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Review: Hedge Algorithm

Hedge Algorithm
Ateachroundt=1,2,---
(1) compute p, € Ay such that p,(i) < exp (—nL;—1(i)) for i € [N]
(2) the player submits p,, suffers loss (p,, £;), and observes loss £, € RN
(3) update Ly = Ly + £,

FTL update Hedge update
p; = argmax (p, —Li—1) py(i) o exp (—nLe_1(d)), Vi € [N]
PEAN
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Review: OMD Framework

OMD updates: x;11 = arg min,¢y 7:(x, Vfi(x¢)) + Dy (%, %)

Lemma 1 (Mirror Descent Lemma). Let D,, be the Bregman divergence w.r.t. i :

X — R and assume 1) to be \-strongly convex with respect to a norm || - ||. Then,
Yu € X, the following inequality holds
1 Tt 2
fe(x¢) = fe(u) < E(Dw(u, xt) — Dy (W, Xe41)) + 3 IV A=)l

Proof.  f,(x;) — fr(u) < (Vfi(xs), % — 1)

(Vi (%), x¢ — x¢q1) + (V[ie(X¢), Xe1 — W)

IA A
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Review: OMD Analysis

Proof Lemmal. fi(x:) — fe(u) < (V fe(x¢), Xt — Xey1) + (Vfie(Xe), Xe41 — 1)

Lemma 2 (Stability Lemma).
Allx: = xofl < llg1 — gall,

> term (@) = (Vi) % — Xep1) < 2 Vfilx) 2

Lemma 3 (Bregman Proximal Inequality).
(86, Xe1 — 1) < Dy (u, X)) — Dy (w, Xpq1) — Dy (X1, X¢)

1
|:> term (b) S — (Dw(u, Xt) — Dw (u, Xt_|_1) — D¢ (Xt+1, Xt)) (negative term,
"t crucial in this Lec)

|:> fe(x¢) — fe(u) < i(D@b(U, X¢) — Dw(u, Xt—H)) + % vat(Xt)Hi i

Tt
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General Analysis Framework for OMD

Lemma 1 (Mirror Descent Lemma). Let D, be the Bregman divergence w.r.t. i) : X — R
and assume ) to be \-strongly convex with respect to a norm || - ||. Then, Yu € X, the

following inequality holds

fe(x¢) = fe(u) < %(Dw(u X¢) — Dy (W, xX¢41)) + % IV £ (o) |12

Using Lemma 1, we can easily prove the following regret bound for OMD.

Theorem 4 (General Regret Bound for OMD). Assume v is A-strongly convex w.r.t. |||
and ny = n,Vt € [T]. Then, for all u € X, the following regret bound holds

T T 1) | T
PFACHED I AT <2 5 Z IV fi(x)
t=1 ]
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Online Mirror Descent Framework

* Our previous mentioned algorithms can all be covered by OMD.

OMD form %I;(()}i:’eysf Mt Regret
oo | X =g minn (e VAte) + 5 b xli | x -yl | & | OWT)
sgf);rgglf}(f)z. X1 = af}%;)f(lin (X, V fe(x¢)) + % I =il | [Ix — yl3 % O(loiT)
exprconcave | X1+1 = A mnx VAix) + 5 x| -yl | 5 | O(HEE)
Hegngor X1 ax};gein;n ne(x, V fir(x¢)) + KL(x|[x) KL(x|y) % OWTInN)
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Beyond Worst-Case Analysis

* All above regret guarantees hold against the worst case

* Matching the minimax optimal
 The environment is adversarial

* However, 1in practice:

oblivious adversary

F w .
o 3‘&

examination

adaptive adversary
[ e

oy

interview

* Not always deal with ‘worst-case’ scenario
« Environments can follow specific patterns: gradual change, periodicity...

> We are after some more adaptive guarantees.
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Beyond Worst-Case Analysis

* Beyond the worst-case analysis, achieving more adaptive results.
* (1) adaptivity: achieving better guarantee in easy problem instance;

* (2) robustness: maintaining the same worst-case guarantee.
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Outline

* Adaptive methods for PEA
* Small-Loss bound

* A unified framework for OCQO: Optimistic OMD
 Small-Loss bound
e Gradient-Variance bound

 Gradient-Variation bounds
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Small-loss Bounds for PEA

* Let’s first review previous minimax regret result.

Theorem 1. Suppose that ¥Vt € [T]| and i € [N],0 < £,(i) < 1, then Hedge with

learning rate n guarantees

In N
Regret < —— +nT,
n

which is of order O(\/T In N) if  is optimally set as \/(In N) /T

* Ideally, we want to enjoy a smaller regret in easier situations.
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Small-loss Bounds for PEA

* Let’s first review previous minimax regret result.

Theorem 1. Suppose that Vt € [T'] and i € [N],0 < £,(¢) < 1, then Hedge with

learning rate n guarantees

In N
Regret < —— +n7T,
n

which is of order O(\/T In N) if  is optimally set as \/(In N) /T

* What if there exists an excellent expert? Ji* € [N], Lr(i*)<T

* Goal: can we achieve a ‘small-loss” bound? i.e.,

O(\/Lr(i*)In N)
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Small-loss Bounds for PEA

Theorem 2. Suppose that ¥Vt € [T and i € [N|,0 < £€,(¢) < 1, then Hedge with
learning rate n guarantees

1 In NV o
Regret, < +nLp(t) ),
l—n\ 7

which is of order O <\/ Lr(#*)In N +1In N ) if n is optimally set as min {
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Small-loss Bounds for PEA

Theorem 2. Suppose that ¥Vt € |T']| and i € [N|,0 < £,(i) < 1, then Hedge with
learning rate n guarantees

1 In NV o
Regret, < +nLp(t) ),
l—n\ 7

which is of order O (\/ Lr(#*)In N +1In N ) if n is optimally set as min {

Proof. Review the analysis of Hedge.
We present a “potential-based” proof, where the potential is defined as

2,2 1 (Z exp (—nLt(i))> -

d 1=1
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Review: Potential-based Proof

Proof. O, — P, 4

N exp (—nLy(i ol - -
_ %m (%%lzxplz(nzfi()i;J 2. £ I (2 exp (—nL¢(i))
-l (Z (zzxpi;?fm())()) eXp("Et(m))
= ~in <§Nj (i) exp <—net<z'>>> e step of )
< %m <§;pt(z) (1 —ne (i) + n%?(’ﬁ)) (Ve > 0,6-F < 1— o422
_ %m <1 AR im(%)@(@))
< — (P, i) + niptme?gi) =)
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Review: Potential-based Proof

