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A Briet Review of Statistical Learning

The fundamental goal of (supervised) learning: Risk Minimization (RM),

min E(x,y)~p[L(h(X),y)],

where
- h denotes the hypothesis (model) from the hypothesis space H.
- (x,y) is an instance chosen from a unknown distribution D.

- /(h(x),y) denotes the loss of using hypothesis /& on the instance (x, y).
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A Briet Review of Statistical Learning
Given a loss function f and distribution D, the expected risk of predictor h is

R(h) = E(x,y)~pl(h(x),y)].

In practice, we can only access to a sample set S = {(x1,¥1), .-, (X, Ym)}-

Thus, the following empirical risk is naturally defined:

m

> U(h(x), 1)

1=1

Rgs(h) =

1
m
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A Briet Review of Statistical Learning

* A success story : characterization of sample complexity

Theorem 1 (Simple Generalization Bound). Let H be a family of functions, with
probablilty at least 1 — o, for any h € H, we have

log |#| \/10g(1/5)

m 2m

7

R(h) < Rs(h) + \/

where |H| characterizes the complexity of H.
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Offline Towards Online Learning

* Traditional statistical machine learning: offline

* Online learning scenario
* Inreal applications, data are in the form of stream

* New data are being collected all the time: after
observing a new data point, the model should be

incrementally updated at a constant cost
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A Formulation of Online Learning

Ateachround¢=1,2,---
(1) the player first picks a model w; € W;
(2) and simultaneously environments pick an online function f; : W — R;

(3) the player suffers loss f;(w;), observes some information about f; and

updates the model.

Example (Online Classification): online function f; : VW +— R is composition of

(i) theloss ¢: Y x Y — R, and
(ii) the hypothesis function i : W x X +— .

|:> ft (W) — g(h(WS Xt)a yt) — g(WTXta yt) for simplicity
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A Formulation of Online Learning

Ateachround¢=1,2,---
(1) the player first picks a model w; € W;
(2) and simultaneously environments pick an online function f; : W — R;

(3) the player suffers loss f;(w;), observes some information about f; and

updates the model.

Example: Spam filtering

(1) Player submits a spam classifier w;

4

(2) A mail is revealed whether it is a spam g

U

(3) Player suffers loss f;(w,) and updates model
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Applications

spam detection (online classification/regression): At each timet =1,2,...
e receive an email x; € R%;

e predict whether itis a spam ¢, € {—1,+1};

e seeits true label y; € {—1,+1}.

_____________________________________________________________________________________________________________________________

i aggregating weather prediction (the expert problem): Ateachday ¢ =1.2,...
i (S | = ¢ obtain temperature predictions from N models;

| ™~ , * make the final prediction by randomly following a model according to
i * e ' % the probability p; € Ay;

* on the next day observe the loss of each model f; € [0, 1]".

_____________________________________________________________________________________________________________________________
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Performance Measure

* Recall in the statistical learning: empirical risk

m

> U(h(x:), i)

1=1

R(h) =

1
m

* In online learning: sequential risk

T T
Z fr(we) = Z C(h(Weixe), yt) -
meaning: cumulative loss of models trained on growing data stream Sy = {(x1,y1), ..., (X¢,¢) }-
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Performance Measure

* In statistical learning, we use excess risk as measure for h:

Fa

Ex,y)~pll(h(x),y)] — }527]?{ E(x,y)~p[l(h(x),y)]

* In online learning, we define the following regret as measure:

T T

Zf(h(wtgxt),yt) — inf C(h(w; %), ye)

t=1 t=1

cumulative loss of
the best solution in hindsight
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Another View of Regret

e Ultimate goal: minimize the cumulative loss Zle fi(wy)

e The cumulative loss highly depends on the loss function itself,
so we need a benchmark:

e We hope the regret be sub-linear dependence with 7.

ALT 16
Hannan Consistency in On-Line Learning
Regret in Case of Unbounded Losses Under Partial
T o
»0as’l — oc Monitoring* "
Hannan Consistenc
T y Chamy Allenberg!, Peter Auer”, Laszlé Gyorfi*, and Gyoregy Ottucsdk®
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Compared with Statistical Learning

* Memory efficient

* Do not need i.i.d. assumption
* the environment can be even adversarial
* typically, the regret analysis does not need concentration

* Strictly harder than statistical learning
* under non-i.i.d. assumption
* online to batch conversion
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Online-to-Batch Conversion

* An alternative way to solve statistic learning;:
* use the data in a sequential way

* run any online algorithm

 average the models returned

Algorithm 1 Online-to-Batch Conversion

1
2
3:
4
5

Input: Data {(x1,v1), -+, (xpr,yr)} i.i.d. sampled from the distribution D, a

bounded loss function ¢ : ) x YV — |0, 1|, an online learning algorithm A
c fori=1.---,71 do
let w; be the output of algorithm A for this round
Feed algorithm A with loss function f;(w) = ¢(h(w;x;), y¢)
: end for
. return W = - Zthl Wy
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Online-to-Batch Conversion

Theorem 2 (Online-to-Batch Conversion). If the risk R(w) is convex w.r.t. w with a bounded
loss function ¢ :' Y x Y — |0, 1], and the data {(x1,vy1), -+ , (X, yr)} are i.i.d. sampled from
the distribution D, then with probability at least 1 — ¢, the generalization error of the output of
Algorithm 1 satisfies

