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Prediction with Expert Advice

* A ubiquitous problem in real life:
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PEA Problem Setup

[ Question 1 ] [ Question 2 ] [ Question 3 ] ......

Advanced Optimization (Fall 2022) Lecture 7. Prediction with Expert Advice



PEA Problem Setup

[ Question 1 ]

Question 2

Question 3

......

/ & [ v

Experts

@ / Advice; 1

/
'
/
/

\ & / Advice, 1
-

Advice, 2

Advice; 2

Advice, 2

|
[
[ aavcen
[
[

|
/
/
/
/

Advice; 3

Advice; 3

Advice, 3

| |
[ agvicers |
[raviees |
[ agvices |
[ agvices |

......

......

......

Advanced Optimization (Fall 2022)

Lecture 7. Prediction with Expert Advice



PEA Problem Setup
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PEA Problem Formulization

Ateachround ¢ =1,2,---
(1) the player first picks a weight p, from a simplex A y;
(2) and simultaneously environments pick a loss vector £; € RY;

(3) the player suffers loss f;(p,) = (p,,£;), observes £; and updates the model.

e We typically assume that V¢ € [T]and i € [N],0 < £,(i) < 1.

* Make our prediction by combining N experts” advice.
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PEA Problem Formulization

Ateachround ¢ =1,2,---
(1) the player first picks a weight p, from a simplex A y;
(2) and simultaneously environments pick a loss vector £; € RY;

(3) the player suffers loss f;(p,) = (p,,£;), observes £; and updates the model.

* The goal is to minimize the regret with respect to the best expert:

T T T

RegretT:Z (Dys 1) — mm Z p,£:) :Z (D £t) — igl[i[{[l]zﬁt(i)

t=1 t=1
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A Natural Solution for PEA

» Follow the Leader (FTL)

Idea: Select the expert that performs best so far, namely,

p; -~ =argmin (p, L; 1)
PEAN

where L, | £ ZZ; ¢, ¢ RY is the cumulative loss vector.
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A Natural Solution for PEA

* However, FIL may achieve linear regret in the worst case!

—— oy
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T T
Regrety = > (py, £e) — Iin > £.(i)
t=1 t=1
T
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A Natural Solution for PEA

» Follow the Leader (FTL)

Idea: Select the expert that performs best so far, namely,

p; -~ =argmin (p, L; 1)
PEAN

where L, | £ ZZ; ¢, ¢ RY is the cumulative loss vector.

> The solution is actually a one-hot vector, which is very unstable.
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A Natural Solution for PEA

» Follow the Leader (FTL)

Idea: Select the expert that performs best so far, namely,

p; -~ =argmin (p, L; 1)
PEAN

where L, | £ ZZ; ¢, ¢ RY is the cumulative loss vector.

> The solution is actually a one-hot vector, which is very unstable.

> | Replacing the ‘max’ operation in FTL by ‘softmax’.
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Hedge: Algorithm

Hedge Algorithm
Ateachroundt¢t=1,2,---
(1) compute p, € Ay such that p,(¢) < exp (—nL;—1(i)) for ¢ € [N]
(2) the player submits p,, suffers loss (p,, £;), and observes loss £; € R"
(3) update Ly = Ly + £,

FTL update Hedge update
p, = argmax (p, —L¢_1) py(i) o exp (—nLy_1(i)), Vi € [N]
PEAN
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Hedge: Regret Bound

learning rate n guarantees

In N
Regret, < . +nT,
n

which is of order O(V/T In N) if n is optimally set as \/(In N ) /T.

Theorem 1. Suppose that Vt € |T| and i € [N]|,0 < £,(i) < 1, then Hedge with

Proof. We present a ‘potential-based” proof here, where the potential is detined as

d, £ 1ln (Z exp (—T]Lt(’i))) .