Proof. O, — Oy < —(p, &) +n Y p(i);(0)
1=1
Summing over t, we have
T N
Z (P, L) < ®o— D +1Y > p,()€(3) 2 L (ZL exp(—nLt(i)))
t=1 t=1 =1
7 N
InN 1 ” : :
< —— — ~In(exp (=L (i) +n) Y Pi(i)€ (i)
"l d t=1 =1
T N
In N .
< ——+Lr(*) +n) Y p(i)€ (D)
"l t=1 =1
T In N T N
—> D (peke) = Lr(i) < ——+n) Y pi()€ (i)
t=1 t=1 =1
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Improved Analysis for Small-loss Bound

Proof. [—) > (pp ) — Ly(i*) < Uzzpt (3)£; (7)

t=1 1=1

T

e To get a small-loss bound, we improve the analysis to be:

T
UZZZ% 22 <7722pt et 772 ptaﬁt
t=1

t=1 1=1 t=1 1=1

L In N
e I N AL )
t=1

t=1
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Improved Analysis for Small-loss Bound

Proof. —> Z (P, 8y) — L (%) < lnTN + UZ(Pt»£t>

e Therefore, we get the small loss bound O (\/ Lr(#*)InN +InN ) if n is

optimally set as min {%, e }
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Improved Analysis for Small-loss Bound

= Sl -Lei s 7 (B i) o

t=1 1 d

e Therefore, we get the small loss bound O (\/ Lr(i*)In N +In N > if n is

optimally set as min {%, NS }

Question: is this algorithm legitimate?

Actually no... as the algorithm requires L1 (:*) in advance.

> Luckily, we can fix it by the self-confident tuning framework.

Advanced Optimization (Fall 2022) Lecture 9. Adaptive Online Convex Optimization
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Self-confident Tuning

e Goal: tuning n without the knowledge of L1 (i*)

e Intuition: two perspective:

1. The cumulative loss Zt_l = 22;11 (ps, £s) can be seen as an empirical

approximation to the best expert’s loss L1 (¢*);

2. Use Zt_l = Zt_l (ps, £s) to approximate Zt to tune current learning rate 7,.

s=1

Hedge update Adaptive Hedge update

(1) o< exp (—nLs_1(3)), Vi € [N] (1) ocexp (—n_1Ly_1(7)), Vi € [N]
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Self-confident Tuning

e Goal: tuning n without the knowledge of L1 (i*)

e Intuition: two perspective:

1. The cumulative loss Et_l = 22;11 (ps, £s) can be seen as an empirical

approximation to the best expert’s loss L1 (¢*);

2. Use Et_l = Zt_l (ps, £s) to approximate Zt to tune current learning rate 7,.

s=1

Theorem 3. Suppose that ¥Vt € [T]| and i € [N],0 < £,(i) < 1, then Hedge with

~lnl\f
Li_1+1

adaptive learning rate 1, = \/ quarantees

Regret, < 8v/(Lr(*)+1)In N + 3In N,

where Ly_y = S°"_  (p., £,) is cumulative loss the learner suffered at time t.

s=1
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Self-confident Tuning: Proof

Proof. We again use ‘potential-based” proof here, where the potential is defined as

é— ( exp (—nLq( )))

N exp (—m-1 L (3) )

( Sicyexp (—m—1Le—1(3))

(I)t(nt—1> Dy 1(77t 1

eXp —m—1L—1(3))

77t1

77t1 1

exXpl— t—lgti
o Loy <>>)>

In (Z D, (1) exp (—np_1£4 (i ))) (update rule of p,)
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Self-confident Tuning: Proot B 2 Lo (z <-nLt<z->>)

d =1

1
PTOOﬁ Dy (ni—1) — Pr_1(me—1) = In (Z D, (2) exp (—np—1£:(1

Nt—1 1

1=1

77t1

N
| | B
Smlln<§ Pe(1) (1 = ne—1£:(3) + 171 £5 () ) (Vx> 0,e7" <1 -z +2?)

1
In (1_7775 1Py ) + 17 121% (4)€; (i)

N
< — (pg, &) + M1 Zpt(i)ﬁf (4) (In(1 +2) < z)

=1
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Self-confident Tuning: Proof = wolu(Sewcm)

PTOOf. Qi(np—1) — Pe1(e—1) < —(py, L) + Me—1 Zpt(@)gf(z)

|:> <pt7£t> < (I)t—l(nt—l) - (I)t(nt—l) + Mt—1 ZPt(Z)E?(Z)

1=1
T T
Z (P, £) < @o(no) — Pr(nr—1 ‘|‘Z77t 121% 52 +Z (Pr (ne) — Pt (Me-1))
t=1 t=1
In N 1 L al d
< - In (exp(—nr-1L7(i"))) + Znt 1 Zpt (4)€:(2) + Z (Pe(mt) — Pi(ne-1))
nr-1  Nr-1 t=1
— T
= \/(LTl + 1> InN + L (%) + Zﬁt 1 {pys L) + Z (Pe(ne) — Pe(ne—1))
t=1
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Self-confident Tuning: Proof = wolu(Sewcm)

T
Proof. S (p,.t,) < \/(ZT_1+1> In N + Ly (i* +Zm 1D b) + > (Relme) — Pe(m—1))
t=1

To bound Zthl (®¢(ne) — Pt(1t—1)), we prove that ®,(7) is non-decreasing w.r.t. n:

. o 11 LN Ly(i) exp(—nLy(i))
Vo, = ——In(— exp(—nLl(1))) — — == ~ .
n?V®.(n) =7 ( - (N; p(—nL(3))) RS - )

—InN — Zp?+1(i) (hl(z exp(—nL¢(7))) + 77Lt(73)>

) N - Zj\le exp(—nL(7))
=InN — Z'_letjtl(z) In < exp(—nL(i)) )

=N =3 P s > 0 > XL (@) — Be—)) > 0

pt—l—l( i)
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Self-confident Tuning: Proof

Proof. From the potential-based proof, we already know that

Z (P ) — Lr(i*) <1/ (L 1+1)1nN+Znt Dy, £5)
t=1

t=1

~

<\/(Lr-1+1)InN+> "

How to bound this term?