R(W) < R(w*) + Re%zrjetT Jr2\/2111?2?/5)

where R(w) := Ex ) ~pl(h(W;x),y) is expected risk, w* = argmin, .y, (W) is bayes opti-
mal classifier, Regret = ZL fir(Wy)—ming ey ZL fi(w) is the regret of A after T rounds.
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Concentration Inequalities

Lemma 1 (Hoeffding’s inequality). Let Xi,..., Xy € [—B, B] for some B > 0 be
independent random variables such that E [X;] = 0 forall t € [T, then for all § € (0, 1),

T 1
ZXt > BMQTlng

t=1

Pr <0

Lemma 2 (Azuma’s inequality). Let Xi,...,Xp € [—B, B] for some B > 0 be a
martingale difference sequence (i.e., ¥Vt € [T], E [ X | X¢—1,...,X1] =0), then ¥§ > 0,

r 1
ZthBq/QTlng

t=1

Pr <0
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Online-to-Batch Conversion

Theorem 2 (Online-to-Batch Conversion). If the risk R(w) is convex w.r.t. w with a bounded
loss function ¢ :' Y x Y — |0, 1], and the data {(x1,vy1), -+ , (X, yr)} are i.i.d. sampled from
the distribution D, then with probability at least 1 — ¢, the generalization error of the output of
Algorithm 1 satisfies

R(w) < R(w") +

Regret . N 2\/2111(2/5)
1 1

where R(w) := Ex ) ~pl(h(W;x),y) is expected risk, w* = argmin, .y, (W) is bayes opti-
mal classifier, Regret = ZL fir(Wy)—ming ey ZL fi(w) is the regret of A after T rounds.

Jensen’s Azuma’s
inequality inequality

Proof Sketch. R(w) < = 23:1 R(w;) < 1 23:1 fi(wy) + \/2111&?/5)

Regret .
Hoeffding’s T
inequality

* n r * .
Rw*) + /22200 7L (W) > L mingew S5, filw)
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Online-to-Batch Conversion

Proof. R(w) = E(x’y)wfp L(h(W:x),y)]
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Online-to-Batch Conversion

1l 21n(2/4)
Proof.  R(w) < = ;ft(wt) +\/

T

/0)

.1 Regret 21n(2
= min Z fi(w) + + \/ 7

T
< 1 £ (w*) + Regret N \/2111{(2?/5)

< R(w*) + Regret - N 2\/2111(;/5)
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A Trackable Case: Online Convex Optimization

* In general, the online learning formulation is hard to solve.

Ateachround¢=1,2,---
(1) the player first picks a model w; € W;
(2) and simultaneously environments pick an online function f; : W — R;

(3) the player suffers loss f;(w;), observes some information about f; and

updates the model.
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A Trackable Case: Online Convex Optimization

* In general, the online learning formulation is hard to solve.

Ateachroundt=1,2,---

(1) the player first picks a model jw; € W

(2) and simultaneously environments pick an online function|f; : W — R}

(3) the player suffers loss f;(w;), observes some information about f; and

updates the model.

> | Requiring feasible domain and online functions to be convex.
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Online Convex Optimization

* Online convex optimization framework
e feasible domain is a convex set
e online functions are convex

Ateachroundt¢t=1,2,---
(1) the player first picks a model x; from a convex set X C RY;
(2) and environments pick an online convex function f; : X — R;

(3) the player suffers loss f:(x;), observes some information about f; and

updates the model.

Note that from now on, we use x (and &) instead of w (and V) for consistent to opt. language.
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Ditferent Setup

Ateachround¢t=1,2,---

(1) the player first picks a model x; from a convex set X C RY;

(2) and environments pick an online convex function f; : X — R;

(3) the player suffers loss f;(x;), observes|some information about f; and

updates the model.

on the feedback information:

full information partial information

00 000

ve0 690
- partial information (bandits): observe S ‘ e ). soee sees
function value f;(w;) only less information horse racing multi-armed bandits

- full information: observe entire f; (or at
least gradient V f;(w;))
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Ditferent Setup

(2) and

Ateachround¢t=1,2,---

environments|pick an online convex function f; : X — R;

updates the model.

(1) the player first picks a model x; from a convex set X C R

(3) the player suffers loss f;(x;), observes some information about f; and

on the difficulty of environments:

oblivious adversary

adaptive adversary

- stochastic setting e . - -
less restricted % TE re
- but harder b ‘&
- adversarial setting { oblivious ‘}i\* S : n \
adaptive. . N examination interview
(non-oblivious)
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The Space of Online Learning Problems

environment

adversarial

*adversarial bandits

¥

expert advice

T * *stochastic bandits
feedback
no state )

“Uful . bandit

reinforcemen

structure

Yevgeny Seldin. The Space of Online Learning Problems, ECML-PKDD, Porto, Portugal, 2015.
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Online Learning

 Full-information setting:

* Online Convex Optimization

 Prediction with Expert Advice

* Partial-information setting;:

e Multi-Armed Bandits

e Linear Bandits/Parametric Bandits

* Bandit Convex Optimization

Advanced Optimization (Fall 2022)
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Online Learning

