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History about Game Theory

e Emil Borel

Emil Borel wrote a series of papers between 1921
and 1927 where he set out to investigate whether it
is possible to determine a method of play that is
better than all others.

Emil Borel
1871-1956
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History about Game Theory

* John von Neumann

John von Neumann was a Hungarian
mathematician. By 26, he had already published 32
papers. He has been credited with founding game
theory based on a paper he wrote in 1928. In 1944,

he wrote, alongside Oskar Morgestern, the seminal

book Theory of Games and Economic Behavior.

John von Neumann
1903-1957
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History about Game Theory
* John Forbes Nash Jr.

John Forbes Nash Jr., American mathematician who
was awarded the 1994 Nobel Prize for Economics.
He submitted a paper to the Proceedings of the
National Academy of Sciences in 1949, where he

proved that an equilibrium exists in every game.

John Forbes Nash Jr.
1928-2015
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CARNEGIE INSTITUTE OF TECHNOLOGY

SCHENLEY PARK
PITTSBURGH 13, PENNSYLVANIA

DEPARTMENT OF MATHEMATICS

COLLEOE OF ENGINEERING AND BCIENCH February 11, 1948

Professor S, Lefschetz
ﬂ Department of Mathematics

".-. el

i ""lh-m Princeton University
Princeton, N, J,

sy NI AT Dear Professor Lefschetz:

LA A T
This is to recommend Mr, John F, Nash, Jr,

who has applied for entrance to the graduate college
at Princeton,

RLUISSELI Mr, Nash is nineteen years old and is

C ['{L'} A F graduating from Carnegie Tech in June, He is a

mathematical genius,

A BEA}JT]B_J L s sinceraty, F1€ 1S @ mathematical genius.
Ridrad, \Gfﬁ %

Richard J, Duffin

RJD:hl
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Two-Player Zero-Sum Games

* Protocol

A two-player zero-sum game can be represented by a matrix A € [0, 1]"*":

- Player-x (row player) has m actions, and player-y (column player)
has 7 actions

- The goal of player-x is to minimize her loss and the goal of player-y
1s to maximize her reward.
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Two-Player Zero-Sum Games

Classic example: Rock-Paper-Scissors game

Rock Paper Scissors

Scssors Rock 1/ 2 1 0
beats paper
(g;% @ Paper 0 1/2 1
Scissors 1 0 1/2
Rock PaPQr

beats scissors beats rock

&
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Two-Player Zero-Sum Games

* Protocol
- Pure strategy: a fixed action, e.g., “Rock”. & e,

- Mixed strategy: a distribution on all actions, e.g.,
(“Rock”, “Paper”, “Scissors”) = (1/3,1/3,1/3). @

* Nash equilibrium

Definition 2. A pair of mixed strategy (x*,y*) is called a Nash equilibrium if
neither player has a incentive to change his/her strategy given that the oppo-
nent is keeping his/hers, i.e.,

x* Ay’ < x* ' Ay* < xTAy*,Vx € A,y € A,,.
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Two-Player Zero-Sum Games

* Nash equilibrium

Definition 2. A pair of mixed strategy (x*,y*) is called a Nash equilibrium if
neither player has a incentive to change his/her strategy given that the oppo-
nent is keeping his/hers, i.e.,

x* ' Ay’ <x* ' Ay* <xTAy* . Vx € A,y € A,,.
|

Player-y’s goal is to maximize her rewqrd, changing from y* to y will decrease reward.

v

Player-x’s goal is to minimize her loss, changing from x* to x will increase loss.

:> A natural question: is there always a Nash equilibrium?

Advanced Optimization (Fall 2022) Lecture 10. Online Learning in Games 10



Connection with Online Learning

 Recall the OCO framework, regret notion, and the history bits.

Online Cony

* Online convex of
* feasible domain

« online functions

Ateachroundt =1

Another View

e Ultimate goal: minin

e The cumulative los:J
so we need a benc

History: Two-Player Zero-Sum Games

Theory of repeated games Zero-sum 2-person games played more than once

1 2 e M
1 [&0,1] 6Lz ...
2 ez €220 ...

