Lecture 11. Adversarial Bandits

Advanced Optimization (Fall 2022)

Peng Zhao
zhaop@lamda.nju.edu.cn

Nanjing University



Outline

* Problem Setup

e Multi-Armed Bandits

* Exp3 Algorithm
* Upper Bound

e LLower Bound

* Advanced Topics

Advanced Optimization (Fall 2022) Lecture 11. Adversarial Bandits



Online Convex Optimization

Ateachroundt=1,2,---

(1) the player first picks a model x; from a|convex set X C R¢;

(2) and environments pick an online convex function|f; : X — R;

(3) the player suffers loss fi(x;), observes some information about f; and

updates the model.

Problem Domain Loss Functions

General OCO convex set X C R¢ convex function f;(-)

OCO with Strongly Convex Functions | convex set X C R¢ V2fi(x) = al

OCO with Exp-concave Functions convex set X C R V2fi(x) = BV fi(x)V fe(x)"
Prediction with Experts” Advice Ag={xeRy | Z?Zl x; =1} | fr(x) = (£, x)
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OCO Algorithms learned so far

* Given first-order information oracle: worst-case bound

Problem(Abbr.) | Domain | Loss Functions Algorithms Bounds
OCO X Convex Function f,(-) OGD: x;41 = Iy [x; — nV fi(x})] O(WT)
Strongly Convex X V2fi(x) = al OGD: x;41 = [y [x; — 0V f(x4)] O(L1ogT)
Exp-concave X V2fi(x) = %Vft(x)Vft(x)T ONS: x;41 = 4, [x; — nA;7 'V fi(x)] O(% logT)
PEA A(d) | fi(x) = (P, x) Hedge: @11, o exp(—1 Y., £s.i) O(VTlogd)

Online Mirror Descent

Ateachroundt=1.2,---

X1 = arg minng (x, Vfi(x¢)) + Dy (X, X¢)

xeX

where Dy, (x,y) = ¥ (x) — ¢¥(y) — (VY (y),x — y) is the Bregman divergence.
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OCO Algorithms learned so far

* Given first-order information oracle: adaptive bound

X, = arg minn (M, x) + = ||x — X3
xeX 2

Xp1 = arg minn (V. (x:), %) + 5 [x — %3

xEX
Assumption(s) g;t::;gls(:l Setting of 7, Rezfeipéz‘:fn q
TBound | nonmegative My = 0 ~ s | o(VitFr)
Vlgcr)?;lge B My = pie— ~ \/1+€ar{,_1 O (\/1 + VarT)
e | tmoon M= Viaben)| =g | o(VIET)
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Online Convex Optimization

Ateachroundt=1,2,---

(1) the player first picks a model x; from a|convex set X C R¢;

(2) and environments pick an online convex function|f; : X — R;

(3) the player suffers loss fi(x;), observes|some information|about f; and

updates the model.

on the feedback information:

full information partial information

(BIODN /80T /10T
B E
00 000 e 00

.| s

- full information: observe entire f; (or at
least gradient V f;(x;))

- partial information (bandits): observe

function value f;(x;) only less information horse racing multi-armed bandits
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Multi-Armed Bandit

Trial 1

Trial 2

Loss: 0.3
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Formulation

Ateachroundt=1,2,---
(1) the player first picks an arm a; € [K| from K candidate arms;
(2) and simultaneously environments pick a loss vector £; € [0, 1]*;

(3) the player suffers and only observes loss /;(a; ), then updates the model.

on the difficulty of environments:

e adversarial setting
- oblivious: {£,}}_, are chosen before the game starts.

- non-oblivious: £;(a1,41(a1),...,a;—1,%—_1(a;—1)) can depend on past history.

e stochastic setting: £; "¢ D, where D is fixed unknown distribution.
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Formulation

Ateachroundt=1,2,---
(1) the player first picks an arm a; € [K| from K candidate arms;
(2) and simultaneously environments pick a loss vector £, € [0, 1]*

(3) the player suffers and only observes loss /;(a; ), then updates the model.

