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Part 1. Gradient Descent

* Convex Optimization Problem
e Gradient Descent
* Performance Measure

 The First Gradient Descent Lemma
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Convex Optimization Problem
* We adopt a minimization language

min  f(x)

st. xeX
- optimization variable x € R
- objective function f : R% — R: convex and continuously differentiable

- feasible domain X C R%: convex
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Gradient Descent

* GD Template:
X1 = Ha [x¢ =V f(xy4)]

- x; can be an arbitrary point inside the domain.
- ¢ > 0 1s the potentially time-varying step size (or called learning rate).

- Projection Il v |y] = arg min, . y ||x — ¥|| ensures the feasibility.
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Goal

To output a sequence {x;}/_, such that X; approximates x* when ¢ goes larger.
e Function-value level: f(x7) — f(x*) < &(T)

e Optimizer-value level: ||x7 — x*|| < e(7T)

where {X;}/_; can be statistics of the original sequence {x;}}_,,

and ¢(7T) is the approximation error and is a function of iterations 7.

Advanced Optimization (Fall 2022) Lecture 4. Gradient Descent Method 6



Goal

* In general, there are two performance measures (essentially same).

Convergence: f(xr)— f(x*) < &(T),
- Qualitatively: ¢(7) - O when 7" — o

- Quantitatively: O( =)/ O(3) / O(72) / O(zr) / -

Complexity:

- Definition: number of iterations required to achieve f(xr) — f(x*) < e.

- Quantitatively: O(=%) / O(2) /O( =)/ O(In(3)) /...
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GD Convergence Analysis



The First Gradient Descent Lemma

Lemma 1. Suppose that f is proper, closed and convex; the feasible domain X is
nonempty, closed and convex. Let {x;}{_, be the sequence generated by the gradi-
ent descent method, X* be the optimal set of the optimization problem and f* be the
optimal value. Then for any x* € X* andt > 0,

Ixe1 = x*[|* < lxe = x| = 206 (f(xe) — %) + 0|V f ()]

M [x; — 7V f (x0)] — x|

x; — eV f(x¢) — x*||?

;= |7 = 20 (VF(xe), %0 — X7) + 07 [V F(x)|7
s — x| 7 =2y (f(xe) = £ + 12 IV F (=) |1

Proof: |[xi+1 — x|’

IN

VAN

L]
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Part 2. Polyak Step Size

* Polyak Step Size

* Convergence

* Convergence Rate
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Polyak Step Size

* GD method satisfies the following inequality:

xesn = x*[1* < flxe = x| = 2me (f(xe) = %) + 0|V F (%)

l )
1

h(n) = =2n(f(x¢) — [*) + IV f(x)]?

A natural idea:

minimizing the right-hand side of the inequality

fGa) - f
A TENIE

assume known [* for a moment
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Polyak Step Size

es1 — X% < [lxe — x*I° = 2 (f(xe) — %) + 0 IV (xe)|1°

:f<Xt)—f* h‘é_z 'Xfi'* Qv )’(f 9
= =T )P (n) n(f(xe) = %) + 07|V (x|

Cornercase: when Vf(x;) =0

—> actually a good news owing to convexity, V f(x;) = 0 implies optimality
f(xe)—f~
Vieor: V(X)) 70

17 vf(xt) =0

Polyak step size: 1 =

Without loss of generality, we assume V f(x;) # 0 from now on.

Advanced Optimization (Fall 2022) Lecture 4. Gradient Descent Method 12



Polyak Step Size

f(x)—f"
oo V/(x) #0

17 vf(xt) =0

Polyak step size: 1 =

assume known f* for a moment.

Boris T. Polyak

INTRODUCTION

I AT Introduction to optimization
Boris T. Polyak

Optimization Software, Inc., 1987

Boris T. Polyak
1935-now
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Convergence

» With Polyak step size, we obtain the convergence results:

Theorem 1. Under the same assumptions with Lemma 1, assume the gradient of f
is bounded by G, i.e., |V f(-)|| < G. Let {x;}{_, be the sequence generated by the

gradient descent method with Polyak step size and f* be the optimal value. Then,
(D) [lxegr = x| < flxe — %1%

(i1) f(x¢) = frast — oc.