Advanced Optimization (Fall 2022) Lecture 9. Adaptive Online Convex Optimization
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Self-confident Tuning Lemma

Lemma 1. Let ay,aq,...,ar be non-negative real numbers. Then

T

T
at <201+ ¢
Z\/1+Zi1as \ ;t

t=1

Lemma 2. Let ay,aq,...,ar be non-negative real numbers. Then

T T
Z 26 <4 1+Zat—|—maxat
t=1 \/1 + ZS Qg \ =1 telT]

The two lemmas are useful for analyzing algorithms with self-confident tuning.
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Self-confident Tuning Lemma: Proof

Lemma 1. Let ay,aq,...,ar be non-negative real numbers. Then
T . T
PEELTEESEAFHS 3
t
t—1 \/1 + > .10 \ t—1
1
Proof. < 1—VI—aVee 0]

Letag = 1, by set . = a;/ Zi:o Qg

a¢ ¢
t <1l-,/1- t
2 Zszo O ZS:O s
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Self-confident Tuning Lemma: Proof

Proof. ay R P
23 0as > o s
= L L OR| 30 303
S As — Ag —
2\/2220 Ag \ s=0 \ s=0
By telescopling from ¢t = 1to T~
< A — as — as <41+ > a
t=1 2\/1 +30 a, \ s=0 \ s=0 s=0 \ t=1 t

Advanced Optimization (Fall 2022) Lecture 9. Adaptive Online Convex Optimization
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Self-confident Tuning Lemma: Proof

Lemma 2. Let ay,aq,...,ar be non-negative real numbers. Then
T T
Z 2 <4 1+Zat—|—maxat
tl\/1—|—2818 \ t=1 telT]

P1’00f. We define that maXie[r) dt = B.
e Case1.If Y,  a, < B:

T

tl\/l—l—zsls t=1

T
Z at < Z a; < B, Lemma 2 is obviously satisfied.

Advanced Optimization (Fall 2022) Lecture 9. Adaptive Online Convex Optimization
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Self-confident Tuning Lemma: Proof

T
a¢

;\/14‘23 1%s

<4

Lemma 2. Let ay,aq,...,ar be non-negative real numbers. Then

\

T

1+Zat—|—?gaxat

t=1

| T]

PTOOf. We define that maXtE[T] a¢

= bB.

o Case 2. If Zthl a; > B, we define ty = min {t ; 22;11 T

T

A

T
> ————<B+3)

=1+ 2, =i 14 Xk,

> BY:

at

T
<B+ >

t=tq

\/1_|_ ST 1as+at

Advanced Optimization (Fall 2022)
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Self-confident Tuning Lemma: Proof

Lemma 2. Let ay,aq,...,ar be non-negative real numbers. Then
T T
Z 2 <4 1+Zat—|—maxat
tl\/1—|—2818 \ t=1 telT]

PTOOf. We define that maXie[r) dt = B.
e Case 2. If Zthl a; > B, we define ty £ min {t : Zt_l T > B}:

s=1

T T T
2
B+§ a <B+§ at < B44 1+§ a;
S astay — t \
t=to A/ 1 + Z=a= 1 t=to \/ 1+ > _; Qs t=1
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Small-loss bound for PEA: Proof

Proof. From previous potential-based proof, we already known that

Z (py, £y — Lp (i~ <\/LT 1 +1 lnN—I—Z Py, &)
t=1 \/28:1<p37£s> T 1
Lemma 2. Let ay,as,...,ar be non-negative real numbers. Then
T
Z a <4 1+Zat+maxat
=R TS et

— Ly — Lp(i*) < \/(ZT_1—|—1)lnN—I—4\/1—|—ZT—|—1
< \/(ET—I—I)lnN—I—Zl\/l—I—ZT—I—l
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Small-loss bound for PEA: Proof

Proof. :> Ly — Lp(i%) < \/(ET+1)lnN+4\/1+ZT—I—1

Then we solve above inequality. Let z £ Ly + 1:

z— (VInN +4)yz < Lp(i*) +2

(o AY' iy (59

2
= VIn N +4 VIn N +4
—> ‘\/LT1<\ILT(@'*)+2+< n2+ ) i 1{12Jr

—> Ly <3WnN + Ly (i*) 4+ 8/ (L7 (i*) + 1) In N

Advanced Optimization (Fall 2022) Lecture 9. Adaptive Online Convex Optimization
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Recall;: Small-Loss Bound for PEA

* So far, we have obtained a PEA algorithm with small-loss bound.

Theorem 3. Suppose that ¥Vt € [T]| and i € [N],0 < £,(i) < 1, then Hedge with

In N
L;_1+1

adaptive learning rate 1, = \/ quarantees

Regret, < 8v/(Lr(i*)+1)In N + 3In N,

where L, — Zi;ll (ps, £s) is cumulative loss the learner suffered at time t.

 Can we further extend the result to more general OCO setting?
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Small Loss in General OCO Setting

Definition 4 (Small Loss). The small-loss quantity of the OCO problem (online
function f; : X — R) is defined as

T
Hph= ,Ifg(l tZ fi(x)
e By taking fi(x) = (x,€;) and X = Ay, we recover the definition of the small-loss
quantity of PEA problem:
T
Fr= pip Y0 = DA = )
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Self-bounding Property

* We require the following self-bounding property to ensure
small-loss bounds for general OCO.

Lemma 3 (Self-bounding Property). For an L-smooth and non-negative function
f: X — R, we have that

IVix)ll2 < V2L f(x), vxeX

Proof. First, we know that if f is L-smooth, then for any x,y € X we have

F¥) — £~ (VF().y —%) < 2]y — x|
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Self-bounding Property

L
Proof. Fy) ~ 1) = (VF(x)y %) < 2 lly x|
Therefore, for any x,v € R4, we have

(~VF().v) ~ V]2 < F(x) ~ F(x +v) < F(x) — inf, F(y).

y ER4

By the definition of the dual norm:
s IV = supyepa (=VF(x),v) = [IV[* < f(x) — infyepa £(¥)

Besides, the function f is non-negative in R space, therefore inf, s f(y) > 0,

— IV(x)ll2 < /2L f(x)

Advanced Optimization (Fall 2022) Lecture 9. Adaptive Online Convex Optimization
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Achieving Small-Loss Bound

Lemma 3 (Self-bounding Property). For an L-smooth and non-negative function
f: X — R, we have that

IVix)ll2 < V2L f(x), vxeX

Online Gradient Descent

Xt+1 = erX[Xt — Utvft(xt)]

Advanced Optimization (Fall 2022) Lecture 9. Adaptive Online Convex Optimization
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Achieving Small-Loss Bound

Online Gradient Descent

Xt+1 = erX[Xt — Utvft(xt)]

Theorem 6 (Small-loss Bound) Assume that f, is L-smooth and non-negative for all t €
T'|, when setting 1, = m the regret of OGD to any comparator u € X is bounded as
+Gy

