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PEA vs. OCO

Ateachroundt =1,2,--- Prediction with Expert Advice

(1) the player first picks a weight p, from a simplex A y;

(2) and simultaneously environments pick an loss vector ¢; RN

(3) the player suffers loss f;(p,) = (p,,£:), observes £; and updates the model.

PEA is a special case
=k of OCO!

Ateachroundt=1,2,--- Online Convex Optimization

(1) the player first picks a model x; € &;

(2) and simultaneously environments pick an online function f; : X — R;

(3) the player suffers loss f;(x;), observes f; and updates the model.
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Deploying OGD to PEA

* PEA is a special case of OCO:
Why not directly deploy OGD (proposed in last lecture) to address PEA?

Theorem 4 (Regret bound for OGD). Under Assumption 1, 2 and 3, online gra-
dient descent (OGD) with step sizes n, = 52 for t € [T'] guarantees:

T T
3
Reeret.» = : —mj < —-GDVT.
egret ; fr (x¢) mm; fi(x) < 5 V.

xeX
t

Regret guarantee: D = max |[x—yls =v2 G = max |[&], = VN

X, YEAN £, ERN
T T

—> Regret, = Z (P, be) — pIéliAl’l Z (p,£y) < O(VIN)
t=1 Ni=1
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Deploying OGD to PEA

e OGD for PEA Problem:
D= max |[x—yl:=V2 G = max |€], = VN
X, yEAN £ RN
T T
—> Regret, = ; (py, i) — p%liAIil\r ; (p,£:) < O(VTN)

e A natural question: is the O(VT'N) regret bound tight enough?
e recall that the lower bound of PEA is Q(v/7'In V)

e OGD is not optimal with respect to N (number of experts)
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Deploying OGD to PEA

* PEA is a special case of OCO:
Why not directly deploy OGD (proposed in last lecture) to address PEA?

Theorem 4 (Regret bound for OGD). Under Assumption 1, 2 and 3, online gra-
dient descent (OGD) with step sizes n, = 52 for t € [T'] guarantees:

T T
3
Reeret.» = : —mj < —-GDVT.
egret ; fr (x¢) mm; fi(x) < 5 V.

xeX
t

Regret guarantee: D = max |[x—yls =v2 |G = max |[&], = VN

X, YEAN L eRN
T T

—> Regret, = Z (P, be) — pIéliAl’l Z (p,£y) < O(VIN)
t=1 Ni=1
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Why OGD Fails for PEA

* PEA has a special structure whereas general OCO doesn’t have.

Convex Problem

Domain: convex set X

Lower Bound: Q(GD+VT)

Online function: convex function f;

PEA Problem

Domain: simplex X = Ay
Online function: linear f;(p) = (p, £;)

Lower Bound: (/7' In N)

Advanced Optimization (Fall 2022)
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Why OGD Fails for PEA

* Remember that for the general OCO, we linearized the function
to analyze the first gradient descent lemma:

Iy (x: — eV f(xe)] — X*H2
x; — . Vf(xe) — x*|°
x; — XM = 20 (Vf(x0), %0 — x*) + 0 [|[Vf(xo))?

2
|

%41 — %7

VAN

xp — x| = 2 (f(x0) = f5) + 0 IV (%) ||

I

* So, linearized loss is not the essence, but the simplex domain of
the PEA problem is worthy specifically considering.
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Why OGD Fails for PEA

 Recall that for general OCO, we update the model as follows:

General Online Convex Optimization

OGD: Proximal type update:
. 1 :
x+1 = My [x¢ — eV f(x)] Xt+1 = al“gefgcﬂlﬂxa neV fe(xe)) + 5 Ix — [

* In PEA, is it proper to use 2-norm (ball) to measure distance?

’ \
A ball is too pessimistic (loose)
@ |:> \AQ( to measure a simplex!
NS

Ball Simplex
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Why OGD Fails for PEA

 Recall that for general OCO, we update the model as follows:

General Online Convex Optimization

OGD: Proximal type update:
1 .
Xip1 = Uy [x¢ — eV f(x4)] Xt+1 = al“gel’jclilﬂxa eV fe(xe)) + 9 I — ][5

* In PEA, is it proper to use 2-norm (ball) to measure distance?

—>  Weneed to find an alternative distance measure

for the special structure in PEA.
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Reinvent Hedge Algorithm

—> We need to find an alternative distance measure
for the special structure in PEA.

* Intuitively, for Euclidean space, 2-norm is the most natural measure:
Ix = ylf5
» For PEA problem

= the decision can be viewed as a distribution within the simplex

= for two distributions P and Q, KL divergence is a natural measure:

i - o (1)
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Reinvent Hedge Algorithm

Theorem 3. Consider f.(p) = (p, €:). An online learning algorithm that updates
the model following

Pty — arg min?7<p; vft(Pt)> T KL(PHPt)
PEAN

1s equal to Hedge update, i.e.,
Dy (1) o< exp (—nLy(7)) for all ¢ € [N].