* Full-information setting:
* Online Convex Optimization

 Prediction with Expert Advice

* Partial-information setting;:

e Multi-Armed Bandits

e Linear Bandits/Parametric Bandits

* Bandit Convex Optimization
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History: Two-Player Zero-Sum Games

Theory of repeated games Zero-sum 2-person games played more than once

@ Row player (player)
has N actions

: : ; : @ Column player (opponent)
N has M actions

James Haﬁnan David Blackwell o Player chooses action iy and opponent chooses action y¢

(1922-2010) (1919-2010) e The player suffers loss (i, y¢) (= gain of opponent)

Learning to play a game (1956) Player can learn from opponent’s history of past choices yi,...,yy 1 J
Play a game repeatedly against a possibly suboptimal opponent

N. Cesa-Bianchi (UNIMI) Online Learning 9 /49 N. Cesa-Bianchi (UNIMI) Online Learning 10/ 49

Nicolo Cesa-Bianchi, Online Learning and Online Convex Optimization. Tutorial at the Simons Institute. 2017.
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History: Prediction with Expert Advice

Nick Littlestone *

Harvard Univ.

Abstract

We study the comstruction of prediction algo-
rithms in a situation in which a learner faces
a sequence of trials, with a prediction to be
made in each, and the goal of the learner i
to make fow mistakes. Wa are interested in the
case that the learner has reason to bebeve that
one of some pool of known algorithms will per-
form well, but the learner does not know which
one. A simple and effective method, hased on
weighted voting, is introduced for constructing
a compound algorithm in sech a circumstance.
We call this method the Weighted Ma jority Al-
gorithm, We show that this algorithm & ro-
bust w.r.t. errors in the data. We discuss var-
jous versions of the Weighted Majority Algo-
rithm and prove mistake bounds for them that
are closely related to the mistake bounds of the
best algorithms of the pool. For example, given
asequence of triak, if there is an algorithm in
the pool A that makes at most m mistakes then
the Weighted Majority Algorithm will make at

pporicd by ON R grant NODI14-85-K.0845. Pari

of this reacarch was done while this suthor was st the

University of Calil st Samia Crus with spport from
ONR grant NOD014-86- K-0454

'Supparied by ONR grani NO14-36-1-0454. Part

of tkis tmesrch was done whik ihis suthor was on

sabbatical at Ailen Computation Laboratory, Harvard,

fial support from the ONL granta N 00014-85-

K-0485 and NOODLA-8-K.0454

The Weighted Majority Algorithm

Aiken Computation Laboratory Dept. of Computer Sci.

Manfred K. Warmuth '

U. C. Santa Cruz

most e{log|A| + m) mistakes on that sequence,
where ¢ is fixed constant.

1 Introduction

‘We study online prediction algorithms that
learn according to the following protocol.
Learning proceeds in a sequence of triak. In
each trial the algorithm receives an insionce
from some fived domain and is to produce a
‘binary pradiction. At the end of the trial the al
gorithm receives a binary reinforcement, which
«can be viewad as the correct prediction for the
instance. We evaluate such algorithms accord-
ing to how many mistakes they make as in
[Lit88,Lits0). (A mistake occurs if the predic-
tion and the reinforcement disagree.}

In this paper we investigate the situation
where we are given a pool of prediction algo-
rithms that make varying numbers of mista kes.
‘We aim to design a master algorithm that uses
the predictions of the pool to make its own pre-
diction. Ideally the master algorithm should
make not many more mistakes than the best
algorithm of the pool, even though it does not
have any a prior knowledre 2 to which of the
algorithms of the pool make few mistakes for a
given sequence of triak.

The overall protocol proceeds as follows in
each trial: The same instance is fed to all al-
gorithms of the pool Each algorithm makes

Manfred Warmuth

UC Santa Cruz

CH2B05-8.8900000256/501.00 91889 [EEE

Nick Littlestone and Manfred K. Warmuth.
"The Weighted Majority Algorithm." FOCS 1989: 256-261.

FOCS 30-year
Test of Time Award!

AGGREGATING STRATEGIES

Volodimir G. Vovk"
Research Council for Cybernetics
40 ulitsa Vavilova.
Moscow 117333, USSR

ABSTRACT

The following situation is considered. AL each moment of
discrele Lime a declsicn maker. who does nol know Lhe current
state of Nature but knows all its past states, must make a
decision. The decision together with Lhe current state of
Mature delermines the loss of Lhe decision maker. The
performance of the decision maker is measured by his total
loss. We suppose there Is a pool of the decision maker's
potential strategies one of which is believed Lo perform well.
and construct an “sggregating” strategy for which the tobtal
loss is not much bigger than the total loss under strategies in
the pool., whatever states of Hature. Sur construction
alizes both the Weighted Majority Algorithm of
N.Littlestone and M. K. Warmuth and the Bayesian rule.

HOTATION

M. @ and E stand for the seis of positive integers, rational
numbers and real numbers respectively, B symbolizes the set
€0.1}. We put
B"- u e e"- U B
i<n Lfn
The empty sequence is dencted by 0. The l\\:l.lt.ion for logarithms
i In Cnaturall, lb Cbinary? and log, Cbase AJ. The integer

part of a real number t is dencted by [t]. For 4 = ®". con 4 is
the convex hull of A.