T T
Regret = Z fe(x3) z ) <O (\/1 + LFT)
t=1 t—1

where Gy = S IV fs(x4)||3 is the empirical estimator of cumulative gradient Grr.
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> Al = 3 £ilw <3 9 il |12+Z (Hu—xtuz—uu—xtﬂuz)

Zﬁt IV fi(x)||3 = DZ vat(xt)H2 e

=2 \/1+ G,

T
<20, |1+ 3 VA + G

t=1

T
1+2L)  fi(x) + G

<2D\[1+203
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t=1

I:> Regret, = Z fe(x¢) — th(u) < SDJ 1+ QLZ fi(x:) + G*

Advanced Optimization (Fall 2022) Lecture 9. Adaptive Online Convex Optimization
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Proof

T T T
Proof. |:> Regret, = Z fe(x¢) — Z fe(u) < 3D, |1+ QLZ fi(x¢) + G?
t=1 t=1

= t=1

Small-loss bound for PEA: Proof

Proof. —> ZT—LT(i*)S\/(ET+1)111N+4\/1+ZT+1

Remember how we solve the similar problem in PEA: Thien e solpe ahove Inequallys et S ir-+1s
z— (VInN +4)y/x < Lp(i*) +2

<\/;— \/111N+4) < LT([,*)+2+<\/IHN+4>

2 2

2
— \/ZT—15$LT(i*)+2+( m;”) B

— Ly <3N+ Ly (i*) + 8y/(Ly (") + ) In N a
T
|:> Regret;; = O | D LZ fi(u) +14 G? ]
\ =
Advanced Optimization (Fall 2022) Lecture 9. Adaptive Online Convex Optimization 42



Towards a Unified Framework

* Previous small-loss bounds seem to be ad-hoc designed.

* Is there a unified framework to get all adaptive bounds?

* Review OMD Update:

OMD updatesz X¢p] = arg ming e y 77t<Xa V fi (Xt)> + Dy, (X7 Xt)

What if we some prior knowledge of the environments?

Advanced Optimization (Fall 2022) Lecture 9. Adaptive Online Convex Optimization
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Optimistic Online Learning

* Intuition: what if we some prior knowledge of the environments?

—> We can “guess’ the next move.

__________________________________________________________________

Mon. Tues. Wed. Thurs. Fri.

= = = — 2

_________________________________________________________________

Guess: It still seems to rain
on Friday

* To formalize the idea, we treat ‘guess” as a hint of future gradients
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Optimistic OMD: Algorithmic Framework

* We formulate this intuition as the following two-step update:

Optimistic Online Mirror Descent

Ateachroundt=1,2,---
x; = arg minn, (M, x) + Dy (x,X¢)
xeX

X¢41 = arg I;liﬂ Nt (V fe(x¢), %) + Dy (%, X¢)
XE

where )M, € R? is the optimistic vector at each round.
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Optimistic OMD: Generic Analysis

Theorem 4 (Regret for Optimistic OMD). Assume 1) is -strongly convex w.r.t.
| - ||, the regret of Optzmzstzc OMD w.r.t. any compamtor u € X is bounded as:

th Xt th <Z77t vat Xt) Mt||2

_________________________________________________

= = o e e e e e e = e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

* Note that for standard OMD, the negative term is usually dropped.

* In Optimistic OMD, the negative term can be crucial for adaptive regret guarantee.
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Optimistic OMD: Generic Analysis

Theorem 4 (Regret for Optimistic OMD). Assume 1) is -strongly convex w.r.t.
| - ||, the regret of Optzmzstzc OMD w.r.t. any compamtor u € X is bounded as:

th Xt th <Z77t vat Xt) Mt||2

________________________________________________

_________________________________________________

= = o e e e e e e = e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

P1’00f- fr(x¢) — fi(u)

IA
:s
%
ks
|
£

— \(Vft(xt) — My, Xt — Xpq1) + (M, x¢ — §t+12+\<vft(xt)>§t+1 - u>J

~ ~ ~

term (a) term (b) term (c)
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Proof of Optimistic OMD Regret

Proof. fi(x¢) — fi(u) < (Vfi(xe) — My, x¢ — Xpp1) + (My, X — Xp1) H(Vi(%¢), Xe 11 — 1)

\ 4 \ 4 \ J/

~ ~ ~

tern (a) term (b) term (c)

For term (a), we use the stability lemma.

Lemma 2 (Stability Lemma). Consider the following updates:

{x = arg minkecx (g, x) + Dy (%, C)

x' = arg minger (g, %) + Dy (x, C)

When the reqularizer i) : X — R is a A-strongly convex function with respect to norm || - ||, we have

Alx—x| < lg—gl.-

term (8.) — <Vft(Xt) — Mt, Xt — §t+1>
<V fixe) = Mell, Nl = Rl < e 1V fi(xe) — M
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Proof of Optimistic OMD Regret

Proof. fi(x¢) — fi(u) < (Vfi(xe) — My, x¢ — Xpp1) + (My, X — Xp1) H(Vi(%¢), Xe 11 — 1)

\ 4 \ 4 \ J/
~" ~ ~

tern (a) term (b) term (c)

For term (b), we adopt the Bregman Proximal lemma.

Lemma 3 (Bregman Proximal Inequality). Consider convex optimization problem with the

following update form min {{g:, x) + Dy (x, %)} .
XE

Then, it satisfies the following inequality for any u € X':

<gt7Xt—|—1 — 11> < Dw(ua Xt) — D¢(u, Xt—l—l) — sz(XH—la Xt)-

Thus, according to update rule: x; = arg min, . 7 (M, x) + Dy (x,Xy)

A 1 A A A A
term (b) = (M, x; — Xt11) < 77— <D¢(Xt—|—laxt) — Dy (Xt41,%t) — D¢(Xt,Xt)>
¢
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Proof of Optimistic OMD Regret

Proof. fi(x¢) — fi(u) < (Vfi(xe) — My, x¢ — Xpp1) + (My, X — Xp1) H(Vi(%¢), Xe 11 — 1)

\ 4 \ 4 \ J/
~" ~ ~

tern (a) term (b) term (c)

For term (c), we also adopt the Bregman Proximal lemma.