Proof. Pii1= argglim’z(p Vfe(p)) +KL(ppr)
PCAN

= arg minn(p, V fi(p,)) Zp ln(

PEAN
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Proof

N .
Proof. Dy = arg minn(p, Vfi(p,)) — Zp(é) In (pt(’&))

PEAN

F(p) is convex, therefore we minimize p by taking V,F(p) = 0:
Vi e [N], n(Vfip))i —In(p(i)) — 14+ In(p, (i) =0

I:> Py41(7) = exp ( —nV(fi(py))i + In(p, (7)) + 1)
= P, (Q,) exp ( — ‘I)et(?:) + 1) (ft(p) = (P, £+))
— pt—l(?;) exp ( — 7’](&5(?) + Et—l(i)) —+ 2)

= po(i) exp (= nL(i) + )

Dy1(i) ocexp (—nLy(i)) for all i € [IV]
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Reinvent Hedge Algorithm

* Proximal update rule for OGD:

Xt+1 = arg min (X, V fr(x¢)) + 5 Ix — x¢|3
xeX

» Proximal update rule for Hedge:

Xt41 = arg Iiliﬂ ne(x, V fi(x¢)) + KL(x[]x;)
XE

* More possibility: changing the distance measure to a more general
form using Bregman divergence

X1 = arg minn (X, V fi(x¢)) + Dy (x, x4)
xcX
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Online Mirror Descent Framework

Ateachroundt=1.2,---

Online Mirror Descent

X1 = arg minng(x, V fi (%)) + Dy (x, X¢)

xeX

where D, (x,y) = ¥(x) — ¥ (y) — (V¥ (y),x — y) is the Bregman divergence.

e ¢(-) is a required to be strongly convex and differentiable function over a

convex set X.

Advanced Optimization (Fall 2022)
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Online Mirror Descent Framework

Definition 1 (Bregman Divergence). Let ¢ be a strongly convex and differ-
entiable function over a convex set &, then for any x,y € &, the bregman
divergence D,, associated to v is defined as

Dy(x,y) = ¥(x) —¢(y) — (VU(y), x —y).

* Bregman divergence measures the difference
of a function and its linear approximation.

» Using second-order Taylor expansion, we know

1
Dy(x,¥) = 5lIx = ¥lT2 ey

for some £ € [x,y].
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Online Mirror Descent Framework

Definition 1 (Bregman Divergence). Let ¢ be a strongly convex and differ-
entiable function over a convex set &, then for any x,y € &, the bregman
divergence D,, associated to v is defined as

Dy(x,y) = ¥(x) —¢(y) — (VU(y), x —y).

Table 1: Choice of ¢(-) and the corresponding Bregman divergence.

(x) Dy (x,y)
Squared Lo-distance |x|3 Ix —yli5
Mahalanobis distance ||X\|?4 |x — Y||?4
Negative entropy > rilogz;  KL(x[|y)
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Online Mirror Descent Framework

* Our previous mentioned algorithms can all be covered by OMD.

OMD form gz(;;ey(;f Mt Regret
253,2? Xi41 = al‘}%efj;ill (%, V fi(x:)) + ; Ix — x5 | ||x — y|2 % OWT)
Sgg;rzlf;l;. Xt+1 = al‘}%efj;ill (X, V fe(xe)) + ; Ix — XtH; Ix - yli3 % O(loiT)
expconcave | Xt = g minm(x Vi) + 5 [x x| Ix - yl3, | 5 | O(HeET)
ML [ = i (e A0 KL KLely) [V 0T
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Online Mirror Descent Framework

Ateachroundt=1.2,---

Online Mirror Descent

X1 = arg minng(x, V fi (%)) + Dy (x, X¢)

xeX

where D, (x,y) = ¥(x) — ¥ (y) — (V¥ (y),x — y) is the Bregman divergence.

e ¢(-) is a required to be strongly convex and differentiable function over a

convex set X.
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General Analysis Framework for OMD

Lemma 1 (Mirror Descent Lemma). Let D, be the Bregman divergence w.r.t. 1 : X — R
and assume 1 to be \-strongly convex with respect to a norm || - ||. Then, Vu € X, the

following inequality holds

Fi(xe) = fi(w) £ - (Dy,x1) = Dyl,x10)) + 90

For simplicity, consider the fixed step size version, we then have the following regret.