Note: recall that bounded gradients condition implies Lipschitz continuity.
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Convergence

Proof: |[jxe+1 —x"[|* < [lxe — x| = 20 (f (xe) — f*) + 07 [ V.f ()17

- Case 1: Vf(x;) = 0. By convexity, f(x;) = [* = ||xi1 — x*||* = |x¢ — x*||*.

- Case 2: Vf(x¢) # 0. Polyak’s step size 1y = ||fv(}}t()x_t§fll*2

(f(x¢) — f*>2
IV f(x2)]]?

> lIxerr — x° < flxe — x*[|* - < [lxe — x*|°

(i) is proved.
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Convergence

Proof: we can simply focus on the case of V f(x;) # 0

(f(x¢) — f*)z

e () — 12
ViR = e Xl

_ e

e — X7 < [lxe — x*|1* -

T
Z ® < ey = X7 = [xp — x|

—> Z > < GPlxqp —x¥||?

Inflmte summation is bounded by constants — convergent series.
(ii) is proved. []
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Convergence Rate

* We can also derive the convergence rate.

Theorem 2. Under the same assumptions with Theorem 1. Let {x;}]_, be the se-
quence generated by the gradient descent method with Polyak step size and f* be the
optimal value. Define Xp = argming, yr f(x¢), we have

o) - < ST g (L)

Proof:  f(xr) =ming,, r  f(x) < f(x¢)"

T - T(f(xr) = f*)? < G¥|lx1 — x*°
> (fxe) = )7 < GPllxa = x*|°_ ]
t=1
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Part 3. Convergence without Optimal Value

* The Second Gradient Descent Lemma
* Convergent Step Size

* Convergence without Optimal Value
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Step Size without Optimal Value

* Note that Polyak step size requires the optimal value [*

Polyak step size: 1 =

f(xe)—f"
||V(f()xt)||2’ Vf(x:) #0
1’ Vf(x:)=0

assume known [* for a moment

From now on, we try to design step sizes without the optimal value f*.
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The Second Gradient Descent Lemma

* A second version of gradient descent lemma

Lemma 2. Under the same assumptions as Theorem 1. Let {x;}1_, be the sequence
generated by GD. Then we have

T 1 1 T
> om(f(xe) = 1) < 5 lI%1 = x*|* + 5 > V).
t=1 t=1

Proof: The statement can be derived directly from the gradient descent lemma:

e — X7 < llxe — x*1F = 2m(f(xe) = f*) + HVf(Xt)H2

—> m(f(xe) = f7) < % (Ixe = %)% = lIxer — x*[1%) + m LIV f (%) O
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Convergence Result

* GD lemma implies the following convergence result.

Lemma 3. Under the same assumptions as Theorem 1. Let {Xt}t , be the sequence

generated by GD. Define X = arg min xS (Xe) or X = a s i ﬁ we have

Clx=x? S Vi)

f(XT) -/ 2 23;1 T 2 Zt 1 Mt

Advanced Optimization (Fall 2022) Lecture 4. Gradient Descent Method 21



Convergence Result

Proof:

e Case 1: X7 = argming, yr_ f(x).

ST n(flx) — 1) > (Z m) (f(xr) — ).

Combining the above inequality with Lemma 2 (as restated below),
T | | T
D m(f(xe) = f*) < Slxa = x*|2 + 5 w1V F(x0)”
t=1 t=1

we have completed the proof of the desired result:
* ]2 r o 2 2
X1 — X _ Vix
f()_{T) _f* < H 1 - H 4+ Zt_l Un UT f( t)” -
2 thl Tt 2 Zt:1 Ur:
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Convergence Result

Proof:
eCase2: Xy =5, , Z"Z_,E_Xtm.
T T T
- 12~ () (BE 1)
—1 t=1 =12 =1 e

Thus, we achieve the desired result:

T
b x2S VA
T T )
2 thl T 2 Zt:1 Tt

f(xr) —f* <
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Convergent Step Size

Theorem 3. Under the same assumptions with Theorem 1. Let {x;}/_, be the se-
quence generated by the gradient descent method. If

T
T
Zt:1 Tt

then f(Xp) — f*asT — oc.

>»0asT — oo,

Indeed, this structure appears in the second gradient descent lemma.