1. UNIFORM MATCHES

We are working within Cthe finite horizon variant af}
A P.Dawid's “prequential” (predictive seguentiall) framework
Csoe (Dawid, 19880; in detall it is described in CDawid.
198833, Nature and a decision maker function in discrete Lime
€0.1 .+n~1¥. Nature sequentlially finds itselfl in states Sor
't $,-y Comprising :ho sLring LR S For
simplicity we suppose s &« B . AL each moment (¢ tLhe decision

maker does not know the current state s, of Mature but knows

'Mdl‘“s for correspondence: D9-3-451 ulitsa Ramenki. Moscow
117007, USSR.

Volodimir G. Vovk
Royal Holloway,
University of London

Volodimir G. Vovk. “Aggregating
Strategies." COLT 1990: 371-383.
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Online Convex Optimization

* Convex Functions
* Strongly Convex Functions

* Exponentially Concave Functions
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Online Convex Optimization

e Convex Functions
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Online Optimization with Convex Functions

Definition 2 (Convex Function). A function f : X — R is convex if for any

X,y € X

Vo€ [0,1], f((1 —a)x +ay) < (1 —a)f(x) + af(y).

Equivalently, if f is differentiable, we have that Vx,y € &,

fly) > f(x)+ Vf(x)'(y —x).
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Online Gradient Descent

Online Gradient Descent (OGD)
Ateachroundt=1,2,---
1. the player first picks a model x; € &;
2. and simultaneously environments pick a convex loss function f; : X — R;

3. the player suffers loss f; (x;), observes the information (loss) f; and update the

model according to x; 1 = Ily [x; — 7V fi(x4)].

o [[v[y] = argmin, .y ||x — y||2 denotes the Euclidean projection onto the feasible set X'

e This belongs to the full-information setting, so player can access the gradient V f;(x;).

But actually the gradient is the only required, so it’s also called gradient-feedback OCO model.
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OGD: Regret Analysis

* The following assumptions are required for standard analysis.

Assumption 1 (Convexity). The feasible set X is closed and convex

in Euclidean space, and f1, ..., fr are convex functions.

Assumption 2 (Bounded Decision Set). The diameter of the set X is
upper bounded by D, ie., Vx,y € X, ||x —y| < D.

Assumption 3 (Bounded Gradient). The norm of the subgradients
of f is upper bounded by G, i.e., |V f(x)|| < G forallx € X.

Advanced Optimization (Fall 2022) Lecture 6. Online Convex Optimization
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OGD: Regret Analysis

Theorem 3 (Regret bound for OGD). Under Assumptions 1, 2 and 3, online gra-
dient descent (OGD) with step sizes n, = 5= for t € [T'] guarantees:

T
3
t = <— DVT'.
Regret ;_1 fr (x¢) mmg fe(x 2G V
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The First Gradient Descent Lemma

Lemma 1. Suppose that f is proper, closed and convex; the feasible domain X is
nonempty, closed and convex. Let {x,}]_, be the sequence generated by the gradient
descent method. Then for any u € X* and t > 0,

i1 —all® <l —ull? = 2 (fe(xe) — fe(w)) + 01|V fe(xo) 1.

Ma[x = mV fi(x0)] = ul|”

x¢ — 0V fi(Xt) — qu

Xt — 11H2 - 277t<vft(Xt),Xt — u) 4 n? vat(xt)Hz
<ol = 20(fuloxe) = fulw) 0 [V i)

Proof: |x;i1 —ul’

VAN

VA
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Proof for OGD Regret Bound

Proof: We use the first gradient descent lemma to analyze online gradient descent.

Lemma 1. Suppose that f is proper, closed and convex; the feasible domain X 1s
nonempty, closed and convex. Let {x;}/_, be the sequence generated by the gradient
descent method. Then for anyu € X* and t > 0,

xes1 —ull* < llxe —uf® = 20 (fi(xe) = fe(w) + 07 [V fi (o) |12

By Lemma 1,

2 2
Ix: —uf]” = xt1 — ul

T

2(fe(x¢) = fi(u)) < + mG?
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Proof for OGD Regret Bound

Proof: By setting 1, = % (with - 0) , summing over 7

< 3DGVT.
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Online Convex Optimization

* Strongly Convex Functions
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Online Optimization with Strongly Convex Functions

Definition 3 (Strong Convexity). A function f is o-strongly convex if, for any
X,y € dom f,

Fly) = F) + V) (v = %) + 5 |y =],

or equivalently, V* f(x) = al.

Advanced Optimization (Fall 2022) Lecture 6. Online Convex Optimization 40



OGD for Strongly Convex Loss

Online Gradient Descent (OGD)
Ateachroundt=1,2,---
(1) the player first picks a model x; € &’;
(2) and simultaneously environments pick a strongly convex loss f; : X — R;

(3) the player suffers loss f; (x;), observes the information (loss) f; and update the

model according to x; 1 = Ily [x; — 7V fi(x4)].