Theorem 4 (General Regret Bound for OMD). Assume 1) is A-strongly convex w.r.t. |||
and ny = n,Vt € [T']. Then, for all u € X, the following regret bound holds

th(xt) -

T
ux
1 zzvft Xt

1]~
=
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OMD Analysis

Lemma 1 (Mirror Descent Lemma). Let D, be the Bregman divergence w.r.t. 1 : X — R
and assume 1 to be \-strongly convex with respect to a norm || - ||. Then, Vu € X, the

following inequality holds

Fi(xe) = fi(w) £ - (Dy,x1) = Dyl,x10)) + 90

Proof. fe(xt) — fi(u)

VAN

(V fe(x¢), x¢ —u)
(Vfi(xe), %0 = Xep1) + (V%) X410 — 1)

AN

We will introduce two lemmas to bound term (a) and term (b), respectively.
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OMD Analysis

Proof. Je(x¢) = fe(u) < (Vfi(xe), xe — Xpq1) +(V fie(xe), X101 — 1)

We introduce the following stability lemma to analyze term (a):

Lemma 2 (Stability Lemma). Consider the following updates:

{X = arg minye x (g, X) + Dy (x, ¢)

x" = arg minxe v (8, x) + Dy (X, )
When the reqularizer 1) : X — R is a A-strongly convex function with respect to norm || - ||, we have

Alx=x[| <llg—gl.-
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Stability Lemma

Lemma 2 (Stability Lemma). Consider the following updates:

{X = arg minye x (g, X) + Dy (x, ¢)

x' = argminkex (g, x) + Dy (x, )

Alx=x[| <llg—gl.-

When the reqularizer 1) : X — R is a A-strongly convex function with respect to norm || - ||, we have

Proof. For any convex function f, we have the first-order optimality condition:
fx)<fly) VWyeX = Vf(x)'(y-—x)>0 Vyedl
Therefore, for x" = arg minyxecx {(g’,x) + Dy (x,c)}, we have

(g + Vi (x') — Vip(c),u — x’) > 0 holds for Vu € X.
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Stability Lemma

Lemma 2 (Stability Lemma). Consider the following updates:

{X = arg minye x (g, X) + Dy (x, ¢)

x' = argminkex (g, x) + Dy (x, )

Alx=x[| <llg—gl.-

When the reqularizer 1) : X — R is a A-strongly convex function with respect to norm || - ||, we have

Proof. (g + Vi(x') — Vip(c),u — x') > 0 holds for Vu € X.

By the first-order optimality conditions of x; and x,
(Vi (x) — V(x) + g, x —x) >0
(Vi (x) = Vi(x) + g',x =x) = 0

> X —xg-g)> (VY (x) - V¢ (), x—x) (1)
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Stability Lemma

Lemma 2 (Stability Lemma). Consider the following updates:

{X = arg minye x (g, X) + Dy (x, ¢)

x' = argminkex (g, x) + Dy (x, )

Alx=x[| <llg—gl.-

When the reqularizer 1) : X — R is a A-strongly convex function with respect to norm || - ||, we have

Proof. Besides, by the strong convexity of ¢, we have
/ / )\ /
(Vo (x),x = x) > 0(x) = (x) + 5 x = x|
/ / / A /
(Vo (x).x' = x) 2 p(x') = ¢ (x) + 5 |x = x|

Summing them up, we get
(Vb (x) = Vi (x') . x = x) = M x —x||°

(2)
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Stability Lemma

Lemma 2 (Stability Lemma). Consider the following updates:

{X = arg minye x (g, X) + Dy (x, ¢)

x' = argminkex (g, x) + Dy (x, )
When the reqularizer 1) : X — R is a A-strongly convex function with respect to norm || - ||, we have

Alx=x[| <llg—gl.-

Proof. (x'—x,g-¢g) > (VY (x) - Vi (x),x=x) (1)
(Vi (x) — Vo (x),x = x) > Ax=xX|° @
—> Mix = x'|* < (Vo (x) = Vi (x),x = x) < (X' —x,g — &)

<lx—-xllllg—gll

—> AMx =X <llg—g'l. [
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OMD Analysis

Proof. Je(x¢) = fr(u) <V fie(xe), xp — Xpp1) + (V fie(Xt), X1 — 1)

We further introduce following lemma to analyze term (b).

Lemma 3 (Bregman Proximal Inequality). Let X be a convex set in a Banach space 3. Let
[+ X — Rbea closed proper convex function on X. Given a convex regularizer ¢ : X — R,
we denote its induced Bregman divergence by Dy (-, ). Then, any update of the form

X1 = argmin {(g, x) + Dy (x, %) }
xeX

satisfies the following inequality for any u € X:

<gt: Xt41 — 11) < D(/,‘(lla Xt) — D(/,‘(ll, Xﬁ—l—l) — Dw(XﬁH, Xt)-

Crucial for analysis of first-order optimization methods based on Bregman divergence.
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Bregman Proximal Inequality

Lemma 3 (Bregman Proximal Inequality). The Bregman proximal update in the form of

X1 = arg ming . v { (8¢, x) + Dy (X, x;) } satisfies

(81, Xt+1 — u) < Dy(u,x¢) — Dy(u,X¢41) — Dy (X1, X¢)-

Proof. Recall that for any convex function f, we have the following first-order
optimality condition:

fx)<fly) VWweX <= Vf(x)' (y—-x)>0 VyeX
Therefore, for x;+1 = arg mingey {(g¢, x) + Dy (X, x:)}, we have