Lemma 3 (Bregman Proximal Inequality). Consider convex optimization problem with the

following update form min {{g:, x) + Dy (x, %)} .
XE

Then, it satisfies the following inequality for any u € X':

<gt7Xt—|—1 — 11> < Dw(ua Xt) — Dw(ua Xt—l—l) — sz(XtH, Xt)-

Thus, according to update rule: X; 1 = arg min, .y n: (V fi(x1), x) + Dy (x,Xy)

AN 1 AN AN AN AN
term (c) = (V fi(x¢),X¢41 — 1) < 77— (Dw(uaXt)_Dw(uaXtH)_Dw(XtHaXt))
t
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Proof of Optimistic OMD Regret

Proof. fi(x¢) — fi(u) < (Vfi(xe) — My, x¢ — Xpp1) + (My, X — Xp1) H(Vi(%¢), Xe 11 — 1)

\ 4 \ 4 \ J/

~ ~" ~"

tern (a) term (b) term (c)

Put the three terms together, we can finish the proof.

term (a) < n ||V fi(x:) — Mt”i
1 - - ~ ~
term (b) < E (%X\t) — Dy (X141, %t) — Dy (X4, Xt))

1 ~ ~ ~
term (c) < o (Dw(u,xt) — Dy(u,X¢41) — DM O]
t
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Optimistic OMD: Generic Analysis

Theorem 4 (Regret for Optimistic OMD). Assume 1) is -strongly convex w.r.t.
| - ||, the regret of Optzmzstzc OMD w.r.t. any compamtor u € X is bounded as:

th Xt th <Z77t vat Xt) MtH2

________________________________________________

_________________________________________________

= = o e e e e e e = e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
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Example: Optimistic OGD (with fixed step size)

e Consider the Euclidean regularizer Dy (x,y) = %||x — y||3, i.e.:

. 1 ~
x; = arg minn (M;, x) + §||X — XtHg
xeX
~ . 1 -
Xt41 = arg min?7 <Vft(Xt)»X> T §”X — XtHg
xXcX

T T
= > fulx) Z <nZ||Vftxt — My|;
. . -
HER S (Hu CR = u— fmns)

1 R ~
—i5T (HXtH — x¢]|5 4 [|x¢ — XtH%)
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Example: Optimistic OGD (with fixed step size)

e Consider the Euclidean regularizer Dy (x,y) = %||x — y||3, i.e.:

. 1 ~
x; = arg minn (M;, x) + §HX — XtHg
xeX
N . 1 ~
Xt+1 = arg minn (V f(x¢), x) + §”X - XtHg
xeEX
a - - > Jlu- X1H2
> D b)) = D fe(w) <) IV Fil(xe) — Ml + - Z x40 — %15
t=1 t=1 t=1
T , D2 r 5 S IV fr(xe)—Me)|2
Snzuvft(xt)_Mﬂb"‘% <0 1+Z|‘vft(xt)_MtH2 is not available
t=1 t=1

- self-confident tuning
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Optimistic OMD: Applications

 Small-Loss Bound

* Gradient-Variance Bound

 Gradient-Variation Bound
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Optimistic OMD: Applications

 Small-Loss Bound
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Achieving Small-Loss Bound

* Recall the guarantee of optimistic OGD:

x; = arg minn (M,
xeX

xcX

)

1

X1 = arg minn (V fi(x¢), X)

+ 5l = Rl

1

T §”X — XI5

—> D filxd) =) fi(w) <

Setting M, =0 ) Z fe(xt) — th(u) <O (\

O(\

T
1+ Z IV fe(xe) — Mt§>
t=1

T
1+ Z vft(Xt)§>
t=1

Advanced Optimization (Fall 2022)
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Achieving Small-Loss Bound

* Employing the self-bounding property of smooth and non-
negative functions

Lemma 3 (Self-bounding Property). For an L-smooth and non-negative function
f: X — R, we have that

IVix)llz < V2L f(x), vxeX

Setting M, =0 [ th(xt) — th(u) <0 (\ 1+ Z Vft(Xt)§>

<0 <\ 1 —|-Lth(Xt))
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Achieving Small-Loss Bound

—> th(xt)—th(u) < O \1+Lth(Xt)

Small-loss bound for PEA: Proof

Proof. —> Ly — Ly(i*) < \/(ZT+1)luN+4\/1+ZT+1
Then we solve above inequality. Let z £ Lr+1:

z— (VInN +4)yz < Lp(i*) +2

2 2
(\/E_\/111]2V+4> < LT(i*)+2+(\/ln]2V+4)

Remember how we solve the similar problem in PEA:

2
- VN +4\° VN 44
= \/LT1<JLT(II*)+2+< “2+ ) + I”2+

— Ly <3N+ Ly (i*) + 8/(Lr (i*) + 1) In N O

T
I::> Regret,, = O 1+ LZ fe(u) u
t=1

Note that this algorithm requires the knowledge of G = Zle 1V fi(x4)]|3
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Achieving Small-Loss Bound

2

OMD to any comparator u € X is bounded as

T

Regret, = th(xt) -~ ET: fi(u) <O (\/ 1+ FT)

t=1

where Gy = 3" ||V fs(x4)||2 is the empirical estimator of cumulative gradient Grp.

Theorem 6 (Small-loss Bound). Assume that 1)(x) = X|x||3 and f, is L-smooth and
-negati i1t € [T, when setti = —L2_ and M; = 0, th t of Optimisti
non-negative for all t € |T'|, when setting 1, v and M, e regret of Optimistic
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Achieving Small-Loss Bound

M'ﬂ

Proof. " fi(x:) -

t=1

For term (a),

Zﬁt”vft (x¢) —
t=1

M'ﬂ

t=1

_|_

e IV fr(xe) — M|

|
> o (=%l u = R )
—1 Nt
1

b (Hm a2+ [l — ftné)
=1 2

Z ||Vft(Xt)||2 G2 < QDJ 1+ Z ”vft Xt)HQ _|_G2

M||3 =D
t=2 \/1_|_Gt t=1
T
<D\|1+2L)  fi(x) + G
t=1
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Achieving Small-Loss Bound

Proof. Regret = term (a) + term (b) — term (c)

t=1

T
term (a) < QDJ 1+ 2LZ fi(xy) + G*

_ D\1+20Y T filx) + D
= 2

term (b)

term (c) >0

T T T
I:> Regret, = Z fr(x¢) — th(u) < SD\I 1+ ZLZ fi(xy) + G?
t=1 t=1

= t=1
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Achieving Small-Loss Bound

PTOOf. I:> th(Xt)_th(u) < 3D 1"‘2Lth(Xt)‘|‘G2

= t=1

Small-loss bound for PEA: Proof

Proof. —> ET—LT(i*)S\/(ET+1)111N+4\/1+ZT+1

Remember how we solve the similar problem in PEA: Then we solve above inequality. Let & Iy + 1
z— (VInN +4)y/x < Lp(i*) +2

<\/;— \/lnN+4) < LT([,*)+2+<\/IHN+4>

2 2

2
= \/ZT—IS$L7‘(i*)+2+(vm]2\[+4> + ‘1“2”4

— Ly <3N+ Ly (i*) + 8y/(Ly (") + ) In N a
T
|:> Regret;; = O | D LZ fi(u) +14 G? ]
\ =
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Optimistic OMD: Applications

* Gradient-Variance Bound
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Achieving Gradient-Variance Bound

Definition 3 (Gradient Variance). For a space X € R? and a finite T, we say
that the gradient variance of a sequence of functions f1,..., fr € F : R - R
is defined as

Varp = sup Y |[Vfi(xs) — prl;

where jip = arg min, Y, [V fu(x:) — ll3 = 2 S, Vfi(x).