Goal: to minimize expected regret

E[Regret | = {Z Ui (ay } — Iél[l% th

where the expectation is taken over the randomness of algorzthms.

deterministic algorithms will suffer Q)('T") regret
in the worst case under bandit setting!
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Comparison

Full-Information Problem Domain | Loss Functions Feedback

Prediction with Experts” Advice Ay fi(pr) = £y, py) fe(pe), £
Online Convex Optimization X fi(+) fi(xe), Vfi(xe),...

Bandit Problem Domain Loss Functions Feedback

Multi-Armed Bandits {e1,....ex} | fi(eq,) = (bt eq,) | filea,) = li(as)

Bandit Convex Optimization X fi () fr(x¢)

Notation: e; € R” is the one-hot vector, with i-th entry being 1.
(simplex is the convex hull of {ey,...,ex})
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Comparison

Full-Information Problem Domain | Loss Functions Feedback

Prediction with Experts” Advice Ay fi(pr) = £y, py) fi(pe), £
Online Convex Optimization X fi(+) fi(xe), Vfi(xe),...

Bandit Problem Domain Loss Functions Feedback

Multi-Armed Bandits {e1,....ex} | fi(eq,) = (bt eq,) | filea,) = li(as)

Bandit Convex Optimization X fi () fr(x¢)

Notation: e; € R” is the one-hot vector, with i-th entry being 1.
(simplex is the convex hull of {ey,...,ex})
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A Natural Solution for MAB

* MAB bares much similarity with the PEA problem (except for
the amount feedback information).

> Deploying Hedge to MAB problem.

Hedge for PEA
Ateachroundt=1,2,---
(1) compute p, € Ak such that p;(i) o< exp (—nL;—1(7)) fori € K]
(2) the player submits p,, suffers loss (p,, #;), and observes loss £; € R*
(3) update Ly = L;—1 + ¥;
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A Natural Solution for MAB

* However, Hedge does not fit for MAB setting due to limited feedback.

Hedge requires ¢, (i) for all i € K|, but only ¢;(a,) is available in MAB.

Hedge for PEA
Ateachroundt=1,2,---
(1) compute p, € Ak such that p,(i) oc exp (—nL;—1(i)) fori € [K]
(2) the player submits p,, suffers loss (p,, £;), and observes loss £, € R"
(3) update L, = L;—1 + ¥,
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Reduction for MAB

ay Pt/ Dt

MAB <: 0.? : Hedge
Problem
l::> reduction l:> for PEA
Ui(ay) £
by reducti a d
reaucton
Regrety g Regrety* = Z pt,Et Z VT)
t=1 t=1
e p; € A denotes the distribution over arms sampling an arm a; ~ py

ol € RZ% is the estimated loss fed to Hedge | how to construct loss estimator?
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[.oss Estimator

Problem

(y
MAB <::|
E—

li(ar)

Gp

reduction

Di/ Pt

L

Hedge
for PEA

Idea: ensure /,(a;) = (p;, ;) in order to re-use Hedge's regret guarantee

Importance-Weighted (IW) Loss Estimator

bla) i 5 — gq,;

Eﬁ(z) — izt((a:)) 1 {7, — at} _ { gt(@t) l

15
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[.oss Estimator

-~ belad) 34 — g,
IW Loss Estimator 0o (3) = gt(a’f) 1{i=a}= pi(at) b
P (i) 0 else.

o Property (1). {i(a:) = <Pt,Zt>

e Property (2). B, ~p, [Zt(’&)] = (i(1), Vi € | K] unbiasedness

0 (7)
pe (i)

Proof. | 10,(i)] = Ea,-p, K;(E?)) 1{i= at}] = Eq,~p, {
a9

- 7/ aprf [ {’z, — atH t(’&) ( ) — gt(i)' ]

1{i =)

Advanced Optimization (Fall 2022) Lecture 11. Adversarial Bandits



Other Choice

Problem

| Qo
—

Di/ Pt

L

. reduction
Ui(ay) £

Hedge
for PEA

e Other estimators coming to mind,

A~

Et:

::> <Pt;2t>

—_——
loss for Hedge

[0,...,0, Et(CLt) ,O,...,O]T

——
a-th entry

= pilag)le(ar) #  Li(ag)
——

cannot apply Hedge

loss for MAB

Advanced Optimization (Fall 2022)
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Importance-Weighted Loss Estimator

o~

ay Pt/ Dt

PMQB <::| Goa Hedge
o ::> reduction :> Lo

Ui(ay) £

e Importance weighting estimator,

(f ((Lt )

Pt ((lft )
N——
at-th entry

¢, =10,...,0. 0,...,0]"

> balancing exploitation ¢;(a;) and exploration p;(a;)
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Exp3 Algorithm

Exp3 (Exponential-weight for Exploration and Exploitation)

Ateachroundt=1,2,---
(1) compute p, € Ak such that p,(i) o exp (—T)Zt—l(i)) for i € K]

(2) chooses a; ~ p,, suffers and observe loss ¢;(a;), and construct loss
estimator £; € R” as

( Et(a.t)

. . t(at)
Ui (1) = “1{i=at=¢ "
#() pe(?) t S 0 else.

\

if?::(lt;

(3) update Zt — ft_1 + Et

Advanced Optimization (Fall 2022) Lecture 11. Adversarial Bandits
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Exp3: Regret Bound

Theorem 1. Suppose that ¥Vt € [T] and i € |[K|,0 < {.(¢) <1, then Exp3 with
learning rate n = \/(In K) /(T K ) guarantees

th ai} — mm th <O(\/TKIHK>,

where the expectation i1s taken over the randomness of the algorithm.

E[Regret | =

Comparision:
Hedge for PEA Exp3 for MAB
full-information feedback bandit feedback
I
Regret, < O(VT In K) E[Regret,]| < O(VTK In K) ai;’ff;;; e: cggs::e

Advanced Optimization (Fall 2022) Lecture 11. Adversarial Bandits 20



Proof of Exp3 Regret Bound

Proof.
Recall that (Lecture 7), Hedge under PEA setting guarantees,

T
Zptft th <%+U22pt ( Z)QaWE[K]
=1

t=1 1=1

Note that our previous reduction ensures ¢;(a;) = (p, E),

—> iét(at Zf: ) < TK ﬁii?t(i) (Z(Z))Q

Advanced Optimization (Fall 2022) Lecture 11. Adversarial Bandits
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Proof of Exp3 Regret Bound
Proof. i&(aﬁ—i@(z‘)_m—‘[{mZZm ) (400) )2

t=1 1=1

Denoted by E;[ - | = Eu,p,| - |a1, ..

., a;—1| the conditional expectation given past
actions ay,...,a;_1.

We have,

, (ft(a.t)y 1{i = a;)

’. ) [y []1 {’3 — a»t}] — (l;t(gz)) -

VRN
TS
Ve P
~.| .
S— | S
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Proof of Exp3 Regret Bound
Proof. iét(at)—iz(i)_m—l(mZZpt ) (400) )2

t=1 1=1

By the Law of total expectation and the above inequality,

E |3 fu(ar) - izﬂ;(ﬂ =SB [E [t - 500)]| = SR fuan] - 660

—E E: Et(at)} - iet(@)
[Et [pt (@(’0)2“

In K Lk

regret bound
t=1 =1

Advanced Optimization (Fall 2022) Lecture 11. Adversarial Bandits
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Proof of Exp3 Regret Bound

Proof.

<

E th(at)} —Zet(«z)

T K

<o +n;;E [Et [pt (E(@))QH

11’1K +’OZZP¢

t=1 1=1
T K

“mzzft

t=1 1=1

+1nTK < O(VTK In K)

In K
Ui
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Lower Bound for MAB

» As above, we have proved the regret upper bound for Exp3:

E [Regret,] < O (\/TK In K)

* A natural question: can we further improve the bound?

Maybe? Exp3 doesn’t achieve minimax optimal regret for MAB.

Advanced Optimization (Fall 2022) Lecture 11. Adversarial Bandits
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Lower Bound for MAB

Theorem 2 (Lower Bound for MAB). For any algorithm A, there exists a se-
quence of loss vectors £y, £z, - - -, £ constituing an MAB problem such that

iﬁf sup [E|Regret;| = Q(VTK)
€1,

Lower bound of PEA

* As above, we have proved the regret bound for Hedge:

ot SRR MAB Problem Q(v/TK)
* A natural question: can we further improve the bound?