(g + Vh(x401) — Vb(x4),u — x441) > 0 holds for any u € X.
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28



Bregman Proximal Inequality

Lemma 3 (Bregman Proximal Inequality). The Bregman proximal update in the form of

X1 = arg ming . v { (8¢, x) + Dy (X, x;) } satisfies

(81, Xt+1 — u) < Dy(u,x¢) — Dy(u,X¢41) — Dy (X1, X¢)-

Proof. g+ Vi(xii1) — VU (xg),u — X411) > 0 holds for any u € X.
y

On the other hand, the right side of Lemma 3 is:

Dy(u,x;) — Dy(u,X41) — Dy (Xpr1,Xt)

= () —(x) = (VY(x¢), 0 — x¢) — () + Y(xp11) + (VO(Xe41), 0 — Xp41)
— Y(Xe1) + V(X)) + (VO(Xe), X1 — Xt)
= (V(x¢11) — Vb(Xg), 0 — X441) -

Rearranging the terms can finish the proof.
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OMD Analysis

Proof. fr(xe) — fe(u) <V fe(xe), Xt — Xeq1) + (V fe(Xe), Xe11 — 1)

Lemma 2 (Stability Lemma).
Alx1 —xof < [lg1 — g2,

|:> term (a) = (V fi(x;). x; — X441) < %vat(xm\f

Lemma 3 (Bregman Proximal Inequality).
<gt: Xt+1 — 11) < 'Dw(u: Xt) — D'J)(ua Xt—l—l) — D'(/)(Xt—l—la Xt)

1
IZ> term (b) < o (Dd)(uaxt) —Dy(u,X¢41) — Dzb(XtHaXt))
t

1

> fi(x¢) — fi(u) < —(Dy(u.x¢) — Dy (0, x441)) + % IV fu(xo)l; -

Tt
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A Comparison of Different Methods

e Mirror Descent Lemma of OMD:

fi(x¢) — fi(u) < ;(Dw(uaxt) —Dy(u,x441)) + n IV fi(xo)ll:

e First Gradient Lemma of OGD:

. , 1 ‘ Mo ¢
felxe) = flw) < 5 - (Ixee1 —ullz = llxe —ul2) + gt\lvft(xt)llg

e First Gradient Lemma of ONS:

. . : : 1 ,
fuloxe) = fulw) < 5 (e =i, = I = ul3) + 5 9 AG)IE

- 2
=5 X =9y, ) v s ()T
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General Analysis Framework for OMD

Lemma 1 (Mirror Descent Lemma). Let D, be the Bregman divergence w.r.t. 1 : X — R
and assume 1 to be \-strongly convex with respect to a norm || - ||. Then, Vu € X, the

following inequality holds

Fi(xe) = fi(w) £ - (Dy,x1) = Dyl,x10)) + 90

Using Lemma 1, we can easily prove the following regret bound for OMD.

Theorem 4 (General Regret Bound for OMD). Assume 1) is A-strongly convex w.r.t. |||
and ny = n,Vt € [T']. Then, for all u € X, the following regret bound holds

th(xt) -

T
ux
1 zzvft Xt

1]~
=
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General Analysis Framework for OMD

Theorem 4 (General Regret Bound for OMD). Assume 1) is A-strongly convex w.r.t. ||- ||
and n, = n,Vt € [T'|. Then, for all u € X, the following regret bound holds

L d Dy(u,x1) 1
/ s ] 2
th(xt)_th(u) < — +XZ\\vft(Xt)“*
t=1 t=1 U t=1
T T T 1 1 T n
Proof. >~ fixi) = D fi(w) < (0 Dylux) — - Dy(wxan) + 3 Vi)
t=1 t=1 t—=1 t=1
= i'Dw(U,XQ - ti(U?XTH) + i(i - )Dy(u, x;) + i n IIft(xt)Hf
m o nr o e -1 — A
T
Dy,
< (‘; IS VAP O
t=1
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General Analysis Framework for OMD

Theorem 4 (General Regret Bound for OMD). Assume 1) is A-strongly convex w.r.t. ||- ||
and n, = n,Vt € [T'|. Then, for all u € X, the following regret bound holds

th(xt) -

T
11X
. 3 2 1)

gl
=

With this generic theorem, it will become straight-forward to recover previous results.
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OMD Implication: Recovering OGD

Algorithm. With Theorem 3, it is straightforward to recover OGD:

1 1

OGD for convex | x¢1 = arg min(x, —=V fi(x)) + - [[x — x5
xeX ‘\/¥ 2
e (x) =1 |x|3 is 1-strongly convex w.r.t. || - ||
e The dual norm of || - || is still || - [|2
Regret Analysis.
T T T
—> th(xa - th Z o3 - Hu—xfﬂu +Zm IV fe(xe) 15
T)t 2
]1 Hu — x5 - ]— lu = x7a 5 + Z a T ) lu— x5 + Z [ fe () |15
< — _|_ — _|_ < SDGﬁ
mo T Z?k B -
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OMD Implication: Recovering Hedge

