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Outline

* Calculus

* Linear Algebra
 Probability & Statistics
* Information Theory

* Optimization in Machine Learning
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Notational Convention
- In] =A{1,...,n}

- X,y,V:vectors

- A, B: matrices

X,Y, K: domain

- d, m,n: dimensions

I': identity matrix

X,Y: random variables

p, q: probability distributions
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Function

* Function mapping f:dom f C X CR" — Y C R™

Definition 1 (Continuous Function). A function f : R™ — R is continuous at
x € dom f if for all € > 0 there exists a 6 > 0 with y € dom f, such that

ly =xl2 <d=[[f(y) = fx)ll2 <€
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Part 1. Calculus

e Gradient and Derivatives

e Hessian

e Chain Rule
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Gradient and Derivatives (First Order)

- The gradient and derivative of a scalar function (f : R — R) is the same.

- The derivative of vector functions (f : X C R? — R) is the transpose of
its gradient.
We focus on the “gradient” language (i.e., column vector).

Definition 2 (Gradient). Let f : X C R? — R be a differentiable function. Let

X = |x1, - ?:I;d}T € X. Then, the gradient of f at x is a vector in R? denoted
by V f(x) and defined by
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Example

Example 1. The gradient of f(x) = ||x2 £ 3¢ | 22 is

2231

Vfx)= = 2X.

214

Example 2. The gradient of f(x) = — Z?Zl x; Inx; is

Vf(x)

i —(111231 —+ 1) |

| —(Inzg+1) |

Advanced Optimization (Fall 2022)
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Hessian (Second Order)

Definition 3 (Hessian). Let f : X C R? — R be a twice differentiable function.
Let x = [z1,--- ,24]' € X. Then, the Hessian of f at x is the matrix in R%*¢

denoted by V? f(x) and defined by

0 f
V2100 = | 5oL
Liy Ly 1<i,j<d
Example 3. The Hessian of f(x) = — 5.7 #; Inx;is V2f(x) = diag(—=-,..., —7-).

6125 62710 — 6o

: 3.2 9. 301 ic T2 _
Example 4. The Hessian of f(x) = x725—3x125+11s V* f(x) [6:13%;1:2 022 229 — 18wy
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Chain Rule

 Consider scalar functions for simplicity.

Chain Rule. For h(x) = f(g(x)),
- the gradient of h(x)is h'(z) = f'(g(x))g'(x).
- the Hessian of h(xz) is h"(z) = f"(g(2))(g'(2))* + f'(9(2))g" (2).
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Reference: The Matrix Cookbook

The derivatives of vectors, matrices, norms,

determinants, etc can be found therein.

2 Derivatives

This section is covering differentiation of a number of expressions with respect to
a matrix X. Note that it is always assumed that X has no special structure, i.e.
that the elements of X are independent (e.g. not symmetric, Toeplitz, positive
definite). See section for differentiation of structured matrices. The basic
assumptions can be written in a formula as

00X

2.4.1 First Order Xy ik01j (32)
ox"a 9a’x _ that is for e.g. vector forms,
Ox ox B ) g o o 0 0 o o
da’Xb ox| _ 0% or| _ or ox| _ 0%
aax ab” (70) [ayL Oy [3y]a‘ - Oy [33’]‘:3‘  Oy;
da”X"b T The following rules are general and very useful when deriving the differential of
oxX ba (71) an expression ([19]):
0a’Xa fa’XTa - .
72 A = 0 (A is a constant) (33)
0X oX a 72) d(aX) = adX (34)
X gii (73) X +Y) = 0X+0Y (35)
0X; I(Tr(X)) = Tr(6X) (36)
I(XA);; IXY) = (0X)Y +X(9Y) (37)
) 8im (A)n; (I A, (74) IXoY) = (0X)oY +Xo(3Y) (38)
2, i - e 2
K~ 0By = (A (75) O(det(X) = Tr(adi(X)0X) (a1)
d(det(X)) = det(X)Tr(X '9X) (42)
d(In(det(X))) = Tr(X '0X) (43)
. - axT = (ax)T (44)
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf oxt = (ox)" (45)
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https://www.math.uwaterloo.ca/%7Ehwolkowi/matrixcookbook.pdf

Part 2. Linear Algebra

 Positive (Semi-)Definite Matrix

e Rank

e Inner Product, Norm, Matrix Norm

* Matrix Decomposition

Advanced Optimization (Fall 2022)
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Positive (Semi-)Definite Matrix

Definition 4 (Positive Definite, PD). A matrix A € R?*? is positive definite, if
for all x # 0,x ' Ax > 0, usually denoted as A > 0.

