

Lecture 4. Gradient Descent Method

Advanced Optimization (Fall 2022)

Peng Zhao

zhaop@lamda.nju.edu.cn Nanjing University

Outline

- Gradient Descent
- Convex and Lipschitz
 - Polyak Step Size
 - Convergence without Optimal Value
 - Optimal Time-Varying Step Sizes
- Strongly Convex and Lipschitz

Part 1. Gradient Descent

Convex Optimization Problem

Gradient Descent

• Performance Measure

• The First Gradient Descent Lemma

Convex Optimization Problem

• We adopt a minimization language

$$\min \quad f(\mathbf{x})$$
s.t. $\mathbf{x} \in \mathcal{X}$

- optimization variable $\mathbf{x} \in \mathbb{R}^d$
- objective function $f: \mathbb{R}^d \mapsto \mathbb{R}$: convex and continuously differentiable
- feasible domain $\mathcal{X} \subseteq \mathbb{R}^d$: convex

Gradient Descent

• GD Template:

$$\mathbf{x}_{t+1} = \Pi_{\mathcal{X}} \left[\mathbf{x}_t - \eta_t \nabla f(\mathbf{x}_t) \right]$$

- x_1 can be an arbitrary point inside the domain.
- $\eta_t > 0$ is the potentially time-varying *step size* (or called *learning rate*).
- Projection $\Pi_{\mathcal{X}}[\mathbf{y}] = \arg\min_{\mathbf{x} \in \mathcal{X}} \|\mathbf{x} \mathbf{y}\|$ ensures the feasibility.

Goal

To output a sequence $\{\bar{\mathbf{x}}_t\}_{t=1}^T$ such that $\bar{\mathbf{x}}_t$ approximates \mathbf{x}^* when t goes larger.

- Function-value level: $f(\bar{\mathbf{x}}_T) f(\mathbf{x}^*) \leq \varepsilon(T)$
- Optimizer-value level: $\|\bar{\mathbf{x}}_T \mathbf{x}^*\| \le \varepsilon(T)$

where $\{\bar{\mathbf{x}}_t\}_{t=1}^T$ can be *statistics* of the original sequence $\{\mathbf{x}_t\}_{t=1}^T$,

and $\varepsilon(T)$ is the *approximation error* and is a function of iterations T.

Goal

• In general, there are two performance measures (essentially same).

Convergence: $f(\bar{\mathbf{x}}_T) - f(\mathbf{x}^*) \leq \varepsilon(T)$,

- Qualitatively: $\varepsilon(T) \to 0$ when $T \to \infty$
- Quantitatively: $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$ / $\mathcal{O}\left(\frac{1}{T}\right)$ / $\mathcal{O}\left(\frac{1}{T^2}\right)$ / $\mathcal{O}\left(\frac{1}{e^T}\right)$ / ...

Complexity:

- **Definition:** number of iterations required to achieve $f(\bar{\mathbf{x}}_T) f(\mathbf{x}^*) \leq \varepsilon$.
- Quantitatively: $\mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$ / $\mathcal{O}\left(\frac{1}{\varepsilon}\right)$ / $\mathcal{O}\left(\frac{1}{\sqrt{\varepsilon}}\right)$ / $\mathcal{O}\left(\ln\left(\frac{1}{\varepsilon}\right)\right)$ / ...

corresponds to
$$\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$$
 / $\mathcal{O}\left(\frac{1}{T}\right)$ / $\mathcal{O}\left(\frac{1}{T^2}\right)$ / $\mathcal{O}\left(\frac{1}{e^T}\right)$ / ...

GD Convergence Analysis

The First Gradient Descent Lemma

Lemma 1. Suppose that f is proper, closed and convex; the feasible domain \mathcal{X} is nonempty, closed and convex. Let $\{\mathbf{x}_t\}_{t=1}^T$ be the sequence generated by the gradient descent method, \mathcal{X}^* be the optimal set of the optimization problem and f^* be the optimal value. Then for any $\mathbf{x}^* \in \mathcal{X}^*$ and $t \geq 0$,

$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} \le \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - 2\eta_{t}(f(\mathbf{x}_{t}) - f^{\star}) + \eta_{t}^{2}\|\nabla f(\mathbf{x}_{t})\|^{2}.$$

Proof:
$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} = \|\Pi_{\mathcal{X}}[\mathbf{x}_{t} - \eta_{t}\nabla f(\mathbf{x}_{t})] - \mathbf{x}^{\star}\|^{2}$$
 (GD)
$$\leq \|\mathbf{x}_{t} - \eta_{t}\nabla f(\mathbf{x}_{t}) - \mathbf{x}^{\star}\|^{2}$$
 (Pythagoras Theorem)
$$= \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - 2\eta_{t}\langle\nabla f(\mathbf{x}_{t}), \mathbf{x}_{t} - \mathbf{x}^{\star}\rangle + \eta_{t}^{2}\|\nabla f(\mathbf{x}_{t})\|^{2}$$

$$\leq \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - 2\eta_{t}(f(\mathbf{x}_{t}) - f^{\star}) + \eta_{t}^{2}\|\nabla f(\mathbf{x}_{t})\|^{2}$$
(convexity: $f(\mathbf{x}_{t}) - f^{\star} = f(\mathbf{x}_{t}) - f(\mathbf{x}^{\star}) \leq \langle\nabla f(\mathbf{x}_{t}), \mathbf{x}_{t} - \mathbf{x}^{\star}\rangle$)

