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(Constrained) Optimization Problem
* We adopt a minimization language

min  f(x)

st. xe X
- optimization variable x € R?
- objective function: f : R — R

- feasible domain: X C R¢
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Unconstrained Optimization

» The optimization variable is feasible over the whole R%-space.

min  f(x)

s.t. x € R

* It is one of the most basic forms of mathematical optimization and
serves as the foundations.

--- “any optimization problem can be regarded as an unconstrained one”

min  f(x) : min  h(x) £ f(x) + dx(x)

st. xe X st. x¢€ R¢ barrier/indicator function

0, xedX,
5X(X){OO x ¢ X
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Convex Optimization

* This lecture focuses on the following simplified setting;:
* Language: minimization problem
* Objective function: continuous and convex

* Feasible domain: a convex subset of Euclidean space

« What is a convex set?
* What is a convex function?

 How to minimize?
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Outline

* Convex Set
* Convex Function
* Convex Optimization Problem

* Optimality Condition
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Part 1. Convex Set

* Definition
* Ball and Ellipsoid
 Convex Hull

* Projection
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Convex Set

Definition 1 (Convex Set). A set X is convex if for any x,y € &, all the points
on the line segment connecting x and y also belong to &, i.e.,

Va € [0,1], ax+ (1 —a)y € X.

Convex sets?

v X X
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Examples

* A line segment is convex.
* A ray, which has the form {xy + v | § > 0}, where v # 0, is convex.

* Any subspace is convex.
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Convex Set

Definition 2 (Ball). A (Euclidean) ball (or just ball) in R? has the form

B (x.,7) = {x.+ru|||ulls <1}.

Definition 3 (Ellipsoids). A ellipsoid in R has the form

E(xe; A) = {xc + Au | [[uf] <1},

where A is assumed to be symmetric and positive definite. /\
i
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Convex Set

Definition 4 (Convex Hull). The convex hull of a set X', denoted conv X, is the
set of all convex combinations of points in X :

conv X ={01x1 + -+ 0xp | x; € X,0, >0,i € [k],01+---+ 0, =1}.

Examples:

\
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Projection onto Convex Sets

Definition 5 (Projection). The projection x of a given point y onto a convex set
X is defined as the closest point inside the convex set. Formally,

x = Ix[y] £ argmin, . v[|x — y|.

Theorem 1 (Pythagoras Theorem). Let X C R? be a convex set, y € R® and
x = [l x|y]. Then for any z € X we have

ly —2ll = [[Tx[y] — =z|.
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Part 2. Convex Function

e Definition
* Concave Function

« Zero-th, First and Second-order Condition
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Convex Function

Definition 6 (Convex Function). A function f : X — R is convex if for any
X,y € &,

Va € [0,1], f(1—-a)x+ay) <(1-a)f(x)+af(y).

a convex function
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Concave Function

Definition 6 (Convex Function). A function f : X — R is convex if for any
X,y € &,

Va € [0,1], f(1—-a)x+ay)<(1—a)f(x)+af(y)

Definition 7 (Concave Function). A function f : X — R is concave if for any
X,y € A&,

Va e [0,1], f(1-a)x+ay)=(1—-a)f(x)+af(y).

 Both definitions assume convex sets.

* We focus on the “convex” language, since the negative of concave functions are convex.
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Convex Function

f(y)

@)+ Vi@ )

o, f@)

If fis convex and differentiable, then f(x) + (Vf(x),y — x) < f(y) for all
X,y € dom f.

the first-order Taylor approximation of [ near x

A commonly used equivalent form: f(x) — f(y) < (Vf(x),x —y).
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Convex Function

A function f is convex if and only if dom [ is convex and one of the following
properties hold, for all x,y € dom f and « € [0, 1],

- Zero-th order condition: f((1 —a)x+ay) < (1 —a)f(x) + af(y).
—x) < f(y).

- First order condition: f(x) + (Vf

f(x),y
- Second order condition: V2 f(z) = 0.
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Convex Function

Examples on R:

- Exponential: e**, where a € R.

Powers: ¢, wherea > 1 or a < 0.

Powers of absolute value: |z|P, where p > 1.

- Negative logarithm: — log x.

- Negative entropy: z log .
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Convex Function

Examples on R<:

- norm: f(x) = [|x]|.

- maximum: f(x) = max{xy,..., Ty}

- Log-sum-exp: f(x) = log (e** 4 --- 4 €"").

Advanced Optimization (Fall 2022)
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Jensen’s Inequality

Theorem 2 (Jensen’s Inequality). If X is a random variable such that X € dom f
with probability one, and f is convex, then we have

f(E[X]) < E[f(X)].