@ Row player (player)
has M actions

: : : . @ Column player [opponent)

M has M actions

1) the player fir
(1) the player firs Regret;
N James Hannan David Blackwell @ Plaver chooses action i and opponent chooses action uy
{2] and environm (1922-2010) {1519-2010) @ The player suffers loss £[1,u, | (= gain of opponent)
{3] the pla}’er Sllf ¢ WE the the regrEt b Learning to play a game (1956) Player can learn from opponent’s history of past choices yy, .., 4y J
lay a game repeatedly against a possibly suboptimal opponent
updates the m e 1T
Regret
_ —— 3 0asT —
Note that from now on, T Nicolo Cesa-Bianchi, Online Learning and Online Convex Optimization. Tutorial at the Simons Institute. 2017
Advanced Optimization (Fall 2022} Advanced Optimization (Fall 2022} Advanced Optimization {Fall 2022} Lecture 6. Online Convex Optimization 28
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Minimax Strategy and Maximin Strategy

* minimax strategy
x* € arg min, max, x ' Ay

in the worst case, playing x leads to a loss of at most max, x ' Ay
for the z-player if the y-player sees x before making decisions

* maximin strategy

y* € arg max, miny x ' Ay

y

in the worst case, playing y leads to a reward of at least min, x ' Ay
for the y-player if the x-player sees y before making decisions
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Minimax Strategy and Maximin Strategy

* A natural consequence * minimax strategy

x* € arg min, maxy x' Ay

in the worst case, playing x leads to a loss of at most maxy x " Ay

. —I_ . _ . _ . . .
min max X Ay > max min XT Ay for the x-player if the y-player sees x before making decisions
X y y X

* maximin strategy

y* € arg max, miny x| Ay

Intuition: there should be no in the worst case, playing y leads to a reward of at least miny x " Ay
) ] ) for the y-player if the z-player sees y before making decisions
disadvantage of playing second

Proof: Define x* € arg miny max, x| Ay, then we have

. T T .
min max x' Ay = max x* Ay > x* ' Ay* = maxmin x ' Ay ]
X y y y X
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Von Neumann’s Minimax Theorem

* For two-player zero-sum games, it is kind of surprising that the
reverse direction is also true and thus minimax equals to maximin.

Theorem 1. For any two-player zero-sum game A € [0, 1]™*", we have

min max x ' Ay = maxmin x ' Ay.

The original proof relies on a fixed-point theorem (which is highly non-trivial).

In this lecture, we give a simple (constructive) proof by running online learning algo.
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Repeated Play

e [t is often that a game is repeatedly played for many times

Ateachround ¢ =1,2,...,T:
(1) player-x picks a mixed strategy x; € A,,
(2) simitaneously player-y picks a mixed strategy y; € A,,
(3) player-x and player-y submit their strategies together

(4) player-x receives loss x, Ay, and observes Ay;; player-y receives

loss —XtTAy,, and observes — Ax; assume full information

The loss function that player-x receives is f*(:) = - ' Ayy.

—> y; can depend on x1, . ..,%x; 1, meaning that player-x is facing an adptive adversary.
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Repeated Play
e Assume player-x and player-y run online algorithms with regret Reg’. and Reg?.

Our goal: prove miny maxy XTAy < maxy miny XTAy via repeated play.

Key idea: use the quantity - >, | x, Ay, as abridge between min, max, x' Ay

: T
and maxy min, x' Ay.

| 1 — Reg?™
7 Z x| Ay, < min — ZXTAyt + 81
t=1

xEA,, 1 T
t—1
Reg”
: T 4= T
— A
XIQA]AI"}n ® yT + T
Reg’%

< max min x' Ay +
yEAn XEA ), T
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Repeated Play

e Assume player-x and player-y run online algorithms with regret Reg’. and Reg?.

Our goal: prove miny maxy XTAy < maxy miny XTAy via repeated play.

Key idea: use the quantity - >, | x, Ay, as abridge between min, max, x' Ay

: T
and maxy min, x' Ay.

1 L 1 L ReoY
_iZEZXjAYLE Hml———E:X;Ay+- ST
t=1 1

yeA, T A
Reg?”.
= min —X, Ay + 5T
YEA, I
Reg” Regy
< max min —x' Ay + ST _ _ min max x ' Ay + ST
xeA,, yEAn T XEA,, yEA’n T
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Repeated Play

e Assume player-x and player-y run online algorithms with regret Reg’. and Reg?.

