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Abstract—Although weighted tensor factorization tailored
to implicit feedback has shown its superior performance in
temporal-aware location recommendation, it suffers from three
critical challenges. First, it doesn’t distinguish the confidence of
negative preference for time-dependent unvisited locations from
that for fully unvisited ones. Second, discontinuity arises from
time discretization, and thus an infinitely large margin may exist
between different bins of time. Third, geographical constraints
of neighbor locations are not taken into account. To address
these challenges, we propose a regularized content-aware tensor
factorization (RCTF) algorithm, which exploits three strategies
to address the corresponding challenges. First, it introduces a
novel interaction regularization; second, it represents each bin
of time by a derived feature vector from eigen decomposition
of a time-bin similarity matrix, to capture the proximity of
neighbor bins of time; third, it encodes geographical information
of locations by discrete spatial distributions, so that spatial
proximity constraints can be satisfied by simply feeding them into
location content. The proposed algorithm is then evaluated for
time-aware location recommendation on two large scale location-
based social network datasets. The experimental results show
the superiority of the proposed algorithm to several competing
time-aware recommendation baselines, and verify the significant
benefit of three strategies in the proposed algorithm.

I. INTRODUCTION

The advancement and popularity of smart mobile devices

make people easier to acquire real-time location information.

This development has triggered the advent of location-based

social networks (LBSNs), such as Foursquare, Facebook Place

and so on. In these LBSNs, users can post their physical

locations in the form of check-in and share their experiences at

the points of interest (POIs), e.g., restaurants. These behaviors

can be optionally synchronized on multiple social networks.

Therefore, this emergence has not only led to location-based

socializing becoming a new form of social interaction, but also

has leveraged location recommendation to help people speed

up familiarization of the surroundings.

Due to the availability of large-scale mobility history, loca-

tion recommendation has been an important research topic for

a long time, concentrating the aspects of spatial and (or) tem-

poral. Although several existing work has already integrated

spatio-temporal modeling with collaborative filtering [1], [2],

[3], [4], there is still a lack of generic frameworks. Within such

frameworks, not only should implicit feedback characteristics

of mobility history be captured, as suggested in [5], [6], but

also both temporal and spatial information is only encoded

as features for input to achieve the same objective of spatio-

temporal modeling.

A recently proposed weighted tensor factorization algorithm

tailored for implicit feedback [7] makes it possible to develop

such a general framework. This is because it extends weighted

matrix factorization [8], [9], which treats the data as an

indication of positive and negative preference with vastly vary-

ing confidence, and achieves the state-of-the-art collaborative

filtering for implicit feedback [10], [5], [11]. However, it still

suffers from three challenges and makes it suboptimal for

temporal-aware location recommendation. First, this algorithm

can not distinguish the confidence of negative preference for

time-dependent unvisited locations from that for fully unvisited

ones, as illustrated in Fig. 1 ( “1” labeled missing entries

versus “2” labeled missing entry). For example, if one user

visited a restaurant A at noon and a restaurant B in the

evening, but didn’t pay a visit to a restaurant C at all. Then

the confidence of negative preference for the restaurant B at

noon could be not distinguished from that for the restaurant

C. Second, discontinuity arises from time discretization, and

an infinitely large margin may exist between different bins

of time. This challenge makes it difficult to simultaneously

alleviate data sparsity and distinguish user preference at dif-

ferent moments within the same time bin. Third, geographical

constraints between neighbor locations are not imposed, but

locations within the same areas share similar geographical

attractiveness.

To this end, in this paper, we propose an efficient regularized

content-aware tensor factorization framework (RCTF). Within

this framework, an interaction regularization between users

and locations is suggested, for the sake of efficiently dealing

with the first challenge. Although it is also possible to directly

distinguish their respective negative preference, it would in-

crease time complexity of the algorithm, preventing it from

putting into practical use. To deal with the second challenge,

we represent each bin of time by a derived feature vector

from eigen decomposition of a time-bin similarity matrix, for

capturing the proximity between neighbor bins of time. Thus,

the algorithm becomes insensitive to the bin size of time

discretization so that a significantly smaller bin size (e.g., 15

min instead of 1 hour) can be chosen. In order to cope with

the third challenge, we encode geographical information of

locations by discrete spatial distribution over grids of even-size
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Fig. 1: Tensor Canonical Decomposition. In the left tensor,

gray entries of the first user are observed, and “1” labeled

entries are time dependent missing, versus “2” labeled fully

missing entries.

and show that spatial proximity constraints can be satisfied by

simplify feeding them into location content.