Intuition:

Convexity: f (01x1 + -+ 0px) <01 f (x1) + -+ + O f (xi)
E[X] ELf(X))
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Part 3. Convex Optimization Problem

* Convex Optimization Problem
* Subgradients

* Why Convexity?
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Convex Optimization Problem

* We adopt a minimization language

min  f(x)
st. ¢i(x)<0, i=1,---,m
a/x="b;, i=1,---,n

- optimization variable x € R?

- convex objective function: f : R% — R

- convex inequality constraints: g;,...,9m

21
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Convex Optimization Problem

* We adopt a minimization language

Example 1 (SVM).

min  f(x)

st. ¢gi(x) <0, i=1,---,m
a,,;TX:bQ;, 1=1,---.,n
. 2
min  ||w||
w,b

s.t. y,,;(WTXZ-—I—b) >1, 1=1,---,n

Advanced Optimization (Fall 2022)
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Convex Optimization Problem

* We adopt a minimization language
min  f(x)
st. ¢gi(x) <0, i=1,---,m

Te _ .
a, x=="b;, 1=1,---,n

Example 2 (NMF decomposition).

. 2
min || X - UV ;

S.t. Ui,j,‘/@jj > 0

Advanced Optimization (Fall 2022) Lecture 2. Convex Optimization Basics

23



Subgradient

Definition 8 (Subgradient). Let f : X — R be a proper function and let x &
X C RY. A vector g € R? is called a subgradient of f at x if

fly) > f(x)+ (g, y — x), forally € RY.

Definition 9 (Subdifferential). The set of all subgradients of f at x is called the
subdifferential of f at x and is denoted by 0 f(x),

0f(x) = {g eR*| f(y) > f(x) + (g,y — x), forally € R*}.
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Subgradient

Definition 8 (Subgradient). Let f : X — R be a proper function and let x &
X C RY. A vector g € R? is called a subgradient of f at x if

fly) > f(x)+ (g, y — x), forally € RY.

Intuition: subgradient g € 0f(x) can g1
be any variable that makes the line
f(x) + (g,y — x) below the curve f.

X1 g X9
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Subgradient

Example 3. The subdifferential of /;-norm f(x) = ||x||, at x = 0 is the norm

unit ball, i.e., 3£(0) = {g | |g]> < 1}.

2

an illustration for 1-dim case

N o
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Subgradient

Example 4. For indicator function f(x) = dx(x), its subdifferential at any point
x e Xis Ny(x)=0f(x) ={g| (g, y —x) <0,Vy € X}.

called normal cone
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Subgradient

* Relationship between Lipschitzness and bounded subgradient

Theorem 3. Let f : X — R be a convex function. Suppose that
X C int(dom f). Consider the following two claims:

(i) Lipschitzness: |f(x) — f(y)| < L||x — y|| forany x,y € X.

(ii) Bounded subgradient: ||g|| < L forany g € 0f(x),x € X.
Then

(a) (ii) = (i).

(b) if X is open, then (i) < (ii).
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Existence of Subgradient

* Existence of subgradients implies convexity.

Theorem 4. Let | : X' — R be a proper function and assume X 1s convex.
If for any x € X, its subgradients exist, then f is convex.

- A sufficient condition for deciding a convex function.

- The reverse direction is not always correct (example on the next page).
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Existence of Subgradient

» Convexity doesn’t always imply existence of subgradients.

Example 5. Consider function f : R — (—o0, 00| defined by

f(z) = {_‘/5’ r=0

0, else

it is convex but does not have a subgradient at x = 0.

—

=
—
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Existence of Subgradient

* Nevertheless, if we only care about the interior ot feasible domain,
convexity does imply existent subgradients.

Theorem 5. Let f : X — R be a convex function and assume the feasible domain X
is convex. Consider any interior point x € int(X'). Then 0 f(x) is nonempty.
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How to Compute Subgradient

* General principle: unfortunately, hard to give :(
* Ad-hoc calculations: see earlier examples.

* Good news: easy for convex and differential functions.

Theorem 6. Let f : X — R be a proper and convex function and assume X is convex.
1. If f is differentiable at x, then 0 f (x) = {V f(x)}.

2. Conversely, if f has a unique subgradient, then it is differentiable at x and
Of (x) ={VFf(x)}
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How to Compute Subgradient

Example 6. The subdifferential of /o-norm f(x) = ||x||, is

({m}, x # 0

fgllgl: <1}, x=0

0f (x) =
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Why Convexity?