Algorithm. With Theorem 3, it is straightforward to recover Hegde:

Hedge for PEA | Xt+1 = arg min(x, nV fi(x)) + KL(x/[|x;)

xeX

e Negative entropy is 1-strongly convex w.r.t. || - ||
e The dual norm of || - [[1 is || - ||~
e We initialize the initial prediction x; = {+,..., +}

Regret Analysis.
o : KL(ux;) f

—> Y filxe) =Y fi(u) < =y el < —— +aT
t=1 t=1

= U t=1 l
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Another View for Mirror Descent
e Gradient Descent (GD) Method
x —nV [(x)
but this simply does not make sense for general non-Euclidean space...

- consider a Banach space B, whose dual space is denoted by B*
- x is in the primal space B

- Vf(x) is in the dual space B*

Advanced Optimization (Fall 2022) Lecture 8. OMD and FTRL
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Mirror Map

Dual space

Primal space

D
xee e VO (X¢)
Xt+1 :: gradient step
X i : ()
projection : ‘V’L/) (Virt)

() V(yie1) = Vp(x¢) — nV f(x¢)

(#) Xt+1 € H?’é Yit1]

(I y] = arg miny yrp Do, y))

38
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Mirror Map

Definition 2 (Mirror Maps). Let D C R" be a convex open set such that & is
included in its closure, thatis X € D, and X N D # (). We say that+¢) : D — R
is a mirror map if it safisties the following properties 1 :

(1) v 1s strictly convex and differentiable.

(ii) The gradient of ¢ takes all possible values, thatis V¢(D) = R".

(ii1) The gradient of ¢ diverges on the boundary of D, that is

¥ =
im [V (x| = +oo
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Another View for Mirror Descent

Theorem 5. The OMD update form

X1 = arg min . (x, V fi(x¢)) + Dy (x, %)
xceX

1s equal to the following two-step updates:
{ Vi (yir1) = Vb (x¢) = iV fir(x¢)

Xp1 = arg Minyey Dy (X, yiv1)

Proof. ;i1 = arg minDy (X, Y1)

xeX

= arg min G(x) — ¢ (yea) — (V8 (ye1) X~ Y
X<

= arg ming(x) — (V4 (y141) . )
X<
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Another View for Mirror Descent

Theorem 5. The OMD update form

X1 = arg min . (x, V fi(x¢)) + Dy (x, %)
xceX

1s equal to the following two-step updates:
{ Vi (yir1) = Vb (x¢) = iV fir(x¢)

Xp1 = arg Minyey Dy (X, yiv1)

PTOOf. Xti41 — arg min Z/)(X) — <V’(,f) (Yt+1) 3X>

xeX
= arg 1;1111 (x) — (VU (x¢) —neV fr(xe), X)
Xc
— arg min (V£,(x,),%) + 0(x) — (Vo (x1) X

Advanced Optimization (Fall 2022) Lecture 8. OMD and FTRL
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Another View for Mirror Descent

Theorem 5. The OMD update form

X1 = arg min . (x, V fi(x¢)) + Dy (x, %)
xceX

1s equal to the following two-step updates:
{ Vi (yir1) = Vb (x¢) = iV fir(x¢)

Xp1 = arg Minyey Dy (X, yiv1)

Proof. x;41 = arg minn (V fi(x;),x) +¥(x) — (Vi (x¢), %)

xeX

— arg 13:611117775 (Vfie(xe), %) + (%) = (%) = (Vi(x¢), X — X¢)
x€

= arg minn (Vf(X:),x) + Dy (X, %) ]
xeX
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Mirror Map

Vi (yie1) = Vi (x¢) — 0V fie(xe)

X1 = arg Miny ey Dy (X, yi41)

equivalent

=

yir1 = VO (VY (x¢) = meV fr(x¢))

X¢+1 = arg minyey Dy (X, Yi41)

where V*(-) is the Fenchel Conjugate of V().

Definition 3 (Fenchel Conjugate). For a function f : R? — [—o0, 0o], we define
the Fenchel conjugate f* : RY — [—oc0, o] as

fr(g) = sup(g,y) — f(y).

y ER4
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Mirror Map

Vi (Yt—i—l) = V9 (Xt) — eV [y (Xt) equivalent

X1 = arg Miny ey Dy (X, yi41)

=

yir1 = VO (VY (x¢) = meV fr(x¢))

X¢+1 = arg minyey Dy (X, Yi41)

where V*(-) is the Fenchel Conjugate of V().