Finally, we evaluate the proposed algorithm for time-aware

location recommendation on two large scale location-based so-

cial network datasets, containing over 4.6M and 2.8M check-

ins of 85K and 36K users, respectively. The experimental re-

sults show the superiority of the proposed algorithm to several

alternative time-aware location recommendation algorithms,

including time-aware user-based collaborative filtering [1],

collective time dependent matrix factorization with temporal

smoothness [12] and with multi-task learning [13]. In addition,

the experimental results indicate the significant benefit of

interaction regularization, spatial proximity constraints and

time-bin representation in the proposed algorithm.

II. PRELIMINARY

In this paper, we study three order tensor factorization

models, where a user-time-location tensor R ∈ {0, 1}M×C×N

is provided. Here there are M users, C time bins and N
locations. Each entry ru,t,i in the tensor R indicates whether

a user u has visited a location i within a time bin t. Fol-

lowing common symbolic notation, tensors are denoted by

calligraphic upper-case letters, matrices by bold upper case

letters, vectors by bold lower case letters, and scalars by lower

case letters. Unless specified, vectors mean column vectors.

A. Tensor Factorization for Implicit Feedback

Tensor factorization models are studied in several fields for

many years. Its canonical decomposition has been exploited

in [7] to extend weighted matrix factorization, and applied for

temporal-aware collaborative filtering from implicit feedback.

Its superiority to other loss function (e.g., ranking) based

factorization models has been shown. Therefore, based on

this canonical decomposition, we will propose a regularized

content-aware tensor factorization model for time-aware loca-

tion recommendation. In this canonical model, latent factors

in three dimension are learned by optimizing the following

objective function,

LT =
∑
u,t,i

wu,t,i

(
ru,t,i − 1T (pu ◦ ct ◦ qi)

)2

+ λ(‖P‖2F + ‖C‖2F + ‖Q‖2F ), (1)

where W = (wu,t,i) is a weighted tensor, whose each entry

wu,t,i is set to α if ru,t,i > 0 and to 1 otherwise. α � 1 is

usually tuned by held-out (cross) validation. Thus, if we have

observed a user u has visited a location i within a time bin t,
the confidence of user positive preference for locations during

this time period is significantly higher than the confidence of

her negative preference (i.e., in case of ru,t,i = 0).

III. REGULARIZED CONTENT-AWARE TENSOR

FACTORIZATION

This paper presents a regularized content-aware tensor fac-

torization (RCTF) framework to address three aforementioned

challenges. For the first challenge, rather than assigning lower

confidences (e.g., wu,t,i = 0) to the first type of negative pref-

erence so as to make explicit distinction, we exploit interaction

regularization to constrain the dot product between users and

locations. Such a strategy plays an important role in reducing

time complexity of the algorithm out of the growth of tensor

density. For the second challenge, we seek a unique vector

representation for time bins, which simultaneously captures

the continuity between neighbor bins of time. For the final

challenge, we represent geographical information by location

content and show that it could equivalently impose spatial

proximal constraints.

A. The Objective Function

Assuming the unique representation of a time bin t ∈
{t1, · · · , tC} is zt ∈ R

D for general consideration and

geographical information of location i is encoded as a content

vector yi ∈ RL, the objective function of regularized content-

aware tensor factorization is

L =
∑
u,t,i

wu,t,i

(
ru,t,i − 1T (pu ◦ (TT zt) ◦ qi)

)2

+ β
∑
u,i

wu,i(ru,i − pT
uqi)

2 + γ
∑
i

‖qi −VTyi‖2

+ λ(‖P‖2F + ‖T‖2F + ‖V‖2F ), (2)

where T ∈ RD×K , V ∈ RL×K corresponds a mapping matrix

from time-bins’ feature space and location content to the

joint latent space, respectively, being aligned with users and

locations. Each ru,i is a 0/1 variable, indicating whether a user

has visited a location i and each wu,i indicates a confidence

of user preference. Due to the existence of the third term,

qi in this equation is the addition of qi of Eq (1) and the

feature effectVTyi, thus absorbing the impact of geographical

information.