Part 2. Polyak Step Size

Polyak Step Size

Convergence

Convergence Rate

Polyak Step Size

GD method satisfies the following inequality:

$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} \leq \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - 2\eta_{t}(f(\mathbf{x}_{t}) - f^{\star}) + \eta_{t}^{2}\|\nabla f(\mathbf{x}_{t})\|^{2}$$

$$h(\eta) \triangleq -2\eta(f(\mathbf{x}_{t}) - f^{\star}) + \eta^{2}\|\nabla f(\mathbf{x}_{t})\|^{2}$$

A natural idea:

minimizing the right-hand side of the inequality

$$\Rightarrow \eta_t = rac{f(\mathbf{x}_t) - f^\star}{\|\nabla f(\mathbf{x}_t)\|^2}$$
 assume known f^\star for a moment

Polyak Step Size

$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} \leq \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - 2\eta_{t}(f(\mathbf{x}_{t}) - f^{\star}) + \eta_{t}^{2}\|\nabla f(\mathbf{x}_{t})\|^{2}$$

$$\Rightarrow \eta_{t} = \frac{f(\mathbf{x}_{t}) - f^{\star}}{\|\nabla f(\mathbf{x}_{t})\|^{2}} \qquad h(\eta) \triangleq -2\eta(f(\mathbf{x}_{t}) - f^{\star}) + \eta^{2}\|\nabla f(\mathbf{x}_{t})\|^{2}$$

Cornercase: when $\nabla f(\mathbf{x}_t) = \mathbf{0}$

 \implies actually a good news owing to convexity, $\nabla f(\mathbf{x}_t) = \mathbf{0}$ implies optimality

Polyak step size:
$$\eta_t = \begin{cases} rac{f(\mathbf{x}_t) - f^\star}{\|\nabla f(\mathbf{x}_t)\|^2}, & \nabla f(\mathbf{x}_t)
eq \mathbf{0} \\ 1, & \nabla f(\mathbf{x}_t) = \mathbf{0} \end{cases}$$

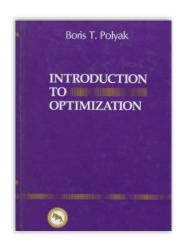
Without loss of generality, we assume $\nabla f(\mathbf{x}_t) \neq \mathbf{0}$ from now on.

Polyak Step Size

Polyak step size:
$$\eta_t = egin{cases} rac{f(\mathbf{x}_t) - f^\star}{\|
abla f(\mathbf{x}_t) \|^2}, &
abla f(\mathbf{x}_t)
eq \mathbf{0} \\ 1, &
abla f(\mathbf{x}_t) = \mathbf{0} \end{cases}$$

assume known f^* for a moment.

Boris T. Polyak 1935-now



Introduction to optimization

Boris T. Polyak

Optimization Software, Inc., 1987

Convergence

• With Polyak step size, we obtain the convergence results:

Theorem 1. Under the same assumptions with Lemma 1, assume the gradient of f is bounded by G, i.e., $\|\nabla f(\cdot)\| \leq G$. Let $\{\mathbf{x}_t\}_{t=1}^T$ be the sequence generated by the gradient descent method with Polyak step size and f^* be the optimal value. Then,

(i)
$$\|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2 \le \|\mathbf{x}_t - \mathbf{x}^*\|^2$$
.

(ii)
$$f(\mathbf{x}_t) \to f^*$$
 as $t \to \infty$.

Note: recall that *bounded gradients* condition implies *Lipschitz continuity*.

Convergence

Proof:
$$\|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2 \le \|\mathbf{x}_t - \mathbf{x}^*\|^2 - 2\eta_t (f(\mathbf{x}_t) - f^*) + \eta_t^2 \|\nabla f(\mathbf{x}_t)\|^2$$
 (the first GD lemma)

- Case 1: $\nabla f(\mathbf{x}_t) = \mathbf{0}$. By convexity, $f(\mathbf{x}_t) = f^* \Rightarrow \|\mathbf{x}_{t+1} \mathbf{x}^*\|^2 = \|\mathbf{x}_t \mathbf{x}^*\|^2$.
- Case 2: $\nabla f(\mathbf{x}_t) \neq \mathbf{0}$. Polyak's step size $\eta_t = \frac{f(\mathbf{x}_t) f^*}{\|\nabla f(\mathbf{x}_t)\|^2}$

(i) is proved.