Definition 5 (Positive Semi-Definite, PSD). A matrix A € R%*? is positive
semi-definite, if for all x € R?, x ' Ax > 0, usually denoted as A = 0.
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Rank

* Rank: the dimension of the vector space spanned by its columns,

or the maximal number of linearly independent columns.

Example 5.
B!
A= -2
3

2R1+Ro—R» .
S

Ro+R3—R3

o O =

o ©
Tt = DN

O =N

o W o=

O W

—SRl +R3 —)R;j .
S

—2R2-|—R-| —)R'l .

‘ The rank of matrix A is 2.

Advanced Optimization (Fall 2022)
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Inner Product

* Vector Space: consider x,y € R?, then

d

(x,y) =x"y = ZSE’@@/@

1=1

» Matrix Space: consider A, B € R™*", then

m n

(A,B)=Tr (A"B) =) Y A;;Bj

i=1 j=1

Advanced Optimization (Fall 2022)
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Norm

* Typically used vector norms.

- /{-norm:

- />-norm:

- {-norm:

Ix[lx = 22 4+ |zal

1/2 ‘ y
xe = (xT%)"* = \fa2 4 a2

Ixl[oc = max {[zy1], ..., [zal}

or called
Euclidean norm

Advanced Optimization (Fall 2022)
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Norm

* Typically used vector norms.

- General /,-norm:

1
Ixllp = (Jza P + - + |zal”)""
- Quadratic norm:

|x]| , = Vx Ax, where A is positive semi-definite.

Advanced Optimization (Fall 2022) Lecture 1. Mathematical Background
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Dual Norm

Let || - || be a vector norm on R?. The associated dual norm || - ||, is defined as

Proposition 1. The dual of /,-norm is the ¢,-norm with _ + . = 1.

e.g., the dual of /5-norm is still /5,-norm, the dual of ¢/;-norm is ¢,,-norm

Proposition 2. Holder’s inequality: (x,y) < [|x| - ||¥]|«.

Advanced Optimization (Fall 2022) Lecture 1. Mathematical Background
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Norm Relationship

Qualitative:

Lemma 1 (Mathematical Equivalence of Norms). Suppose that || - ||, and || - ||,
are norms on R there exist positive “constants” o and 3, for all x € R? such that

al[x[la < [x[ls < Bxl|a-

Notice: constants may depend on dimension!

For example: for any x € RY, the following inequalities hold:

o glixll < lxlloe < [Ix]ly

o [xlloo < lIxll2 < Vx|l

Advanced Optimization (Fall 2022) Lecture 1. Mathematical Background 18



Cauchy-Schwarz Inequality

it Material

TO THE ART OF

MATHEMATICAL

o

INEQUALITIES

The
Cauchy-Schwarz

Master Class

)

J. Michael Steele
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Matrix Norm

Three different versions:

e operator norm
* entrywise norm

e Schatten norm

WLATHIN ALY

i M’H‘a‘r Jlﬂflll (oA

WEE B
Fruwwy Kl

FPF DTSN, SKBIA

related pages can be found in
readings of the course web
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Matrix Operator Norm

e Consider a matrix A € R™m*",

We define its operator norm based on the aforementioned vector norm.

Definition 6 (Matrix Operator Norm). The operator norm (or called induced
norm) of a matrix A € R™*" is defined by

A, = max PlxeRYx#0,.
PP Ix|

the norm in the right-hand side is defined over the vector space.

Advanced Optimization (Fall 2022) Lecture 1. Mathematical Background 21



Matrix Operator Norm

e Consider a matrix A ¢ Rmxn

- /1-norm (max-column-sum norm):

J

[Allop,1 = r%?;ﬁz Al
1=1

- {so-norm (max-row-sum norm):

n
[Allop,00 = maxz Ajjl
1€[m] =

Advanced Optimization (Fall 2022)
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Matrix Operator Norm

e Consider a matrix A ¢ Rmxn

- {>-norm (spectral norm):

r
where A = ) o,u;v
i=1

-

1

A — ma -
[Allop2 = max|o

, namely, 0; is the i-th singular value.