1) Interaction Regularization: According to [14], human

exhibits significant propensity of returning to previously vis-

ited locations. Therefore, the confidence of negative preference

for time-dependent unvisited locations should be smaller than

that for fully unvisited ones. In other words, it is higher likely

for the former locations to be positively preferred within this

time bin. Explicitly lowering the confidence of negative prefer-

ence for time-dependent unvisited locations will increase time

complexity of tensor factorization. Actually, time-dependent
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unvisited locations are actually visited ones. Thus their higher

preference than fully unvisited ones can be satisfied together

with time-dependent visited ones by the regularization term

β
∑

u,i wu,i(ru,i − pT
uqi)

2 in Eq (2), subject to wu,i � wu,i′

if ru,i = 1 and ru,i′ = 0. Consequently, the confidence of

positive preference for visited locations (including both time-

dependent unvisited and time-dependent visited ones) will be

significantly larger than negative preference for fully unvisited

locations. This term is called as interaction regularization since

it constrains dot product between users and locations rather

than the norm of user latent factors or location latent factors.

2) Seeking Representation of Time Bins: As stated, for

dealing with the second challenge, we will seek a unique

representation for each time bin of C bins {t1, · · · , tC},
to capture the continuity between neighbor bins of time. In

particular, we construct a similarity matrix between any two

time bins and perform eigen decomposition on this similarity

matrix. The similarity between two time bins s and t is

computed as: sTs,t = exp−d(s,t)2

2σ2c
, where d(s, t) is their

distance. By varying σc, we can control how neighbor bins

of time are correlated. Based on the similarity definition, we

can construct a similarity matrix ST = (sTs,t) of time bins.

Since ST is a real symmetric matrix, it can be diagonalized.

Due to the small number of time bins, we can apply eigen

decomposition on this similarity matrix,

ST = Z̃ΛZ̃−1 (3)

where Z̃ is an orthogonal matrix, subject to Z̃T Z̃ = I, whose

each column corresponds to eigenvectors of ST and Λ is a

diagonal matrix whose diagonal entries are the corresponding

eigenvalues. Then we set the representation of each time

bin as Z = Z̃Λ
1
2 , whose each row is the representation of

the corresponding time bin. Due to the uniqueness of eigen

decomposition of full rank similarity matrix, we can get a

unique representation for each time bin. One benefit of this

representation is that each dimension is orthogonal to each

other, making the updating formula of T concise.

3) Spatial Proximity Constraints: It is also possible to

apply eigen decomposition on a similarity matrix SG = [sGi,j ]
between locations for getting representation of geographical

information, whose each entry is defined as

sGi,j =

⎧⎨
⎩

e−
d2ij

4σ2 , if dij < ε

0, otherwise
(4)

However, it suffers from computational issues due to the large

size of similarity matrix. Spatial proximity constraints can

be also satisfied, by imposing graph Laplacian regularization

based on the location similarity matrix. However, there are

three shortcomings. First, the similarity matrix is of large size,

in spite of sparseness, requiring large space for storage. Sec-

ond, the additions and deletions of locations must dynamically

update ε neighborhoods of nearby locations. Third, the update

of location latent factors is coupled in the alternative least

square algorithm, preventing parallel update of latent factors

for different locations and making it sensitive to the order of

update.
Fortunately, according to [6], location content could refine

the similarity between locations in terms of mobility history

based on (normalized) dot product. This observation will

be validated in Section III-B. Therefore, in this paper, we

represent geographical information of locations by discrete

spatial distribution over grids. Then spatial proximity con-

straints could be satisfied as long as the cosine similarity

of spatial distribution between locations could be shown to

well approximate location similarity in Eq (4). To this end,

we first define discrete spatial distribution, and then present

one theoretical result.

Definition 1. Discrete Spatial Distribution with respect to
a location i is defined over a sample space of spatial grids
{l1, · · · , lG} of even-size, where P ri(L = l) is the probability
that influent zone of the location falls into a specific grid
l. Assuming influent zone density follows normal distribution
over a two-dimensional space, the probability is defined as

P ri(L = lg) =
1√
2πσ

e−
d2ig

2σ2 ΔA, (5)

where ΔA is the area of any grid of sufficiently small size and
dig is the distance between the location i and the grid lg .

According to this definition, we could represent each loca-

tion i by a probability vector yi = {P ri(L = lg)}. Then

the relationship between dot product of locations’ spatial

distribution and their Euclidean distance could be shown in

the following theorem:

Theorem 1. When spatial grids are of infinitesimal size, if
restricting the influent zones within r = ε

2 from each location
and assuming the influence at the border zones approaches to
zero (i.e., e−

r2

σ2 → 0), then yT
i yj ≈ ΔA

2 sGi,j .