Proof. We first show for any convex and closed f,g =V f(x) +— x =V [*(g).
By the convexity of [ (f(y) > f(x) + (g, y — x), Vy):

(g,x) — f(x) > (g, y) — [(y),Vy

which means (g,y) — f(y) achieves its supremum in y at y = x. Thus, by the
definition of Fenchel Conjugate:

f7(g) = sup (g,y) — fy) = (&%) — f(x)

y ERd
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Mirror Map

Vi (yie1) = Vi (x¢) — 0V fie(xe)

X1 = arg Miny ey Dy (X, yi41)

equivalent

=

yir1 = VO (VY (x¢) = meV fr(x¢))

X¢+1 = arg minyey Dy (X, Yi41)

where V*(-) is the Fenchel Conjugate of V().

P?"OOf. f*(g) — Sup <g*y> o f(Y) — <g7X> o f(X)

By taking the gradient w.r.t. g at both sides:

y ER4

VIi(g) =x
Therefore we have proved that g = Vf(x) < x =V [*(g).

By setting f(:) = ¢(-) and x = y;1, we finish the proof. ]
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Mirror Descent: history bits

PROBLEM COMPLEXITY AND
METHOD EFFICIENCY IN
OPTIMIZATION

A. S. NEMIROVSKY

Senior Scientific Fellow, State University of Moscow, USSR.

£ R DAWSON, A. S. Nemirovski (1947 - D. B. Yudin (1919 - 2006)

Wiy totrcin ot | A.S. Nemirovski, D.B. Yudin, Problem Complexity and Method Efficiency
in Optimization. Wiley-Interscience Series in Discrete Mathematics (A
Wiley-Interscience Publication/Wiley, New York, 1983)

JOHN WILEY & SONS 23. Nemirow}skiy, A.S., and Yudin, D. B. (1979). Efficient methods of solving convex-

Chichester - New York - Brisbane - Toronto - Singapore

programming problems of high dimensionality. Ekonomika i matem. metody, XV,
No. 1. (In Russian.)
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Another OCO Framework: FITRL

* Recall: Follow the Leader (FTL)

FTL Idea: Select the expert that performs best so far, namely,

p; - = argmin (p, L; 1)
PEAN

where L, | £ ZZ; ¢, ¢ RY is the cumulative loss vector.

* But, FTL is (highly) sub-optimal due to its unstable nature.

> anatural idea: adding regularizers to stabilize the algorithm.
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Another OCO Framework: FITRL

> anatural idea: adding regularizers to stabilize the algorithm.

Follow The Regularized Leader (FTRL)

s=1

t—1
o= s mingex { 3 151+ (5.

where 1), is the regularizer at time ¢.
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General Analysis of FTRL

Lemma 4 (FTRL Regret). We denote that Fy(x) = ¢ (x) + 21;11 fs(x). Thus, the
FTRL algorithm runs x; = arg min, . y Fy(x). Then, for any u € X, we have

xeX

th(xt)—th(u)szH( ) — min ¥y (x)

+ Z[Ft X¢) — Fop1(xe41) + fr(xe)]

+ FT+1(XT+1) — Fri1(u)
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General Analysis of FTRL A -
Fy(x) 2 (%) + 3027 fo(x)

th(xt)—th(u):ngH( ) — min ¥, (x)

xceX

+ Z Fi(xt) — Frp1(Xeq1) + fe(xe)]

+ FT+1(XT+1) Fryi(ua)

Proof. The term 3, f,(x;) appears at both side of the equality, thus we verify

_fo = ¢r41(u mlﬂl/Jl +Z Fy(x¢) = Froan(Xep )|+ Fra (X 1) = Frya (a).
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General Analysis of FTRL A -
Fy(x) 2 (%) + 3027 fo(x)

Proof. The term Y_,_, fi(x;) appers at both side of the equality, thus we verify

T
—fo = Yri1(u mlﬂwl Z Ey(x¢) = Figpr (Xe1) [+ Fro (xe41) —Frya ().

Recall that £} (x1) = minger 11 (%), telescoping over ZL[E&(X;&) — Fyq(x¢11)]

Y [Fi(x1) = Fia(xi1)] = Fi(x1) = Froa (xp41)

t=1
T

E> - th(u) = ¢Yry1(u) — Fi(x1) + Fi(x1) = Fro(xe41) + Froa(xXr41) — Frya(u)

t=1

= Yry1(u) — Fryq(u),
which is true by the definition of Frr,(x) = 1 1(X) + Zg;l ls(x). [
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General Analysis of FTRL A -
Fy(x) 2 (%) + 3027 fo(x)

Lemma 4 (FTRL Regret). We denote that Fy(x) = ¢ (x) + 21;11 fs(x). Thus, the
FTRL algorithm runs x; = arg min, . y Fy(x). Then, for any u € X, we have

Z fe(xe) — Z fi(u) = Yry1(u) — ;ﬂiﬂ Y1(x)

cX
T
4 Z[Ft(xt) — Fyy1(Xe41) + fr(x4)] (stability term)
t—=1

+ Fry1(X741) — Fryi(u)

* The stability term is crucial for regret analysis

* We will explain why it’s called stability term later
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FTRL Stability 0 ot S