Our goal: prove miny maxy XTAy < maxy miny XTAy via repeated play.

Key idea: use the quantity - >, | x, Ay, as abridge between min, max, x' Ay
and max, miny, x' Ay.

X

T T

1 T T Reg Il — T T Reg?
1) — %x, Ayv; < max min x' Ay -+ I 2y—— x, Ayv; < — min max x Ay + T
( ) T ; ! i yEAn xXEA,, 4 T ( ) T ; ! M xcA,, yEAn. Y T

(2) 1 —
: T T
min max x Ay < — x, Av, < 4+
i - y > T ; t AYt >

Reg?lﬁ (1) - Reg”.
< max min x' A i

Re g%

If Reg’-, Reg”. are sublinear o(T’), the gap becomes to 0 when 7" — ~c. O
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Repeated Play

* Relationship beween Nash equilibrium and minimax solution

Theorem 1. A pair of mixed strategy (x,y) is a Nash equilibrium if and only if it is
also a minimax solution, i.e., optimizer of min, max, x' Ay = max, min, x' Ay,
ie., x* € argminy maxy x' Ay,y* € argmax, min, x' Ay.

For simplicity, we denote by (x*, y*) a Nash equilibrium, i.e., a minimax solution.
Proof: (Nash = minimax solution)

. T T . .
minmax x' Ay < max x* Ay =x*' Ay* = min x' Ay* < maxminx' Ay
X y y X y X

By Von Neumann’s minimax theorem, the above inequality is in fact equality.
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Repeated Play

* Relationship beween Nash equilibrium and minimax solution

Theorem 1. A pair of mixed strategy (x,y) is a Nash equilibrium if and only if it is
also a minimax solution, i.e., optimizer of min, max, x' Ay = max, min, x' Ay,
ie., x* € argminy maxy x' Ay,y* € argmax, min, x' Ay.

For simplicity, we denote by (x*, y*) a Nash equilibrium, i.e., a minimax solution.

Proof: (minimax solution = Nash)

. T T . .
minmax x' Ay = max x* Ay > x*' Ay* > min x' Ay* = maxminx ' Ay
X y y X y X

By Von Neumann’s minimax theorem, the above inequality is in fact equality. -
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Repeated Play

* Relationship beween Nash equilibrium and minimax solution

Theorem 1. A pair of mixed strategy (x,y) is a Nash equilibrium if and only if it is
also a minimax solution, i.e., optimizer of min, max, x' Ay = max, min, x' Ay,
ie., x* € argminy maxy x' Ay,y* € argmax, min, x' Ay.

For simplicity, we denote by (x*, y*) a Nash equilibrium, i.e., a minimax solution.

 Existence of Nash equilibrium
A natural question: is there always a Nash equilibrium?

Since minximax solution always exist, by Theorem 1, Nash equilibrium also
always exists.
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Repeated Play

* How to compute an approximate Nash?

The answer already lies in the proof of Von Neumann’s minimax theorem.

Ateachroundt=1,2,...,T":
(1) player-x picks a mixed strategy x; € A,
(2) simitaneously player-y picks a mixed strategy y; € A,
(3) player-x and player-y submit their strategies together

(4) player-x receives loss x; Ay; and observes Ay,; player-y receives

loss —x, Ay, and observes —Ax;

Submit X = TZ, X, YT = TZ{ Vi
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Repeated Play

* How to compute an approximate Nash?

From previous analysis, we know that

Reg”®  Reg?
* | * . T A— gT gT
x* A < min x' A + +
Y = A YT T
Reg”®  Reg?
_T x T * &1 &7
max XA < x* Ay + +
gens XTEY = Y T T

[t shows that minyea X' Ayr and maxy,ca,, XAy converges to the minimax
value of the game at a rate of (Reg’, + Reg’.)/T".

If player-x and player-y both run Hedge (Reg’. = Reg¥. = O(V/T)), the conver-
gence rate is O(7~1/2).
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Faster Convergence via Adaptivity

* Can we do faster?
Yes! The answer is Optimistic Online Mirror Descent (OOMD).