Convergence

Proof: we can simply focus on the case of $\nabla f(\mathbf{x}_t) \neq \mathbf{0}$

$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} \le \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - \frac{(f(\mathbf{x}_{t}) - f^{\star})^{2}}{\|\nabla f(\mathbf{x}_{t})\|^{2}} \le \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - \frac{(f(\mathbf{x}_{t}) - f^{\star})^{2}}{G^{2}}$$

$$(\|\nabla f(\cdot)\| \le G)$$

Infinite summation is bounded by constants \rightarrow **convergent** series.

(ii) is proved.

Convergence Rate

• We can also derive the convergence rate.

Theorem 2. Under the same assumptions with Theorem 1. Let $\{\mathbf{x}_t\}_{t=1}^T$ be the sequence generated by the gradient descent method with Polyak step size and f^* be the optimal value. Define $\bar{\mathbf{x}}_T = \arg\min_{\{\mathbf{x}_t\}_{t=1}^T} f(\mathbf{x}_t)$, we have

$$f(\bar{\mathbf{x}}_T) - f^* \le \frac{G\|\mathbf{x}_1 - \mathbf{x}^*\|}{\sqrt{T}} = \mathcal{O}\left(\frac{1}{\sqrt{T}}\right).$$

Proof:
$$f(\bar{\mathbf{x}}_T) = \min_{\{\mathbf{x}_t\}_{t=1}^T} f(\mathbf{x}_t) \le f(\mathbf{x}_t)$$

$$\sum_{t=1}^T (f(\mathbf{x}_t) - f^*)^2 \le G^2 ||\mathbf{x}_1 - \mathbf{x}^*||^2$$

Part 3. Convergence without Optimal Value

• The Second Gradient Descent Lemma

Convergent Step Size

Convergence without Optimal Value

Step Size without Optimal Value

• Note that Polyak step size requires the optimal value f^*

Polyak step size:
$$\eta_t = \begin{cases} rac{f(\mathbf{x}_t) - f^\star}{\|\nabla f(\mathbf{x}_t)\|^2}, & \nabla f(\mathbf{x}_t)
eq \mathbf{0} \\ 1, & \nabla f(\mathbf{x}_t) = \mathbf{0} \end{cases}$$
 assume known f^\star for a moment

From now on, we try to design step sizes *without* the optimal value f^* .

The Second Gradient Descent Lemma

• A second version of gradient descent lemma

Lemma 2. Under the same assumptions as Theorem 1. Let $\{\mathbf{x}_t\}_{t=1}^T$ be the sequence generated by GD. Then we have

$$\sum_{t=1}^{T} \eta_t(f(\mathbf{x}_t) - f^*) \le \frac{1}{2} \|\mathbf{x}_1 - \mathbf{x}^*\|^2 + \frac{1}{2} \sum_{t=1}^{T} \eta_t^2 \|\nabla f(\mathbf{x}_t)\|^2.$$

Proof: The statement can be derived directly from the gradient descent lemma:

$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} \leq \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - 2\eta_{t}(f(\mathbf{x}_{t}) - f^{\star}) + \eta_{t}^{2}\|\nabla f(\mathbf{x}_{t})\|^{2}$$

$$\Rightarrow \eta_{t}(f(\mathbf{x}_{t}) - f^{\star}) \leq \frac{1}{2} \left(\|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2}\right) + \frac{1}{2}\eta_{t}^{2}\|\nabla f(\mathbf{x}_{t})\|^{2}$$

Convergence Result

• GD lemma implies the following convergence result.

Lemma 3. Under the same assumptions as Theorem 1. Let $\{\mathbf{x}_t\}_{t=1}^T$ be the sequence generated by GD. Define $\bar{\mathbf{x}}_T \triangleq \arg\min_{\{\mathbf{x}_t\}_{t=1}^T} f(\mathbf{x}_t)$ or $\bar{\mathbf{x}}_T \triangleq \sum_{t=1}^T \frac{\eta_t \mathbf{x}_t}{\sum_{t=1}^T \eta_t}$, we have

$$f(\bar{\mathbf{x}}_T) - f^* \le \frac{\|\mathbf{x}_1 - \mathbf{x}^*\|^2}{2\sum_{t=1}^T \eta_t} + \frac{\sum_{t=1}^T \eta_t^2 \|\nabla f(\mathbf{x}_t)\|^2}{2\sum_{t=1}^T \eta_t}.$$

Convergence Result

Proof:

• Case 1: $\bar{\mathbf{x}}_T = \arg\min_{\{\mathbf{x}_t\}_{t=1}^T} f(\mathbf{x}_t)$.

$$\sum_{t=1}^{T} \eta_t(f(\mathbf{x}_t) - f^*) \ge \left(\sum_{t=1}^{T} \eta_t\right) (f(\bar{\mathbf{x}}_T) - f^*). \quad (f(\bar{\mathbf{x}}_T) = \min_{\{\mathbf{x}_t\}_{t=1}^T} f(\mathbf{x}_t) \le f(\mathbf{x}_t))$$