Lemma 5 (FTRL Stability). Assume that ¢, is \i-strongly convex w.r.t. || - ||. Then,
we have
V(x|
Fy(x¢) = Fypi(xeq1) + fe(xe) < H ft)(\ )l + i (Xe41) — Y1 (Xer1)
t

Proof. Fy(xi) — Fiy1(Xet1) + fe(xi)

= Fy(x¢) + fi(x) = (Fp(Xeq1) + [e(x1)) + e (Xp1) — Y1 (Xeg1)
A
< (VFy(x¢) + Vfi(xt), Xt — Xp41) — é |x: — Xt+1H2 + Ve (Xeg1) — Vg1 (Xe41)
A |
< (V[ i(Xe), Xt — Xpg1) — Et % — Xt+1||2 + Ve (Xpp1) — Vg1 (Xet1)
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FTRL Stability 0 ot S

Lemma 5 (FTRL Stability). Assume that ¢, is \i-strongly convex w.r.t. || - ||. Then,
we have
V(x|
Fy(x¢) = Fypi(xeq1) + fe(xe) < H ft; )l + i (Xe41) — Y1 (Xer1)
t

Proof. Fi(xi) — Fry1(Xer1) + fe(x¢)

A
< <vft(Xt)aXt — Xt+1> — Et HXt — Xt+1||2 + ?f)t(XtH) — ”t/)t+1(Xt+1)
A |
< ||Vft(Xt)H* ‘ ||Xt — Xt+1|\ - 515 HXt - Xv:+1||2 - ?f)t(XtH) — ?/Dt+1(Xt+1)
1 , A
< x IV fe(xe) |2 — Zt Ix: — xes1]l” + Ve(Xep1) — Pro (Xes1)
t
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Regret Bound for FTRL A -
Fy(x) 2 (%) + 3027 fo(x)

Theorem 6 (Regret Bound for FIRL). Assume 1/,(x) is A\;-strongly convex on
domain X w.r.t. || - ||. We further assume that 1;(x) < 14, 1(x) for t € [T'|.Then, for
FTRL algorithm

xcX

Proof. Z(ft(xt) — fr(u)) =Yri1(u) — min g (x)

+ Z Fi(xy) — Fro1(Xeq1) + fr(xq)] (stability term)

+ FT+1(XT+1) — Fryi(u)
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Regret Bound for FTRL A -
Fy(x) 2 (%) + 3027 fo(x)

Theorem 6 (Regret Bound for FIRL). Assume 1/,(x) is A\;-strongly convex on
domain X w.r.t. || - ||. We further assume that 1;(x) < 14, 1(x) for t € [T'|.Then, for
FTRL algorithm
T T
th xi) = > filw) Svria(w) + 3 IV A,
t—1 t=1
SR IAAZE] [k
Proof. Z(ft(xt) — fi()) < Yrpi(u)+ Z t)\t U e (Xe1) — e (Xe41)
t=1 t=1
1
2
< $ria(u) + Z_; 3 IVAG)ls O
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Common Form for FTRL Regret

» FTRL updates by

+ng } Fyx) 2 () + Y0 fux)

x; = arg min F;(x) = arg min {

XEX xEX T — 1

Theorem 6 (Regret Bound for FTRL). Assume 1);(x) = ——1)(x), and 1 (x) is

Nt—1
1-strongly convex on domain X w.r.t. || - ||. We further assume a decreasing step size

sequence (i.e., ny > N1 fort € [T']). Then, FTRL enjoys

T T
> filx Z < +Zm NS ACH]
t=1 =1
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FTRL can be equivalent to OMD

Claim 1. Under online linear optimization (OLO) setting, with the same con-
stant step size > 0 and the same regularizer ¢ (which is required to be
strongly convex and a barrier function over X’), the OMD and FTRL algorithms
share the same output:

X = arg min {Z (n8s,x) + w(x)} ?

XceX o—1

and

x; = arg min {(ng¢—1,X) + Dy (X, x¢-1)} .
XeX
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FTRL vs. OMD: Equal Condition

Proof. For OMD, taking the gradient and setting it to 0 will lead to:
Ngt—1 + Vi(xe) = Vip(xy1) = 0

Telescoping from 1 to ¢ — 1, and define xq = arg min, . y ¥(x),

Vip(xe) = —1 ) g, -
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FTRL as Dual Averaging
* Mirror Descent

Vi (yer1) = Vi (x¢) — 0V fie(xe)

X¢1 = arg minycy Dy (X, yi41)

* Dual Averaging (lazy mirror descent)

VY (yie1) = VY (vi) — eV i(xy) averaging updates in dual space
X1 = arg Miny ey Dy (X, yi41)
this is the FTRL update

t—1
|:> X4l = arg minxeX {77 Z(st (XS), X> + I/J(X)} (consider fixed step size for
s—=1

simplicity)
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FTRL as Dual Averaging

