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(Constrained) Optimization Problem

• We adopt a minimization language
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Unconstrained Optimization 

•

• It is one of the most basic forms of mathematical optimization and 
serves as the foundations. 

--- “any optimization problem can be regarded as an unconstrained one”

barrier/indicator function
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Convex Optimization

• This lecture focuses on the following simplified setting: 

• Language: minimization problem

• Objective function: continuous and convex 

• Feasible domain: a convex subset of Euclidean space

• What is a convex set?

• What is a convex function?

• How to minimize?
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Outline

• Convex Set

• Convex Function

• Convex Optimization Problem

• Optimality Condition
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Part 1. Convex Set

• Definition

• Ball and Ellipsoid 

• Convex Hull

• Projection
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Convex Set

Convex sets?
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Examples
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Convex Set
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Convex Set

Examples:
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Projection onto Convex Sets
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Part 2. Convex Function

• Definition

• Concave Function

• Zero-th, First and Second-order Condition
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Convex Function

a convex function
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Concave Function

• Both definitions assume convex sets.

• We focus on the “convex” language, since the negative of concave functions are convex.
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Convex Function
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Convex Function
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Convex Function
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Convex Function
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Jensen’s Inequality

Intuition:
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Part 3. Convex Optimization Problem

• Convex Optimization Problem

• Subgradients

• Why Convexity?
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Convex Optimization Problem

• We adopt a minimization language
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Convex Optimization Problem

• We adopt a minimization language
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Convex Optimization Problem

• We adopt a minimization language



Lecture 2. Convex Optimization Basics Advanced Optimization (Fall 2022) 24

Subgradient
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Subgradient
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Subgradient

an illustration for 1-dim case
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Subgradient

called normal cone
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• Relationship between Lipschitzness and bounded subgradient

Subgradient
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Existence of Subgradient

• Existence of subgradients implies convexity.
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Existence of Subgradient

• Convexity doesn’t always imply existence of subgradients.
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Existence of Subgradient

• Nevertheless, if we only care about the interior of feasible domain, 
convexity does imply existent subgradients.
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How to Compute Subgradient

• General principle: unfortunately, hard to give :( 

• Ad-hoc calculations: see earlier examples.

• Good news: easy for convex and differential functions. 



Lecture 2. Convex Optimization Basics Advanced Optimization (Fall 2022) 33

How to Compute Subgradient

(gradient of norm)

(discussed before)
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Why Convexity?

• Local to Global Phenomenon

For convex (and differentiable) functions, gradient is highly informative.
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• Local to Global Phenomenon

For convex (unconstrained) optimization, local minima are global minima.

Why Convexity?

A simple proof:

(local minima)
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Part 4. Optimality Condition

• Fermat’s Optimality Condition

• First-order Optimality Condition

• Fritz-John Optimality Condition

• KKT Condition
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Fermat’s Optimality Condition
• Unconstrained case

A simple proof:

Combining finishes the proof.
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Example

Solving the optimization problem:

From an optimization perspective, solving medians equals to solving the 
following optimization problem.
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• Proof of median

Example

From an optimization perspective, solving medians equals to solving the 
following optimization problem.
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• Proof of median

Example
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• Proof of median

Example
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• Proof of median

Example

Combining the two cases finishes the proof.
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First-order Optimality Condition

• Constrained Case

A simple proof: derived from the Fermat’s optimality condition.
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First-order Optimality Condition

• Constrained Case

Set Addition: elementwise sum
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First-order Optimality Condition

• Constrained Case
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Karush–Kuhn–Tucker (KKT) Conditions

Albert Tucker
1905-1995

Harold Kuhn
1925-2014

William Karush
1917-1997

Published conditions in 1951.

Developed (necessary) 
conditions in 1939 in his 
(unpublished) MS thesis.
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Proof (sketch) of KKT Conditions

• We start by the necessity of KKT conditions, i.e., suppose a point
is optimal, what kind of conditions it should satisfy.

another reduction from constrained opt. to unconstrained one
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Proof (sketch) of KKT Conditions

Proof:
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Proof (sketch) of KKT Conditions

Proof:
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Fritz John Optimality Conditions

Fritz John (1910-1994)
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Fritz John Optimality Conditions

Proof:

Details can be found in Amir Beck’s book (Chapter 3, Theorem 3.50)

Remaining question: computing the subgradient of a maximum of functions
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Subdifferential of a Maximum of Functions

conv denotes the convex hull:

examples
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Fritz John Optimality Conditions

Proof:
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Fritz John Optimality Conditions

Proof:
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Proof (sketch) of KKT Conditions

• To prove the necessity direction of KKT conditions, besides 
Fritz John conditions, we need the Slater’s condition:

(by a self-contained proof, omitted here)

Fritz John conditions + Slater’s condition = KKT conditions

Necessity:

Sufficiency:
using Slater’s condition to show that 
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Karush–Kuhn–Tucker (KKT) Conditions

Albert Tucker
1905-1995

Harold Kuhn
1925-2014

William Karush
1917-1997

Published conditions in 1951.

Developed (necessary) 
conditions in 1939 in his 
(unpublished) MS thesis.

(necessity)

(sufficiency)
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Summary

Q & A
Thanks!


