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Part 1. GD for Smooth Optimization

* Smooth and Convex
* Smooth and Strongly Convex

e Extension to Constrained Case
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Overview

Table 1: A summary of convergence rates of GD for different function families,
where we use k 2 L /o to denote the condition number.

Function Family Step Size Output Sequence = Convergence Rate
D 2 1 N T
— = = 1/vT
G-Lipschitz COnYEX ! G\f X1 =7 2 1Xt O/VT) last lecture
o-strongly convex 1y = ;73 Zt . T(T +1) O(1/T)
1
convex n =+ XT = XT O(1/T
L-smooth g /1) this lecture

o-strongly convex 7 = =y XT = XT o (exp (—%))

For simplicity, we mostly focus on unconstrained domain, i.e., ¥ = R
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Convex and Smooth

Theorem 1. Suppose the function f : R% — R is convex and differentiable, and also
L-smooth. GD updates by x441 = x¢ — 1.V f(x¢) with step size ny = %, and then GD
enjoys the following convergence guarantee:

- 2L ||x1 — x*||

flxr) — ) < 22l =0 -o(7)

Note: we are working on unconstrained setting and using a fixed step size tuning.
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The First Gradient Descent Lemma

Lemma 1. Suppose that f is proper, closed and convex; the feasible domain X is
nonempty, closed and convex. Let {x;}]_, be the sequence generated by the gradi-
ent descent method, X* be the optimal set of the optimization problem and f* be the
optimal value. Then for any x* € X* andt > 0,

o1 — x*)° < e — x*|° = 2m(f(xe) = %) + 0 IV F (%) |1

Ty [ — 7V f(x)] — x¥||°

%, — 0.V f(x) — x*||?

;=7 = 2 (VF(xe), %0 —X%) + 07 [V F(x0)|
o — X |7 = 2m(f(xe) = f5) + 07 |V f (o))

Proof: |xi41 — x|

IA

VAN

[]
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Refined Result for Smooth Optimization

Proof: |x¢41 — X*HQ = |[Ilx[x: — n:V f(x4)] — X*HQ
< lxe — neV f (i) — x|

=[x — x| = 2m(V f (x4), %0 = X* )i S f (x0) |

< b — <7 = 2me(f (xe) = f*) + 0 IV f(x0) |

Lemma 2 (co-coercivity). Let f be convex and L-smooth over R:. Then for all
x,y € RY, one has

(VI(x)~ VI(y).x—y) > 7 [VF(x) - VI ()]
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Co-coercive Operator

Lemma 2 (co-coercivity). Let f be convex and L-smooth over R Then for all
x,y € RY, one has

(Vi) — Vi), x—¥) = V) - Vi)

Definition 1 (co-coercive operator). An operator C is called S-co-coercive (or
B-inverse-strongly monotone, for 5 > 0, if for any z,y € H,

(Cz — Cy,z —y) > B|Cz — Cy|*.

The co-coercive condition is relatively standard in operator splitting literature and variational inequalities.
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Smooth and Convex

Proof: |x¢41 — X*HQ = |[Ix[x: — n:V f(x:)] — X*HQ
< e = e VF(xe) — x|
= %, — x*||” = 20(V F(x2), %1 — XN + 02 |V £(x0) ||
2
< lxs - x| + (nt —ﬁ) IV F(x0)]°

exploiting coercivity of smoothness and unconstrained first-order optimality

(Vf(x0) %~ %) = (VF(x0) = V) %0~ %) > 7 [VFx) = VI = 7 IVFGx)]°

* |12 * || 2 t
= x| < b — x|+ (07 = ZE) IV (x|
* (12
< pee = x*[1° = 2 IV ()17

< HXt — X*H2 < HXl — X*H2 which already implies the convergence
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Smooth and Convex

Proof: Now, we consider the function-value level,

fxppn) = [(x7) = f(xeq1) — f(xe) + [(3x) — [(x7)

f(xep1) — f(xe)

= f(x¢ — V(%)) — f(x¢)

< (VF(xe) —meV f(x)) + S [V ()|

L
= (-n+ 502 Vsl

= —— IVl

= fxii) = 1) € ~5E IVFGI” + Fx0) — £ ()

one-step
improvement

Advanced Optimization (Fall 2022)
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Smooth and Convex

Proof: !
= Oxenn) = J) S —5E IVAEI + f () = ()

Next step: relating ||V f(x;)|| to function-value gap to form a telescoping structure.

Flxe) — F) < (V) %0 — x%) < VSl — x| = [V Fe)|? > L) ZIOO))

% — x|

:> f(Xt—|—1) - f(X*) < — (f(Xt) - f(X*)Q)Q

+ f(x¢) — f(x7)

< — (f(Xt) B f(X*>2)2 + f(Xt) o f(X*)
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Smooth and Convex

1
- 2L||x; — x*||2

Proof i) i) <

Define A; £ f(x;) — f(x*) and 3, £ 1

2L||x1—x*||?"

A 1 1
|:> At_|_1 < At — ﬁtA? = Bt : < —
B AV AV Ay

(f(xe) = F(X")* + flxe) = f(x¥)

T A A thl T A7 AT Ar
]2
1 ~ 2L ||x; —x¥|

:> ATé]%XT)_f(X*)S Z;F:—llﬁt o T—1
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Key Lemma for Smooth GD

* During the proof, we have obtained an important lemma for
smooth optimization.

L

f(Xe41) — f(xe) < (—7715 + 5”7?) IVf(xe)|I?  one-step improvement

Compare a similar result that holds for convex and Lipschitz functions.

Lemma 2. Under the same assumptions as Theorem 1. Let {x;}}_, be the sequence
generated by GD. Then we have

T 1 1 T
S m(fee) = £9) < slxa =% P+ 5 DRIV
t=1 t=1

average-iterated convergence vs last-iferated convergence

Advanced Optimization (Fall 2022) Lecture 5. Gradient Descent Method II

13



Key Lemma for Smooth GD

* One-step improvement for smooth GD under unconstrained setting.

Lemma 3 (one-step improvement). Suppose the function f : R% — R is convex
and differentiable, and also L-smooth. Consider the following unconstrained GD up-
date: x' = x — nV f(x). Then,

1) = 1) < (=0 + 37 ) IV GO

In particular, when choosing n = +, we have

1

F(x= 7 9I60) = 160 < =5 976l
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Smooth and Strongly Convex

* Recall the definition of strongly convex functions ( first-order version).

Definition 5 (Strong Convexity). A function f is o-strongly convex if, for any
x € dom(df),y € dom(f) and g € df(x),

F(y) 2 Fx) + (g.y = %) + S lly — x|
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Smooth and Strongly Convex

f is o-strongly convex f is L-smooth

FO) (V70 y =)+ 2 [x =y I3 F(y) < T+ (V7). y %) + 2 x—y3

f(x) +(Vf(x),y —x) + 5llx —¥|3

fy)
fx)+(Vf(x),y —x)+ Zllx - yl3

<
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Smooth and Strongly Convex

Theorem 2. Suppose the function f : R? — R is a—strongly—convex and differen-
tiable, and also L-smooth; and the feasible domain X C RYis compact and convex

with a diameter D > 0. Then, setting n, = + ——, GD satisfies
L A(T — 1) o T
_ < = _ _ — _
foxr) = 1) < G e (2= o - = 0 (e (1))

where k = L /o denotes the condition number of f.

Note: we are working on unconstrained setting and using a fixed step size tuning.
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Smooth and Strongly Convex

Proof: |[xip1 — x|

VAN

Xt — X*HQ — 21

M x; — 0V F(xs)] — x*||°
x; — 0V f(x) — x*||°

<vf(Xt)7 Xt — X*>

+ 02 V(x|

ol
o+ L

(Vi(x)=Vfy),x-y)=

Lemma 4 (co-coercivity of smooth and strongly convex function). Let f be L-
smooth and o-strongly convex on R%. Then for all x,y € R?, one has

1
x=yIP 4 V) = V)2
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Coercivity of Smooth and Strongly Convex Function

Lemma 4 (co-coercivity of smooth and strongly convex function). Let f be L-
smooth and o-strongly convex on R%. Then for all x,y € R?, one has

ol

(Vfx)-Vfly)x—-y)> p——

1
Ix —y|I* + H—LHVf(X) — Vi)

Proof : Define h(x) = f(x) — Z|x|*>. Then, h enjoys the following properties:
- his convex: by o-strong convexity (see previous lecture).

- his (L — o)-smooth. V*h(x) = V?f(x) —ocl < (L —0)I.