Theorem 2 (Lower Bound of PEA). For any algorithm A, we have that PEA PrOblem Q( \/ T 1Il K)

Regret 1

sup max

TN L1, .81 m = \/§

Hedge achieves minimax optimal regret (up to a constant of 2/'2) for PEA.

Advanced Optimization (Fall 2022) Lecture 7. Prediction with Expert Advice 18
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Proof Sketch

Proof (Sketch).

We prove the theorem under stochastic MAB setting, since the stochastic setting
is strictly easier than the adversarial one.

We construct two hard distributions over arms D, D, and show that,
VA € A, the following holds

max {E[RegretT(A); Dﬂj E[RegretT(A); Dz]} — Q( \ TK) Adversarial

Advanced Optimization (Fall 2022) Lecture 11. Adversarial Bandits 27



Proof Sketch

e For Dy, each arm’s loss is drawn from Gaussian distribution,

{ 1—-—A ifi=1

b(@) ~ N 1), s = 1 else.

where the first arm is better than others by A to be tuned.

e Denoted by E[n""(i)] the expected times choosing arm i under distribution
D; and 4,5, = arg min,¢ g E[n"" (i)] index of the least-played arm.
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Proof Sketch

For Dl,
. 1-A ifi=1
)~ N o= {170

For D5, each arm’s loss is drawn from Gaussian distribution,

1 —2A  ifi =i,
(L else.

(i) ~ N (s 1), 11, = {

Advanced Optimization (Fall 2022) Lecture 11. Adversarial Bandits
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Proof Sketch

B TR
For Dy, Et(’zj)wj\/(m,l)jm:{l A it

1 else.

1—2A  ifi =i,

For D, N\~ ! I =
or L/9 Et(z) N(Mzal)wuz { L else.

We have

E[Regrett(A); D] = A - (T — E[RP'(1)])

E[Regretr(A); Do) = A-EnP2 ()] + S 2A-E[RP2(j)] > A -E[nP2(1)]

j#laimin
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Proof Sketch

E

K

Taking A = /(K

If E[nP1(1)] < T/2,
E[Regretr(A); D]

= A (T -E[nP(1)]) >

Regretr(A); D] = A - (T —E[RP (1))

Regrett(A); Dy] > A - E[nP2(1)]

— 1)/T yields the following result.

If E[nP1(1)] > T/2, we assume E[n"2(1)] ~ E[nP*(1)]

E[Regretr(A); Ds]

= A-E[n™2(1)]

= 5 VI(K 1)
1\/TK 1
5 VI(K —1)

Advanced Optimization (Fall 2022)
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Proof Sketch

Why can we assume E[n"2(1)] ~ E[n” (1)]?

e The two distributions are similar except for one arm, thus intuitively
the algorithm cannot distinguish them.

e The proof reduces to hypothesis testing, i.e. the minimum costs to dis-

tinguish two distributions, and A = /(K — 1)/T helps to make the
difference not so big.

Advanced Optimization (Fall 2022) Lecture 11. Adversarial Bandits
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Upper and Lower Bounds for MAB

Theorem 1 (Upper Bound for Exp3). Suppose that ¥Vt € [T'] and i € K],
0 < ¢,(i) < 1, then Exp3 with learning rate n = \/(In K) /(T K ) guarantees

E[Regret | = {Z Uy (ay } = I’HH’I th ) <O (\/TK In K) ,

where the expectation is taken over the randomness of the algorithm.

Theorem 2 (Lower Bound for MAB). For any algorithm A, there exists a se-
quence of loss vectors £y, €z, - - - , £ constituing an MAB problem such that

131“ sup E|[Regret;| = Q(VTK).
€1, 07

Advanced Optimization (Fall 2022) Lecture 11. Adversarial Bandits
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Advanced Topics

e How to shave off the extra In K factor?

> Using OMD with Tsallis entropy regularizer, also using the IW estimator

K8
o(p) = —— et PO

which is actually a generalization of negative-entropy used in Hedge, as we
have the following fact due to the L'Hopital srule

liml_zp Zp

B—1

Reference: Jean-Yves Audibert and S’ebastien Bubeck. Regret bounds and minimax policies
under partial monitoring. Journal of Machine Learning Research, 11(Oct):2785-2836, 2010.
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Advanced Topics

* How to boost from expected guarantee to a high-probability one?