'l 1=1
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Proof of Hedge Regret Bound

N B . 1 N
Proof. O, — P, = l In ZN@':l exp (—nLq (7)) P, 2 - In (Z exp (—;;Lt(z')))
n Zz’:l exp (—nLi—1(7)) 'l i=1

3 ( ;Xp(n[/ﬁ_l(?;))i>) 0Xp(?7&(®))>)

i=1 2;5:1 exp (—nL¢—1(

~ (Z py(i) exp (nft(i))) (update step of p)
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Proof of Hedge Regret Bound

N
1 N
Proof. ¢, &, ,= I (1 —np )+ :ptmef(z))

'l 1=1

< —(pp ) + 1 Z p, (i) (i) (In(1+2z) < z)

1=1
Summing over ¢, we have

T N
Z Py, ) < P — O + flz Zpt (i) (i) ®; = [ In (X,\zl (‘-Xl?(—'fﬂjf('f-)))
=1

t=1 1=1

InN 1
< —— — —In(exp (—nLp (7" —I—?’]ZZpt )62 (i)

"l 'l t=1 i=1
In NV
<T+LT +n22p?¢ (4)€3 (4)
t=1 1=1
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Proof of Hedge Regret Bound

In N
(P ) < —— + Lp(i*) + 1

1 1l t

Proof. p, (i)€2(i)

B
]~
] =

1 1=1

t

Rearranging the term gives

In NV
(P ) — Ly (i*) < —— +7]ZZP# (i) (3)

1 t=1 1=1

In N
7

B

t

<
Thus, setting n = /In N/T yields

In N
Regret, < e +nl'=2VTInN.
Uy

+ 0T
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Lower bound of PEA

* As above, we have proved the regret bound for Hedge:

Regret < 2V T In N

* A natural question: can we further improve the bound?

Theorem 2 (Lower Bound of PEA). For any algorithm A, we have that

Regret 1
sup max 50T =

TN /TIn N ~ /2

Hedge achieves minimax optimal regret (up to a constant of 2/2) for PEA.
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Lower bound of PEA

Theorem 2 (Lower Bound of PEA). For any algorithm A, we have that

Regret 1
sup max 50T =

TN ...t /TIn N ~ /2

Proof. We construct the ‘hard’ instance by randomization. Let D be the
uniform distribution over {0, 1}. We have

max Regret, > E iia v [Regrety]

£i,.... 0T Li....L0p ~ DN
. T
- ZE& """ el [P br) [ €11, b —Eg,,. e, [Iélllf{fl] £ (z)]
)
t=1 —

T T
= ZEel,...:et_l (DesEp, [0 | =1, 41]) =By 0 [miﬂ Zﬁt(?ﬁ)]

1€[N] 1

Advanced Optimization (Fall 2022) Lecture 7. Prediction with Expert Advice 19



Lower bound of PEA

Theorem 2 (Lower Bound of PEA). For any algorithm A, we have that

Regret 1
sup max 50T =

TN ...t /TIn N ~ /2

T T
PT’OOf- ms ,}éw Regret, > ZEﬁl,...,et—l (D, B, [€i | €41, .. £1]) — g, . e, [_min Zﬁf(z)]

t=1

- | T Rademacher random variables
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Lower bound of PEA

Theorem 2 (Lower Bound of PEA). For any algorithm A, we have that

Regret 1
sup max 50T =

TN ...t /TIn N ~ /2

P : ;

Rademacher random variables

Using the result from probability theory (Prediction, Learning, and Games, Chapter 3.7)
of Rademacher variables,

s s S
111 1111
T—o00 N—o0 VT In N

_ 5 O
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Upper Bound and Lower Bound

learning rate 1) guarantees

In N
Regret, < . +nT,
Ui

which is of order O(\/T In N) if ) is optimally set as \/(In N) /T.

Theorem 1. Suppose that Vt € [T and i € [N],0 < £,(¢) < 1, then Hedge with

Theorem 2 (Lower Bound of PEA). For any algorithm A, we have that

Regret 1
sup max ST = —

TN,y /TIn N — /2
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Prediction with Expert Advice: history bits

Nick Littlestone *

Harvard Univ.