1 by co-coercivity o
:> <Vh(X) o Vh(Y)7 X = y> = L —o HVh(X) o Vh(Y) H2 s;fqooth and cgvv]e:xfunctions
Then, rearranging the terms finishes the proof. []
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Smooth and Strongly Convex

Proof: |[xip1 — x|

VAN

Ty [x; — 7V f(x)] — x*||°
I, — eV f () — x|
x, — x| 7 = 2V F (%), X — XN+ 02 |V F(x0)|)°

(1

2ns0 L )2 214 2
)b (o = 2 ) 195 )

- L+o L+
(Vf(xe),xe —x7) = (Vf(xe) = Vf(x"),x¢ —x7) > IV £ (xa)|I* + ko I — x*||”
t)s &t t ) g =T + o t L +o t
Iy — x| < (1= 3228 ) e — x| + (0 — 225 ) IV (=) |I°
:> t+1 — L+o t up L+o t
serving as the “one-step improvement” in the analysis
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Smooth and Strongly Convex

Proofs e — x| < (12257 ) e |7+ (7 = 285 ) IV S ()
T +

The step size configuration:

2nio L

(1) first, we need 1 — =

< 1 to ensure the contraction property;

(ii) second, we hope (17 — f—_’l’;) < 0, or it becomes 0 is enough.
2

- L+o

—> a feasible (simple) setting: 7, =17

2 2 o \? 2 1)\ y
= lxien =% ° < (1 - 725 ) I —x* 1= (£52) e = x|” = (52) I — 7]

2(T—1)
2 — 2 4(7T—1 2
= lxr - x| < (52)7 7 Ik - x )P < exp (-2 |fxi - x|
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Smooth and Strongly Convex

] 2(T—1) B
Proof: o — xt||2 < (=L 1 — x* |2 < exp LT )2
k+1 k+1

Next step: relating ||xr — x*||” to f(x7) — f(x*).

Flx) < FO¢) + (VA 30 =)+ 2 e = 2 = Fx) 4 5 e — 7

= floer) - fx') < L oexp (—‘“Z - 1”) i —x*[? = O (exp (—f)).
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Constrained Optimization

* A generalized one-step improvement lemma for smooth optimization.

Lemma 5. Suppose f is L-smooth. Let x,u € X, x;11 = Hx[xy — £V f(x¢)], and
g(x) = L(x — x441). Then the following holds true:

f(xe1) = flu) < (g(x¢), % — ) — %Hg(xt)HQ.

comparator u is introduced because now GD is not necessary “descent” due to the projection
- In unconstrained case, g(x;:) = V f(x:).

- In unconstrained case, setting u = x; recovers the one-step improvement:
f(xe1) = f(xe) < =52 IV (x|
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Constrained Optimization

Same convergence rates as unconstrained case can be obtained in
the constrained setting for smooth optimization.

Detailed proofs for constrained case are not
presented in our course. The proof follows the

same vein via some twists, we refer anyone
interested to the following parts in Bubeck’s book:

new

——=Eree o oo

 Constrained + smooth + convex: Section 3.2
Convex Optimization:

 Constrained + smooth + strongly convex: Section 3.4.2 Algorithms and Complexity
Sebastien Bubeck
Foundations and Trends in ML, 2015
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Lower Bound

Lower bounds reflect the difficulty of the problem, regardless of algorithmes.

notice: this lower bound only holds for first-order methods

Table 1: A summary of convergence rates of GD for different function families.
1

Function Family Convergence Rate Lower Bound Optimal?
O(1//T Q(1/vT
G-Lipschitz COnvex (V) (V)
o-strongly convex O(1/T) Q(1/T)
convex O(1/T) Q(1/T?) X
L-smooth . -
o-strongly convex O (exp (—%)) Q) (exp (— ﬁ)) X

—> GD is suboptimal in smooth convex optimization!

Advanced Optimization (Fall 2022) Lecture 5. Gradient Descent Method II 25



Part 2. Nesterov’s Accelerated GD
* Algorithm

* Smooth and Convex

* Smooth and Strongly Convex

Advanced Optimization (Fall 2022) Lecture 5. Gradient Descent Method II
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Nesterov’s Accelerated GD

1
Vit1 = X; — Evf(Xt)

Xt+1 = (1 — CVt)YtJrl + oy

- Define X1 —=Y1.
- ay < 01is a time-varying mixing rate of y, and y1.

- Xt41 = Y41+ (Ye—Ye+1) is an extrapolated point, i.e., with momentum.
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Nesterov’s Accelerated GD

* a momentum term is added to
iImprove convergence

Example

p
minimize log ¥ exp(alx + b;)

i=

° the descent property iS relaxed e two randomly generated problems with p = 2000, n = 1000
and nOt ensured nOW e same fixed step size used for gradient method and FISTA

o figures show (f(x(¥)) — %)/ f*

10°
107!
10—2 ] -2 | |
1073 -
1074 ] Bd: ]
10-5 7 -5 7
10750 100 150 200 107050 100 150 200
k k
Accel ar ate d GD Accelerated proximal gradient methods 7.9

https://www.seas.ucla.edu/~vandenbe/236C/lectures/fgrad.pdf
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Convergence of Nesterov’s Accelerated GD

Theorem 3. Let f be convex and L-smooth. Nesterov’s accelerated GD is configured

as
1
Yit+1 = Xt — va(xt)v Xi41 = (1 — ap)yer1 + auye,
1+\/1+4/\§_1 1\
where A\g = 0, \; = 5 Land o = At+1t' Then, we have
. 2L||x; — x*|? 1
flyr) — 7o) < PR o (1)
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Proof of AGD Convergence

Proof: first we prove the following generalized one-step improvement lemma.

Lemma 6. Foranyu € X, if x;11 = x¢ — 1V f(xy), then the following holds true:

f(xep1) = f(u) < (Vf(x), % —u) — %I!Vf(xt)\\z-

comparator u is introduced because now GD is not necessary “descent” due to the momentum

Setting u = x; recovers the one-step improvement used in earlier analysis.
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Generalized One-5Step Improvement

Lemma 6. Foranyu € X, if x;11 = x¢ — 7V f(xy), then the following holds true:

Floxen) = Flu) < (VF(x0), %0 — ) — o [V ()|

Setting u = x; recovers the one-step improvement used in earlier analysis.
Proof:
f(xeq1) = f(u) = f(xer1) — f(xe) + f(xe) = f(u)
L
< (Vf(xe), X1 = %) + 5 [[Xeq1 — xi||* +(V (%), % — )

1

= (Vf(x¢), X¢41 — 1) + 5T IV f (x¢) ||

= (Vf(x).x ) — o [ V£ (x)
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1
Proof of AGD Convergence | vui=x- 7%/

Xer1 = (1 — o) yeq1 + Qe

Proof: (continued proving Theorem 3)

Lemma 6. Foranyu € X, if x' = x — £V f(x), then the following holds true:

F) — f(m) < (V)% —w) = [V

(i) Plugging inu =y: f(yi1) — f(ye) S (VF(xe), %0 — ye) — 52 IV F(x0)]1%
(Vf(xe), % —x*) — 52 IV f(xe) |7

IA

(i) Plugging in u = x*: f(y¢+1) — f(x*)
LHS of (A, — 1)(i) + (if) equals:
(A = D(f(yer1) = F(ye) + f(yer1) = F(xF) = M(f(yeg1) — F(xF) = (A = D(f(ye) — f(x7))
Define 6; = f(y:) — f(x*), LHS = M1 — (M — 1)6; Goal: design a telescoping series
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1
Proof of AGD Convergence | vui=x- 7%/

Xer1 = (1 — o) yeq1 + Qe

Proof: (continued proving Theorem 3)
(i) Plugging inu =y:: f(yir1) — f(ye) < (VF(xe), %t = ye) — 52V (x0) |7
(i) Plugging inu = x": f(yit1) — f(x*) <AV F(xe), %0 —x*) = 5[V (x0)]1%.
RHS of (\; — 1)(i) + (i) equals:

= 1) (91603 = 9) = S IV SO ) + (V7Gx = x°) = 52197

= (Vf(xe), Mxe — (e — Dy — x*) — [V f(x0)|)°
That is
AiOgr1 — (A — 1)y < (Vf(xe), Aexg — (A¢ — D)y — X7) — 2)\—£HVJ"’(X75)H2
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1
Proof of AGD Convergence | vui=x- 7%/

Xer1 = (1 — o) yeq1 + Qe

Proof: (continued proving Theorem 3)

At
Aibirr = (A = 10 <V F(x0), Aexe = (e = Dy = x7) = o= IV (x|

= A=A (N — 1)8; < 21L (20 V f (x1), L(Aext — (Ar — D)ye — x)) — | AV F(x4)[]7)
Requirement (1): )\t()\t 1) =
= A0 1= 10 < ( (A Vf(Xt) L(Axe — (A = D)y — x%)) = [NV f(x0)]1%)

Denote by a = )\tVf(Xt), b £ L()\tXt — ()\t — 1)yt — X*).