Combining the above inequality with Lemma 2 (as restated below),

$$\sum_{t=1}^{T} \eta_t(f(\mathbf{x}_t) - f^*) \le \frac{1}{2} \|\mathbf{x}_1 - \mathbf{x}^*\|^2 + \frac{1}{2} \sum_{t=1}^{T} \eta_t^2 \|\nabla f(\mathbf{x}_t)\|^2,$$

we have completed the proof of the desired result:

$$f(\bar{\mathbf{x}}_T) - f^* \le \frac{\|\mathbf{x}_1 - \mathbf{x}^*\|^2}{2\sum_{t=1}^T \eta_t} + \frac{\sum_{t=1}^T \eta_t^2 \|\nabla f(\mathbf{x}_t)\|^2}{2\sum_{t=1}^T \eta_t}.$$

Convergence Result

Proof:

• Case 2: $\bar{\mathbf{x}}_T = \sum_{t=1}^T \frac{\eta_t \mathbf{x}_t}{\sum_{t=1}^T \eta_t}$.

$$\sum_{t=1}^{T} \eta_{t}(f(\mathbf{x}_{t}) - f^{*}) = \left(\sum_{t=1}^{T} \eta_{t}\right) \left(\sum_{t=1}^{T} \frac{\eta_{t}}{\sum_{t=1}^{T} \eta_{t}} f(\mathbf{x}_{t}) - f^{*}\right)$$

$$\geq \left(\sum_{t=1}^{T} \eta_{t}\right) \left(f\left(\sum_{t=1}^{T} \frac{\eta_{t} \mathbf{x}_{t}}{\sum_{t=1}^{T} \eta_{t}}\right) - f^{*}\right)$$
(Jensen's inequality)

Thus, we achieve the desired result:

$$f(\bar{\mathbf{x}}_T) - f^* \le \frac{\|\mathbf{x}_1 - \mathbf{x}^*\|^2}{2\sum_{t=1}^T \eta_t} + \frac{\sum_{t=1}^T \eta_t^2 \|\nabla f(\mathbf{x}_t)\|^2}{2\sum_{t=1}^T \eta_t}.$$

Convergent Step Size

Theorem 3. Under the same assumptions with Theorem 1. Let $\{\mathbf{x}_t\}_{t=1}^T$ be the sequence generated by the gradient descent method. If

$$\frac{\sum_{t=1}^{T} \eta_t^2}{\sum_{t=1}^{T} \eta_t} \to 0 \text{ as } T \to \infty,$$

then $f(\bar{\mathbf{x}}_T) \to f^*$ as $T \to \infty$.

Indeed, this structure appears in the second gradient descent lemma.

$$f(\bar{\mathbf{x}}_T) - f^* \le \frac{\|\mathbf{x}_1 - \mathbf{x}^*\|^2}{2\sum_{t=1}^T \eta_t} + \frac{\sum_{t=1}^T \eta_t^2 \|\nabla f(\bar{\mathbf{x}}_t)\|^2}{2\sum_{t=1}^T \eta_t} \le G^2$$

Thus, the condition $\frac{\sum_{t=1}^{T} \eta_t^2}{\sum_{t=1}^{T} \eta_t} \to 0$ naturally implies $\sum_{t=1}^{T} \eta_t \to \infty$.

Convergent Step Size

Theorem 3. Under the same assumptions with Theorem 1. Let $\{\mathbf{x}_t\}_{t=1}^T$ be the sequence generated by the gradient descent method. If

$$\frac{\sum_{t=1}^{T} \eta_t^2}{\sum_{t=1}^{T} \eta_t} \to 0 \text{ as } T \to \infty,$$

then $f(\bar{\mathbf{x}}_T) \to f^*$ as $T \to \infty$.

Examples:

- time-invariant step size: $\eta_t = \eta = \frac{1}{\sqrt{T}} \Rightarrow \frac{\sum_{t=1}^T \eta_t^2}{\sum_{t=1}^T \eta_t} = \frac{1}{\sqrt{T}} \to 0.$
- time-varying step sizes: $\eta_t = \frac{1}{\sqrt{t}} \Rightarrow \frac{\sum_{t=1}^T \eta_t^2}{\sum_{t=1}^T \eta_t} \approx \frac{\log T}{\sqrt{T}} \to 0.$

Convergence without Optimal Value

Theorem 4. Under the same assumptions with Theorem 1. Let $\{\mathbf{x}_t\}_{t=1}^T$ be the sequence generated by GD with step size

$$\eta_t = \frac{1}{\|\nabla f(\mathbf{x}_t)\| \sqrt{t}}.$$

Then

$$f(\bar{\mathbf{x}}_T) - f^* \le \frac{G(\|\mathbf{x}_1 - \mathbf{x}^*\|^2 + \log T + 1)}{2\sqrt{T}} = \mathcal{O}\left(\frac{\log T}{\sqrt{T}}\right),$$

where $\bar{\mathbf{x}}_T \triangleq \arg\min_{\{\mathbf{x}_t\}_{t=1}^T} f(\mathbf{x}_t)$ or $\bar{\mathbf{x}}_T \triangleq \sum_{t=1}^T \frac{\eta_t \mathbf{x}_t}{\sum_{t=1}^T \eta_t}$.