* Local to Global Phenomenon

For convex (and differentiable) functions, gradient is highly informative.

Vf(x) € df(x)

- Local: the gradient V f(x) contains a priori only local information about
the function f around x;

- Global: the subdifferential 0f(x) gives a global information in the form
of a linear lower bound on the entire function.
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Why Convexity? DA
Local Optima /

* Local to Global Phenomenon \ 4

For convex (unconstrained) optimization, local minima are global minima.

Theorem 7. Let f be convex. If x is a local minimum of f then x is a
global minimum of f.

A simple proof:

Assume that x is local minimum of f. Then for v small enough, for any y,

f) < f(IL=y)x+7y) <1 =7)fx)+vf(y)

which implies f(x) < f(y) and thus x is a global minimum of f.
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Part 4. Optimality Condition

* Fermat’s Optimality Condition
* First-order Optimality Condition
* Fritz-John Optimality Condition

« KKT Condition
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Fermat’s Optimality Condition

 Unconstrained case

Theorem 8 (Fermat’s Optimality Condition). Let f : R — (—o0, 00] be a
proper convex function. Then

x* € argmin{ f(x) | x € RY}

if and only if 0 € O f (x*).

A simple proof:

Combining finishes the proof.
f(x) =2 f(x*) + (g,x —x), g € 0f (x*)
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Example

Example 7 (Median). Suppose that we are given n different and ordered num-
bersa; < as < --- < a,. Denote A = {ay,as,...,a,} C R. The median of A is
a number [ that satisfies

aAn+1, n odd
2

median(A) = {

[&%,a%+1], n even .

Solving the optimization problem:

From an optimization perspective, solving medians equals to solving the
following optimization problem.

median(A) = arg min {f(aj) — Z oz — 0@|}
i=1
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Example

* Proof of median

From an optimization perspective, solving medians equals to solving the
following optimization problem.

median(A) = arg min {f(a:) — Z oz — ai|}
i=1

Denote f;(z) = |z — a;|, then it hold that f(z) = fi(x) + fo(x) +-- -+ fu(x) and

’

1, T > a;
('9fz(x) = < —1, xr < a;

(-1L1], z=a
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Example

* Proof of median

Denote f;(z) = |z — a;|, then it hold that f(z) = fi(z) + fo(x) +-- -+ fn(z) and
(1, Tr > a;
Ofi(x) = —1, r < a;
\[—1, 1], L = Ay
0f(z) = 0fi(x) +0f2(x) +---+ 0fn(x)
C# ey <zx}—F#{ia; > T}, r ¢ A,
o\ #{iai<xy—#{ia; >y +[-1,1], ze€A
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Example

* Proof of median

Of(x) =0f1(r) +0f2(x) + -+ 0 fn(x)

C#lia <o) #{ica>al}, A
C\#lira<ay—#{ia >+ [-1,1), z€A

(i — (n—1) =2i —n, x € (a;,a;+1)

1 —1)—(n—y)+|—-1,1|=2t—1—n+|—-1,1|, = =aq;
op() = d (=D = (=i + L1 L1

—n, Tr < ay

Uz xr > Qp
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Example

* Proof of median

(i — (n—1) = 2i —n, r € (a;,a;11)

1 —1)—-n—u)+|-1,1|=2t—-1—-—n+|-1,1|, x=a;
of(e) = D= (=D +[-L1] ~1,1]

—n, r < ap

L7, T > Qnp

Casel: x = a;. 0 € Of(x) =2i—1-n+[-1,1] & [2i—-1-n| <1 & 5 <i < 5+1
= lag,ag]

Case2: v € (a4,ai41).- 0€0f(z) =2t —n&i=4 &S xC (a%,agﬂ)

Combining the two cases finishes the proof. []
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First-order Optimality Condition

e Constrained Case

Theorem 9 (First-order Optimality Condition). Let f be convex and X a closed

convex set on which f is differentiable. Then x* € argminf(x) if and only if there
xXeX

exists g € 0f(x*) such that

(g, x —x*) > 0,Vx € X.

A simple proof: derived from the Fermat’s optimality condition.

—> deploying the Fermat’s optimility condition on the unconstrained “surrogate”
objective
h(x) 2 f(x) + 6 (x)
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First-order Optimality Condition

e Constrained Case

Theorem 9 (First-order Optimality Condition). Let f be convex and X a closed

convex set on which f is differentiable. Then x* € argminf(x) if and only if there
xXeX

exists g € 0f(x*) such that

(g, x —x*) > 0,Vx € X.