> Using an improved estimator: Implicit eXploration (IX) Loss Estimator

ﬁf(a»t) e
. / . if 1 = ay;
t( ) { _at} { p )

IW Loss Estimator 0i(1) =
20 0 else.
e(at) e
7 4 s it =ay
IX Loss Estimator Ui(i) = t,(a’t) 1{i=a;} = AC
pe(d) +7 0 else.

Reference: Gergely Neu. Explore no more: Improved high-probability
regret bounds for non-stochastic bandits. NIPS 2015.

35

Advanced Optimization (Fall 2022)

Lecture 11. Adversarial Bandits



https://arxiv.org/pdf/1506.03271.pdf

SIAM

The non-stochastic multi-armed bandit problem*

THE NONSTOCHASTIC MULTIARMED BANDIT PROBLEM" Peter Auer
PETER AUER', NICOLO CESA-BIANCHI!, YOAV FREUNDS, AND ) . .
ROBERT E. SCHAPIREY Institute for Theoretical Computer Science

Abstract. In the multiarmed bandit problem, a gambler st decide which arm of K non- Graz UniVCrSi[y Of Technology

identical slot machines to play in a sequence of trials so as to maximize his reward. This classical
problem has received much attention because of the simple model it provides of the trade-off between -

exploration (trving out each arm to find the best one) and exploitation (playing the arm believed to A'80 l 0 GI’aZ (Austna)
give the best pe
about the sts

off ). Past solutions for the bandit problem have almost always relied on assumptions

stics of the slot machines. pallel' @ i gi . tu-g raz.ac .3,[

In this work, we make no statistical assumptions whatsoever about the nature of the process
generating the payoffs of the slot machines. We give a solution to the bandit problem in which an

adversary, rather than a well-behaved stochastic process, has complete control over the payoffs. In Nicolb Cesa_Bianchi Yoav Freund Robert E- Schapire

a sequence of T plays, we prove that the per-round payoff of our algorithin approaches that of the
best arm at the rate O(T=1/2), We show by a matching lower bound that this is the best possible.

We also prove that our « « the per-rond payofl of any set of strategies at & Department of Computer Science AT&T Labs
similar rate: if the best strategy is chosen from a pool of N strategies, then our algorithm approaches . . . .
l:lc p-\-r]r;.:ulltl{]::?'uf.l utl' l:n‘ :I-lEllcg_\' at the I'<'||!L' (’I([_Iug N ]I"'t'?‘!]. IL:'Iinilll_\'. wul‘::p[_J:_;' uur[r:‘aull:; to UanCrSlté dl MllanO 180 Pa.rk AVEnl.le
the problem of playing an unknown repeated matrix game, We show that our algorithm approaches .
the minimax payofl of the unknown game at the rate O(T /), 1_20 l 35 Mllano (Italy) F]Orham Park‘ NJ 0?932_097 1
Key words. adversarial bandit problem, unknown matrix games Cesablan @ dsi . uni mi .i t { yo av, Schapi re} @ re Seal'Ch .att.com
AMS subject classifications. G68()32, 68T05, 91A20

PIL. S000T530701308375 November 18, 2001

gorithm approac]

1. Introduction. In the multiarmed bandit problem, originally proposed by

Robbins [17], a gambler must choose which of K slot machines to play. At each time
step, he pulls the arm of one of the machines and receives a reward or pavoff (possibly

step. he pulls the arn the machines eives a reward orp . TITLE CITED BY YEAR
zero or negative). The gambler’s purpose is to maximize his return, ie. the sum of

the rewards he receives over a sequence of pulls. In this model, each arm is assumed to

deliver rewards that are independently drawn from a fixed and unknown distribution. ey 5 x : "

As reward distributions differ from arm to arm, the goal is to find the arm with the Finite-time analysis of the multiarmed bandit pr0b|em 6816 2002

highest expected payoff as early as possible and then to keep gambling using that best P Auer, N Cesa-Bianchi, P Fischer
arm. Machine learning 47 (2), 235-256