Convergence without Optimal Value

Proof:

$$\begin{split} f(\bar{\mathbf{x}}_{T}) - f^{\star} &\leq \frac{\|\mathbf{x}_{1} - \mathbf{x}^{\star}\|^{2}}{2\sum_{t=1}^{T} \eta_{t}} + \frac{\sum_{t=1}^{T} \eta_{t}^{2} \|\nabla f(\mathbf{x}_{t})\|^{2}}{2\sum_{t=1}^{T} \eta_{t}} & \text{(the second GD lemma)} \\ &\leq \frac{G\|\mathbf{x}_{1} - \mathbf{x}^{\star}\|^{2}}{2\sum_{t=1}^{T} \eta_{t} \|\nabla f(\mathbf{x}_{t})\|} + \frac{G\sum_{t=1}^{T} \eta_{t}^{2} \|\nabla f(\mathbf{x}_{t})\|^{2}}{2\sum_{t=1}^{T} \eta_{t} \|\nabla f(\mathbf{x}_{t})\|} & (\|\nabla f(\cdot)\| \leq G) \\ &\leq \frac{G\|\mathbf{x}_{1} - \mathbf{x}^{\star}\|^{2}}{2\sum_{t=1}^{T} \frac{1}{\sqrt{t}}} + \frac{G\sum_{t=1}^{T} \frac{1}{t}}{2\sum_{t=1}^{T} \frac{1}{\sqrt{t}}} & (\sum_{t=1}^{T} \frac{1}{t} \leq \log T + 1) \\ & (\sqrt{T} \leq \sum_{t=1}^{T} \frac{1}{\sqrt{t}} \leq 2\sqrt{T}) \end{split}$$

Thus,

$$f(\bar{\mathbf{x}}_T) - f^* \le \frac{G(\|\mathbf{x}_1 - \mathbf{x}^*\|^2 + \log T + 1)}{2\sqrt{T}} = \mathcal{O}\left(\frac{\log T}{\sqrt{T}}\right).$$

Part 4. Optimal in Convex and Lipschitz Case

ullet Optimal Result with Known T

• Optimal Result with Unknown ${\cal T}$

Towards Optimal Resolutions

Theorem 4. Under the same assumptions with Theorem 1. Let $\{\mathbf{x}_t\}_{t=1}^T$ be the sequence generated by GD with step size

$$\eta_t = \frac{1}{\|\nabla f(\mathbf{x}_t)\| \sqrt{t}}.$$

Then

$$f(\bar{\mathbf{x}}_T) - f^* \le \frac{G(\|\mathbf{x}_1 - \mathbf{x}^*\|^2 + \log T + 1)}{2\sqrt{T}} = \mathcal{O}\left(\frac{\log T}{\sqrt{T}}\right),$$

where $\bar{\mathbf{x}}_T \triangleq \arg\min_{\{\mathbf{x}_t\}_{t=1}^T} f(\mathbf{x}_t)$ or $\bar{\mathbf{x}}_T \triangleq \sum_{t=1}^T \frac{\eta_t \mathbf{x}_t}{\sum_{t=1}^T \eta_t}$.

Theorem 2. Under the same assumptions with Theorem 1. Let $\{\mathbf{x}_t\}_{t=1}^T$ be the sequence generated by the gradient descent method with Polyak step size and f^* be the optimal value. Define $\bar{\mathbf{x}}_T = \arg\min_{\{\mathbf{x}_t\}_{t=1}^T} f(\mathbf{x}_t)$, we have

$$f(\bar{\mathbf{x}}_T) - f^* \le \frac{G\|\mathbf{x}_1 - \mathbf{x}^*\|}{\sqrt{T}} = \mathcal{O}\left(\frac{1}{\sqrt{T}}\right).$$

with Polyak's step size (known f^*)

Remark: The last theorem gives an $\mathcal{O}(\log T/\sqrt{T})$ convergence rate. However, this rate is *worse* than the $\mathcal{O}(1/\sqrt{T})$ with Polyak step size.

We show that this can be improved with an additional assumption of *bounded domain*.

Optimal Result with Known T

Theorem 5. Under the same assumptions with Theorem 1, assume the feasible domain \mathcal{X} is bounded and convex with a diameter D > 0, that is, $\|\mathbf{x} - \mathbf{y}\|_2 \leq D$ holds for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$. Let $\{\mathbf{x}_t\}_{t=1}^T$ be the sequence generated by GD with step size

$$\eta_t = \frac{D}{G\sqrt{T}}.$$

Then

$$f(\bar{\mathbf{x}}_T) - f^* \le \frac{DG}{\sqrt{T}} = \mathcal{O}\left(\frac{1}{\sqrt{T}}\right),$$

where $\bar{\mathbf{x}}_T \triangleq \arg\min_{\{\mathbf{x}_t\}_{t=1}^T} f(\mathbf{x}_t)$ or $\bar{\mathbf{x}}_T \triangleq \frac{1}{T} \sum_{t=1}^T \mathbf{x}_t$.