Example 4. For indicator function f(x) = dx(x), its subdifferential at any point

x € Xis Ny(x) =0f(x) =1{g| (g,y —x) <0,Vy € X}.

> Oh(x) = df(x) + Nx(x)

Set Addition: elementwise sum
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First-order Optimality Condition

e Constrained Case

Theorem 9 (First-order Optimality Condition). Let f be convex and X a closed

convex set on which f is differentiable. Then x* € argminf(x) if and only if there
xXeX

exists g € 0f(x*) such that

(g, x —x*) > 0,Vx € X.

Fermat’s optimality condition says that x* is optimal if and only if 0 € O f (x*).
0 € Oh(x*) = 0f(x*) + Ny (x*)
—> —0f(x*) N Nx(x*) # 0
—> Jge-0f(x*) st gx—x*)<0,VxelX (]
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Karush—-Kuhn-Tucker (KKT) Conditions

Theorem 10. Consider the minimization problem

min  f(x)
s.t. gi(x) <0, i€ [m],

(1)

Harold Kuhn Albert Tucker
1925-2014 1905-1995

Published conditions in 1951.

where f, g1, 92, ..., gm are real-valued convex functions.

1. Let x* be an optimal solution of (1), and assume that Slater’s condition is satis-
fied. Then there exist A1, ..., Ay, > 0 for which

0€df (x)+ > Nidgi (x*) 2)
Aigi (X*) =0, i€ [m] (3) Wlia Karush
1917-1997
2. If x* satisfies conditions (2) and (3) for some A1, A2, ..., A\, > 0, then it is an Developed (necessary)
optimal solution of problem (1). conditions in 1939 in his

(unpublished) MS thesis.
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Prooft (sketch) of KKT Conditions

* We start by the necessity of KKT conditions, i.e., suppose a point
1s optimal, what kind of conditions it should satisfy.

Lemma 1. Let f,g1,92,...,9m : X — R be real-valued functions. Consider the
problem
min  f(x)

s.t. gi(x) <0, i€ [m],

(1)
Assume that the minimum value of problem (1) is finite and equal to f* and define
F(x) £ max {f(x) = f*,91(x),92(%), - - -, gm (%)} .
Then the optimal set of problem (1) is the same as the set of minimizersofﬁ
v

another reduction from constrained opt. to unconstrained one
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Prooft (sketch) of KKT Conditions

problem
min  f(x)

s.t. gi(x) <0, i€ [m],

Assume that the minimum value of problem (1) is finite and equal to f* and define

F(x) = max {f(x) — f*,91(x), 92(%), . ., gm (%)} -

Then the optimal set of problem (1) is the same as the set of minimizers of F.

Lemma 1. Let f,g1,92,...,9m : X — R be real-valued functions. Consider the

(1)

Proof: Denote by S* the set of optimizers of Problem (1)

Intuition: the optimizer x*
of F' will make each func-
tion inside [ as small as pos-
sible, i.e., f(x*) < f* and
gi(x*) < 0fori € [m)].

Case 1: x ¢ S*. One of the two cases must exist, which both lead to F'(x) > 0:

(1.1) xis not in the feasible domain, i.e., 3i € [m|, g;(x) > 0= F(x) > 0.

(1.2) xis in the feasible domain but suboptimal, i.e., f(x) > f* = F(x) > 0.
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Prooft (sketch) of KKT Conditions

Lemma 1. Let f,g1,92,...,9m : X — R be real-valued functions. Consider the
problem

min  f(x)

s.t. gi(x) <0, i€ [m],

(1)
Assume that the minimum value of problem (1) is finite and equal to f* and define
F(X) = max {f(X) - f*z g1 (X)aQQ(X)J T ,gm(X)} :

Then the optimal set of problem (1) is the same as the set of minimizers of F.

Proof: Denote by S* the set of optimizers of Problem (1)

Case 2: x € §*, which leads to F(x) = 0 obviously.