The problem is a paradigmatic example of the trade-off between exploration and

exploitation. On the one hand, if the gambler plays exclusively on the machine that The nonstochastic multiarmed bandit problem 2519 2003
he thinks is best (“exploitation™ ), he may fail to discover that one of the other arms P Auer, N Cesa-Bianchi, Y Freund, RE Schapire
actually has a higher expected payoff. On the other hand, if he spends too mueh time SIAM Journal on Computing 32 (1), 48-77
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Bandit Convex Optimization

Full-Information Problem Domain | Loss Functions Feedback
Prediction with Experts” Advice Ay fi(pr) = £y, py) fe(pe), £
Online Convex Optimization X fi(+) fi(xe), Vfi(xe),...
Bandit Problem Domain Loss Functions Feedback
Multi-Armed Bandits {e1,....ex} | fi(eq,) = (bt eq,) | filea,) = li(as)
Bandit Convex Optimization X fi(+) fr(x¢)
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Formulation

Ateachroundt=1,2,---
(1) the player first picks a decision x; € & ;

(2) and simultaneously environments chooses a loss function f;(-) : X — R;

(3) the player suffers and only observes loss f;(x;), then updates the model.

Goal: to optimize expected regret,

E[Regret | =

o3]S

t=1

where the expectation is taken over the randomness of algorithms.
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A Natural Solution for BCO

* BCO bares much similarity with the OCO problem.

> Deploying OGD to BCO problem.

Online Gradient Descent
Ateachround¢=1,2,---

xe1 = Uy [x¢ =V fi(x4)],

where Il v |-] denotes the projection onto the feasible domain X

We actually don’t have the gradient information due to the limited feedback.

Advanced Optimization (Fall 2022) Lecture 11. Adversarial Bandits
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Gradient Estimator

Definition 1 (Gradient Estimator). The gradient estimator is defined as

_ d
gt gft(Yt + 0s¢) - S¢

where s, is sampled from unit sphere S = {x € R? | ||x||> = 1}.

e Consider the 1-dim case (d = 1).

)
Eecs [3f<x+ js) ] = @+ 8) — o [z~ 0)
lim (a4 8) ~ o f(x — 8) = (z)
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Gradient Estimator

Definition 1 (Gradient Estimator). The gradient estimator is defined as

_ d
gt gft(Yt + 0s¢) - S¢

where s, is sampled from unit sphere S = {x € R? | ||x||> = 1}.

~

define its smoothed version f(x) = Eyep|f(v)|. Then for any 6 > 0, we have

d .

Evcs [Sﬂx +s). ] — V().

where B is the unit ball B = {x € R? | ||x||o < 1} and S is the unit sphere.
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Bandit Gradient Descent

* Deploy OGD to BCO problem using the gradient estimator.

Ateachroundt=1,2,---
(1) sample a unit vector s; € S;
(2) submit x; = y; + 0sy;
(3) receive feedback f;(x:);
(4) construct gradient estimator g, = % fe(ye + 0s¢) - S¢;

0) yi+1 = ----(1—a)X[Yt+1 — n?g,‘t].

where (1 — a)X = {x e R* | - =x € X}.

Advanced Optimization (Fall 2022) Lecture 11. Adversarial Bandits
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Bandit Gradient Descent

Theorem 3 Assume f; is L-Lipschitz, maxxex | ft(X)| < C,andr-B C X C R-B.

The BGD algorithm satisfies,

T
R? d?>C?T R
K th(xt } th <O ( 4 n = s 5TLT>
t=1

by choosing n = O((R?/T)3/*) and § = n'/3
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Proof Sketch