1 1
= Abir1 = Aima0r < o= (2(a, b) = [1b]%) < o= ([[b]* — [b - a|*)
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1
Proof of AGD Convergence | vui=x- 7%/

Xer1 = (1 — o) yeq1 + Qe

Proof: (continued proving Theorem 3)

Denote by a = )\tVf(Xt), b =S L()\tXt — (>\t — 1)Yt — X*).

A6 — A2 6
1

< ﬁ(LQH)\txt — (A — Dy = x*]7 = [[L(Axe — (Ae — Dy — x*) = MV f(x0) )
L N . Vx|

— 9 (H)‘txt — (A =Dy —x H2 - | Axy — (A — 1)yr —x7 — Ay fl(; 2 )
L * |12 * || 2

= 5 (A = (= Dye = x 1 = [eyees = o = Dye = x")

Goal: design a telescoping series
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1
Proof of AGD Convergence | vui=x- v/

Xer1 = (1 — o) yeq1 + Qe

Proof: (continued proving Theorem 3)

L * *
Aiip1 — Ar_10e < = (| hexe — (A — Dy — X2 = [Ny — (A — Dy — x*|1%)
2

Requirement (2): \;yi11 — (M — 1)y = Mr1Xer1 — (A1 — 1)yera
L

AL0ip1—Af_10; < 5(HAtXt—()\t—l)Yt—X*HQ—!Mt+1xt+1 — (Aeg1 — Dy —x*%)
telescope
Define Zy = )\tXt — ()\t — ]-)Yt — x*
A28 — A2 5<£ 2 _ 2) = \2 5—>\25—£ 2 _ 2
t0r+1 — A10t < (|27 = [1Ze117) = Ap_107 = Ao = S (|27 — [lzr (1)
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1
Proof of AGD Convergence | vui=x- v/

Xer1 = (1 — o) yeq1 + Qe

Proof: (continued proving Theorem 3)

L
Ar—10r = Ao01 = 2 (lz]* = Jlzr )

Requirement (3): \og = 0

Lz,|* _ LfAixi — (A — Dys —x*|?
2)\%._, 2%,

L
Ar—10r < |z || = or <

Requirement (4): x; = y1

L LHZ1H2 L||x; — X*H2
Ao O < = 2 5 60 < —
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Theorem 3. Let f be convex and L-smooth. Nesterov's accelerated GD is configured
as

PrOOf Yi+1 = X¢ — %Vf(xt), Xe+1 = (1 — ) ye1 + ey,

where \g = 0, \y = %, and oy = 1}\:—;\5 Then, we have
Proof: (continued proving Theorem 3) Fom) — fo) < 2LHX1T < _, (Ti)
Requirement (1): \j(N\; — 1) = \2_
A\ 14+4/14+407_
t — 2
Requirement (2): \yyiy1 — (At — 1)y = Mp1Xer1 — (M1 — 1)yet1
Xt+1 = Yt+1 — {\:f (Yt = Yit+1) = ar = {\;/\f
Requirement (3): \op = 0
Requirement (4): x; = y1
2 * |2
1411402, t+1 L||x; — x*|| 2L||x1 — x*|| 1
— =N > — = i < < -0 = L]
At 2 =9 = aa o T2 T2
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Smooth and Strongly Convex

Theorem 4. Let f be o-strongly convex and L-smooth, then Nesterov’s accelerated
gradient descent:

V7 -1

VY +1

1
Yt4+1 — Xt — va(xt)v Xi+1 = Yt+1 T (Yt+1 — Yt)

satisfies

N o+ L 5 T
Flyr) = ) < T2 e =P esp (2 ).

where v = L /o denotes the condition number.

core technique: estimate sequence
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Smooth and Strongly Convex

* Proof sketch

Core technique: construct an estimate sequence
A 0-
C1(x) = flx1) + 5

Bir1(x) 2 (1= 0)i(x) + 0 (£lx0) + (T (x).x = x0) + 7 x = x4l

Ix = x|

The estimate sequence {®,};_, is required to satisify some nice properties:
(i) iq(x)— f(x) < (1—0)"(P(x)— f(x)) = approximate f well.
(ii) f(y:) < min,cpa P,(x) = useful when giving the convergence rate.

It can be proven that the above construction satisfies the two properties.
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Smooth and Strongly Convex

* Proof sketch

Core technique: construct an estimate sequence

D1(x) £ f(x1) + 5 x — x|

De41(x) 2 (L= 0)®e(x) +6 (f(xe) + (VF(xe), x = x0) + 2 x — x4 )

= (1=0)" (fx) + 5 x* =1 = £(x*))
< (04 L) |x* = x| exp(—01)
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Estimate Sequence

* Admittedly, how to construct estimate sequence is highly tricky

Foundations and Trends® i
Machine Learning
8:3-4

References:

Chapter 3.7

Zhouchen Lin
Huan Li
Cong Fan

Accelerated
Optimization

for Machine
Learnin

First-Order Algorithms

@ Springer

Chapter 2.1 M. Baes, Estimate sequence methods:

Estimate sequence methods:
extensions and approximations

Michel Baes*

August 11, 2009

Abstract

The approach of estimate seq n interesting g of a mimber of
‘mes proposed by Nesterov [Nes03), [Nes05), and [Nes06). It seems to us that thi fmmw\ork
is the most appropriate descriptive framework to develop an analysis of the s y of the
schemes to approximations.

We develop in this work a simple, self-contained,

d unified framework for the study of
estimate sequences, with which we can recover some accelerating scheme proposed by Nesterov,
notably the acceleration plmmlun. for constrained cubic regularization in convex optimization,
ion schemes of any order. We analyze carcfully
the sensitivity of those ulguullum to various types of approximations: pmm resolution of
. use of . or both, and draw some guidelines on the design

of further estimate sequence schemes.

and obtain

1 Introduction

The concept of estimate sequences was introduced by Nesterov in 1983 [Nes83] to define the provably
fastest gradient-type schemes for convex optimization. This concept, in spite of its conceptual
simplicity, has not attracted a lot of attention during the 20 first years of its existence. Some interest
for this concept resurrected in 2003, when Nesterov wrote his seminal paper on smoothing techniques
[Nes05]. Indeed. the optimization method Nesterov uses on a smoothed approximation of the
convex non-smooth objective function can be seen as an estimate sequence mef
sequence methods play a crucial role in further papers of Nesterov [Nes06, Nes07]. Auslender
and Teboulle [AT0G] managed to extend the estimate sequence method, stated in Section 2.2 of
[Nes03] for squared Euclidean norms as prox-functions, to general Bregman distances at the cost of
a supplementary technical assumption on the domain of these Bregman distances.

Several other papers propose generalizations of Nesterov's smoothing algorithm, and can be
interpreted in the light of the estimate sequence concept or sight geeralizations of it. For instance,

*M. Baes is with the Institute for Operations Rescarch, ETH, Riimistrasse 101, CH-8092 Ziirich. Switzerland. Part
of his work has been done while the author was at the Department of Electrical Enginceri

D-SISTA and the Optimization in Engincering Center OPTEC, Katholicke Univer
Arenberg 10, B-3001 Heverlee, Belgium. E-mail: Michel BaesGifor.math.ethz.ch

(ESAT), Research Group
teit Leuven, Kasteclpark

extensions and approximations.

Technical report, ETH, Ziirich (2009)
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References for Nesterov’s Accelerated GD

Nesterov’s four ideas (three acceleration methods):

* Y. Nesterov (1983), A method for solving a convex
programming problem with convergence rate O(1/k?)

* Y. Nesterov (1988), On an approach to the construction
of optimal methods of minimization of smooth convex
functions

* Y. Nesterov (2005), Smooth minimization of non-smooth

functions Yurii Nesterov
1956 —
* Y. Nesterov (2007), Gradient methods for minimizing UCLouvain, Belgium

composite objective function
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Nesterov, Y. (1983), A method of solving a convex programming problem with
convergence rate O(1/k?), Soviet Mathematics Doklady 27(2), 372-376.