This theorem states that the location similarity matrix SG

could be approximately decomposed as SG ≈ 2
ΔAYY′ based

on the spatial distribution representation. In practical, grids

cannot be of infinitesimal size, thus the approximation error

may be larger but much more difficult to analyze.

B. Optimization
All the parameters except T in Eq (2) can be learned

effectively by alternative least square optimization algorithm

according to [6]. For the sake of learning T, we introduce

a variational matrix variable C ∈ RC×K , subject to a linear

equality constraint C = ZT, where Z = [z1, · · · , zC ]
T ∈

R
C×D. Note that when Z = Z̃Λ

1
2 , Z is a squared matrix, i.e.,

C = D. Based on the method of Lagrange multipliers, we can

rewrite the objective function of Eq (2) as follows:

L =
∑
u,t,i

wu,t,i

(
ru,t,i − 1T (pu ◦ ct ◦ qi)

)2

+ β
∑
u,i

wu,i(ru,i − pT
uqi)

2 + γ
∑
i

‖qi −VTyi‖2

+ tr(ΘT (C− ZT)) + λ(‖P‖2F + ‖T‖2F + ‖V‖2F ), (6)
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where Θ ∈ R
C×K is a Lagrange multiplier, and perform

alternative least square optimization with respect to all original

parameters and two extras.

With respect to optimizing pu, setting the gradient of L
w.r.t pu to zero, we can obtain,

pu = (
∑
t,i

wu,t,i(ct◦qi)(ct◦qi)
T+β

∑
i

wu,iqiq
T
i +λIK)−1

(
∑
t,i

wu,t,iru,t,i(ct ◦ qi) + β
∑
i

wu,iru,iqi) (7)

where
∑

t,i wu,t,i(ct◦qi)(ct◦qi)
T can be efficiently computed

based on
∑

t,i(wu,t,i−1)(ct◦qi)(ct◦qi)
T +(CTC)◦(QTQ),

since (ct ◦ qi)((ct ◦ qi))
T = (ctc

T
t ) ◦ (qiq

T
i ).

Therefore, assuming the number of non-zero entries of

tensor R is NR, the time complexity of sequentially updating

latent factors of all users is O(NRK2 + MK3), since NR is

usually larger than the number of non-zero entries in the matrix

R. Due to the independence of update between different users,

it is possible to greatly accelerate this procedure based on

parallel computing.

With respect to optimizing qi, we can obtain the update

formula by setting the gradient of L w.r.t qi to zero,

qi = (
∑
u,t

wu,t,i(pu◦ct)(pu◦ct)T+β
∑
u

wu,ipup
T
u+γIK)−1

(
∑
u,t

wu,t,iru,t,i(pu ◦ ct) + β
∑
u

wu,iru,ipu + γVTyi) (8)

Based on similar analysis, time complexity of sequentially

updating latent factors of all locations is O(NRK2 + NK3).
With respect to learningV, we can see that it is equivalent to

minimizing the objective function
∑

i ‖qi−VTyi‖2+λ
γ ‖V‖2F .

Therefore, the solution of V is

V = (YTY +
λ

γ
IL)

−1YTQ. (9)

Since the location-zone influence matrix Y is a large but

sparse matrix, the inversion of YTY + λ
γ IL may suffer

from computational issues. Therefore, we resort to conjugate

gradient descent algorithm for solving this linear equation

system. The complexity is O(‖Y‖0K#iter), where #iter is

the number of iterations of conjugate gradient descent to reach

a given threshold of approximation error.

Remark of Eq (9): According to the matrix inversion

lemma, V = YT (YYT + λ
γ IL)

−1Q. Since YYT approxi-

mates to ΔA
2 SG, VTyi ≈ QT (SG+ 2λ

γΔAIL)
−1sGi , where sGi

is the ith row of the matrix SG. Thus, the term γVTyi in

Eq (9) captures the effect of nearby locations, verifying that

location content refines mobility similarity between locations,

as stated in [6].

With respect to learning T, first setting the gradient of L
with respect to T to zero, we have ZTΘ = 2λT. Left multi-

plying both side with Z and applying the equality constraint,

we have the solutions for Θ and T, i.e.,

Θ = 2λ(ZZT )−1ZT = 2λ(ZZT )−1C,

T = ZT (ZZT )−1C
(10)

where ZZT = S is of full rank and thus invertible. Based on

the newer Θ, we can update ct based on

ct = (
∑
u,i

wu,t,i(pu ◦ qi)(pu ◦ qi)
T + εIK)−1

(
∑
u,i

wu,t,iru,t,i(pu ◦ qi)− θt

2
) (11)

where εIK is placed for numerical stability. Since θt absorbs

latent factors of other bins of time by Eq (10), we can deal

with the discontinuity problem. Based on the same analysis

as above, the time complexity of updating latent factors of all

bins of time is O(NRK2+T K3), dominating the complexity

of updating T and Θ, due to the small number of time bins.