V{ (") Implicit assumption: there exists
a latent mean gradient E.|V fi(x¢)].

e.g. SGD (sampled from a set of data)
e.g. Classification (sampled from training set)

N AN . ¢
AUAAEVEAAT NV
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Achieving Gradient-Variance Bound

Definition 3 (Gradient Variance). For a space X € R? and a finite T, we say
that the gradient variance of a sequence of functions f1,..., fr € F : R - R
is defined as

Varp = sup Y |[Vfi(xs) — prl;

where jip = arg min, Y, [V fu(x:) — ll3 = 2 S, Vfi(x).

Optimistic Online Mirror Descent
1

x; = arg minn, (M, x) + = ||x — X3 Question:
xEX 2 How to choose Mit?
N . 1 -
Xt+1 = arg minn: (V fi(x¢), x) + §HX — XtHg
xeX
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Achieving Gradient-Variance Bound

Definition 3 (Gradient Variance). For a space X € R? and a finite T, we say
that the gradient variance of a sequence of functions f1,..., fr € F : R - R
is defined as

Varp = sup Y |[Vfi(xs) — prl;

where jip = arg min, Y, [V fu(x:) — ll3 = 2 S, Vfi(x).

Optimistic Online Mirror Descent

) ~ 1 ~ 112 Mt choose to be
X; = arg min _1.X —lx — X
t §€X N {Hit—1,%) + 2 | tll2 confident estimation
R 1 ) of gradient mean:
% — 3 ’ V(x:).x —lx — x ~
t+1 r}gcergrglm ne (V fie(x¢), %) + 9 | tll2 Ty = %Zizl V fs(Xs)
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Achieving Gradient-Variance Bound

Theorem 5 (gradient-variance bound). Assume that 1)(x) = 3||x||3, when setting n; =

7 gv and M, = p,—1, the regret of Optimistic OMD to any comparator u € X is
+Vary_q

bounded as

) <O (%1 n VarT)

IIM%

T
Regret; = Z fe(x¢) —
t=1

where [iy = + S Vfs(xs)is the empzrzcal estimator of mean, and Var,_; = Zi;i |V f(xs)
—Iis||5 is the confident estimation of variance Varr.

T T T
Proof. 3" fix) = 3" Ailw) < S IV filx) — M + Z (%3 a1
t=1 t=1 t=1 =

1 ~ ~
o (IRess =13 + 1~ %13)

(negative term)

M’ﬂ

t=1
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Achieving Gradient-Variance Bound

Proof. For term (a),

T T
ZmHVft(Xt) — M5 = Znt |V fe(x:) — ﬁt—ng ez
t=1 t=2

T T
< 22771; IV fr(xe) — faell + 22771& \Fie — fie—1ll3 + G
=2 =2
T o~ 2 T 2
SZDZ IV fe(x¢) — pel]5 +2DZ%+G2
—1 2
DALY IV — 2
T o~ 12 2
< ZDZ ||Vft1(xt) e |5 2 L 18DG2 . % e?
t— ~
=2 1+ I IV axe) —
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Achieving Gradient-Variance Bound

P - 2 d |V fi(xt) — ﬁtHg ) T 2
roof. ||V fi(xe) — Myl|3 <2D ) — — +18DG* - + G
= =2 1+ D IV Fa(xs) — sl
Lemma 2. Let ay, a9, ..., ar be non-negative real numbers. Then
70
ay
Z = <4\Jl—|—2at+£r€1?JTxat
il \/1 4=
—> - _ 2 > T o
< 8D\ 1+ IV Sfe(xe) = fielly + 8DG? 4 18DG? - - +G

< 8D+/1+ Vary + (39D + 1)G?

Advanced Optimization (Fall 2022) Lecture 9. Adaptive Online Convex Optimization 70



Achieving Gradient-Variance Bound

Proof. We then analyze term (b) in the same way as before:

T
1 ~ ~
vorm (5) = > o (u - %l - u— e

—1 21y
T
1 1 .1 o
— — — u— Xz + —|lu—x
S (g~ gy ) el gl %l
T
1 1 1
_Z<—— )D2+—D2
o 20 2m—1 2m
2
<__|_LD2<D\/1+V8IT+D

— 2nr  2m - 2
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Achieving Gradient-Variance Bound

Proof. Finally, put three terms together:

Regret; = term (a) + term (b) — term (c)

term (a) < 8D+/1 + Vary + (39D + 1)G?

D? 1 Dyv1+4+V D
term (b) < — + —D* < v1+ Vary +
2nr - 2m 2
term (c) > 0

:> Regret, < 9D+/1 + Vary + 39DG? + G?
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Optimistic OMD: Applications

 Gradient-Variation Bound
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Recall: L-smooth Function

Definition 12 (Smoothness). A function f is L-smooth if, for any x,y € dom f,

L
fy) < fE)+ V) (v —%) + Slly = x|,
or equivalently, V2 f(x) < LI, or

IVi(x) = Vfy)l < Lix -yl

- For linear functions, L = 0.

- Smoothness is in fact the Lipshitzness of gradients.
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Gradient-Variation Bound

Definition 2 (Gradient Variation). For a space X € R? and a finite T, we say
that the gradient variation of a sequence of functions fi,..., fr € F : R? - R

is defined as
T

Vr =Y sup |[VAi(x) = Vi1 (x)|;

i—9 xeX

Gradient variation characterizes online functions’ shifting rate.

* Adaptivity: it can be small in slowly changing environments.

* Robustness: Vo < 4G*T in the worst case.
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Gradient-Variation Bound

Definition 2 (Gradient Variation). For a space X € R? and a finite T, we say
that the gradient variation of a sequence of functions fi,..., fr € F : R? - R

is defined as
T

Vr =Y sup |[VAi(x) = Vi1 (x)|;

i—9 xeX

V1 (4 Implicit assumption:

R /\/ Gradient (online function) shifts slowly

- e.g., age forecasting by portraits
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Optimistic OMD for Gradient-Variation Bound

Optimistic Online Mirror Descent
. 1 A
x; = arg minn; (M, x) + §HX — XtHS
xeX
A . 1 A
Xt41 = arg I)I(llﬂnt (V fe(x¢),x) + §HX - XtHg
X

Question: How to choose M, ?