Hoxa. Axan, Hayx CCCP
Tom 269 (1983). N3

A METHOD OF SOLVINC
A CONVEX PROGRAMMING PR{

WITH CONVERGENCE RATE O
uDnc si

YU. E. NESTEROV

1. In this note we propose a method of solving a conve)
Hilbert space E. Unlike the majority of convex programmi
this method constructs a minimizing sequence of points {
This property allows us to reduce the amount of computatio
At the same time, it is possible to obtain an estimate of col
improved for the class of problems under consideration (see

2. Consider first the problem of unconstrained minimizati
We will assume that f(x) belongs to the class C"'(E), i.e
L > 0such thatforallx, y € E

(1) [£Cx) = £l < Lllx = yll-
From (1) it follows that forall x, y € E
(2) () <f(x)+ (f(x), y — x)+0.5L]

To solve the problem min{ f(x)|x € E} with a nonempty.
the following method.
0) Select a point y, € E. Put

) k=0, ag=1, x, =y a,=|y—zI/}

where z is an arbitrary point in E, z # y; and f'(2) # f'( ).
1) kth iteration. a) Calculate the smallest index / = 0 for

(4) f(."A)‘f()'k = 2‘["‘;‘7‘//(,“))327' a
b) Put

X = o S ()

(5) a = 1+ 4ai +1) 2,

Pran = Xt (ay — Dy — x4

g
@ =2""a;_,,

The way in which the one-dimensional search (4) is halted
[2]. The difference is only that in (4) the subdivision in the
with a, _, (and not with 1 as in [2]). In view of this (see the pl
sequence {x, }7 is constructed by method (3)-(5), no more:
sions will be made. The recalculation of the points y, in (5)

1980 Mathematics Subject Classification. Primary 90C25.
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Let us also remark that method (3)(5) does not guarg
the sequences {x, )3 and {y, ).

THEOREM 1. Ler f(x) be a convex function in C

sequence {x, | is constructed by method (3)—(5), then
1) Forany k = 0;

(6) fx) —fr=c/(k

where C = 4L||y, — x*|* and f* = f(x*), x* € X*.
2) In order to achieve accuracy € with respect to the ﬂ
a) to compute the gradient of the objective function n
b) 1o evaluate the objective function no more than NI
Here and in what follows, |(-)[ is the integer part of
PROOF. Let y,(a) = y, — af’(y,). From (2) we obti

f() = f((a)) = 0.5a(2 —

Consequently, as soon as 2 'a; | becomes less than

and o, will not be further decreased. Thus a; = 0.5L 7

Let p, = (a;— 1)(x,—; — x;). Then p,,; — A
Consequently,

3 2
Xiwy T2 =l — x4 + 2a

+2”L»I"A\!</'(,“Ar|)~x

Using inequality (4) and the convexity of f(.x), we @

[Pier —

</’(.‘/k+\’~ ) S -“)3/’(XL+1) =/
0.5 1 s I < 1) = f(x, 4
7“;“(/"."1\-1

We substitute these two inequalities into the preceding

IPasr = %par + x*" =llpe — x4 + x*|" < 2(a
—2ap @y ( SOy —f*) + (“iu T a4
< 2ap 0441 (f(x0s) = ) + 2(afy,
=213 (f(x,) = f*) — 204y}, ( (X
< 2‘-‘&”3(/’(*1\) =f*) —2a, |”A1H(/(-"A«

Thus

20131 (f(x 1) — %) < 204 I“Eq(/(-ﬂu
<2aa,(f(x,) = 1) +lpy — x + 2

< 2apaj( f(x0) — f*) +llpo

It remains to observe thata, , | = a, + 0.5 > 1 + 0.5(

It follows from the estimate of the convergence ra

method (3)-(5) needs to achieve accuracy & will be ni
each iteration, one gradient and at least two values o

= xp +x*|" <[l 3
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be calculated. Let us remark, however, that to each addil
function corresponds a halving of a,. Therefore the total
not exceed Jlog,(2La_)[ + 1. This completes the proof ol

If the Lipschitz constant L is known for the gradient of
can take a; = L7 in the method (3)~(5) for any &k = 0. In
to hold, and therefore Theorem 1 remains valid
Il — x*Iy2L7e] —1 and NF = 0.

To conclude this section we will show how one may mx
the problem of minimizing a strictly convex function.

Assume that f(x) — f* = 0.5m||x — x*||* for all x € E
constant m is known.

We introduce the following halting rule in the method

¢) We stop when

(7 k =22/ (ma,) — 2.

Suppose that the halting has occurred in the N'th step-
(3)—(5), one has N < J4,/L/m|[ — 1. At the same time,

, ¥)12
< Ao~ =l

~ < 0.25m||y, — x*
ey (N +32)°

flxy) = f*

After the point x, has been obtained, it is necessary
begin calculating, by the method (3)~(5), (7). from the poi
As a result we obtain that after each |4,/L/m[ — 1 it
to the function decreases by a factor of 2. Thus the &
cannot be improved (up to a dimensionless constant) am¢
class of strictly convex functions in C"'(E) (see [1]).

3. Consider the following extremal problem:
®) min{ F(/(x)) | x € 0}

where Q is a convex closed set in £, F(u), with u € R™,
positive homogeneous of degree one, and faey = (filx
continuously differentiable functions on E. The set X
assumed to be nonempty. In addition to this, we will al
functions { F(-), f(+)} has the following property:
() If there exists a vector A € 3F(0) such that X*) < 0,
The notation dF(0) means the subdifferential of the fu
As is well known, the identity F(u) = max{(A, u)|A
tions that are positive homogeneous of degree one. Ther
the convexity of the function F( f(,\')) on all of E.
Problem (8) can be written in minimax form:

(9) min{max[(h‘f(.\‘))()\E'dF(O)

One can show that the fact that the set X* is nonemg
the existence of a saddle point (A*, x*) for problem (9).
of problem (9) can be written as 2% = A* X X*, where

A* = Argmax{¥(A)| A € 9F(0)}, Y(A) =

374

The problem
max{W¥(A)| A € 3F(0) N domW¥
will be called the problem dual to (8).
Suppose the functions f,(x), kK = 1,...,m, in problem (8
with constants L*) = 0. Let L = (L,..., L),
Consider the function

D(y, A, z) = F(f(y,z)) + 054

where

f(p:2) = (FNys 2)s--nf " y: X)),
Iy 2) =) +{S(»)z—y), B

and 4 is a positive constant. Let

®*(y, A) = min{®(y, 4,z)|z € 0}, T(y, A) = af
Observe that the mapping y — 7(y, @) is a natural generaliz
“gradient” mapping introduced in [1] in connection with th
minimizing functions of the form max, ..., fi(x). For the
as for the “gradient” mapping of [1]) we have
(10) ®*(y,A)+A(y—T(y,4),x—y)+054|y — T
forallx € Q,y € Eand 4 = 0, and if 4 = F(L), then
®*(y, A) = F(f(T(v, 4))).

To solve problem (8) we propose the following method.
0) Select a point y;, € E. Put

(1) B0 A= T By S Ay S
where Ly = (L., L{™), L = || fillyo) — filz M/ Yo —
inE,z#y,.

1) kth iteration. a) Calculate the smallest index i = 0 for
(12) O*( i 24, 1) = F(F(T( . 24,3

b) Put4, =24, |, x, = T(y,, A;) and

() apy = (14 4a + 1) 12,

Ve = %+ (= D)= 2, ,)

It is not hard to see that the method (3)—(5) is simply
method (11)—(13) for the unconstrained minimization problex
and Q = E in (8)).

THEOREM 2. If the sequence {x, )i is constructed by methot
assertions are true:
1) Forany k =0
F(f(x)) = F(f(x*) < C/ (k 4
where C, = 4F(L)|y, — x*||>, x* € X*.

2) To obtain accuracy € with respect

a) to solve an auxiliary problem min{®(y,, A, x)|x € Q} no more than

]v“(',/e:[ +Jmax{log,( F(L)/A_,).0}[

times,

b) to evaluate the collection of gradients f{( y),. .. .f,(y) no more than );C, /€| times, and
¢) to evaluate the vector-valued function f(x) at most

Z]N"(‘,'/r [+ ]mux{logl( F(L)/4 ,).U}[

times.

Theorem 2 is proved in essentially

use (10) instead of (2), while the analogue of «, f'( y,) will be the vector y, — Ty, 4,).
and the analogue of a, the values of A;'.
Just as in the method (3)-(5). Vin the method (11)-(13) one can take into account

information about the constant F( L)

F(f(x)) — m (for this, of course, we must have y, € Q).
In conclusion let us mention two important special cases of problem (8) in which the
auxiliary problem min{®( y,, 4, x)|x € Q} turns out to be rather simple.
a) Minimization of a smooth function on a simple set. By a simple set we understand a set
for which the projection operator can be written in explicit form. In this case m =

F(y) = y in problem (8), and
O*(y, A) = f(y) — 0547
in the method (11)-(13), where

T(y. ) = argmin{[ly —A7'f(y) 2] = € 0}
b) Unconstrainted minimization (in problem (8), Q = E). In this case the auxiliary
problem min{®( y, 4, x)|x € E} is equivalent to the following dual problem:

(14) mux-l -0.547"

|

3 N9
k=1

Here

T(y, A) =

7O+ 054 T(y, 4) =y + A7)

to the functional. one needs

the same way as Theorem 1. It is only necessary to

and the parameter of strict convexity of the function

1 and

+ 3 ML ()] (A, N2, om™) € OF(O)l
k=1

m

y—A" 3 X))

where the X(y), k= 1,.... m,

remark that the set 9F(0) is usu.

such cases problem (14) is the st
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YOK 51

10.E. HECTEPOB
METOI PEWEHMSA 3AIIAYM BHINYKJIOTO MPOI
CO CKOPOCTbI0 CXOIOMMOCTH O |

JIB.