Advanced Optimization (Fall 2022)
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Matrix Entrywise Norm

e Consider a matrix A ¢ Rmxn

The entrywise norm is defined by treating matrices as vectors.

Definition 7 (Matrix Entrywise Norm). The entrywise norm of a matrix A €
R™*™ is defined by

1/p

| Allen,, = ZZ Az |7

1=1 7=1
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Matrix Entrywise Norm

e Consider a matrix A ¢ Rmxn

- /1-norm (sum norm):

m

[Allens = S5 14y

i=1 j=1

- Frobenius-norm:

m

[AllF = \ > Zn:A?,j

i=1 j=1

Advanced Optimization (Fall 2022) Lecture 1. Mathematical Background
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Matrix Entrywise Norm

e Consider a matrix A ¢ Rmxn

- {oo-norm (max norm):

[Allen o = macx max |4,
'Ee[?’n]jE[n]

Advanced Optimization (Fall 2022)
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Eigen Value Decomposition

Let A be an d x d PSD matrix, then it can be factored as

A=QAQ",
where (a) Q = (v1,...,vq) € R is orthogonal,ie., Q'Q = I and vy,...,vy
are eigenvectors; and (b) A = diag (A1, -+, A\g) and Ay, - -, Ay are eigenvalues.

Some concerned terms can be expressed by eigenvalues:

- A= vy - llAllop2 = max

- det(A) = [T, A ;
EYEVIN - || Allr = \/; A;

Advanced Optimization (Fall 2022) Lecture 1. Mathematical Background 27



Singular Value Decomposition

Suppose A € R"™*" has rank r, then it can be factored as

values.

A=UXV',
where () U = (uy,...,u,) € R™*"satisfiesU ' U = I,V = (vy,...,v,) € R"*"
satisfies V'V = I; and (b) ¥ = diag(oy,---,0,) and oy,--- , 0, are sigular

Some concerned terms can be expressed by sigular values:

r
- A= Z or@-u@-VT

7
=1

N
- [[Allop,2 = max |0 - |Allg = [ > o7
i€lr] i=1

Advanced Optimization (Fall 2022) Lecture 1. Mathematical Background
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Schatten Norm

e Consider a matrix A ¢ Rmxn

The Schatten norm is defined via the sigular values.

R™*™ with rank r is defined by

4

Definition 8 (Matrix Schatten Norm).

- 1/p
(ZJ?) , forl<p< oo

The Schatten norm of a matrix A €

[Allsep = 9 \i=1 »
max |o;| , for p=oc
| t€[7]
where 01, - - - , 0, are the singular values of A.
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Part 3. Probability and Statistics

» Expectation and Variance
» Conditional Expectation

» Concentration Inequalities

Advanced Optimization (Fall 2022) Lecture 1. Mathematical Background
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Expectation and Variance

Expectation
E[X] =3, cx 2 Pr[X = ]

Linearity of expecation: E{a X + bY| = aE[X]| + DE[Y].

Var|X| =

Variance

- Var

& [(X R E[X])ZJ - Var

- Var

X]=E[X°] —E[X]7
(aX] = a® Var[X]

X + Y] = Var[X] 4 Var[Y"

Advanced Optimization (Fall 2022)
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Cauchy-Schwarz Inequality in Probability

- () < [)x]| - Iyl

_ (; a,z-b?;)z < (é a ) | (; bg)

(I r@g@ar)” < (7 @ar) - (J7 g @)

- (E[XY])? < E[X?]- E[Y?]

Advanced Optimization (Fall 2022) Lecture 1. Mathematical Background
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Conditional Expectation

Conditional Expectation
E[X|Y =y = Zaz‘Pr = z|Y =g

Theorem 1 (Double Expectation Theorem). Let X.,Y be arbitrary random vari-
ables. Suppose E| X |, E|Y|,E|X|Y |, E|Y|X]| all exist, then it holds that

E[X] = Ey [Ex[X]Y]], E[Y] = Ex[Ey [V X]].