IV. EXPERIMENTS

In this section, we first introduce the datasets and present the

preprocessing procedure. We then discuss evaluation protocols

and illustrate the assessment metric, followed by experimental

results and discussions.

A. Dataset and Preprocessing

We evaluate the proposed algorithm for time-aware loca-

tion recommendation, where we consider daily dynamics but

ignore the inter-days difference, and split a full day into T
time periods {t1, · · · , tT }. Note that we need to consider a

cycle property when measuring distance (i.e., time intervals)

between time periods. For example, d(23h, 0h) = 1h. Such an

evaluation is then conducted on two large-scale location-based

social network datasets. The first dataset, which was used

in [15] and crawled from Gowalla, contains 6,423,854 check-

ins at 1,280,969 locations from 107,092 users from Feb. 2009
to Oct. 2010, where each user has 60 check-ins and checks in

at 37 locations on average. We select locations which has been

visited by at least 5 users and select users who have checked

in at least five locations. The statistics of the filtered dataset is

shown in Table I. The other dataset is what we crawled from

a Chinese location-based social network – Jiepang. Out of

privacy concern, users’ historical check-ins are not publicly

available, but they may be shared as tweets on Sina Weibo

(China’s Twitter). Thus we crawled 3,464,798 location check-

ins at 213,684 locations in Beijing from 55,650 users via Sina

Weibo open APIs from Mar. 2011 to Mar. 2013, where each

user has 80 check-ins and checks in at 47 locations on average.

After applying the same filtering for users and locations, we

also show dataset statistics in Table I.

TABLE I: Data statistics

#checkins #locations #users density

Gowalla 4,656,469 308,957 85,034 1.8×10−4

Jiepang 2,845,018 50,005 36,545 1.6×10−3

B. Evaluation Protocols

Each user’s check-in history is sorted in a chronological

order, and take the preceding 80% check-in history into a
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training dataset and the left 20% into a testing dataset. Then

testing check-ins, which have already been appeared in the

training dataset, will be removed from the testing dataset, since

repetitive behavior is usually not the focus of recommendation.

We then trained recommendation algorithms on training

check-ins and evaluated them on testing check-ins. Presenting

each user within each time period with the top-k candidate

locations sorted by their prediction preference, we assess

recommendation performance by checking how many of these

locations actually appeared in each user’s mobility data. Recall

at cut-off k is such a performance assessment metric, and has

been widely used in location recommendation [16], [17], [5],

[11]. Formally, in case of time-aware location recommenda-

tion, it is defined as follows:

recall@k =
1

M

M∑
u=1

∑T
t=1 |S(t)u (k) ∩ V(t)

u |∑T
t=1 |V(t)

u |
,

where S
(t)
u (k) is the collection of top k recommended locations

for a user u within a time period t and V
(t)
u is the set of her

visited locations within the time period t.
The recommendation algorithms to train include not only

the proposed algorithm, RCTF, but also the following com-

peting baselines.

• UTE is time-aware user-based collaborative filtering [1],

which takes temporal effect into account when computing

user similarity.

• WMF is weighted matrix factorization, proposed for one-

class collaborative filtering, tailored to recommendation

based on implicit feedback.

• CTMF-MTL is collective time-dependent matrix factoriza-

tion with multi-task learning [13].

• LRT is collective time-dependent non-negative matrix fac-

torization with temporal regularization [12].

• LTCR is a Location and Time aware Collaborative Re-

trieval model [18], which leverages Weighted Approxi-

mately Ranked Pairwise (WARP) loss with the aim of better

top-n ranking results.

After comparing the proposed algorithm with the competing

baselines, we then study the effect of interaction regularization,

spatial proximity constraints.

C. Parameter Setting

The parameters of the proposed model were individually

tuned by held-out validation on the training dataset based on

a grid search. Then, on the Gowalla dataset, K is set as 40,

α in the weighted tensor W as 2100, wu,i in the weighting

matrix R as 800 if ru,i > 0, the coefficient β of interaction

regularization as 100, the coefficient γ of spatial proximity

constraints as around 5000, and regularization coefficient of

user, time, spatial grid is 0.01, 0.01, and 100, respectively.