1. B cramse mp aeTCA METON P 32
BaHHA B rwisbeproBoM mpoctpaHcTe E. B ommmume or Gon
700 MpoTp paHee, 3TOT M€
wmyo TIOCTIE HOBATENBHOCTS Tosex {Xk} % =0, KOTOpaA He ABN
0COBGEHHOCTh IO3BONAET CBECTH K MMHHMYMY BBIYMCITHTEN
ware. B 10 Xe Bpems 1A TaKOro MeTofa ynaercA monyd
cuarplmaeuou KJIacce 3a/iay OLIEHKY CKOPOCTH CXOIHMOCTH [d

P; 3amavy Ge3y:
(). Mu Oynmem npennonaran qr0 $yHKUMA f(X) mpuHAR
4T0 CymecTByer KoHcraTa L > 0, mis KoTopoi mpu BE
HEpaBEHCTBO

O M-I Lix -yl
W3 HepaseHctBa (1) cienyer, 9To npu Beex X, y €E
Q) f(W<FER)+H), y-x+0SLIy —xIP.

Iina pememvsa 3afaw min{f(x)| x € E'} ¢ HemycTsl
X" npepnaraeTca creAyiommii METON.
0) Boi6upaem Touky yo € E. ITonaraem

@) k=0, a=1, x,3=y5, @, =lyo—zI/If'(yo)
rhe z — mobasa Touka M3 E,z#Y, f'(z) # f'(o).

1) k-1 Utepauus.

2) BuuncisieM HauMeHs LM Homep i >0, 1A KOTOPoro
@ )~k =2 (N> 27 a1 (7

6) Monaraem

@ =270y, X =y — e (Vi)

(5)  ax+1=(1+ \/41& +1)/2,

Yi+1 =Xk + (@ — 1) (g — Xk 1) ag+1-

Cnocof mpephIBaHMA OIHOMEpDHOro Moucka (4) aR
xeHHOMy B [2]. Pasuuua muus 8 ToM, 10 B (4) IpoGnenue
H3BOJMTCA, HAWMHAA C & _; (2 He C efMHMuBL, Kak B [2])
TENBCTBO Teopembl 1) mpu nocrpoenun Merogom (3)—(5) 0

6ymer cnenano e Gonee O (log, L) Taxux npoGmenuii. Iepecy
BIIAETCA C MOMOLBI® “OBPaXHOro™ mara. OTMETHM Takxe, ¥

Baer M y6 ysicmm £(x) W .nocy
{Vxtk=o0-

Teopema 1. Hym 8bInyKAAR ¢ynxuux fix) €

76 { X k=0 P -0,

1) 0 awbozo k >0
©)  fex)—f"< Cfk+2),
20e C=4Lly,—x*1?, f*=f(x*), x*€X";
2) 048 QOCTUNEHUA TOYKOCTU € NO HYHKYUOKAAY He0B)
a) Tb 2p T ii yHKkyuu He 6onee NG
6) eblyucauts 3HaueHue yeneeoii FYHKyUU He
+ Jlogy(2Lay ) [ +1 pas.
3neck u manee ] () [ — uenas vacs wicna (-).
HoxasarenbcrBo. Ilyets yi(@) = yp — of' O
nonysaem f(yx) ~f(yx (@) > 0522 —aL) If'(y) I7. C:
2%y _y craHer Membwe, wem L~!, HepaBeHCTBO (4) BHINOI
yMeHbIaThes He GymyT. Takum o6pasoM, ay = 0,5L~! mns sce
OGosnawnm py = (@x — 1) (X—; — xi). Torma pg
+ @1 pe1 [ (Piv1) . Cnenosatenmsho, Npgiy — Xgup + X
+2@xe1 — Dorr S V1), P + 204010081 (F (Vier1)5 4
X' (prs)I?.
Tons3yscs HepaBeHCTBOM (4) M BBITYKIJIOCTBIO (yHKIMI
LDk Vs =X fei) =7 +0,5a4, 17'(3
0,541 1 f'(Yiea )N < f(View1) = Fxi1) < fxe) =)
— a4y ' (Vies1), PR
TlozcTaBuM 3TH [1Ba HePaBEHCTBA B IIPEIbIAYILEE PaBEHC!
Ipks1 = Xpag +x* 02 = Ipy —xp +x*12 < 2(ap4y — 1
2541011 (fGicar =)+ @hay — s1)0G 0y 1)
< 244410541 (FXs1) =) + 284y — airr)aesr (
= 205414y (f(xi) —f") = 2041841 (fGks1) =) S
- 2ak+laz+1(f(xk+l) -r).
Taxum o6pazom,
20500184 (fhr1) =) < 200018 (FCrrr) — 7

+1Psess — Xiar +x° 12 < 2a0,(F i) —F*) + I py

< 200a3(f(xo) = f*) + Ipo—xo+x* 12 < lyg—x*1I2

OCTanoch 3aMeTHTh, UTO dy4+q >ax +05>1+05(k+1).

U3 OleHKH CKOPOCTH CXOMHMOCTH (6) cremyer, 4ro 4
Moe Merony (3)—(5) miA DOCTHXEHHUs TOUHOCTH €, He Gymert |
TIpu 3TOM Ha Kaxmoi | MTepauH GyneT BBIMMCIATECA OJMH T'Di
mBa oy 3aMeTHM, OIHAKO, YTO Kd
; #i YHKIMM COOTBETCTBYeET Y
BaBoe. [losToMy obluee WACNO TAaKMX BBIYMCIEHHH He NpeB3(

Teopema oKa3aHa.

Ecnmu s rpagMeHTa neneBod (QyHKIMH H3BECTHa KO
mertone (3)—(5) Moxwo nonoxmts ax = L~ mpu mobom k
BeHCTBO (4) Oymer 3aBeloMO BBHINOJHEHO M IO3TOMY yTBE]
HyTes Bepusiu ipn C=2L1yo — x*I2, NG =]y, — x*I3/21
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B 3akmoueHHe 3TOrO pasfena NMOKaXeM, KaKk MOXI
(3)—(5) msp 3a7auwm CHIIBHO BBITYKJI|
Tpenmonoxum, uro mwis GyHKwu f(x) mpH Beex x €
f&x) —f*>0,5mlx — x*I*,rae m >0, u mycTs KOHCTaHTa 7t
BeepeM B Metop (3) —(5) cnenyromee MpaBuIIo Mpepsl
B) OcTaHaBNMBaeMCs, €CIH

7 k= 2V2[(moy) —2.
Tycts npepsianme mpou3ounio Ha N-m mare. Tak Ki
>0,5L7", 10 N< J4v/L/m[ —1. B 10 e Bpems

2lyo—x*I2
fopy) =" < ———eir
G ay(V +2)?
Iocne Toro Kax MONMydYeHa TOYKa Xy, Heo6xomumo O
wath cueT MeToftoM (3) —(5), (7) U3 TOUKH X, KaK U3 Hauaslbk
B pesynsrate monyuaem, uto 3a Kaxmpie |4+/L/m|
yHkuum y6pisaer Basoe. Takum obpasom, meron (3)—(5)
€TCsl HeyNyuliaeMbIM (C TOUHOCTbI0 IO Ge3pa3MepHOH KOHC!
BOTO MIOPSAMKA Ha KITACCe CHITHHO BHIMYKIbIX GyHKUKi 13 C'>!
3. PaccMoTpuM crieflyionlyo 3KCTpeMalbHYI0 3a7iauy :
® min{F(f ()l x€0},
e Q — BBIMyKNOE 3aMKHYTOe MHOXecTBO H3 E, F (u), u €
R™  NONOXWTENBHO-ONHOPOAHAA CTeTIeHH eTHHHIA (QYHKIMA
.., fm(¥)) — BeKTOp BBIIYK/BIX HernpepsiBHO muddeper
MHoxectBo X* pewtenmii 3amaw (8). BCerna npeanonaraen
Mbl Beerga Gymem mpepnonarath, 4To cucTema (yHKumi §
IYIOLMM CBOMCTBOM:
(*) Ecnu cymectsyet Bextop A € 3F (0) Takoi, ¥n
HeiiHasAg QYHKIMA.
Yepes 0F (0) B (*) o6o3HaueH cyommbdeperunan GpyH
Kak HM3BeCTHO, WIS BBITYKJIBIX INONOXHTENTbHO-OMH
byHKIMil cripaBeMBO ToXmecTBO F (1) = max{(\, uw)| 1
TIpeTIoNoXeHUs (*) ClefyeT BbIMyKAoCTh GyHKuMH F ( f (x)
3apauy (8) MOXHO 3amucaTh B MHHEMaKCHOH popme:
) minfmax{{\, £ (x))| AEIF(0)}| x € Q}.