E|X| = Ey|Ex|X|Y || means that to measure the expectation of X, we can first
measure the expectation of X given the information of Y, then measure the
expectation of Y.

Advanced Optimization (Fall 2022) Lecture 1. Mathematical Background

33



Concentration Inequalities

Theorem 2 (Markov’s Inequality). Let X be a non-negative random variable with
E|X] < oo, then for all e > 0,

1
Pr|X > cE[X]] < -.
€
A simple proof: Pr[X >(E[X]]= ) Pr[X =z
2> tE[X]
T T
< (X =z i >
< Z Pr| X = z] EX (usmg E(X] 2 1)
x>tE[X]
T
< X = ' - 1
< ; Pr[X = z] (X (extending non-negative sum)
X 1 . : :
=E [m] = (linearity of expectation).

Advanced Optimization (Fall 2022) Lecture 1. Mathematical Background
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Concentration Inequalities

Theorem 3 (Chebyshev’s Inequality). Let X be a non-negative random variable
with E[X ], Var[X| < oo, then for all e > 0,

Var| X|
< :

Pr[|X — E[X]| > ¢

Chebyshev’s inequality can be immediately obtained from Markov’s inequality.

Theorem 4 (Hoetffding’s Inequality). Let X;,...,X,, be independent random
variables with X; taking values in |a;,b;| for all i € [m]. Then, for any ¢ > 0, the
following inequalities hold for S,, = > ", X;,

6—262/ S (b?;—a?;)gj

6—262/221(@,—&@)2.

IA

Pr|S,, — E[S] > €
Pr (S —E|[Sn.] < —€

IA
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Part 4. Information Theory

* Entropy

» Conditional Entropy

» KL divergence

* Bregman Divergence

Advanced Optimization (Fall 2022)
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Entropy

* Entropy measures the uncertainty, which is the most basic
concept in information theory.

Definition 9 (Entropy). The entropy of a discrete random variable X with
probability mass function p(x) = P|X = z] is denoted by H(X):

— > p(x)log(p(z)).

rxeX

An explanation of entropy: 1/p(x) stand for the information contained in p(z),
logs(1/p(x)) is the code length needed to encode the information, then entropy
H (X)) measures the expected code length to encode a distribution p.

Advanced Optimization (Fall 2022) Lecture 1. Mathematical Background
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Conditional Entropy

Definition 10 (Conditional Entropy).

H(Y|X) = Z pxylog(’)

Conditional entropy H (Y| X ) measures the uncertainty of Y
given the uncertainty of X.

Advanced Optimization (Fall 2022) Lecture 1. Mathematical Background
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Mutual Information

Definition 11 (Mutual Information).

I(X.Y) = KL(p(z.9) [p(x)p(y) = 3 p(x,ynog[

reX,ycy

p(z,y)

p(z)p(y)

|

with the conventions 0log0 = 0,0log 3 = 0, and alog ¢ = +oo for a > 0.

Advanced Optimization (Fall 2022) Lecture 1. Mathematical Background
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Relationship

-H(X)

H(X,Y)

I[(X,Y)=H(X)— H(X|Y)

[(X,Y)=H(Y) - HY|X)

Advanced Optimization (Fall 2022)
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KL Divergence (Relative Entropy)

Definition 12 (KL Divergence). The Kullback-Leibler (KL) divergence (relative
entropy) of two distributions p and q is defined by KL(p||q):

KL(pllq) = ) pla log[ Ei]

reX

with the conventions 0log 0 = 0, 0 log % = 0,and alog § = +oo for a > 0.

Proposition 1.

- KL divergence is always non-negative;

- Pinsker’s inequality: KL(p||q) > L ||p — q||{.
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Bregman Divergence

Bregman divergence measures the difference
of a function and its linear approximation

\
/

Definition 13 (Bregman Divergence). Let 1) be a convex and differentiable
function over a convex set K, then for any x,y € K, the bregman divergence
D,, associated to 1 is defined as

Dy (x|ly) = ¥(x) —¥(y) — (Vi(y), x —y).
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Bregman Divergence

Definition 13 (Bregman Divergence). Let ¢/ be a convex and differentiable
function over a convex set K, then for any x,y € K, the bregman divergence
D,, associated to 1 is defined as

Dy(x|ly) = ¥(x) —¢(y) —(VY(y), x —y).