Optimal Result with Known T

step size
$$\eta_t = \frac{D}{G\sqrt{T}}$$
 \Longrightarrow $f(\bar{\mathbf{x}}_T) - f^* \le \frac{DG}{\sqrt{T}} = \mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$ $\bar{\mathbf{x}}_T \triangleq \arg\min_{\{\mathbf{x}_t\}_{t=1}^T} f(\mathbf{x}_t) \text{ or } \bar{\mathbf{x}}_T \triangleq \frac{1}{T} \sum_{t=1}^T \mathbf{x}_t$

Proof: Plugging $\eta_t = \frac{D}{G\sqrt{T}}$ into

$$f(\bar{\mathbf{x}}_T) - f^* \le \frac{\|\mathbf{x}_1 - \mathbf{x}^*\|^2}{2\sum_{t=1}^T \eta_t} + \frac{\sum_{t=1}^T \eta_t^2 \|\nabla f(\mathbf{x}_t)\|^2}{2\sum_{t=1}^T \eta_t} \frac{(\|\mathbf{x}_1 - \mathbf{x}^*\| \le D)}{(\|\nabla f(\cdot)\| \le G)}$$

Notice that
$$\bar{\mathbf{x}}_T \triangleq \sum_{t=1}^T \frac{\eta_t \mathbf{x}_t}{\sum_{t=1}^T \eta_t} = \frac{1}{T} \sum_{t=1}^T \mathbf{x}_t$$
.

Optimal Result with Known T

step size
$$\eta_t = \frac{D}{G\sqrt{T}}$$
 \Longrightarrow $f(\bar{\mathbf{x}}_T) - f^* \le \frac{DG}{\sqrt{T}} = \mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$ $\bar{\mathbf{x}}_T \triangleq \arg\min_{\{\mathbf{x}_t\}_{t=1}^T} f(\mathbf{x}_t) \text{ or } \bar{\mathbf{x}}_T \triangleq \frac{1}{T} \sum_{t=1}^T \mathbf{x}_t$

- $\frac{DG}{\sqrt{T}}$ convergence rate is equivalent to $T = \frac{D^2G^2}{\varepsilon^2}$ complexity result to achieve $f(\bar{\mathbf{x}}_T) f^* \leq \varepsilon$.
- $\frac{DG}{\sqrt{T}}$ is already minimax optimal for convex and Lispchitz functions.
- This result needs to know the total round number T in advance.

not desirable in practice

Optimal Result with Unknown T

Theorem 6. Under the same assumptions with Theorem 1, assume the feasible domain \mathcal{X} is bounded and convex with a diameter D > 0, that is, $\|\mathbf{x} - \mathbf{y}\|_2 \leq D$ holds for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$. Let $\{\mathbf{x}_t\}_{t=1}^T$ be the sequence generated by GD with step size

$$\eta_t = \frac{D}{G\sqrt{t}}.$$

Then

$$f(\bar{\mathbf{x}}_T) - f^* \le \frac{DG}{\sqrt{T}} = \mathcal{O}\left(\frac{1}{\sqrt{T}}\right),$$

where $\bar{\mathbf{x}}_T \triangleq \arg\min_{\{\mathbf{x}_t\}_{t=\lceil T/2\rceil}^T} f(\mathbf{x}_t)$ or $\bar{\mathbf{x}}_T \triangleq \sum_{t=\lceil T/2\rceil}^T \frac{\eta_t \mathbf{x}_t}{\sum_{t=\lceil T/2\rceil}^T \eta_t}$.

Intuition: bounded domain requires $\|\mathbf{x}_t - \mathbf{x}^*\|$ (not just $\|\mathbf{x}_1 - \mathbf{x}^*\|$) to be bounded to avoid $\mathcal{O}(\log T)$ in the analysis.

Optimal Result with Unknown T

Proof: It is easy to extend the second GD lemma from t = 1, ..., T to $t = \lceil \frac{T}{2} \rceil, ..., T$:

$$f(\bar{\mathbf{x}}_T) - f^* \le \frac{\|\mathbf{x}_1 - \mathbf{x}^*\|^2}{2\sum_{t=1}^T \eta_t} + \frac{\sum_{t=1}^T \eta_t^2 \|\nabla f(\mathbf{x}_t)\|^2}{2\sum_{t=1}^T \eta_t}$$