MOXHO NMOKa3aTh, UTO 3 HEMyCTOTHI MHOXeCTBa X~ M Mpell
wecTBoBanue y 3amawi (9) cemnosoit Touxn (', x*). Ilog
Touex 3agaun (9) mpencrasumo B Buge 2° = A* X X, rg
€ 9F(0)}, ¥(\) =min{(, f/(x)| x € Q}. 3apauy

max {W(A)| A€ 3F(0) N dom W (-)}.

< 025mlly,—x*I12< 0

Mblﬁy}leMHaBblBaTb 33)18‘{8“ JIBDHCTBCHHOH K (
IMycrs B 3apave (8) dyHkwmm fi (x), k= 1,2,.
CHY(E) ¢ xoucrantamu L (¥ > 0. OGossawnm L = (L“) L(

Paccmotpum dyrkumio O (p, 4, z) = F (f(y, 2)) +(
=0, 2, /P2, N, 2), 10,2 =hid

.., M, A — NONIOXHKTENbHAS KOHCTaHTa. O603HAWMM
O (py,A)=min{d(y,4,2)| zEQ}, T(y,A)=ag

3.174

OrmetuM, uto orobpaxenue y > T(y, A) sABasercs ecrec

3a7iaun (8) “’rpaMEHTHOr0” OTOGpaXKeHWs, BBEAEHHOro B [1

METOIOB MMHMMHM3alMH OYHKIMHA BHia max fi (x). s
1<k<m

(xax u U1 ’rpagMeHTHOro” otoGpaxenus” u3 [1]) npu Bce
TIOJIHSAETCA HEPaBEHCTBO

(10) ®°(y,A)+Aly —T(y, A),x - +0,54ly — T(y, A
npuuem ecni A > F(L), 0
0'(y, A)2F(F(T(r.4))).

Ilns peuenus 3anauy ‘(8) mpeiaraeTcA CreNyIOMMA M¢
0) Bribupaem Touxy yoe E. Tlonaraem

A1) k=0, ao=1, x4=yo, A,=F(L),

rre Lo=(L§", L, .. L(”’) L8 = 1 £ yo) - FrWI
Touka u3 E,z#y,.

1) k-1 Utepauus.

a) Borumcnsiem HammeHbumit Homep i > 0, oA K
PaBEHCTBO

(12) O*(yk, 24k 1) > F(F(T(yi, 24k 1))

6) MonaraeM A =24y _y, Xz = T(yx, Ax),

Gy =(1+VAaL +1)/2,

Yieer =Xk ¥ @k — 1) (k= Xg_1)/ag41-

HerpymHo 3ameruts, uro metom (3)—(5) sBnserc
samiucu Merona (11)—(13) mna 3amaum Ge3yCTOBHOH MHHH|
m=1, F(y)=y, Q=E).

Teopema 2. Ecau nocaedosareabhocts {xkl k=0
(13),r0:

1) 0aa aw6ozo k > 0 F(f(x)) — F(F(*))
=4F(L)lyo—x*1?, x*€X*.

2) 048:00CTUNEHUR TOYHOCTU € NO PYHKYUOHANY HeOB

a) PewuTs 8CNOMO2ATEAbHYIO 3a0ayy min{®(yy, «
1V/Ci/el +] maxtlog, (F(L)/A_,),04[ pas,

6) ebluucauts Habop 2paduerTos
WC. /e[ pas,

B) abiuucauts sextop-Fyniyuio f (x) ne 6oaee 2]/Cy|
0y[ pas.

Teopema 2 moxa3biBaeTCs MPAKTHYECKH TAK XKe, KAK
TONBKO BMECTO HepaBeHCTBAa (2) HMCNONB30BaTh HepaBeHCTBC
BekTOpa 0y f'(yi) Gymer Bextop ¥y — T(Vk, Ax), a anal

TouHo Tak e, kak u B merone (3)—(5), B Merone
HHpOPMaLHIo 0 KOHCTaHTe F (L) M mapaMeTpe CHIbHOM BbINY]
—m (s 3T0TO, MpaBAa, He06XOMMMO, 4To6H Yo € 0) .

B 3aKyoueHME OTMETHM JIBa BaXKHBIX YacTHBIX CITY®
BCnomorarenbHas 3amava min{®@(y, 4, x)| x € Q } oxassnl

a) MMHHMM3AUMA I7aJKOH BBUIYKIIOH (YHKUMH Ha
IPOCTHIM MHOXECTBOM MbI [IOHMMaeM TaKO€ 'MHOXECTBO, /I
eKTHPOBAHMA 3alHCHIBAETCA B ABHOM BHAE. B 3TOM cnyuae B

13)

THEONEHE)!

546

u B meroe (11)—(13)
0" (3, A)=f(y) =054 If' (PI*+0SAIT(y, A) —y + A7 f (NI,
rne T(y, A)=argmin{ly - A7'f'(y) —zI|z€Q}.
6) BesycrnosHas munumuzamms (B 3ajave (8) Q = F). B 310M Ciyyae BCIOMO-

ratenbHas 3amava min{®(y, 4, x)| x € E} jKkBMBaNeHTHa Ciedyloued NBOHCTBEH-
HOWM 3ajiaye:

m m
a4 max{_o,SA-' “ b x<’<)f;(y)uz+ T AR5 ) QWA Ay
k=1 k=1
€ aF(O)}.
m
Tpu stom T(y, A)=y - A7 £ ABG) (), tne N® (), k = 1,2,..., m, — pe-
k=1

wenns 3agaw (14) npu ¢uxcupoBaHHoMm y € E. Otmerum, uro MHOoxectBo 9F (0)
06BIYHO 3a7aeTCs MPOCTBIMH Orpal - i 6o KBafpaTHYHbIMU. B Ta-
KuX Crmyyasx 3ajaua (14) — cTaHOapTHas 3ajaya KBaJpaTHYHOIO NMPOrPaMMHUPOBAHHA.

AsBTop uckpeHHe mpu3HateneH A.C. HemupoBckoMy 3a Geceqibl, KOTOpbIE CTHMY-
JIMPOBAIH €70 HHTEPEC K PACCMOTPEHHBIM BONPOCAM.

LIeHTPaTbHBIA IKOHOMHKO-MaTeMaTHYeCKHA HHCTHTYT
Axapemuu Hayk CCCP, Mocksa

Toctynuno
19 VI 1982

JINTEPATYPA

1. Hemuposckuii A.C., 0our A.5. Cn 3a1a4 ¥ MeTO[IOB ONTHMH3a-

wn. M.: Hayka, 1979. 2. Huwenuwnoiii B5.H., Jarkuaun 10.M. MeTofIbl B P X
3apavax. M.: Hayka, 1975.
YIK 515.1 MATEMATHUKA
E.H. HOYKA
K TEOPHUHU MEPOMOP®HBIX KPHUBBIX
(Ipeo B.C. 18 vV 1982)

1. Tycts 3anaHa MepoMopdHas KpuBas, T.e. MepoMopdHOe 0TobpaXxKeHHe

£ c-cp,
H IyCTb TONIOMOpGHOE 0TOGpaXKeHHe
i C>C™Y =, fae s fas1)s -
ABNAETCA PENyLHP NeHHeM KpuBoH [, XapakTepuCTHUeCKyl yHK-

o f ompemenm, cetys A. Kapmly [1]:

~ 1 .
T, r) = o J loglf(re™) > dy — log|f(0)|2.
0
Mycts A — runepwiockocts B CP” M @ — eIMHUUHBIA BEKTOp TaKOH, YTO paBeH-
ctBo (W, @)=0 (ckobGKu 0GO3HaYalT IPMHTOBO CKAIAPHOE NPOM3BEEHHE) eCTh ypaB-
HEHMe T OCTH A B OJHOP KC Tax; 0603HawmM f4 = (f, a).
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More Explanations for Nesterov’'s AGD

* Ordinary Differentiable Equations

* Su, W, Boyd, S., & Candes, E. (2014). A differential equation for modeling Nesterov’s
accelerated gradient method: theory and insights. Advances in neural information

processing systems 27 (NIPS).

 Berthier, R., Bach, F., Flammarion, N., Gaillard, P., & Taylor, A. (2021). A continuized
view on Nesterov acceleration. arXiv preprint arXiv:2102.06035.

* Variational Analysis

* Wibisono, A., Wilson, A. C,, & Jordan, M. I. (2016). A variational perspective on
accelerated methods in optimization. Proceedings of the National Academy of
Sciences (PNAS), 113(47), E7351-E7358.

