 20 3000 3000 0.017
pima 8 50 300 300 0.33
cardio 21 50 500 500 0.1

mammography 6 50 5000 5000 0.02
satellite 36 100 2000 2000 0.25

annthyroid 6 100 2000 2000 0.1
shuttle 9 100 10000 10000 0.1

ForestCover 10 100 100000 100000 0.01
http 3 100 200000 200000 0.005

Figure 2: The sampled examples of synthetic dataset.

sampled examples are shown in Fig. 2. Aswe can see, the anomalies
from different clusters are really different from each other, and the
anomalies from the same cluster are pretty similar to each other.

To generate the setting of anomaly detection with partially ob-
served anomalies, we randomly sample 20 examples (which may
come from any of the three different clusters) from the anomalies
as observed anomalies. We then sample examples to construct un-
labeled training set and test set, and the number of unlabeled and

test examples are both set to 10000, among which only 1% of them
are anomalies. The details are shown in the first line of Table 1,
with the name ‘synthetic’.

Figure 3: The accuracy with different k value.

We repeat experiments for 30 times by using the dataset genera-
tion procedure to generate observed anomalies, unlabeled training
data and test sets. The AUC score is shown in the first line of Ta-
ble 2. As we can see, the proposed method performs better than



Table 2: AUC score on different datasets. The highest AUC score is marked in bold.

Proposed Method Unsupervised
Method

Supervised Method PU Method

synthetic 0.989 0.954 0.944 0.978
arrhythmia 0.840 0.515 0.665 0.564
vowels 0.984 0.774 0.972 0.979
letter 0.671 0.625 0.633 0.535
musk 1.000 0.995 0.880 1.000
thyroid 0.994 0.971 0.718 0.989
speech 0.730 0.524 0.613 0.690
satimage 0.992 0.990 0.947 0.975
smtp 0.902 0.833 0.788 0.876

ionosphere 0.934 0.846 0.705 0.899
breastw 0.993 0.988 0.824 0.992
optdigits 0.999 0.811 0.972 0.999
pendigits 0.996 0.955 0.978 0.995
pima 0.791 0.691 0.660 0.775
cardio 0.991 0.892 0.970 0.987

mammography 0.938 0.845 0.605 0.909
satellite 0.855 0.694 0.735 0.838

annthyroid 0.922 0.775 0.642 0.850
shuttle 0.989 0.994 0.703 0.984

ForestCover 0.999 0.925 0.842 0.999
http 0.997 0.999 0.994 0.995

all other existing methods, which demonstrate the effectiveness of
the proposed method.

Furthermore, we vary the value of parameter k to examine the
influence of it. The results in Fig. 3 show that the behavior tends
to get better as the value of k getting closed to the ground-truth.
Besides, when k gets to be a little bigger, our method still works
fine, which means that our method is not that sensitive with bigger
k . However, when we set the value of k to 1(which means that we
assume the anomaly are similar), the performance is showed to be
pretty unsatisfactory, which validate the necessity of addressing
the difference for the anomalies.

4.2 Experiments on Real-world Data
To explore the result on real-world data, the experiments are per-
formed on lots of different benchmark datasets which come from
different fields [29]. Note that in our setting, we are given a hand-
ful of observed anomalies, with a large amount of unlabeled sam-
ples. To construct this setting, we simply sample a small amount
of anomalies as observed ones, as well as plenty of unlabeled sam-
ples. The dimension of the data, number of observed anomalies,
unlabeled train samples and test samples are shown in Table 1,
with ‘class prior’ indicating the proportion of anomalies in unla-
beled and test data. As we can see, the datasets are very diversified,
with different dimension, different numbers of samples and differ-
ent class prior. What’s more, we need to address that the number

of observed anomalies are pretty small, i.e., as few as 10 for some
datasets and at most 100.

For each datasets, normalization is performed, and we repeat ex-
periments for 30 times by using the dataset generation procedure
to generate observed anomalies, unlabeled training data and test
sets.

The AUC scores are shown in Table 2. As we can see from the
table, the proposed method performs significantly better than all
other methods (wins 18 times among all 20 datasets), validating the
effectiveness of the proposed method. Unsupervised method Isola-
tion Forest reaches the first place on ‘shuttle’ and ‘http’ dataset,
while on some datasets (e.g., ‘arrhuthmia’ and ‘speech’ dataset),
the behavior may be pretty unsatisfactory. One interesting result
is that the supervised method performs pretty awful, indicating
that we should not simply regard all unlabeled samples as nega-
tive. One possible explanation is that, if we simple regard all un-
labeled samples as negative, the noises will seriously deteriorates
the performance.

On some datasets, the PU learning based method can also per-
form well, while on some dataset such as the ‘arrhythmia’ dataset,
the performance is pretty terrible. This maybe because that, for
some datasets, the anomalies are not very diversified, i.e., we can
nearly find a concept center for the anomalies, making PU learn-
ing strategy feasible. However, when the anomalies get to be di-
versified, the PU learning based method will fail to reach the goal.
Furthermore, as we can see, the proposed method never performs
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Table 3: Accuracy on different datasets. The highest accuracy score is marked in bold.

Proposed Method Unsupervised
Method

Supervised Method PU Method

Date1 0.878 0.609 0.849 0.847
Date2 0.883 0.620 0.844 0.849
Date3 0.891 0.611 0.854 0.860
Date4 0.881 0.613 0.849 0.847
Date5 0.876 0.588 0.847 0.848

worse than PU learning based method. This is reasonable, because
if we set the parameter k of ADOA to 1, it is degenerated to a
special case of PU learning based strategy.