Table 1: Choice of ¢(-) and the corresponding Bregman divergence.

h(x) Dy (x|ly)
Squared Ls-distance HXH% |x — YH%
Mahalanobis distance ||XH22 |x—y ||2Q
negative entropy > _;vilogr;  KL(x|ly)
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Part 5. Asymptotic Complexity

e Definition
e [llustration

* Examples

Advanced Optimization (Fall 2022) Lecture 1. Mathematical Background
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Definitions

- O(g(n)) = {f(n) | there exist positive constants ¢y, ¢z, and ng such that
0<cig(n) < f(n) <cyg(n)forall n>mny}.

- O(g(n)) = {f(n)| there exist positive constants ¢ and ngy such that 0 <
f(n) <cg(n)forall n > ng}.

- Q(g(n)) = {f(n) | there exist positive constants ¢ and ny such that 0 <
cg(n) < f(n) forall n > ng}.

- 0o(g(n)) = {f(n) | for any positive constant ¢ > 0, there exists a constant
ng > 0such that 0 < f(n) < cg(n) for all n > ng}.

- w(g(n)) = {f(n) | for any positive constant ¢ > 0, there exists a constant
no > 0such that 0 < cg(n) < f(n) forall n > ng}.

Advanced Optimization (Fall 2022) Lecture 1. Mathematical Background
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[llustration

c28(n)

f(n)

c,18(n)

n
Ry

f(n) = ©(g(n))

cg(n)

n

Ry Ro

J(n) = 0(g(n))

f(n) = Q(gm)

Advanced Optimization (Fall 2022)

Lecture 1. Mathematical Background

46



Examples

- 3n? +2n? +n +logn = O(n?)
- O(1) < O(logn) < O(n) < O(nlogn) < O (n?) < O (2") < O(n!)

Advanced Optimization (Fall 2022) Lecture 1. Mathematical Background
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Part 6. Optimization in Machine Learning

 Supervised Learning
* Empirical Risk Minimization
e Structural Risk Minimization

* Examples
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Learning by Optimization

The fundamental goal of (supervised) learning: Risk Minimization (RM),

gél% E(x,y)N'D [f(h(X), ZJ)]

where
- h denotes the hypothesis (model) from the hypothesis space H.
- (x, %) is an instance chosen from a unknown distribution D.

- f(h(x),y) denotes the loss of using hypothesis h on the instance (x, y).
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Empirical Risk Minimization

Since the distribution of the data, i.e., D, is unavailable to the learner, the risk
is not computable.

In practice, the learner instead tries to optimize the following empirical risk,
which is called empirical risk minimization (ERM):

m

mlﬂ — Z
heH ™m f

ERM approximates RM: All instances are i.i.d. sampled from the same distribution.

IID assumption: Independent and Identically Distributed random variables
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Structural ERM

In practice, we often explicitly control |
the complexity of the learner by adding
a regularization term in the optimization
objective, i.e.,

error

o==e generalizationjbound
=2 penalty term
=0 cmpirical errovl

min — Z f(h )+ AR(h). |

heH ™m

This is called Structural ERM.
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Examples

e Consider the following binary classification task with (i) linear hypothesis
h(x) = w'x;and (ii) x; € RY, y; € {—1,+1} foralli € [m].

Example 6. Taking f(h(x;),y;) = max{0,1 — y;w ' x;} (hinge loss) and R(h) =
|w||5 forms the optimization objective in Support Vector Machine (SVM):

min max{0,1 — y;w ' x;} + \||w
W@MZ 0,1 gew i} w2
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Example

e Consider the following binary classification task with (i) linear hypothesis
h(x) = w'x;and (ii) x; € RY, y; € {—1,+1} foralli € [m].

Example 7. Taking f(h(x;),y:) = log(1 + exp(—y;w'x;)) and R(h) = HwH%
forms the optimization objective in Logistic Regression (LR):

' log(1 + exp(—y;w ' x; w2
ﬁ%; g(1 + exp(—y ) + Al[wl]
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Summary
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