Abstract

We study the construction of prediction algo-
rithms in a situation in which a learner faces
a sequence of trials, with a prediction to be
made in each, and the goal of the learner i
to make fow mistakes. Wa are interested in the
case that the learner has reason to bebeve that
one of some pool of known algorithms will per-
form well, but the learner does not know which
one. A simple and effective method, hased on
weighted voting, is introduced for constructing
a compound algorithm in sech a circumstance.
We call this method the Weighted Ma jority Al-
gorithm, We show that this algorithm & ro-
bust w.r.t. errors in the data. We discuss var-
jous versions of the Weighted Majority Algo-
rithm and prove mistake bounds for them that
are closely related to the mistake bounds of the
best algorithms of the pool. For example, given
asequence of triak, if there is an algorithm in
the pool A that makes at most m mistakes then
the Weighted Majority Algorithm will make at

pporied by ONR grant NOOU14-85- K045, Part
of this rescarch was dane while this author was at the
Univermity of Calif at Samia Crus with support from
ONR grant NOO0L4-86-K-0454

'Supporied by ONR grant NOOI14-36-K-0454. Part
of this tmesrch was dane whik tkis suthor was on
sabbatical at Aiken Computation Labaratory, Harvard,
with partial support from the ONR grants N 00014-85-
K-0445 and NOOD14-86-K-0454

The Weighted Majority Algorithm

Aiken Computation Laboratory Dept. of Computer Sci.

Manfred K. Warmuth '

U. C. Santa Cruz

most e{log|A| + m) mistakes on that sequence,
where ¢ is fixed constant.

1 Introduction

We study online prediction algorithms that
learn according to the following protocol.
Learning proceeds in a sequence of triak. In
each trial the algorithm receives an insionce
from some fived domain and is to produce a
‘binary pradiction. At the end of the trial the al
gorithm receives a binary reinforcement, which
«can be viewad as the correct prediction for the
instance. We evaluate such algorithms accord-
ing to how many mistakes they make as in
[Lit88,Lits0). (A mistake occurs if the predic-
tion and the reinforcement disagree.}

In this paper we investigate the situation
where we are given a pool of prediction algo-
rithms that make varying numbers of mista kes.
We aim to design a master algorithm that uses
the predictions of the pool to make its own pre-
diction. Ideally the master algorithm should
make not many more mistakes than the best
algorithm of the pool, even though it does not
have any a prior knowledre 2 to which of the
algorithms of the pool make few mistakes for a
given sequence of triak.

The overall protocol proceeds as follows in
each trial: The same instance is fed to all al-
gorithms of the pool Each algorithm makes

Manfred Warmuth

UC Santa Cruz

CH2B05-8.8900000256/501.00 91889 [EEE

Nick Littlestone and Manfred K. Warmuth.
"The Weighted Majority Algorithm." FOCS 1989: 256-261.

FOCS 30-year
Test of Time Award!

AGGREGATING STRATEGIES

Volodimir G. Vovk"
Research Council for Cybernetics
40 ulitsa Vavilova.
Moscow 117333, USSR

ABSTRACT

The following situation is considered. AL each moment of
discrele Lime a declsicn maker. who does nol know Lhe current
state of Nature but knows all its past states, must make a
decision. The decision together with Lhe current state of
Mature delermines the loss of Lhe decision maker. The
performance of the decision maker is measured by his total
loss. We suppose there Is a pool of the decision maker's
potential strategies one of which is believed Lo perform well.
and construct an “sggregating” strategy for which the tobtal
loss is not much bigger than the total loss under strategies in
the pool., whatever states of Hature. Sur construction
alizes both the Weighted Majority Algorithm of
N.Littlestone and M. K. Warmuth and the Bayesian rule.