On the Jiepang dataset, K is also set as 40, but α in the

weighted tensor W as 300, wu,i in the weighting matrix R as

10 if ru,i > 0, the coefficient β of interaction regularization

as 10, the coefficient γ of spatial proximity constraints as
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Fig. 2: Comparison with baselines (Gowalla & Jiepang)

2000, and regularization coefficient of user, time, spatial grid

is 0.01,0.01, and 500, respectively.

D. Experimental results

1) Compare with baselines: The comparison of the pro-

posed algorithm with the competing baselines are shown in

Fig. 2 for the Gowalla dataset (left) and the Jiepang dataset

(right). From these two figures, we can have the following

three major observations. First, RCTF greatly outperforms
all the baselines on both datasets. Its superiority to UTE

indicates the superiority of factorization models to user-based

collaborative filtering. Its advantage over CTMF-MTL and

LRT shows the benefit of tensor factorization compared to

collective matrix factorization. The major reason lies in its

nature encoding for similarity between different time pe-

riods due to factorization characteristics, as long as there

are sufficient mobility history within these time periods. In

contrast, in collective matrix factorization, multi-task learning

only enforces time-dependent latent factors of each user to

be similar with some discrepancy; temporal regularization

incorporates neighborhood-based methodology, making it dif-

ficult to balance between defining precise temporal-aware

user similarity and addressing the sparsity challenge. Second,

LRT is not as good as CTMF-MTL and WMF on both
datasets, indicating the superiority of weighted loss function

in case of recommendation for implicit feedback datasets, in

accordance with previous findings [11], [5]. Third, time-aware
user-based collaborative filtering shows good recommendation
performance on both datasets, agreeing with the conclusion

in [16], [5], but suffers from computational issues due to user

similarity computation, in particular, when taking temporal

smoothness into account. Finally, LTCR doesn’t achieve the
better top-k ranking performance as expected on both datasets.
One difference from RTCF mainly lies in the loss function,

where LTCR exploits WARP while RCTF leverage weighted

squared loss. Thus the superiority of RTCF to LTCR illustrates

the advantage of weighted squared loss for location recom-

mendation.

2) Benefit of interaction regularization: In order to study

the effect of interaction regularization, we show the per-

formance of three algorithms, Regularized Weighted Tensor

Factorization (RWTF), Weighted Tensor Factorization (WTF)

and WMF, in Fig. 3, for the Gowalla dataset (left) and for

the Jiepang dataset (right). RWTF is a simplified version of

RCTF, but without taking similarity between time periods into
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account and without imposing spatial proximity constraints.

Compared to RWTF, there is no interaction regularization in

WTF. By comparing RWTF with WTF, we can see the benefit

of interaction regularization, indicating the effect of distin-

guishing time-dependent unvisited locations from completely

unvisited locations. In other words, in WTF, due to increasing

number of local optimums rooting from the severer sparsity

challenge [19], it may be much easy for latent factors of users

and locations to be caught in local optimums.
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Fig. 3: Effect of interaction regularization (Gowalla & Jiepang)

3) Benefit of spatial proximity constraints: We study the

potential benefit of spatial proximity constraints, by comparing

RCTF with the counterpart without imposing spatial proximity

constraints, i.e., RCTF (w/o geo). The results are showed in

Fig. 4 for the Gowalla dataset (left) and for the Jiepang dataset

(right). From these two figures, we can observe the significant

effect of imposing spatial proximity constraints, in particular

on the Gowalla dataset, illustrating the rationality of imposing

spatial proximity constraints by feeding spatial distribution

into location content. However, the benefit of spatial proximity

constraints on the Jiepang dataset is comparatively smaller.

The major reason lies in data validity, since locations checked

in by Jiepang users don’t satisfy strict distance restriction.

In other words, they can check in anywhere they love, in

particular after some time of usage.
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Fig. 4: Effect of spatial constraints (Gowalla & Jiepang)

V. CONCLUSIONS

In this paper, we first reveal three critical challenges

in weighted tensor factorization tailored to recommendation

based on implicit feedback, and then propose an efficient reg-

ularized content-aware tensor factorization algorithm, which

exploits three strategies for addressing these three challenges.

We finally evaluate the proposed algorithm on two large scale

mobility datasets. The experimental results not only indicate

the superiority of the proposed algorithm to the compet-

ing baselines for time-aware location recommendation, but

also validate the benefit of these three strategies: interaction

regularization, spatial proximity constraints and time period

representation, indicating the rationality of introducing these

three characteristics.
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