T
e =P DD IV (xo)])?
f(xr) - f* < +
T = T T
2 Zt:l T 221%_1 Tt

» 0 naturally implies 3, 1, — oco. O

T 2
Zt:l Un
23:1 Tt

Thus, the condition
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Convergent Step Size

Theorem 3. Under the same assumptions with Theorem 1. Let {x;}/_, be the se-
quence generated by the gradient descent method. If

r 2
27}_1777: »0as T — oo,
D i1 "t
then f(Xp) — f*asT — oc.
Examples:
- time-invariant step size: n; = n = —= Toam 1L
psizern =n= 5= 5 - = ﬁ—>0.
t=1
T 2
- time-varying step sizes: 1, = % = =1 lsT

Advanced Optimization (Fall 2022) Lecture 4. Gradient Descent Method 25



Convergence without Optimal Value

Theorem 4. Under the same assumptions with Theorem 1. Let {x;}]_, be the se-
quence generated by GD with step size

1
IVIoIIVE

¢

Then
f(xr)—f" <

G (HX1 —X*HQ + log 1" + 1) _ 0 (logT)
2VT - \WVT )’

_ A . — A T
where Xp = argming, yr  f(X) or Xp = ), =F .
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Convergence without Optimal Value

Proof:
fr) - pr < X2 B V)
2 i1 Mt 2D i1 e

o COk=x? CE L m VeI
T2 mllVIGa)l 2 VG|
Gl =P, G s
T2 e 22w

Thus,

iz - pr < GUKL=XTP HlogTH1) (logT)

2T VT
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Part 4. Optimal in Convex and Lipschitz Case

* Optimal Result with Known T

* Optimal Result with Unknown T
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Towards Optimal Resolutions

Theorem 4. Under the same assumptions with Theorem 1. Let {x;}I_, be the se-

quence generated by GD with step size Remark: The last theorem gives
" IIVf(?lit)Hx/f' an O(log T'/+/T) convergence
- rate. However, this rate is
fxe) - pr < G = X;'lj% logT+1) _, (1‘%) worse than the O(1/+/T) with
where % 2 argrming . f(x) or g 2 T, 5 Polyak step size.

We show that this can be im-

Theorem 2. Under the same assumptions with Theorem 1. Let {x;}]_, be the se-
quence generated by the gradient descent method with Polyak step size and f* be the proved with an additional as-

optimal value. Define Xp = argming, yr f(x;), we have

f(r) — f* < G”X;% <l _ o (%)

with Polyak’s step size (known f*)

sumption of bounded domain.
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Optimal Result with Known 7T’

Theorem 5. Under the same assumptions with Theorem 1, assume the feasible domain
X is bounded and convex with a diameter D > 0, that is, |x — y||2 < D holds for any
x,y € X. Let {x;}{_, be the sequence generated by GD with step size

D
nt_—G\/f'
Then - 1
fxn) - < 2 =0 ()

where X7 £ arg min g, ;p_lf(xt) or Xp = % Zthl Xt
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Optimal Result with Known 7T’

1
f(xr) - f* < —O(_
step size n; = % —> VT T
— A . — A ] T
X7 = arg ming,, g“:1f(Xt) OFXT = 7 ) ;1 Xy
Proof:  Plugging 1 = ;= into
. T
f()_{T) o f* < Hxl — X H2 4+ thl n?l‘vf(xt)‘P
2 23:1 Tt 2 23;1 Mt
Notice that xp 2 377 Z?:m = Ly % ]
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Optimal Result with Known 7T’

_ . DG 1
. 5 f(xr) = f STO(—>
step sizen, = 77 = T T
X1 = arg ming, v f(x¢) or Xr = Zthl Xy

- D—\/% convergence rate is equivalent to T' = D;GQ complexity result to
achieve f(xp) — f* <e.
DG

- U7 18 already minimax optimal for convex and Lispchitz functions.
- This result needs to know the total round number 7' in advance.

not desirable in practice
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Optimal Result with Unknown T

Theorem 6. Under the same assumptions with Theorem 1, assume the feasible domain
X 1s bounded and convex with a diameter D > 0, that is, ||x — y||2 < D holds for any
X,y € X. Let {x;}!_, be the sequence generated by GD with step size

D
N = G—ﬁ
Then - .
f(xr) = f" < \/T:O(\/T)a
where Xp = arg min g, T o f(x;) or xp 2 erz T2 zzﬂ:";;; o

Intuition: bounded domain requires ||x;—x*|| (notjust ||x; —x*||) to be bounded
to avoid O(logT') in the analysis.
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Optimal Result with Unknown T

Proof: 1t is easy to extend the second GD lemma fromt¢ =1,...,T'tot = [%],...