If player-x runs OOMD with gradients g¥ = Ays,...,g% = Ayr:

T T
1 1
Reg%ﬁ — E :<_Axtan_Y> S UEH} E ,||Axf — Axy 1H’Z><: y E :HYI‘ Yt— 1}
t=2

t=1

Reg’ + Reg”, = O(1), which leads to a much faster O(7"" ") convergence rate!
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History bits: online learning in

* Yoav Freund & Robert E. Schapire

Yoav Freund and Robert E.
Schapire’s paper in 1999 reveals
the relationship between game
theory and online learning,
specifically, “a simple proof of

the min-max theorem’”’ .

Games and Economic Behavior 29, 79-103 (1999)
Article ID game.1999.0738, available online at hitp://www.idealibrary.com on 1DEAL"

Adaptive Game Playing Using Multiplicative Weights
Yoav Freund' and Robert E. Schapire'
AT&T Labs, Shannon Laboraiory, 180 Park Avenue, Florham Park,

New Jersey 079320971

E-mail: yoav&re: h.att.com, schapire @re h.att.com

Received July 15, 1997

We present a simple algorithm for playing a repeated game. We show that a
player using this algorithm suffers average loss that is guaranteed to come close to
the minimum loss achievable by any fived strategy. Our bounds are nonasymptotic
and hold for any opponent. The algorithm, which uses the multiplicative-weight
methods of Littlestone and Warmuth, is analyzed using the Kullback-Liebler diver-
gence. This analysis yields a new, simple proof of the min-max theorem, as well as
a provable method of approximately solving a game. A variant of our game-playing
algorithm is proved to be optimal in a very strong sense. Journal of Economic Lit-
erature Classification Numbers: C44, C70, DIB3,  © 1999 Academic Prew

1. INTRODUCTION

We study the problem of learning to play a repeated game. Let M be a
matrix. On each of a series of rounds, one player chooses a row i and the
other chooses a column j. The selected entry M({, j) is the loss suffered by
the row player. We study play of the game from the row player’s perspective,
and therefore leave the column player’s loss or utility unspecified.

A simple goal for the row player is to suffer loss which is no worse than
the value of the game M (if viewed as a zero-sum game). Such a goal
may be appropriate when it is expected that the opposing column player's
goal is to maximize the loss of the row player (so that the game is in fact
zero-sum). In this case, the row player can do no better than to play using a
min-max mixed strategy which can be computed using linear programming,
provided that the entire matrix M is known ahead of time, and provided
that the matrix is not too large. This approach has a number of potential

'hitpifwww.research.att.com/~{ yoav, schapire}

Robert E. Schapire
1963-now

f

Yoa Fféuhd
1961-now
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History bits: online learning in games

Optimization, Learning, and Games with 'redictable Fast Convergence of Regularized Learning in Games

Sequ 5
Vasilis Syrgkani
Mi
Alexander Rakhlin Karthik Sridharan
University of Peansyvania University of Pennsylvania .com
Haipeng
Abstrac Princeton Univ
Abstract Princeton, NJ

ceton.edu
We provide several applications of Optimistic Mirror Descent, an online kearning
alporithm based on the ides of predictable sequences. First, we necover the Mir-
ror Prox. algorithm for offline optimization, prove an extension 1o Holder-smooth
funciions. and apply the resulis 1o saddle-point type problems. Next, we prove Abstract
that a version of Optimistic Mirror Descent (which has a close relation 10 the Ex-
sntial Wei §cam be wse a
poncntial Weights algorithm) can be wsed by two strongly-uncoupled players in We shiow that natural classes of regularized leaming algorithims with a form of
a fimite ero-sum matrix gume to comverge o the minimay oquilibrium o the rulc S dex comverpence rades to approximale efliiency and {0
of O{(log T)/T). This addrnesses. a question of Duskalakis et al [0]. Further, we FEnCE bl . . e e
: libweia in maltiplayer normal fom pames. When each player

comsider o partial information version of the problem. We then apply the resalls ® g 22 Slecciu | ncir i idual ool
1o conves programming and exhibit a simple alporithm for the approximate Max in a e uses n gorithm from our class, their individual regret decays at
Flow problem J. while the sum of utilities converges 1o an approximate optimum at
(T~ j-an improvement upon the worst case OfT /%) rates. We show a black-
box reduction for any algorithm in the s to achieve (T /%) rates against an
Iversary, while muantaning the Gsker w against algorthne in the clas, Cur
extend those of Rakhlin and Shridharan [17] and Daskalakis et al. [4]. whe

analyzed two-pliyer zero-sum games fo specific algonthms.