1

¢ The learning rate for strongly convex OGD is setasn; = .
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OGD for Strongly Convex Loss

Theorem 4 (Regret bound for strongly-convex functions). Under Assumption 1
and Assumption 3, for o-strongly convex loss functions, online gradient descent with

step sizes n, = = achieves the following quarantee

GZ
Regret» < 2—(1 + log T').
%

e Strongly convex case compared with convex case: O(logT) vs. O(v/T)

e A caveatis that we now don’t need Assumption 2 (bounded domain).
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OCO with Strongly Convex Functions

Proof: we start by extending the first GD lemma to strongly convex case.

Strongly convex case:

2 2 . . 2
e —ull” < ke =l = 20:(V felxe), %0 — ) + 0 [V fi(xe)|

o)
< e —ull” = 200 (fux) = fow)+ 2 e — ul?) + 2 Vi)

< (1 —on) lIxe —al)® = 20 (fe(x0) = fr(0) + 02 |V fe(x2)]]”

= ki) — fulw) < BT = w)? = T g — w4
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OCO with Strongly Convex Functions

G
Proof:  fi(x:) = fi(u) < Mo xs —ull” = H-[xear — ul” + 5
Summing from ¢ = 1 to 7, setting 1, = it (define - := O)
T T | | T
23" (flx) = i) <3l (5 - o) 467 Y
t—1 —1 Ne -1 P
1
=0+G* Y —
&y
t=1
2
<—(1+logT) ]
%
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Online Convex Optimization

* Exponentially Concave Functions
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Convergence of Proximal Gradient

Convex Problem Strongly Convex Problem
Property: f,(x) > fi(y) +Vfi(y)' (x—y) Property: fi(y) > fi(x)+ Vfi(x) ' (y — )
| Ty ly — x|
OGD: x:4+1 = 11y [Xt — WVft(Xt)] OGD: x;41 = Il [Xt _ 1Vft(Xt)]
ot
3 GQ
RegretT < EGD\/T RegretT < %(1 + logT)

Can we explore more function class with a regret rate faster than /77
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Exponentially-concave Function

Definition 2 (Exp-concavity). A convex function f : R? — R is defined to be
a-exp-concave over X C RY if the function ¢ is concave, where g : X' — R is

defined as

g(x) = e ™),

Directly employ OGD: Regret bound O(\/T).

Convex

strongly "\ exp-concave
convex

But actually we can get a tighter bound!
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An Example for Exp-concave Learning

>
N1
e
a4

e Universal Portfolio Selection %=

e a total of d stocks in the stock market.
e cach round, the player chooses stocks by a distribution x; € A,.
e the market returns the price ratio 8, between iter t and ¢ + 1,

price of stock, at time ¢ + 1
- price of stock. at time ¢

0. (i)

T
which means that our final wealth W, will be: Wp =W - H 9; X4
t=1

—> Our goal is to maximize our wealth at time 7.
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An Example for Exp-concave Learning

Wity

e Universal Portfolio Selection <%=

e we hope to maximize the logarithm of W e using OCO framework,

Wr <
log L — Zlog H;I_Xt fﬁ(X) — log(é’;x)
t=1

Wi

Ateachroundt=1,2,---
(1) the player first picks a model x; € Ay;

(2) and simultaneously environments pick an online function f; : X — R;

(3) the player get a gain f,(x;) = 103;(9?@_), observes f; and updates the model.

T T
e Goal: Regret, = meai{ E fi (X*) — E It (Xt) online function is exp-concave
X * d
t=1

t=1
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Exponential-concave Function

Lemma 3 (Property of Exp-concavity). Let f : X — R be an a-exp-concave func-
tion, and D, G denote the diameter of X and a bound on the (sub)gradients of f respec-
tively. The following holds for all v < § min{ z5,a} and all x,y € X :

fx) = F0) + V) (x=y) 5 (x=y) VIVI) (x—y)

Proof. Recall that f is a-exp-concave if and only if e=*/ ) is concave.
2v /. .
As 2y < qr, e ) = (e (X)) 7/ is also concave and thus is 2y-exp-concave.

e~ (x) _ =2 fy) < <X —y, _2»}/6—2’7f(Y)Vf(y)> .
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Exponential-concave Function

fx) = Fy) + V) (x =)+ (x =) VI(y)

Lemma 3 (Property of Exp-concavity). Let f : X — R be an a-exp-concave func-
tion, and D, G denote the diameter of X and a bound on the (sub)gradients of f respec-
tively. The following holds for all v < § min{ z5,a} and all x,y € X :

Vi)' (x—y).

P1‘00f. Dividing e~27/(¥) at both sides achieves

1)~ 109 < 510 (1+ By =% 9(y)

).

Our constructive condition vy < £ min { 55, a} ensures [2v(y —x, Vf(y))| < 1,

F(y) = (%) <y —x, VI(y)) — 2y —x, Vf(y))’

2

(105—’;(1 +z)<zx-— l|"3'2

) holds for (|z| <1) [
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A Comparison of Different Curvatures

e Convex
fx) > fy)+Vfly) x—y)

* Strongly Convex

o 2

fx) = fy) + V) (x =)+ [x =yl

» Exponentially Concave

FE) > fy)+ V) x—y)+o(x—y) Viy)VIily) ' (x—y)

- {_
=) + VIO =)t Ix =Yl sg v

D |2
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Exponential-concave Function

Lemma 3 (Property of Exp-concavity). Let f : X — R be an a-exp-concave func-
tion, and D, G denote the diameter of X and a bound on the (sub)gradients of f respec-
tively. The following holds for all v < s min{ =5, a} and all x,y € X :

/

f(x) > fly)+Vily)' (x— y)+%(x ~y)' VIy)VIy) (x—y)

. |
= )+ VI =)t Ix = Y gvre

Algorithmic intuition:
 For convex loss, we use 2-norm to encode the structure of the space.