L L : exploitation
R th(Xt)] B th(u) : exploitation cost
t=1 t=1 : exploration cost
=E|> fily) = ()| +E | filxe) = fily) | +E | D> filxe) = filx) | +E | fi(u) = ,/}(U)]
t=1 t=1 t=1 =1
<0 (?SZ 7)> + O0T) 4+ O(0T) + O(T)
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Beyond

e Can we further improve the dependence on 77

> If loss function is linear, then using FTRL with self-concordant barrier on X

f:ft(xt)} — f:ft(u) < O (T1/2>

E

> If loss function is smooth, then use FTRL with self-concordant barrier on X

ift(xt):| — ift(u) <0 (T2/3>

E
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Abraham D. Fla

Abstract

We study a general online convex optimizati roblem,
We have a convex set 5 and an unknown sequence of cost
u cach period, we choose a feasible
. and learn the ¢ cost £o(Te). lf the function e is
i shows in

point x; in 5

also revealed after cach
[25]. gradient descent can be used on these functions to get
regret hounds of O(y/m). That is, after n ronn the total

eost. in o will be Of,/7) 0 than the cost of the hest
single fensible deetsion chesen with the benefit of hindsight,
ming ¥ 2],

We cxtomd this to the “bandit”™ setting, where, in cach
period, only the cost efa) is rovealed, and bound the
expected regret as O(n™'"),

Our approach uses a simple approximation of the gradi-
at a single (random)
ate is sufficient to ap-
sscent on the sequence of functions. In
other words, it is possible to use gradient descent without
thing more than the value of the functions at a
The gnaranters hold even in the mest genernl
online against an adaptive adversary.

For the online linear of
rithms with low regrets in the bandit setting have recently
been given against oblivious [1] and adaptive adwv
[19]. In contrast to these algorithms, which distinguis
twveen explicit erplore and explodt periods, our algorithm ean

zntion problem [13], algo-

be interpreted as doing a small amoumt of exploration in
each period.

1 Introduction

Consider three optimization settings where one wounld

like to minimize a convex function [equivalently maxi-

5, gradi

mize a coneave funetion). In all three setting
descent is one of the most popular methods,

1. Offline: Minimize a fixed convex cost function
e R o—
Fey1 = T —qVe(Ee).

In this case, gradient descent is
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thitp: / fpeople.cs.uchicago.edu/ “kala

tate at Chicago.
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[oyota Technical Insti-

Department of Com-

an * Adam Tauman Kalai ' .

Online convex optimization in the bandit setting:
aradient descent without a gradient

srendan MeMahan

November 30, 2004

2. Stochastic: Minimize a fixed convex cost function
e given only 7" aceess to e For example,
at time T = ¢, we may only have access to
e(z) = elx) + & (x), where (r) is a random
sampling error. Here, stochastic gradient descent
is #ra1 = @ — nVe(re). (The intuition is that
the expected gradient is correct; E[Ve(r]]
VE[gir)] = Ve(z).) In non-convex cases, the
additional randomness may actually help avold
local minima [3], in & manner similar to Simulated
Annealing [13]

. Online: Minimize an adversarially generated se-
quence of convex functions, cy,e2,.... This re-
quires that we choose a scquence ay, #3, ... where
each x; is selected based only on ry, T2,
and oy.e als is to have ]nu‘ re-
gret 3eay) — es 2oeg(a) for ot using the
hest single point, chosen with the benefit of hind-
sight. In t nkevich analyzes the regret
of gradient descent given by x5 = x, = Ve, (x,).

N

We will foens on gradient descent in a “handit™
version of the online setting. As a motivating example,
consider a company that has to decide, every week,
how much to spend advertising on each of d different
channels, represented as a vector x; = At the end
they caleulate their total profit py(x,).
In the offfine case, one might assume that each week

of each wex

the function py.ps,. .. are identical. In the stochastic
case, one might assume that in ditferent weeks the
profit functions p,(x) will be noisy realizations of some
underlying “true” profit function, for example p(r) =
plr) + elx), where ¢(x) has mean 0. In anline
case, no assumptions are made about a distribution over
convex profit fu
the malicious choiees of an adversary. This allows, for
example, for more complicated time-dependent 1
m or the effects of a bad economy, or even an
nment that responds to the choices we make (an
adaptive adversar

ions and instead the » modeled as

eny

Abraham D. Flaxman, Adam Tauman Kalai, and H. Brendan
McMahan. Online convex optimization in the bandit setting;:

gradient descent without a gradient. SODA, 2004.