HOTATION
M. @ and R stand for the sets of positive integers, ratiocnal
numbers and real numbers respectively, B symbolizes the set
0.1}, We put
B"- u e e"- U B
i<n Lfn

The empty sequence is dencted by 0. The :\\:I.lt.ion for logarithms
i In Cnaturall, lb Cbinary? and log, Cbase AJ. The integer

part of a real number t is dencted by [t]. For 4 = ®". con 4 is
the convex hull of A.

1. UNIFORM MATCHES

We are working within Cthe finite horizon variant af}
A P.Dawid's “prequential” (predictive seguentiall) framework
Csoe (Dawid, 19880; in detall it is described in CDawid.
198833, Nature and a decision maker function in discrete Lime
€0.1 .+n~1¥. Nature sequentlially finds itselfl in states Sor

For

't $,-y Comprising :ho sLring LR S
simplicity we suppose s « B'. AL each moment ¢ Lhe decision

maker does not know the current state s, of Mature but knows

"address for correspondence: ©-3-451 ulitsa Ramenki, Moscow
117007, USSR.

Volodimir G. Vovk
Royal Holloway,
University of London

Volodimir G. Vovk. “Aggregating
Strategies." COLT 1990: 371-383.
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PEA vs. OCO

Ateachroundt =1,2,--- Prediction with Expert Advice

(1) the player first picks a weight p, from a simplex A y;
(2) and simultaneously environments pick an loss vector ¢; RV

(3) the player suffers loss f;(p,) = (p,,£:), observes £; and updates the model.

PEA is a special case
=k of OCO!

Ateachroundt=1,2,--- Online Convex Optimization

(1) the player first picks a model x; € &;

(2) and simultaneously environments pick an online function f; : X — R;

(3) the player suffers loss f;(x;), observes f; and updates the model.

Advanced Optimization (Fall 2022) Lecture 7. Prediction with Expert Advice 24



Deploying OGD to PEA

* PEA is a special case of OCO:

Why not directly deploy OGD (proposed in last lecture) to address PEA?

Theorem 4 (Regret bound for OGD). Under Assumption 1, 2 and 3, online gra-
dient descent (OGD) with step sizes n, = 52 for t € [T'] guarantees:

T T
3
Reeret.» = : —mj < —-GDVT.
egret ; fr (x¢) mm; fi(x) < 5 V.

xeX
t

Regret guarantee: D = max |[x—yls =v2 G = max |[&], = VN

X, YEAN £, ERN
T T

—> Regret, = Z (P, be) — pIéliAl’l Z (p,£y) < O(VIN)
t=1 Ni=1
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Deploying OGD to PEA

e OGD for PEA Problem:
D= max |[x—yl:=V2 G = max |€], = VN
X, yEAN £ RN
T T
—> Regret, = ; (py, i) — p%liAIil\r ; (p,£:) < O(VTN)

e A natural question: is the O(VT'N) regret bound tight enough?
e recall that the lower bound of PEA is Q(v/7'In V)

e OGD is not optimal with respect to N (number of experts)
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Deploying OGD to PEA

* PEA is a special case of OCO:
Why not directly deploy OGD (proposed in last lecture) to address PEA?

Theorem 4 (Regret bound for OGD). Under Assumption 1, 2 and 3, online gra-
dient descent (OGD) with step sizes n, = 52 for t € [T'] guarantees:

T T
3
Reeret.» = : —mj < —-GDVT.
egret ; fr (x¢) mm; fi(x) < 5 V.

xeX
t

Regret guarantee: D = max |[x—yls =v2 |G = max |[&], = VN

X, YEAN L eRN
T T

—> Regret, = Z (P, be) — pIéliAl’l Z (p,£y) < O(VIN)
t=1 Ni=1
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Why OGD Fails for PEA

* PEA has a special structure whereas general OCO doesn’t have.