* Can we exploit local structures of exp-concave loss to improve the regret?
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ONS for Exp-concave Function

Online Newton Step

Input: parameters v, ¢ > 0, matrix Ay = €l

Ateachroundt=1,2,---
(1) the player first picks a model x; € X C RY;

Update A, = A, + Vft(Xt)Vft(Xt)T

2

Update X¢41 = arg min, -y ||X — (xt — %At1Vft(Xt))|

(2) and simultaneously environments pick an exp-concave loss function f; : X — R;

(3) the player suffers loss f;(x;), observes the information (loss) f; and update:

it
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In a View of Proximal Gradient

Convex Problem Exp-concave Problem
Property: fi(x) > fi(y) + V/fily)' (x—y)| | Property:fi(x) > fi(y) + Vfi(y)" (x ~y)

-~

+§ I = Y1195,y 9 10907
1
OGD: x¢4+1 =1y [Xt — vat(xt)] ONS: A, = Ai 1 + VIi(x) VI i(xe) "

1
Xit1 = Hif’ Xt — ;A,} 'V fi(x¢)

Proximal type update: Proximal type update:
. , 1 . , Y >
X1 = arg min(x, V f;(x;)) + — ||x — Xt||§ X141 = arg min(x, Vf(x;)) + = ||x — X,,Hi;
xeX 21 xeX 2 '
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In a View of Proximal Gradient

Proof.
A A
Xttr1 = HX" {Xt — ; gt] (g8t = Vfi(x¢))
1 T
. A,
= arg min (X — Xt + gt) Aﬁ (X — Xt +
xceX Y
AN
= arg min (X — Xt + L gt) (Atx — Ayxy +
xXeX Y
= arg min (X — Xt)—r Ay (x —x¢) + (A_ U T
xeX
N 28 (X — x4
8
. Y 2
= arg min (X, &) + = [[x — x|}
xeEX 2 ’

A—l

: gt)
~

gt

~/

/

t

)

Exp-concave Problem

Property: fi(x) > fi(y) + V/i(y)' (x —y)

X = Y9569 )T
ONS: A, =A,_1+ Vft(Xt)vft(Xt)T
1
Xip1 = Hit Xt — ;At ]'vft(xt)

Proximal type update:

~/ 9
Xt+1 — arg IIliIl<X, VfL(XL» + é HX B X"Hii
xeX

Advanced Optimization (Fall 2022)
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ONS for Exp-concave Function

Theorem 5. Under Assumptions 1, 2 and 3, for a-exp-concave online functions, the
ONS algorithm with parameters v = 5 min { &5, o} and € = —5p55 (recall that the

initial matrix is Ag = €ly) guarantees

1
Regret» < O ((— + GD)dlog T) :
o)

where d is the dimension of the feasible domain X C R<.
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OCO with Exp-concave Functions

Extending the first GD lemma to exp-concave case:

o Ay = Ay + VS i(x)Vfilx)T

. A —1
® X;. ] = arg ming, y Hx — (x,_ = :1:;,& g;_) H

2

A f

Proof.

We use norm induced by A, instead of 2-norm.

2
[xi11 — U||At =

INA

2
1
Hii |:Xt — —A75_1fo(Xf):| —u
Y A,
2
1
x; — —A; "Vfi(xs) —u
8 A,

1 E 1
(Xt — _At Vft (Xt) — ll) At (Xt — _At Vft(Xt) — LI)
Y hi

(xt —u-— }YAtIVft(Xt))T (At(Xt —u) — ivft(xt))

Advanced Optimization (Fall 2022)
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OCO with Exp-concave Functions

o Ay =A,_1+V/f (x;)V_[}(xf_)T

2
. 4—1
® X;. ] = arg ming, y Hx — (x,_ — %;fif g;_) H

,"‘f

Extending the first GD lemma to exp-concave case:

Proof.

]
et — ul?, = (xt _u- iAﬁVft(xt)) (Axxt ) - iwxa)

= (x; — u)T Ay (xg —u) — %Vf{,(X{,)T(X;, —u) + %Vft(xt)TAthft(xt)
< flxc =l = 2 (fx0) = fiw) + 5 Ve,
— (%t — U)vat(xt)vft(xtﬁ(Xt —u)
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OCO with Exp-concave Functions

Proof. ||x,;41 —ul?,

2 2 2 1 2
< |lx¢ — 11||Aft - ;(ft(xt) — ft(u)) — [|x; — UHvf.,,(x.,.,)vf,,.(x.,,)T T ? vat(xt)HA;l

= filx)—fi(w) < 2|l ——HXtH—ullA — L% = 1% ey 9 o T+ ||vjt(xt)HA l
9 9 (%) V fi(x¢)