* Linear Coupling of GD and MD

* Allen-Zhu, Z., & Orecchia, L. (2017). Linear coupling: An ultimate unification of

gradient and mirror descent. The 8th Innovations in Theoretical Computer Science
Conference (ITCS).
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Part 3. Extension to Composite Optimization

* Composite Optimization
* Proximal Gradient Method (PG)
* Accelerated Proximal Gradient Method (APG)

* Application to LASSO
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Composite Optimization
* Problem setup

min F(x) £ f(x) + h(x)

xERd

where f is smooth (namely, gradient Lipschitz) while h is not smooth.

* The composite optimization problem is common in practice.

Example 1. The objective of LASSO: F(w) = 5 HWTX — sz + A ||w||;, where
X = [Xla'“)XnLy — [y17'°'7yn]—r-
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Recall Non-composite Optimization

e Consider miny f(x), and assume f is L-smooth.

By smoothness: f(x) < f(y) +(Vf(y).x —y) + gHX — vyl

"V a

2 Q(x;y) surrogate objective

—> to minimize f(x), it suffices to minimize the surrogate objective Q(x;y).

Claim. GD for smooth functions can be equivalently represented by

. 1
X141 = argmin Q(x;x;) = Il » [Xt — Zvﬂxt)] ;
xeX

f(xt) + (Vf(x4),x — x¢) + Z|x — x¢||? is a quadratic upper bound of f at x;.
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Another View of GD Method

Claim. GD for smooth functions can be equivalently represented by

_ 1
X1 = argmin Q(x;x;) = Il x [Xt - va(xt)] )
xeX

where Q(x;x;) £ f(x:) + (Vf(x¢),x — xt) + Z||x — x¢||? is a quadratic upper bound of f at x;.

Proof:
: . L
X411 = arg min ()(x; x;) = arg min {(Vf(xt),x> + §HXH2 — L<X,Xt>}
xeX xeX
(L 1 ,
= arf;eril(m {5 <—2<Xt - va(xt):x> + ||| )}
L 1 ? 1 1
= argmin — ||x — [ x; — =V f(x}) =argmin ||x — [ x; — =V f(xs) ||| =x |x: — =V [f(x¢)
xex 2 L xEX L L

[]
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Another View of GD Method

Claim. GD for smooth functions can be equivalently represented by

_ 1
X1 = argmin Q(x;x;) = Il x [Xt - va(xt)] )
xeX

where Q(x;x;) £ f(x:) + (Vf(x¢),x — xt) + Z||x — x¢||? is a quadratic upper bound of f at x;.

: . L
X;11 = arg min Q(X;x;) = arg min {f(xt) + (Vf(x¢),x — x¢)|+ §HX — XtHZ}
xXeX XeEX

linear approximation of f at x; prevent x; from getting too far
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Composite Optimization

* Problem setup

min F(x) £ f(x) + h(x)

xERd

where f is smooth (namely, gradient Lipschitz) while h is not smooth.

An idea:

Following previous argument (for non-composite optimization), to minimize
F £ f + h, it suffices to minimize

QUxixe) 2 f(xi) + (Vf(x).x —x0) + 5 [ — x| +h()
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Formulation

By smoothness: f(x) < f(y) +(Vf(y),x—y) + gHX —yl|?

J/

N

2q(x;y)
—> tominimize F'(x) = f(x)+h(x), it suffices to minimize

-

L
arg}l{fninQ(X; y) = argmin < f(y) +(Vf(y),x—y) + 5 |x —

X \
P

surrogate objective

Q(x;y) = q(x;y)+h(x),

v+ o) |

— argmin { (V£(3),%) + 5 Ix]? - Lix.y) + b |

X \

L

~ argmin | & (—2<y ~ Vf(Y),x> + ||x||2> + h(x)}

x 2
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Composite Optimization

By smoothness: f(x) < f(y) +(Vf(y),x—y) + gHX —yl|?

4

N

Zq(x;y)

—> tominimize F'(x) = f(x)+h(x), it suffices to minimize

L

X

surrogate objective

Q(x;y) = q(x;y)+h(x),

= |arg min <
X

arg}lcmin Q(x;y) = argmin < g (—2<y — Vf(y)7x> + HX||2) + h(X)}
L
2

+ h(x)}

)

an operator is defined for this (sub-)optimization problem
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Composite Optimization

* [teratively solve the surrogate optimization problem.

Deploying the following update rule:

x — <xt - %Vf(xt)> L h(x)}

. , L
X;11 = arg min QQ(X; X;) = arg min 5
xERA xER4

Definition 2 (proximal mapping). Given a function i : R% — R, the proximal
mapping (or called proximal operator) ot h is the operator given by

1
prox; (x) £ arg min {h(u) + 5 |x — uHQ} for any x € R%.
uceRd
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Proximal Gradient

Definition 2 (proximal mapping). Given a function i : RY — R, the proximal
mapping (or called proximal operator) of h is the operator given by

1
prox, (x) = arg min {h(u) + 5 lu — XH2} for any x € R,
ucRd

Proximal Gradient Method.
1
Xty1 = Pﬁ(Xt) L pI‘OX%h (Xt — sz(Xt))

= arg min {gHX — (xt — %Vf(xﬂ) H2 + h(x)} .

xcRd
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Proximal Gradient

Proximal Gradient Method.
1
Xt+1 — Pl}f(xt) =S pI‘OX%h (Xt — ZVf(Xt)>

= arg min {gHX — (Xt — %Vf(xt)) H2 + h(X)} .

xERd

- In LASSO, where h(x) = ||x||1, P} is easy to compute and has closed
form solution.

- Algorithmically, PG induces famous algorithms for solving LASSO problem,
which are called ISTA (GD-type) and FISTA (Nesterov’'s AGD-type).

Advanced Optimization (Fall 2022) Lecture 5. Gradient Descent Method II 57



Convergence of Proximal Gradient

Smooth Optimization

problem: min f(x)
xER4

assumption: f is L-smooth

Convergence: f(x7) — f(x*) <O (—

1
GD: Xi41 =Xt — va(xt)

1
T

)

Smooth Composite Optimization

problem: min F(x) £ f(x) + h(x)

x€cR4
assumption: fis L-smooth, h not

PG: Xi41 = Pﬁ(xt)

Convergence: F(xr)— F(x*) <7
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Convergence of Proximal Gradient

Theorem 5. Suppose that f and h are convex and f is L-smooth. Setting the param-
eters properly, Proximal Gradient (PG) enjoys

* L”XO_X*HQ L 1
F(xr) — F(x") < 2T 1) _O(f>

Proximal gradient can also achieve an O (1/7") convergence rate, which is the
same as the non-composite optimization counterpart.

The result can be further boosted to O (exp(—71/k)) when the function f is
o-strongly convex (wWhere xk = L /o is the condition number).
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Convergence of Proximal Gradient

e Generalized one-step improvement lemmaon F = f + h

Lemma 7. Suppose that f and h are convex and f is L-smooth. Let x;,1 = P} (x;)
and g(x) = L(x — X¢y1). Then foranyu € X,

Flxi1) — F(u) < {g(x). % — ) — o [lg(x)

Suppose the above lemma holds for a moment, we now prove the O(1/7") con-
vergence rate of PG.
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Proof of PG Convergence

Proof Leme 7, Sppos i b oo Lo = ()
Setting u = x* in Lemma 7: F(x¢41) — F(u) < (g(x¢),x; —u) — %Hg(xt)Hz.
Flxi1) = F(x*) < (g0x0), %0 = x*) = 59|
—> F(xi41) — F(x*) < L(xt — X¢11,X¢ — X)) — g\ Xt — X¢i1| 2
= S (20x¢ — xe1, %0 — X*) — [I%¢ = %41 %)

= Y F(xe) = (T = DF(x*) < lxo — x*||?
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Proof of PG Convergence

Proof:

T—1 L||xo—x*||?
> Y Fxi) — F(x*) < 2o

which already gives an O(1/T) convergence rate of X7 = + ZtT:l Xt

What we want: F(xp) — F(x*)

Next step: analyzing F(xr) — —— Z:ll F(xy).