Dual Averaging Method for Regularized Stochastic Learning and DOLi0 KOTATOIT 007 010
Online Optimization FULL LENGTH PAPER

Part of Ad s in Neural Information Processing Syst 22 (NIPS 2009
art of Advances in Neural Information Processing Systems 22 ( ) Primal-dual subgradient methods for convex problems

Bibtex Metadata Paper Yurii Nesterov

Received: 29 September 2005 / Accepted: 13 January 2007 / Published online: 19 June 2007

Authors © Springer-Verlag 2007

Lin Xiao Abstract In this paper we present a new approach for constructing subgradient
schemes for different types of nonsmooth problems with convex structure. Our methods
are primal-dual since they are always able to generate a feasible approximation to the

AbStra Ct optimum of an appropriately formulated dual problem. Besides other advantages, this
useful feature provides the methods with a reliable stopping criterion. The proposed

We consider regularized stochastic Ieaming and online optimization prob]ems, where the objective schemes differ from the classical approaches (d]\'érgen!senes melhmlls, mlrmrt‘lewe‘nl
o . . . . methods) by presence of two control sequences. The first sequence is responsible for
function is the sum of two convex terms: one is the loss function of the learning task, and the other is ageregating the support functions in the dual space, and the second one establishes a
a simple regularization term such as L1-norm for sparsity. We develop a new online algorithm, the dynamically updated scale between the primal and dual spaces. This additional flexi-
) . . . o . . bility allows to guarantee a boundedness of the sequence of primal test points even in
regularized dual averaging method, that can explicitly exploit the regularization structure in an online the case of unbounded feasible set (however, we always assume the uniform bounded-
setting‘ In par‘ticular, at each iteration, the Iearning variables are adjusted by solving a simple ness of subgradients). We present the variants of subgradient schemes for nonsmooth
ST ) } ) . convex minimization, minimax problems, saddle point problems, variational inequali-
optimization problem that involves the running average of all past SUbgrad|ent5 of the loss functions ties, and stochastic optimization. In all situations our methods are proved to be optimal

and the whole regularization term, not just its subgradient. This method achieves the o from the view point of worst-case black-box lower complexity bounds.

convergence rate and often enjoys a low complexit
gradier?t method. ComputatioriaIyexperimentspare NIP S 2019 Ten—yeag‘
Test of Time Award

Dedicated to B. T. Polyak on the occasion of his 70th birthday

learning using L1-regularization.

Lin Xiao. Dual Averaging Method for Regularized Y. Nesterov. Primal-dual subgradient
Stochastic Learning and Online Optimization. NIPS 20009. methods for convex problems, 2005.
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1 Introduction
1.1 Prehistory

The results presented in this paper are not very new. Most of them were obtained by
the author in 2001-2002. However, a further purification of the developed framework
led to rather surprising results related to the smoothing technique. Namely, in [11] it
was shown that many nonsmooth convex minimization problems with an appropriate

At that moment of time, the author got an illusion that the importance of black-box
approach in Convex Optimization will be irreversibly vanishing, and, finally, this ap-
proach will be completely replaced by other ones based on a clever use of problem’s
structure (interior-point methods, smoothing, etc.). This explains why the results in-
cluded in this paper were not published at time. However, the developments of the last
years clearly demonstrated that in some situations the black-box methods are irrepla-

ceable. Indeed, the structure of a convex problem may be too complex for constructing Yurii Nesterov
a good self-concordant barrier or for applying a smoothing technique. Note also, that 1956 —
optimization schemes sometimes are employed for modelling certain adjustment pro- UCLouvain, Belgium

cesses 1n real-life systems. In this situation, we are not free in selecting the type
of optimization scheme and in the choice of its parameters. However, the results on
convergence and the rate of convergence of corresponding methods remain interesting.
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FIRL vs. OMD

e FTRL and OMD framework can recover different OCO methods.

* They share many similarities in both algorithm and regret, but
they are fundamentally different in essence.
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FTRL vs. OMD: Update Styles

* OMD update style:

X1 = arg min(x, 7;V fy(x¢)) + Dy (%, x¢)
XeX

— OMD only depends on the last iteration (only keep the last result)

* FTRL update style:
X¢41 = arg min Zfe 19( )

xeX TH

— FTRL is more informative (keep all the history data) and more sensitive
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FTRL vs. OMD: Regret Bound

* OMD Regret:

> fixe)=) fi(u) 5

* FTRL Regret:

Z.ft(xt) — th( S

T

g

7
o \t Jt—1

D +Zm IV fule)

Tt—1

T
)Dw(uaxt)+z e IV o)l
t=1
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Summary

FTL

~ [ PROBLEM FORMULATION ] Hedge

Why OGD fails for PEA

Reinvent Hedge using OMD

PREDICTION WITH

EXPERT ADVICE OMD FRAMEWORK OMD regret analysis

OMD recover previous result

FTRL regret analysis

FTRL FRAMEWORK FTRL vs. OMD

Q&A
Thanks!
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