Summing from ¢ = 1 to 7, by telescoping;:

,
<9 Z [ — “||%f(x6)@
t=1

/ A, = A, 7 f(x:)V f X, T
g%H}q_ HA("F_ZHVICIL X4 HA 1 (At t—1 + Vi (X)) V fi(x¢) )
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OCO with Exp-concave Functions

Proof. T
Z fe(x¢) = fi(u)) < ||X1 _UHA + _vaft Xt)HA !
t=1 /=1
By the definition that Ay = ¢l ¢ = 72—1[)2 and the diameter ||x; — ul|3 < D*:
Y 1 o
Z filbxe) = fi(w) < 5 (a1 —w) " Ao (a1 —w) 4 5= > IVl 3,
t=1 t=1
< —+—Z!|fo Xy HA t

Next, we bound the term Zf: Y fe(xe) Hi_l .
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OCO with Exp-concave Functions

2

Proof. Next, we bound the term ZL NV fe(xe) A

Lemma 4 (Elliptical Potential Lemma). For any sequence {Xy,..., X7} € R¥>T,
suppose Uy = N\, U; = Uy 1 + X X', and || X¢||, < L, then
T
L?T
2
Z HXt”Ut_l < dlog (1 + v)
t=1
Proof. U ,=U, — X, X =U? (I U, QXtXTU_E) U2
det(U; 1) = det(Uy) det (1— U, 2 X, XU, *)
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OCO with Exp-concave Functions

2

Proof. Next, we bound the term Zf:] |V fi(xy) :4; .

Lemma 5. Forany v € RY, we have

det (I — VVT) — ] — HVH%

Proof.

i) (I —vv')v=(1-]v]3)v, therefore, v is its eigenvector with (1 — ||v||3)
as eigenvalue;
(ii) (/ —vv') vt = v+, therefore, v L v is its eigenvector with 1 as the

eigenvalue.
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OCO with Exp-concave Functions

Proof. Next, we bound the term Zf: NV fe(xe) H‘i{_] .

Lemma 4 (Elliptical Potential Lemma). For any sequence {Xy,..., X7} € RT,
suppose Uy = NI, Uy = U1 + X X, , and || X4 ||, < L, then

T
L*T
Xi|[7 -+ < dlog 14 =
STl < o (147

Proof det(U;—1) = det(U;) det (] U thXTU_%) = det (Uy) (

)

2 X,

dCt(Ut_l)
det(Ut)

= X2

2
Xt :1—
2
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OCO with Exp-concave Functions

Proof. Next, we bound the term Zf: NV fe(xe) H‘i{_] .

Lemma 4 (Elliptical Potential Lemma). For any sequence {Xi,...,Xr} € R™*T,
suppose Uy = NI, Uy = U1 + X X, , and || X4 ||, < L, then
T
L?T
2
Z ||Xt”Ut_l < dlog (1 + v)
t=1
Proof. - -
det (U;_1 det (Uy)
X, U7X, = 1— <Myl
—> Z t = ;( det (U;) ) ;OgdetUt D
2
log W) _ gy (14 BT
det (Uo) Ad I:>
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OCO with Exp-concave Functions

Proof. Next, we bound the term Zf:] |V fi(xy) Hzlf .

Lemma 4 (Elliptical Potential Lemma). For any sequence {Xy,..., X7} € RT,
suppose Uy = NI, Uy = U1 + X X, , and || X4 ||, < L, then

T ‘
L*T

Xi|l7 -1 < dlog [ 1+ ——
STl < o (147

Therefore, by Lemma 4, we have

T

E D?T
vat(xt)Hit—l < dlog (1 T ) ‘

t=1

ed
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OCO with Exp-concave Functions

Proof. To conclude

T
i 2 1 ,
; fulxe) = fulw) < 5 I —uly, + 5= 3TNV ARG

g _ — _
~ ~"
9,
1 (LT
SQ’}/ 2!og(+ ed )

1

Recall that v = § min { g5, a} and € = 75,

1
Regret, < O ((—

0}

+ GD)dlog T) :
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Lower Bounds

* A natural question: whether previous regret can be improved?

* Lower bound argument:

minimax bound: smallest possible worst-case regret of any algorithm:

min max Regret
A 0y, lr

Theorem 7 (Lower Bound for OCO). Any algorithm for online convex optimiza-
tion incurs Q(DG~/T) regret in the worst case. This is true even if the cost functions
are generated from a fixed stationary distribution.
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Lower Bounds

Theorem 7 (Lower Bound for OCO). Any algorithm for online convex optimiza-
tion incurs QU (DG~/T) regret in the worst case. This is true even if the cost functions
are generated from a fixed stationary distribution.

Proof Sketch.