$$\left(\sum_{t=\lceil\frac{T}{2}\rceil}^{T}\frac{1}{\sqrt{t}} \geq \frac{T}{2} \cdot \frac{1}{\sqrt{T}} = \frac{\sqrt{T}}{2}\right) \leq \frac{DG}{2} \underbrace{\sum_{t=\lceil\frac{T}{2}\rceil}^{T}\frac{1}{\sqrt{t}}}_{t=\lceil\frac{T}{2}\rceil} + \frac{DG}{2} \underbrace{\sum_{t=\lceil\frac{T}{2}\rceil}^{T}\frac{1}{\sqrt{t}}}_{t=\lceil\frac{T}{2}\rceil} \underbrace{\sum_{t=\lceil\frac{T}{2}\rceil}^{T}\frac{1}{\sqrt{t}}}_{t=\lceil\frac{T}{2}\rceil}}_{t=\lceil\frac{T}{2}\rceil} \underbrace{\sum_{t=\lceil\frac{T}{2}\rceil}^{T}\frac{1}{\sqrt{t}}}_{t=\lceil\frac{T}{2}\rceil}}_{t=\lceil\frac{T}{2}\rceil} \underbrace{\sum_{t=\lceil\frac{T}{2}\rceil}^{T}\frac{1}{\sqrt{t}}}_{t=\lceil\frac{T}{2}\rceil}}_{t=\lceil\frac{T}{2}\rceil}$$

$$\implies f(\bar{\mathbf{x}}_T) - f^* \le \frac{DG}{\sqrt{T}} = \mathcal{O}\left(\frac{1}{\sqrt{T}}\right).$$

Part 5. Strongly Convex and Lipschitz

Strong Convexity

Convergence Result

Theorem 7. Under the same assumptions with Theorem 1, except that f is σ -strongly-convex. Let $\{\mathbf{x}_t\}_{t=1}^T$ be the sequence generated by GD with step size

$$\eta_t = \frac{2}{\sigma(t+1)}.$$

Then (i)

$$f(\bar{\mathbf{x}}_T) - f^* \le \frac{2G^2}{\sigma(T+1)} = \mathcal{O}\left(\frac{1}{T}\right),$$

where $\bar{\mathbf{x}}_T \triangleq \arg\min_{\{\mathbf{x}_t\}_{t=1}^T} f(\mathbf{x}_t)$ or $\bar{\mathbf{x}}_T \triangleq \sum_{t=1}^T \frac{2t}{T(T+1)} \mathbf{x}_t$. And (ii)

$$\|\bar{\mathbf{x}}_T - \mathbf{x}^\star\| \le \frac{2G}{\sigma\sqrt{T+1}}.$$

Proof: we start by extending the first GD lemma to strongly convex case.

Strongly convex case:

$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} \leq \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - 2\eta_{t}\langle\nabla f(\mathbf{x}_{t}), \mathbf{x}_{t} - \mathbf{x}^{\star}\rangle + \eta_{t}^{2} \|\nabla f(\mathbf{x}_{t})\|^{2}$$

$$\leq \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - 2\eta_{t}\left(f(\mathbf{x}_{t}) - f^{\star} + \frac{\sigma}{2}\|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2}\right) + \eta_{t}^{2} \|\nabla f(\mathbf{x}_{t})\|^{2}$$

$$(Strong convexity: f(\mathbf{x}_{t}) - f(\mathbf{x}^{\star}) + \frac{\sigma}{2}\|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} \leq \langle\nabla f(\mathbf{x}_{t}), \mathbf{x}_{t} - \mathbf{x}^{\star}\rangle)$$

$$\leq (1 - \sigma\eta_{t}) \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - 2\eta_{t} (f(\mathbf{x}_{t}) - f^{\star}) + \eta_{t}^{2} \|\nabla f(\mathbf{x}_{t})\|^{2}$$

$$\Longrightarrow f(\mathbf{x}_{t}) - f^{\star} \leq \frac{\eta_{t}^{-1} - \sigma}{2} \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - \frac{\eta_{t}^{-1}}{2} \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} + \frac{\eta_{t}G^{2}}{2}$$

$$(rearranging)$$

$$f(\mathbf{x}_{t}) - f^{*} \leq \frac{\eta_{t}^{-1} - \sigma}{2} \|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2} - \frac{\eta_{t}^{-1}}{2} \|\mathbf{x}_{t+1} - \mathbf{x}^{*}\|^{2} + \frac{\eta_{t} G^{2}}{2}$$

$$= \frac{\sigma}{4} \left((t - 1) \|\mathbf{x}_{t} - \mathbf{x}^{*}\|^{2} - (t + 1) \|\mathbf{x}_{t+1} - \mathbf{x}^{*}\|^{2} \right) + \frac{G^{2}}{\sigma(t + 1)}$$

telescope now

$$\implies \sum_{t=1}^{T} t(f(\mathbf{x}_{t}) - f^{*}) \leq \frac{\sigma}{4} \left(0 \cdot 1 \cdot \|\mathbf{x}_{1} - \mathbf{x}^{*}\|^{2} - T(T+1) \|\mathbf{x}_{T+1} - \mathbf{x}^{*}\|^{2} \right) + \frac{G^{2}T}{\sigma} = \frac{G^{2}T}{\sigma}$$

Next step: relating $\sum_{t=1}^{T} t(f(\mathbf{x}_t) - f(\mathbf{x}^*))$ to $f(\bar{\mathbf{x}}_T) - f(\mathbf{x}^*)$.