5 APPLICATION TO MALICIOUS URL
DETECTION

In this section, we apply the proposed method to the problem of
malicious URL detection and validate the performance of different
methods on this problem.

With the fast development of Internet, more and more kinds of
URL attacks have arisen, which becomes a serious threat to cyber-
security. During the past years, many methods have been devel-
oped for this problem. For example, traditional techniques which
based on blacklists or rule lists are first explored. However, these
methods lack the ability of detecting potential attacks, making it
awkward for cyber-security engineers to efficiently discover newly
generated URL attacks.

Machine learning based methods are then explored to provide
better generalization performance for this problem. However, as
we discussed before, they are mainly focused on supervised and
unsupervised setting, and when we are given a small set of recog-
nized malicious URLs (which will be regarded as anomalies) and a
large amount of unlabeled URLs, traditional approaches will fail to
apply. In this section, we apply our proposed method to it.

scheme:[//[user[:password]@]host[:port]][/path][?query][#fragment]

Figure 4: The generic syntax of URLs

We first extract numerical feature from the original URLs. As
shown in Fig. 4, the URLs can always be separated into different
parts, including the scheme part, the authority part (user, pass-
word), the path part (host, path), the query part and fragment parts,
etc. In our scenario, the first few parts are restricted, and the at-
tacksmainly come from themaliciousmodification of the fragment
parts. Thus, we extract feature for each URL based on the fragment
parts. The fragments are always formed as ‘key1 = value1& · · ·&keyn =
valuen ’, and the value may be arbitrarily modified by the attackers
to make an attack.

Even more specifically, given a set of URLs, we firstly divide
each of them into the aforementioned parts, and then we extract
the key-value pairs from the fragments of each URL. Secondly,
since we are focused on discovering the trait of malicious URLs,
we try to filter the key-value pairs and only keep the top-N keys
that appear mostly in themalicious URLs, while the rest of the key-
value pairs for each URL are collected together as one key-value

pair, thus there will be at most (N + 1) key-value pairs extracted
from each URL. In this way, the feature vector will not get to be
that tedious. Finally, based on domain knowledge, we heuristically
extract eight different statistical information from each of the fil-
tered values, including the count of all characters, letters, numbers,
punctuations in the value, and the count of different characters, let-
ters, numbers, punctuations in the value. Thus each URL will be
described by a (N + 1) ∗ 8 dimensional feature vector.

When running the experiments, the used data is sampled from
the daily-arrivedURL requests. The datamainly contains two parts:
a large set of unlabeled URLs and a handful of malicious URLs
which have been alreadymarked by the existing system, and differ-
ent attack types may appear among the malicious ones, including
XXE (XML External Entity Injection), XSS (Cross SiteScript) and
SQL injection, etc. Note that the only label information is whether
a URL is recognized as a malicious one, the exact type of the attack
is unknown. Since the total dataset is too large, we sample more
than 10 millions of URLs from one month’s requests, in which the
number of observed malicious URLs by the existing system is less
than 10 thousand. Themodel is trained using the sampled data, and
will be used to predict the scores of each day’s new-coming unla-
beled URLs. When extracting key-value pairs, N is set to be 99, so
that each URL is described by a 800 dimensional vector. Min-max
normalization is used to process the features to same scale. What’s
more, all SVM classifiers are replaced by logistic regression in the
experiment, since the dataset is too large.

Since we have no supervision information for the daily-arrived
new URLs, we use the help of the cyber-security engineers to man-
ually review the results and verify the effectiveness of the proposed
method. It is very time-consuming to check the results, sowe select
the top-1000-scored potential malicious URLs from each day’s data,
and cyber-security engineers will manually check whether the se-
lected URLs are malicious or benign with their domain knowledge.

Table 3 shows the accuracy of the selected potential malicious
URLs on 5 different dates. As we can see, the proposed method
perform significantly better than all other methods, which demon-
strates the effectiveness of the proposed method on the malicious
URL detection task.

6 CONCLUSION
In this paper, we address the problem of anomaly detection. Dif-
ferent to traditional strategies, which formalize this problem as a
supervised (with labeled data provided) or unsupervised learning
problem (without any labeled samples), we consider the setting
when we are given a small amount of observed anomalies, as well



as plenty of unlabeled samples. We call this problem as anomaly
detection with partially observed anomalies, which can not be di-
rectly handled by traditional techniques.

Previous methods are not suitable for this problem. Since no
negative samples are provided, supervised learning based method
is unfeasible for this task. As for unsupervised learning basedmeth-
ods, without using the information of observed anomalies, the per-
formancemay become pretty unsatisfactory. PU learning deal with
the task where labeled positive and unlabeled samples are pro-
vided. However, the anomalies are not similar to each other, mak-
ing the PU learning assumption not that suitable.

We propose a method called ADOA (Anomaly Detection with
partial ObservedAnomalies) to solve it.ADOA follows a two-stage
manner. In stage one, we address the difference between observed
anomalies, thus we first cluster the recognized anomalies into k
different clusters. Later, we address that the anomalies can first be
easily isolated from normal samples, at the same time, they should
be similar to the observed anomalies, thus we filter potential anom-
alies and reliable normal samples from the unlabeled samples ac-
cording to the isolation score and the similarity score to their near-
est anomalies cluster centers. In stage two, we built a multi-class
model to distinguish different anomalies from the normal samples.
We run experiments on both synthetic and lots of different real-
world datasets, which comes from diversified fields. The results
on different datasets validate that existing approaches can not per-
form satisfactorily on this problem and the proposed method per-
forms significantly better than existing methods. Furthermore, we
apply the proposed method to the problem of malicious URL detec-
tion, the result also demonstrates the effectiveness of the method.
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