Construct a “hard’” environment:
* Binary classification, loss functions in each iteration are chosen at random

e Similar results can be obtained for strongly convex and exp-concave cases
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Comparison

Algorithm Upper Bound Lower Bound
Convex OGD O(\/T) Q(\/T)
o-Strongly Convex |  OGD O(rel) ((leeT)
a-Exp-concave ONS O( d li’yg I ) Q( d lc;g T )
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Back to Exp-concave Learning

e Universal Portfo]

io Selecti

:
Wity

on <>, 52
S S

Algorithm Regret Runtime (per round)
Universal Portfolios dlog(T) dtrtt
Online Gradient Descent Go/T d
Exponentiated Gradient G oo /T log(d) d
Online Newton Step (ONS) | G..dlog(T) | d*+generalized projection on Ay
Soft-Bayes VAT log(d) d
Ada-BARRONS d?log*(T) d25T
BISONS d?log®(T) poly(d)
AdaMix+DONS d?log” (T) d?
VB-FTRL dlog(T) d>T

Open Problem: Fast and Optimal Online Portfolio Selection

[COLT 2020 Open Problem)]

—, still an important open problem: efficiency and optimality
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Application to Stochastic Optimization

 Consider the following convex optimization problem:

/)

* Stochastic optimization method

Computational oracle: only access noisy gradient oracle, namely, g(x), such that

Elg(x)] = Vf(x), and E[||g(x)]|I] < G

for some G > 0.

Example (large-scale opt.). Given dataset S = {(x1,%1),- -, (Xm,¥m)}, ERM optimizes
m

min C(h(x),y:) =

heH

full gradient computation requires a pass of all data

i—1 stochastic method only uses a mini batch at each round

Advanced Optimization (Fall 2022) Lecture 6. Online Convex Optimization 72



Stochastic Gradient Descent

 Consider the following convex optimization problem:

/)

Algorithm 2 Stochastic Gradient Descent

Input: noisy gradient oracle g(-), step sizes {n; }

1: fort=1,....T do

2:  |Obtain noisy gradient g(x;)

3. Update the model x; 1 = Ilx [x; — ng(x¢)

4: end for
: < — L S
5 return X7 = =) . Xy

} Elg(x)] = V f(x)
E(lgx)]l°] < G*

Advanced Optimization (Fall 2022)
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Stochastic Gradient Descent

Theorem 7 (Convergence of SGD). Suppose the domain X C R® has a diameter
D > 0, and the noisy gradient oracle is unbiased and variance bounded by G*. SGD

with step size n; = 527 guarantees

where X = - SO, Xy is the output of the SGD algorithm.
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Proot of SGD Convergence

Proof. First, we rephrase SGD from lens of online convex optimization.

To see this, we define linear function f,(x) = g, x, where g, = g(x;).

Claim: deploying OGD over the online functions { f;(x)} is equiva-
lent to SGD proposed in the earlier page.

Algorithm 2 Stochastic Gradient Descent

Input: noisy gradient oracle g(-), step sizes {n; }

OGD: Xtr1 — IT [Xt — T]tVft(Xt)] 1: fort=1,....7 do

Obtain noi.s radient g(x;)
= Iy [x; — mig(xy)] Y5 :

Update the model [x; 11 = [y [x; — mig(x¢)]

2

3

4: end for
_ 1 T

5 return X7 = =) , Xy

Advanced Optimization (Fall 2022) Lecture 6. Online Convex Optimization 75



Proot of SGD Convergence

Proof.

Theorem 3 (Regret bound for OGD). Under Assump-
tion 1, 2 and 3, online gradient descent (OGD) with step

sizes 1)y = %ﬁ for t € [T'| guarantees:

T T
| , 3
Regret, = X;) — mit (x) < -GDVT.
egret, ;/f( ¢) i{lél%(l;ff( ) < > \

E[f(&r)] - f(x*) <E

<

<

1 — .
f;f(xf)] — f(x¥)

TE ; Vf(Xt)T (Xt — X*)]
1 T

?E ; gtT (x¢ — X*)]

T

fle Z fe(x¢) — ft(X*)]

2T .

this paper

Advanced Optimization (Fall 2022)

Lecture 6. Online Convex Optimization

76


https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/2005-Online_Convex_Optimization_in_the_Bandit_Setting.pdf

Stochastic Gradient Descent

Theorem 7 (Convergence of SGD). Suppose the domain X C R® has a diameter
D > 0, and the noisy gradient oracle is unbiased and variance bounded by G*. SGD

with step size n; = 527 guarantees

where X = - SO, Xy is the output of the SGD algorithm.

e We define the linear functions f;(x) = g, x and run Algorithm 2 on f;, which
depends on the decision x;.

e This actually reveals that OGD can hold even against adaptive adversary.
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Stochastic Gradient Descent

e We define the linear functions f;(x) = g, x and run Algorithm 2 on f;, which

depends on the decision x;.

e This actually reveals that OGD can hold even against adaptive adversary.

Ateachroundt=1,2.---

(1) the player first picks a model x; € X’; obgivious adversary
(2) and simultaneously environments pick an online r % a ",'_.
function f; : X — R; ‘fi ‘&
2 | | R
(3) the player suffers loss f;(x;), observes some in- oA ation

adaptive adversary
- o

B

interview

formation about f; and updates the model.

e The ‘simultaneous’ requirement is not necessary in full-info scenario!
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Summary

Background

s MEASURE: REGRET

Definition

Compared with Statistical Learning

ONLINE CONVEX
LOSS FUNCTION
APPLICATION TO SGD

Online-to-batch Conversation

Convex loss function: OGD
Strongly convex loss function: OGD

Exponential-concave loss function: ONS

Q& A
Thanks!
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