Case 1:
$$\sum_{t=1}^{T} t(f(\mathbf{x}_t) - f^*) \ge \left(\sum_{t=1}^{T} t\right) (f(\bar{\mathbf{x}}_T) - f^*) = \frac{T(T+1)}{2} (f(\bar{\mathbf{x}}_T) - f^*)$$

Case 2:
$$\sum_{t=1}^{T} t(f(\mathbf{x}_t) - f^*) = \sum_{t=1}^{T} tf(\mathbf{x}_t) - \frac{T(T+1)}{2} f^* = \frac{T(T+1)}{2} \left(\sum_{t=1}^{T} \left(\frac{\underline{\mathbf{x}}_{t} - \underline{\mathbf{x}}_{t}}{\underline{\mathbf{x}}_{t}} \right) \right) f(\mathbf{x}_t) - f^* \right)$$

$$\geq \frac{T(T+1)}{2} (f(\bar{\mathbf{x}}_T) - f^*)$$

(Jensen's inequality)

(i) is proved. \Box

Proof: (ii) can be derived directly from (i) and strong convexity.

$$\frac{\sigma}{2} \|\bar{\mathbf{x}}_{T} - \mathbf{x}^{\star}\|^{2} \leq \langle \nabla f(\mathbf{x}^{\star}), \mathbf{x}^{\star} - \bar{\mathbf{x}}_{T} \rangle + \frac{\sigma}{2} \|\bar{\mathbf{x}}_{T} - \mathbf{x}^{\star}\|^{2} \leq f(\bar{\mathbf{x}}_{T}) - f^{\star} \leq \frac{2G^{2}}{\sigma(T+1)}$$
(first-order optimality condition: $\langle \nabla f(\mathbf{x}^{\star}), \mathbf{x}^{\star} - \mathbf{x} \rangle \geq 0$)

Thus, we prove that no matter for which constructions of $\bar{\mathbf{x}}_T$, it holds that

$$\|\bar{\mathbf{x}}_T - \mathbf{x}^\star\| \le \frac{2G}{\sigma\sqrt{T+1}}.$$

(ii) is proved. \Box

Summary

Table 1: A summary of convergence rates of GD method.

Function Family	Step Size	Output Sequence	Convergence Rate	Remark
convex and G -Lipschitz	$\eta_t = rac{f(\mathbf{x}_t) - f^\star}{\ abla f(\mathbf{x}_t)\ ^2}$	$\mathbf{\bar{x}}_T \triangleq rg \min_{\{\mathbf{x}_t\}_{t=1}^T} f(\mathbf{x}_t)$	$\mathcal{O}(1/\sqrt{T})$	optimal Polyak's step size require f^*, T
	$\eta_t = \frac{1}{\ \nabla f(\mathbf{x}_t)\ \sqrt{t}}$	$\bar{\mathbf{x}}_{T} \triangleq \arg\min_{\left\{\mathbf{x}_{t}\right\}_{t=1}^{T}} f(\mathbf{x}_{t})$ $\bar{\mathbf{x}}_{T} \triangleq \sum_{t=1}^{T} \frac{\eta_{t} \mathbf{x}_{t}}{\sum_{t=1}^{T} \eta_{t}}$	$\mathcal{O}(\log T/\sqrt{T})$	suboptimal
	$\eta_t = rac{D}{G\sqrt{T}}$	$\bar{\mathbf{x}}_{T} \triangleq \arg\min_{\substack{\{\mathbf{x}_{t}\}_{t=1}^{T} \\ \bar{\mathbf{x}}_{T}}} f(\mathbf{x}_{t})$ $\bar{\mathbf{x}}_{T} \triangleq \sum_{t=1}^{T} \frac{\eta_{t} \mathbf{x}_{t}}{\sum_{t=1}^{T} \eta_{t}}$	$\mathcal{O}(1/\sqrt{T})$	bounded domain require ${\cal T}$
	$\eta_t = rac{D}{G\sqrt{t}}$	$\bar{\mathbf{x}}_{T} \triangleq \arg\min_{\{\mathbf{x}_{t}\}_{t=\lceil T/2\rceil}^{T}} f(\mathbf{x}_{t})$ $\bar{\mathbf{x}}_{T} \triangleq \sum_{t=\lceil T/2\rceil}^{T} \frac{\eta_{t} \mathbf{x}_{t}}{\sum_{t=\lceil T/2\rceil}^{T} \eta_{t}}$	$\mathcal{O}(1/\sqrt{T})$	bounded domain
σ -strongly convex and G -Lipschitz	$\eta_t = \frac{2}{\sigma(t+1)}$	$\bar{\mathbf{x}}_T \triangleq \arg\min_{\{\mathbf{x}_t\}_{t=1}^T} f(\mathbf{x}_t)$ $\bar{\mathbf{x}}_T \triangleq \sum_{t=1}^T \frac{\eta_t \mathbf{x}_t}{\sum_{t=1}^T \eta_t}$	$\mathcal{O}(1/T)$	$\ ar{\mathbf{x}}_T - \mathbf{x}^\star\ $ is bounded

Summary