Convex Problem PEA Problem
Domain: convex set X Domain: simplex X = Ay
Online function: convex function f; Online function: linear f,(p) = (p, £;)
Lower Bound: Q(GD+VT) Lower Bound: Q(v/7'In N)
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Why OGD Fails for PEA

* Remember that for the general OCO, we linearized the function
to analyze the first gradient descent lemma:

Iy (x: — eV f(xe)] — X*H2
x; — . Vf(xe) — x*|°
x; — XM = 20 (Vf(x0), %0 — x*) + 0 [|[Vf(xo))?

xp — x| = 2 (f(x0) = f5) + 0 IV (%) ||

2
|

%41 — %7

VAN

I

* So, linearized loss is not the essence, but the simplex domain of
the PEA problem is worthy specifically considering.
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Why OGD Fails for PEA

 Recall that for general OCO, we update the model as follows:

General Online Convex Optimization

OGD: Proximal type update:
. 1 :
x+1 = My [x¢ — eV f(x)] Xt+1 = al“gefgcﬂlﬂxa neV fe(xe)) + 5 Ix — [

* In PEA, is it proper to use 2-norm (ball) to measure distance?

’ \
A ball is too pessimistic (loose)
@ |:> \AQ( to measure a simplex!
NS

Ball Simplex
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Why OGD Fails for PEA

 Recall that for general OCO, we update the model as follows:

General Online Convex Optimization

OGD: Proximal type update:
1 .
Xip1 = Uy [x¢ — eV f(x4)] Xt+1 = al“gel’jclilﬂxa eV fe(xe)) + 9 I — ][5

* In PEA, is it proper to use 2-norm (ball) to measure distance?

—>  Weneed to find an alternative distance measure

for the special structure in PEA.

Advanced Optimization (Fall 2022) Lecture 7. Prediction with Expert Advice
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Reinvent Hedge Algorithm

—> We need to find an alternative distance measure
for the special structure in PEA.

* Intuitively, for Euclidean space, 2-norm is the most natural measure:
Ix = ylf5
» For PEA problem

= the decision can be viewed as a distribution within the simplex

= for two distributions P and Q, KL divergence is a natural measure:

i - o (1)
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Reinvent Hedge Algorithm

Theorem 3. Consider f.(p) = (p, €:). An online learning algorithm that updates
the model following

Pty — arg min?7<p; vft(Pt)> T KL(PHPt)
PEAN

1s equal to Hedge update, i.e.,
Dy (1) o< exp (—nLy(7)) for all ¢ € [N].

Proof. Pii1= argglim’z(p Vfe(p)) +KL(ppr)
PCAN

= arg minn(p, V fi(p,)) Zp ln(

PEAN
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Proof

N .
Proof. Dy = arg minn(p, Vfi(p,)) — Zp(é) In (pt(’&))

PEAN

F(p) is convex, therefore we minimize p by taking V,F(p) = 0:
Vi e [N], n(Vfip))i —In(p(i)) — 14+ In(p, (i) =0

I:> Py41(7) = exp ( —nV(fi(py))i + In(p, (7)) + 1)
= P, (Q,) exp ( — ‘I)et(?:) + 1) (ft(p) = (P, £+))
— pt—l(?;) exp ( — 7’](&5(?) + Et—l(i)) —+ 2)

= po(i) exp (= nL(i) + )

Dy1(i) ocexp (—nLy(i)) for all i € [IV]

Advanced Optimization (Fall 2022) Lecture 7. Prediction with Expert Advice
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Reinvent Hedge Algorithm

* Proximal update rule for OGD:

\X—M@

. 1
X1 = arg minn (x, V f1(x4)) + 5
xeX

» Proximal update rule for Hedge:

Xt41 = arg Iiliﬂ ne(x, V fi(x¢)) + KL(x[]x;)
XE

* More possibility: changing the distance measure to a more general
form using Bregman divergence

X1 = arg minn (X, V fi(x¢)) + Dy (x, x4)
xcX
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