Setting u = x; in Lemma 7: F(x¢41) — F(x:) < —55]|g(x¢)[]* < 0.
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Proof of PG Convergence

Proof:
What we want: F(xr)—F (x*) = Next step: analyzing F(x7)—+— Zf;f F(xy).
T—1
Y H(F(xi41) — Z t(F(Xet1) x¢)) + F(x¢) — F(x¢)
t=1
Tr—-1 T-1
- Z LR (xpe1) — (t — 1) F(x )) ~ N F(x) = (T = DF(xr) = Y F(x) <0
t=1 t=1
What we have:
- F(x7) — mig 30 F(x) <0 Llixa — x*2
T—1 t=1 2 :> F(XT) . F(X*> S H;E% Xl)H
- T Y F(x) — F(xr) < 2o =
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Proof of One-Step Improvement Lemma

Lemma 7. Suppose that f and h are convex and f is L-smooth. Let x;,1 = P/ (x;)
and g(x;) = L(x; — X¢11). Then forany u € X,

Flxi1) — F(u) < {g(x). % ) — o= lg(x)|*

Proof: What we have: F(x) < Q(x;y) foranyy € X = F(x;41) — F(u) < Q(x¢11;%¢) — F(u)
analyzing this quantity

{F(U) = f(u)+h(u) > T +(Vf(xt), u—x¢) + 1) + (VA(X¢11), 0 —Xe11)

Q(Xeq1;%e) = J) + (VF(Xe), X1 — Xe) + 5 |Xeq1 — X¢]|3 + o)

L
) Q(x¢t1;%x¢) — F(u) < (V[f(x¢) + VR(x441), X1 — 1) + §HXt+1 — x¢|3

\ = 4
-~

=57 119(x¢)]I2

Next step: relate V f(x;) + VA(x¢11) to g(x;).
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Proof of One-Step Improvement Lemma

Proof:

What we have: F(x) < Q(x;y) foranyy € X = F(x¢11) — F(u) < Q(X¢41;%x¢) — F(u)

analyzing this quantity

> Q(Xer15%:) — F'(u) <(VF(x;) + VA(xp01), Xeq1 — 1) + i\!g(xt)lf

Xi4] = arg;nin {h(x) + % HX — (Xt - %Vf(xt)) Hz}
2 H(x)

by Fermat’s
optimality condition

Theorem 8 (Fermat’s Optimality Condition). Let f : R? — (—oo, 0o be a
proper convex function. Then

x* € argmin{f(x) | x € R}

if and only if 0 € O f (x*).

0 = VH(X¢41) = VA(X¢41) + L(Xep1 — x¢) + V[ (x4)
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Proof of One-Step Improvement Lemma

Proof:

What we have: F(x) < Q(x;y) foranyy € X = F(x¢11) — F(u) < Q(X¢41;%x¢) — F(u)
analyzing this quantity

> Q(Xer15%:) — F'(u) <(VF(x;) + VA(xp01), Xeq1 — 1) + i\!g(xt)lf
> 0 = VH(x¢41) = Vh(x¢41) + L(xq1 — x¢) + V(%)

—> 9(x¢) = L(x¢ — X¢q1) = VA(X¢41) + V(%)

. 1
Flnally we have Q(Xt_|_1; Xt) — F(u) S <g(Xt), Xt4+1 — u> —+ ng(Xt)HQ
1
= (g(xt),x; —u) — ZHQ(Xt)HQ []
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One-Step Improvement Lemma

* A fundamental result for GD of smoothed optimization.

Foain) — fx0) <~ V) e
FOxeen) = F(0) < (VFxe)xe =) = 5[V x0)|
FOxee) = £() < (gxe), %0 —w) = o9
Flxir) — F(u) < {g(x).xe— ) = o oGl | | gonera

Corollary: the proof of PG can also be used to prove the O(1/7") convergence rate of GD.
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Accelerated Proximal Gradient Method

A natural idea

Can we extend the Nesterov’s AGD to the composite optimization?

::> This induces the Accelerated Proximal Gradient (APG) method.

Nesterov’s Accelerated GD

1
Yi+1 = X¢ — va(Xt)> Xt+1 = (1 — Oét)YtH + oty

Accelerated Proximal Gradient

Yt+1 = Pﬁ(xt)a Xt4+1 = (1 — Oét)Yt+1 + 0y

The covergence rates can be similarly obtained.
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Accelerated Proximal Gradient Method

Theorem 6. Suppose that f and h are convex and f is L-smooth. Setting the param-
eters properly, APG enjoys

2L

F(XT) _F(X*> < (T—I—l)

*HQ'

2HX0 — X

Suppose that h is convex and f is o-strongly convex and L-smooth. Setting the pa-
rameters properly, APG enjoys

Fxr) — F(x*) < exp (%) (Plxo) — Fix) + Zlixa —x7[2)

where k = L /o denotes the condition number.

The convergence rates can be obtained same as those in non-composite optimization.
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Application to LASSO

* LASSQ: /;-regularized least squares

Fw)=3|w'X —y|* + Aw|,

Monographs on Statistics and Applied Probability 143

Statistical Learning
with Sparsity

The Lasso and
Generalizations

B, B,

Trevor Hastie
Rob ibshil

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |B1] + |B2| < t and B3 + B3 < t°, respectively,
while the red ellipses are the contours of the least squares error function.

Regression shrinkage and selection via the lasso
R Tibshirani
Journal of the Royal Statistical Society. Series B (Methodological), 267-288

commonly encountered in
signal/image processing.

Interdisciplinary Applied Mathematics 40

Springer Series in Statistics

René Vidal
Trevor Hastie YiMa
Robert Tibshirani S. Shankar Sastry

Jerome Friedman
Generalized
Principal

Data Mining, Inference, and Prediction Co m p 0 n e nt
Analysis -~

,}'f

@ Springer

47812 1996
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Application to LASSO

* LASSQ: /;-regularized least squares

F(w) =L |wTX —y||" + A|wl,

commonly encountered in
signal/image processing.

—> composite optimization: first part is smooth, the other one is non-smooth

* ISTA (Iterative Shrinkage-Thresholding Algorithm): PG for LASSO

« FISTA (Fast ISTA): APG for LASSO

Closed-form solution:

Phwils = sign ([wi = 79w ) ([ |wi = 1970

1

_i)
Ly
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Application to LASSO

* Comparison of ISTA and FISTA

opt

F(x)-F

0 50 100 150 200
k

Comparison of ISTA and FISTA.

A fast iterative shrinkage-thresholding algorithm for linear inverse problems
A Beck, M Teboulle
SIAM journal on imaging sciences 2 (1), 183-202

SIAM J. IMAGING SCIENCES (© 2009 Society for Industrial and Applied Mathematics
Vol. 2 No. 1, pp. 183-202

A Fast Iterative Shrinkage-Thresholding Algorithm
for Linear Inverse Problems*

Amir Beck and Marc Teboulle!

Abstract. We consider the class of iterative shrinkage-thresholding algorithms (ISTA) for solving linear inverse
problems arising in signal /image processing. This class of methods, which can be viewed as an ex-
tension of the classical gradient algorithm, is attractive due to its simplicity and thus is adequate for
solving large-scale problems even with dense matrix data. However, such methods are also known to
converge quite slowly. In this paper we present a new fast iterative shrinkage-thresholding algorithm
(FISTA) which preserves the computational simplicity of ISTA but with a global rate of convergence
which is proven to be signi Detter, both t ically and i Tnitial ising nu-
merical results for wavelet-based image i the capabilities of FISTA which is
shown to be faster than ISTA by several orders of magnitude.

Key words. iterative shri algorithm, ion, linear inverse problem, least squares and
I; regularization problems, optimal gradient method, global rate of convergence, two-step iterative
algorithms, image deblurring

AMS subject classifications. 90C25, 90C06, 65F22

DOI. 10.1137/080716542

1. Introduction. Linear inverse problems arise in a wide range of applications such as
astrophysics, signal and image processing, statistical inference, and optics, to name just a
few. The interdisciplinary nature of inverse problems is evident through a vast literature
which includes a large body of mathematical and algorithmic developments; see, for instance,
the monograph [13] and the references therein.

A basic linear inverse problem leads us to study a discrete linear system of the form

(11) Ax=b+w,

where A € R™*™ and b € R™ are known, w is an unknown noise (or perturbation) vector,
and x is the “true” and unknown signal/image to be estimated. In image blurring problems,
for example, b € R™ represents the blurred image, and x € R" is the unknown true image,
whose size is assumed to be the same as that of b (that is, m = n). Both b and x are
formed by stacking the columns of their corresponding two-dimensional images. In these
applications, the matrix A describes the blur operator, which in the case of spatially invariant
blurs represents a two-dimensional convolution operator. The problem of estimating x from
the observed blurred and noisy image b is called an image deblurring problem.

“Received by the editors February 25, 2008; accepted for publication (in revised form) October 23, 2008; published
electronically March 4, 2009. This research was partially supported by the Israel Science Foundation, ISF grant 489-
06.

http://www.siam.org/journals /siims/2-1/71654.html

'Department of Industrial Engineering and Technion-lsrael Institute of T Haifa 32000,
Israel (becka@ie.technion.ac.il.).

#School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel (teboulle@post.tau.ac.il.)
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Summary

GD FOR SMOOTH OPTIMIZATION

NESTEROV'’'S ACCELERATED GD

EXTENSION TO COMPOSITE
OPTIMIZATION

Smooth and Convex

Smooth and Strongly Convex

Constrained Optimization

Algorithm
Smooth and Convex

Smooth and Strongly Convex

Composite Optimization

Proximal Gradient Method (PG)

Accelerated Proximal Gradient Method (APG)

Application to LASSO
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