:> Imposing a prior on the change of the online functions

setting M; as the last-round gradient M; =V f; 1(x;_1)
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Optimistic OMD for Gradient-Variation Bound

Optimistic Online Mirror Descent
1

x; = arg minn; (M, x) + §HX — ﬁtH%
xeX
A~ . 1 -
Xt+1 = arg T)I{Hl’l??t (Vfe(x¢), %) + §HX — XtH%
X

Optimistic OMD for Gradient-Variation Bound

. 1 ~
x; = arg minn; (V fr—1(x¢-1),%) + = ||x — X¢ |13
XEX 2
A~ . ]‘ -
Xt4+1 = arg I;llﬂ"?t <Vft(Xt)>X> =+ §HX — XtH%
XE
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Gradient-Variation Bound

Theorem 4 (Gradient Variation Regret Bound). Assume that (x) = %|x||3 and
ft is L-smooth for all t € [T], when setting n; = min{ - 17 \/—} and M, =

1+Vi_1
V fi—1(x¢—1), the regret of Optimistic OMD to any comparator u € X is

Regret, = ZT: fr(x¢) — i fi(u) <O (\/ 1+ VT)

where V,_{ = 22;12 |V fs(xs-1) — Vfs_1(xs5-1) Hg is the empirical estimates of V;.

T T T
Proof. 3 fitxe) = 3 4w £ X m [V fl) ~ Ml + Z (%3 a1
t=1 t=1 t=1
P 2 = 112
— — | ||X — X¢llo T ||Xe — X
;m(n o1 =l + o = el

(negative term)
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Proof of Gradient-Variation Bound

Proof. For term 1,

T T
SV xe) = M3 < S 0 [V Filxe) — Vot (xem1) |2 + G
t=1

t=2

T T
<2 0 |V filxe) = Ve )ls + 2 me IV fi(xi—1) = Vfici(xe—1)ll; + G
t=2 t=2
T

L 2
\% 1) — V[ _
<2 E L ||% _Xt—1||§ + 2D E IV fi(xi-1) fi—1(xe-1)ll3

+ G?
=2 t=2 \/1 + IV s (6m1) = Vst (xs-1) I3
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Proof of Gradient-Variation Bound

Proof. For term 1,

r T
S IV fx) = Mill3 < S e IV fulxe) = Vfima (xem1) |3 + G

t=2

T T
< 227% IV fe(xe) — Ve (xe—1)|5 + 227% IV fe(xem1) = Vi1 (xe—1) |5 + G

t=2
T T 2
Vit(Xi—1) — Vi_1(x¢—
<23 L ey x| +2D Y IO D TVl Dl e
= =2 A1+ X IV (%emt) — Vfumt (xem1) 2
Lemma 2. Let ay, aqg, ..., ar be non-negative real numbers. Then
70

E 26 <4\JI—I—E at+maxat
te[T]
t=1 \/1—I—E 1CLS
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Proof of Gradient-Variation Bound

t=2 t=2

T T
Proof. term (a) <2) nL? ||x¢ — 15 + 4D\l 1+ IV filxim1) = Vimi(xe—1)ll; + (4D + 1)G?

T
<2) nL?|x¢ — x_1l; + 4D\/1 4+ Vp + (4D + 1)G?
t=2

This term depends on our algorithm,
how to deal with it?
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Proof of Gradient-Variation Bound

Proof. We then analysis term (b),

T
1 ~ ~
verm () = 3 5 (Il = %l - u % )

1 21
T
1 1 .1 o
= — — u—Xl|s+ —|lu—x
S (3~ gy ) el 5%l
T
1 1 1
<) (— - > D? + —D?
o 20 2m—1 2m
D2 1, max{4(L+1)D,DVITVr + D)
T 2ne 2m 2
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Proof of Gradient-Variation Bound

Proof. For the term (c), we have

1
2n)

&

term (c) = <H§t+1 —x¢ |5+ ||x¢ — 5575”%)

1

~
I

1V
G
[\D’}_\

~

I

(\V)
]

(11 = %0113 + 1% — 3
t

2
|x¢ — Xt—le

1V
E
i-h’b_‘

Tt

~
I
\)
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Proof of Gradient-Variation Bound

Proof. For the term (c), we have

1
2n)

&

term (c) = <H§t+1 —x¢ |5+ ||x¢ — 5575”%)

1

~
I

1V
G
[\D’}_\

~

I

(\V)
]

(Hﬁt - Xt—l”% + ||1X¢ — XtHg)
t

2
|x; — Xt—l”z

1V
E
i-h’b_‘

Tt

~
I
\)

Does this term look familiar?

Advanced Optimization (Fall 2022) Lecture 9. Adaptive Online Convex Optimization

85



Proof of Gradient-Variation Bound

Proof. Finally, put three terms together:

Regret; = term (a) + term (b) — term (c)

T
term (a) <2» n L7 |Ix; — x¢_1]|3 + 4Dv/1 4 Vp + (4D + 1)G?
t=2
max{4(L + 1)D, D/1+ Vr + D}

term (b) < 5

T
1 2
term (c) > >  — [x¢ — x¢_1]l;
i

Advanced Optimization (Fall 2022) Lecture 9. Adaptive Online Convex Optimization

86



Proof of Gradient-Variation Bound

Proof. Finally, put three terms together:

Regret; = term (a) + term (b) — term (c)

term (a) <2) —x;_1||3 +4D+\/1 + Vp + (4D +1)G?

t=2

max{4(L + 1)D, D\/1+ Vr + D}
2
T
term (c) > M — min{-L D
par 47775 t H2 (77t mln{ AL m})

—> Regrety < 5DV1+ Vp + (4D +1)G* +2LD = O(\/1+ Vr)

term (b) <

]
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Comparison

: 1 ~
x; = arg minn (M;, x) + §HX — X5
xex 1 Different priors are imposed by designing
X1 = arg minn (V fi(x¢), x) + 5 lx— X:||2| suitable M, for specific environments.
xeX
: Setting of : Adaptive
Assumption(s) Optimism Setting of 7; Regret Bound
Small-loss L-Smooth + B ~ _ D Pu—
Bound Non-negative My =0 V1+G, O ( L+ FT)
Variance — 77 ~ D
Bound _ My = p— 1+ Var, O (\/1 + VarT)
Variati ~ D
e | Lo My = VfiiGon)| ¥ | O(VIETR)
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Recovering Gradient-Variance Bound
By using algorithm for gradient-variation Bound (OMD with M; = V f; _1(x;1)):
T T
D IV filxe) = Vo (el <3 I felxe) — el
t= t= .
+3) M fem1(xe-1) = i ll3
t=1
T
+ 32 17z — iz 3
t=1