1 Introduction

Becently, ne-regret algorithms have roceived increasing aliention in 2 varicly of communitics, in-

l computer seience, optimization, and game theory |, || The wide applicability
of these alpovithms is arguably due to the black-box regret guarantees that hold for arbatrary se- 1 Jucti
quences. However, such negnet guarantees can be loose if the sequence heing encountered is not nireduction

“worst-case”. The reduction in “arbitrariness™ of the soquence can arise from the panticular strac-
wure of the problem at hand, and should be exploied. For instance, in some applications of online Whal happens when |
methods, the sequence comes From an addstional computation done by the ke 7. thus being far and selfishly 1o maxi
Trom arbitrary. — both individually and as a group — to grow, perhaps even to approach the best
o expect the dynamics of their behavior o evenblly s kind of w||||]|l1|||u|| Under
nding these dynamics is central 1o game theory as well 5 its various application arcas, including

v in o game interact with one another, all of them acting independently
their own utilities? If they are smart, we intuitivel

O way to formally capture the partially benign nature of data is through a notion of predictable

sequences || 1], We exhibit applications of this idea in several domains, First, we show that the #
Mirrr Pron method |1], desipned for optimizing non-smeoth structired saddle-poing problems, can ceomomics, ntwork routing, suction design, and evolutionary biology.

be viewed s an instance of the predictable sequence approach. Predictabality in this case is due It is natural in this setting for the players to cach make use of a no-regret leaming algorithm for mak-
precisely o h of the inner opai par and the saddle-point structare of the problem. ing their decisions, an approach known as decemralized no-regrer dvnamics. No-regret algorithms
Wi extend the resulis 1o Hilder-smooth fupctions, inserpolating berween the case of well-predictable are a sirong match for playing games because their regret bounds hold even in adversarial environ-
gradicnts and "unprediciable” gradicnts. ments. As a benefit, these bounds ensure that cach player's utility approaches optimality. When

pliyedd againsd one another s bee sty (hiast the swm of bilities approaches an approsimae
I 4 5 ie S . aui N -
at the rabe of O{T") when employed in an uncoupled mranner by players in a zero-sum faile optimum [2. I8]. and the pluyer strategies comve “f an cquilibrium under appropriate condi
mairix game, yet maintain the sl QT ruic against abitrary scquences. We give a pasitfv tioms [6, 1, 8], at rates govemed by the regret bounds. Well-known familics of no-regret algorithms
un-\\u!.md axhivit o fully adaptive MpociAm that docs: ok nsquire the peidr kikowladge of whether include m:l]hll’]l\.ﬂl\‘c ceights [13. 7], Mirror Descent [14], and Follow the RegularizedPerturbed
the other player is cclluborating. Here. the sdditional peedictability comes from the fact that hoth Leader [12]. (See [ 19) r°',-;‘m_k.'f' overviews.) For all of these, the average regret vanishes at
players attempt 1o converge (o the minimay, value, We also tackle a partial nformation version of the worst-case rate of O(1 /1), which is unimprovable in fully adversarial scenarios.
the probicm where the player has only access 1o the real-valued payolf of the mived actions played However. the players in our setting are facing other similar, predictable no-regret leaming algo- N I P S 2 0 1 5
by the: two players on each mond ratber than Uhe entine: vecor rithms. a chink that hints at the possibility of improved convergence rates for such dynamics. This
was first observed and exploited by Daskalakis et al. [4]. For two-player zero-sum games, they de-
e saadidle point algonthm [15] amd showed

best paper award

Second, we address the guestion raised in || abowt exisience of “simplke ™ slgorithms that comverge

Our third application is to comex programming: optimization of  lisear function subject to convex
constraints. This problem often arises in theoretical computer science, and we show that the idea of

that each player's average regret converges at the remarkable rate of (1T

Optimization, learning, and games Fast convergence of regularized
with predictable sequences. NIPS 2013. learning in games. NIPS 2015
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Summary

ONLINE LEARNING

IN GAMES

[ TWO-PLAYER ZERO-SUM GAMES

MINIMAX THEOREM

Repeated Play

ONLINE LEARNING IN GAMES Faster Convergence via Adaptivity

Q&A
Thanks!
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