Fxg) — pr < =X X IV
2 Zf:l "It 2 23:1 Mt

*H2

T
%z —x G2 D=1 N7

—> f(Xr)—f" <

@f(iT)—f*éiﬁ:O(%T). O
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Part 5. Strongly Convex and Lipschitz

* Strong Convexity

* Convergence Result
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Strongly Convex and Lipschitz

Theorem 7. Under the same assumptions with Theorem 1, except that f is o-strongly-
convex. Let {x;}1_, be the sequence generated by GD with step size

B 2
e = o(t+1)
Then (i) ,
27 1
f(Zr) = 7 < (T + 1) O (T)
where X7 = argming, yr f(%;) or X 2 DY Ty Xe- And (i)
%z — x| < —an
X7 — .
g ovI'+1

Advanced Optimization (Fall 2022) Lecture 4. Gradient Descent Method 36



Strongly Convex and Lipschitz

Proof: we start by extending the first GD lemma to strongly convex case.

Strongly convex case:

Icir = x| < e = %7 = 200V £, %0 = %) 40 V£ ()
* x, 9 o
< e = %1% = 2m0 (Fx) = 745 e = x7|2) + 0 [V £ ()

< (1= o) lxe = x** = 200 (FGe) = 1) + 02 1V (x0)|
* - g " —1 . G2
=D fx) — F* € e = 2 = Pl — xS
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Strongly Convex and Lipschitz

. -
Fo) = 1< I =T, — 2 — Ty — X2+
2 9 9
o G2
— — t — 1 X 2 —(t 1 " 2
7 (= Dlx = = (t+ Dlpxes = x"[7) + mr
G2

= t(f(xe)) = ") <

g * *

7 (6= Dl = x*[* = 10t + 1)Ixr41 = x*]%) + —
telescope now

T

= D)) < 7 (01 x| = DT+ 1) e — x4 +

t=1

G*T G°T

g o

Next step: relating Z?:l t(f(x¢) — f(x*¥)) to f(xr) — f(x¥).
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Strongly Convex and Lipschitz

Case2: 3" (fx) — 1) = D 1) — Lt pr L TE D (Z T - f*)
> TEED (1) - 1)

(i) is proved. [ ]
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Strongly Convex and Lipschitz

Proof: (ii) can be derived directly from (i) and strong convexity.

2
Tl — x*112 < ) x* % Tl — x*112 < f(0) — £* < 2G
SR =3[ < (V)% %) + Gl =P < fer) = * <

Thus, we prove that no matter for which constructions of x7, it holds that

2G
O'\/T—|—1.

%7 — x| <

(i) is proved. [ |
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Summary

Table 1: A summary of convergence rates of GD method.

Function Family Step Size Output Sequence Convergence Rate Remark
. optimal
e = % X7 £ arg ming, v f(x¢) O(1/VT) Polyak’s step size

require f*,T

X7 = arg ming, yr f(x¢)

1 .
= i _ T X, O(logT/VT suboptimal
convex and G-Lipschitz T VRV X7 = 3 ZZTzl " (logT/VT) P
_ A .
Xp = argming v f (x¢) bounded domain
_ _D t=1
KNG X7 2 Zthl ﬁ O(L/VT) require 7'
_ A .
Xp = argming 7 f(x¢)
Ny = GL\/E N { }t‘rTgth O(1/VT) bounded domain
X0 = dpry 2o pr/2) M
. . 9 XT £ arg min{xt};_rilf(xt) B ol -
o-strongly convex and G-Lipschitz e = i AT re O1/T) |x7 — x*|| is bounded
o(t+1) X = Zt:l ZT -
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Summary

Convex Optimization Problem

Gradient Descent

[ GRADIENT DESCENT ] 4 Performance Measure

i The First Gradient Descent Lemma OPTIMAL IN CONVEX AND

LIPSCHITZ CASE

Optimal Result with Known T

{ Optimal Result with Unknown T

Polyak’s Step Size

Convergence

POLYAK'S STEP SIZE STRONGLY CONVEX AND
Convergence Rate LIPSCHITZ

The Second Gradient Descent Lemma

CONVERGENCE WITHOUT Convergent Step Size
OPTIMAL VALUE

Convergence without Optimal Value

Strong Convexity

{ Convergence Result
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