—> algorithm with V; bound can also attain Vary bound
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Recovering Small-Loss Bound
By using algorithm for gradient-variation Bound (OMD with M; = Vf;_1(x:-1)):

T
ZHVft xt) — Vfi—1(Xt-1 ||2 < QZHVft Xt ”2+22|Wft 1 (Xt 1)”2

< 4L Z fi(xy) +4L Z fr—1(x¢—1)
t=1 =2

< 8LFt

—> algorithm with V- bound can also attain F bound

Advanced Optimization (Fall 2022) Lecture 9. Adaptive Online Convex Optimization 90



Variation-type Bounds: History Bits

JIMLR: Workshop and Conference Proceedings vol 23 (2012) 6.1-6.20 25th Annual Conference on Learning Theory

Extracting Certainty from Uncertainty:
Regret Bounded by Variation in Costs
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Abstract

Prediction from expert advice is a fundamental prob-
lem in machine learning. A major pillar of the field
is the existence of learning algorithms whose ave
age loss approaches that of the best expert in hind-
sight (in other words, whose average regret ap-
proaches zero). Traditionally the regret of online
algorithms was bounded in térms of the number of
prediction rounds

Cesa-Bianchi, Mansour and Stoltz [4] posed the
question whether it is be possible to bound the re-
aret of an online algorithm by the variarion of the
observed costs. In this paper we resolve this ques
tion, and prove such bounds in the fully adversar-
ial setting, in two important online learning sce-
narios: prediction from expert advice, and online
linear optimization.

1 Introduction

A cornerstone of modern machine learning are algorithms
for prediction from expert advice. The seminal work of Lit-
tlestone and Warmuth [12], Vovk [13] and Freund and Schapire
[6] gave algorithms which, under fully adversarial cost se-
quences, attain average cost approaching that of the best ex-
pert in hindsight

To be more precise, consider a prediction setting in which
an online learner has access to n experts. lteratively, the
learner may chose the advice of any expert deterministically
or randomly. Afier choosing a course of action, an adversary
reveals the cost of following the advice of the different ex-
perts, from which the expected cost of the online learner is
derived. The classic resulis mentioned above give algorithms
which sequentially produce randomized decisions. such that
the difference between the (expected) cost of the algorithm
and the best expert in hindsight grows like O(y/T Togn).
where T is the number of prediction iterations. This extra
additive cost is known as the regret of the online learning
algorithm.

However, a priori it is not clear why online learning algo-
rithms should have high regret (growing with the number of
iterations) in an unchanging environment. As an extreme ex-
ample, consider a setting in which there are only two experts.
Suppose that the first expert always incurs cost 1, whereas

Satyen Kale

Microsoft Research

1 Microsoft Way, Redmond. WA 9805
sakale@microsoft.com

the second expert always incurs cost £. One would expect to
“figure out” this pattern quickly, and focus on the second ex-
pert, thus incurring a total cost that is at most  plus at most
a constant extra cost (irrespective of the number of rounds
T). thus having only constant regret. However. any straight-
forward application of previously known analyses of expert
learning algorithms only gives a regret bound of ©(v/T) in
this simple case (or very simple variations of it).

More generally. the natural bound on the regret of a “good™

learning algorithm should depend on variarion in the sequence
of costs, rather than purely on the number of iterations. If the

cost sequence has low variation, we expect our algorithm to

be able to perform betier.

This intuition has a direct analog in the stochastic setting
here, the sequence of experts” costs are independently sam-
pled from a distribution. In this situation, a natural bound on
the rate of convergence to the optimal expert is controlled by
the variance of the distribution (low variance should imply
faster convergence). This was formalized by Cesa-Bianchi,
Mansour and Stoltz [4], who assert that “proving such a rate
in the fully adversarial setting would be a fundamental re-

ult”.

In this paper we prove the first such regret bounds on
online learning algorithms in two important scenarios: pre-
diction from expert advice, and the more general framework
of online linear optimization. Our algorithms have regret
bounded by the variation of the cost sequence, in a man-
ner that is made precise in the following sections. Thus, our
bounds are tighter than all previous bounds. and hence yield
better bounds on the applications of previous bounds (see,
for example, the applications in [4]).

1.1 Online linear optimization

Online linear optimization [10] is a general framework for
online learning which has received much attention recently
In this framework the decision set is an arbitrary bounded
closed, convex set in Euclidean space K C R™ rather than a
fixed set of experts. and the costs are determined by adver-

ially constructed vectors, fi, fa,... € R", such that the
cost of point & € K is given by f; The online learner it-
eratively chooses a point in the convex set L and then
the cost vector f; is revealed and the cost f; - ¢ is occurred.
The performance of online learning algorithms is measured
by the regret, which is defined as the difference in the total
cost of the sequence of points chosen by the algorithm, viz.
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Abstract

We study the online convex optimization problem, in which an online algorithm has to
make repeated decisions with convex loss functions and hopes to achieve a small regret.
We consider a natural restriction of this problem in which the loss functions have a small
deviation, measured by the sum of the distances between every two consecutive loss func-
tions, according to some distance metrics. We show that for the linear and general smooth
convex loss functions, an online algorithm modified from the gradient descend algorithm
can achieve a regret which only scales as the square root of the deviation. For the closely
related problem of prediction with expert advice, we show that an online algorithm mod-
ified from the multiplicative update algorithm can also achieve a similar regret bound for
a different measure of deviation. Finally, for loss functions which are strictly convex, we
show that an online algorithm modified from the online Newton step algorithm can achieve

a regret which is only logarithmic in terms of the dev

also have such a logarithmic regret for the portfolio management problem
Keywords: Online Learning, Regret, Convex Optimization, Deviation

1. Introduction

We study the online convex optimization problem in which a player has to make decisions
iteratively for a number of rounds in the following way. In round ¢, the player has to
choose a point z; from some convex feasible set X C RV, and after that the player receives
a convex loss function f; and suffers the corresponding loss fi(w:) € [0,1]. The player
would like to have an online algorithm that can minimize its regret, which is the difference C‘
between the total loss it suffers and that of the best fixed point in hindsight. Tt is known
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tion, and as an application, we can
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