Competing in the Dark: An Efficient Algorithm for Bandit Linear Optimization

Jacol
Compuier
UC Berkeley
fcs.berkeley.edu
e for best student paper award}

Abstract

introduce an efficient algorithm for the prob-
of online linear optimization in the bandit set-
eves the optimal O°(VT) regret.
alization of the non-
problem, and the ex-
istence of an efficient optimal algogithm has been
posed as an open problem in a number of recent
papers. We show how the difficulties encountered
by previous approaches are overcome by the use of
a sell-concordant potent

rapy
presents a novel connection between enline leam:

g and interior point methods,

1 Introduction

is heavily on the
1y ml.\ m’lprmo

One's ability to learn and make decisions
lity or feedback. Ilnlm.l an ‘@cnl

hr nulmmc of
. But such
\\)u:n the
his mulc Lo travel W Eln. race track,
abusy hour, he will likely never leam the outcome
of possible alternatives. When betting on horses, the gambler
has thus the benefit (or perhaps the detriment) to muse “f
showidd have done. ", yet when betting on traffic he can only
think “the result w

This preblem of ‘cqu,:m

ler, for examp ly
wce regardless of where he placed hi

Idcn-.lon king was stated
by Robbins [19] in 1952 er 1erm ‘d the multi-
armed bandit problem™. The name inherits from the model
whereby, on each of a sequence of rounds, a gambler must
pull the arm on one of several slot m es (“one- ammI
bandits”) that cach returns a reward LI..N: stoch;
from a fixed distributio
simply be 1o pull the
ew; owever, as
arm a pﬂl\l’ ]
strategy relative lu u‘v«.ml he wou
the optimal arm. This problem hs
the past 20 years in a number of || Is. as it presents a very
natural model of an agent seeking to simultaneously explore
the world while exploiting high-reward actions.

ot know ihe 1\; 1
mize the reward of his
receive had he known
ained nuch interest over

Elad Hazan
IBM Alnsulen
hazanBus.

Alexander Rakl

Compuicr e Di
UC Berkeley

rakhlinBes.berkeley.edu

n
ibm.com

v as 1990 [8. 13] the sequential decision problem
was d under adversarial assumplions, where we as-
sume the environment may even try to hurt the le:
multi-armed ban i
ial learning model in 2002 by Auer et al [1], who showed
that one | guarantees on the gambler's
performance relative to the best arm even when the arm val.
wes are chosen by adversary! In panic Auer et al [1]
mbler’s regrer, the dilference between
. i in of the gambler, can
be bounded by CH{y/ NT') where N is the number of bandit
nd T is the length of the game. In comparison to the
where the gambler is given full inform: bout al-
5 lll\‘ hurq: racing example mentioned

O Tlog N}, which scales

escapes the
Auer et al resull, 15 online shorest p In thas problem the
decision set is exponentially large (i.e. set of all paths in a
given graph). and the straightforward reduction of modeling
1 path as an arm for the multi-armed handit problem suf-

15 exponential regret.
veral authors [2, 9. 14] have
| atural li of the mul

pedl bundit problem 1o fiehd of Convex Crpimmization, and
wie will ¢ handil linear optimization™, In this setting
we ima; on each round ¢, an aud
linear function fi (-} which is not rcmnl;d to ihe player.
plawrl:hcnxlnn» apoint X, within s ex set!

Th ver then suffers f(x,) ity is
rew is process continues for T rounds, and at
the end the learner's payoll is his regrer:

gret bound is Oy /T, and i urcd that the
same should hold for the by Neverthe-
less

several initially proposed .:I«nulhnn were shown only

*In the case of online shortest path, the conves set can b rep-
resented 25 a =t of ve i . the dependence on
mumber of paths in the graph can be circumvented.

be:

COLT 2008
5t paper award

Jacob Abernethy, Elad Hazan, and Alexander Rakhlin.
Competing in the dark: An efficient algorithm for bandit

linear optimization. COLT,

2008.
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Summary

s PROBLEM SETUP

ADVERSARIAL BANDITS <

Reduction to PEA

Upper bound

MULTI-ARMED BANDITS Lower bound

Advanced topics

BANDIT CONVEX OPTIMIZATION

Gradient estimator
BGD algorithm

Advanced topics

Q&A
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