—> S* =argmin F(x) = {x | F(x) = 0}.

xeX

Intuition: the optimizer x*
of F' will make each func-
tion inside [ as small as pos-
sible, i.e., f(x*) < f* and
gi(x*) < 0fori € [m)].
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Fritz John Optimality Conditions

min  f(x) min  F(x)
st. gi(x) <0, i€[m] — s.t. xeRY

Fritz John (1910-1994)

Theorem 5 (Fritz John Necessary Optimality Conditions). Consider the mini-
mization problem min, ga F'(x). Let x* be an optimal solution. Then there exist
A0y A1y -y A > 0, not all zeros, such that

0 € \odf(x +Z>\ 0gi(x*),

/\zgz( ) =0, 1€ [m]
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Fritz John Optimality Conditions

Theorem 5 (Fritz John Necessary Optimality Conditions). Consider the mini-
mization problem minycrs F'(x). Let x* be an optimal solution. Then there exist
Aos Alye .oy Am > 0, not all zeros, such that

0c )\Qaf(X*) + Z )\iagz’(X*)a
=1

Aigi(x*) =0, 1€ [m]

Proof: Using Fermat’s optimality condition, the optimizer x* satisfies 0 € 9F (x*).

F(x) = max {go(x), 91(x), 92(x), - .., gm (%)}, go(x) = f(x) — f*.

—> Remaining question: computing the subgradient of a maximum of functions

Details can be found in Amir Beck’s book (Chapter 3, Theorem 3.50)

Advanced Optimization (Fall 2022)
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Subdifferential of a Maximum of Functions

Lemma 2. Let f1, fo, ..., fmn be proper convex functions, and define
f(x) = max {f1(x), f2(X),..., fm(x)}. Let x € (), int (dom (f;)). Then

0f(x) = conv (Uier(x)0fi(x)) ,
where I(x) = {i € [m] | fi(x) = f(x)}.

conv denotes the convex hull:

Definition 4 (Convex Hull). The convex hull of a set X', denoted conv X, is the T A \\
set of all convex combinations of points in X’ : o 0 N
conv X = {bi1x1; + -+ Opxp | X, € X,0; >0,i € [k],00+---+ 0, =1}. s
examples

I(x) denotes the subset of { f1, ..., f,,} that are max at x.
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Fritz John Optimality Conditions

Theorem 5 (Fritz John Necessary Optimality Conditions). Consider the mini-
mization problem minycrs F'(x). Let x* be an optimal solution. Then there exist
Aos Alye .oy Am > 0, not all zeros, such that

0c )\Qaf Z Y agz 7

)\igz( )_07 iE [m]

Proof: F(x) £ max {go(x), 91(x), 92(x),. .., gm (%)}, go(x) = f(x) — f*.
> OF(x*) = conv((Ujer(x+09:(x*)), where I(x*) = {i € [m]| g;(x*) = F(x*) = 0}.

—> there exists \; > 0 for i € I(x*) such that >_ A\; = 1and

zEI x*
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Fritz John Optimality Conditions

Theorem 5 (Fritz John Necessary Optimality Conditions). Consider the mini-
mization problem minycrs F'(x). Let x* be an optimal solution. Then there exist
Aos Alye .oy Am > 0, not all zeros, such that

0c )\Qaf(X*) + Z )\iagi(X*)a
=l

Nigi(x*) =0, i€ [m)].

Proof: 0 ) XOgi(x*)=X0f(x)+ > Xdgi(x*)

el (x*) i€1(x*)\{0}
—> Define \; = 0 for i ¢ I(x*), \;g;(x*) = 0 holds in two cases:
- Casel:i e I(x*). I(x*)={i € [m]|g;(x*) = F(x*) =0} = \jg;(x*) = 0.
- Case2:i ¢ I(x*). Ay = 0= N\jgs(x*) = 0. L
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Proof (sketch) of KKT Conditions

* To prove the necessity direction of KKT conditions, besides
Fritz John conditions, we need the Slater’s condition:

There exists X € R? for which ¢;(X) < 0, i€ [m].

Necessity:

x* is a optimizer = Fritz John conditions + Slater’s condition = KKT conditions

~_

using Slater’s condition to show that \y # 0

Sufficiency:

KKT conditions = x* is a optimizer
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Karush—-Kuhn-Tucker (KKT) Conditions

Theorem 10. Consider the minimization problem

min  f(x)
s.t. gi(x) <0, i€ [m],

(1)

Harold Kuhn Albert Tucker
1925-2014 1905-1995

Published conditions in 1951.

where f, g1, 92, ..., gm are real-valued convex functions.

1. Let x* be an optimal solution of (1), and assume that Slater’s condition is satis-
fied. Then there exist Ay, ..., Ay, > 0 for which (necessity)

0€df (x)+ > Nidgi (x*) 2)
i=1
AiGi (X*) =0, i€ |m) (3) Willia Karush
1917-1997
2. If x* satisfies conditions (2) and (3) for some A1, A2, ..., A\, > 0, then it is an Developed (necessary)
optimal solution of problem (1). (sufficiency) conditions in 1939 in his

(unpublished) MS thesis.
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