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Classic Game: Rock-Paper-Scissors game

* Rock-Paper-Scissors game

Rock Paper Scissors
Scissors

(@’% beats paper @ Rock 0 1 —1

Rock ’ P?Per Paper - ]_ O ].

beats scissors ock

Scissors 1 —1 0
&

* Strategy

- Pure strategy: a fixed action, e.g., “Rock”.

- Mixed strategy: a distribution on all actions, e.g.,
(“Rock”, “Paper”, “Scissors”) = (1/3,1/3,1/3).
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Two-Player Zero-Sum Games

* Terminolo gy Rock Paper Scissors
Rock 0 1 —1
o game/payoff matrix A € [—1,1]"*" Paper 1 0 |
Scissors 1 -1 0

o two players

—player #1: x-player, row player, min player

— player #2: y-player, colume player, max player

Scissors

¢ action set (focusing on mixed strategy) e
—player #1: A,, = {p | >., ., pi =1, and p; > 0,Vi € [m]}. s
—player #2: A, = {q| >_7_, ¢; = 1, and ¢; > 0,Vj € [n]}.
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Two-Player Zero-Sum Games

* The protocol:
- The repeated game is denoted by a (payoff) matrix A € [—1,1|"™*".

- The x-player has m actions, and the y-player has n actions.

- The goal of x-player is to minimize her loss and the goal of y-player
is to maximize her reward.

 Given the action (x,y) € A,, x A, the loss and reward are the same.
- expected loss of x-player is E[loss| = > ;1,1 @i D jepn YiAij = x ! Ay.

- expected reward of y-player is Elreward] = } ;.1 Zi 2 e Yidij = x ' Ay.
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Nash Equilibrium

* What is a desired state for the two players in games?

Definition 2 (Nash equilibrium). A mixed strategy (x*,y”*) is called a Nash
equilibrium if neither player has an incentive to change her strategy given that
the opponent is keeping hers, i.e, forallx € A, and y € A,, it holds that

X*TAy S X*TAy* S XTAy*.

Player-y’s goal is to maximize her reward, changing from y* to y will decrease reward.

Player-x’s goal is to minimize her loss, changing from x* to x will increase loss.

—> Does the Nash equilibrium always exist for zero-sum games?
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Minimax Strategy and Maximin Strategy

* minimax strategy
x* € arg min, maxy x ' Ay

x-player goes first, and given x, the worst-case response of y-player is maxy x ' Ay,
so the best way for x-player would be argmin, max, x' Ay.

* maximin strategy

y* € arg max, min, x ' Ay

y
y-player goes first, and given y, the worst-case response of x-player is miny x ' Ay,

so the best way for y-player would be argmax,, miny x ' Ay.
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Minimax Strategy and Maximin Strategy

* A natural Consequence * minimax strategy

X* € arg min, maxy x' Ay

x-player goes first, and given x, the worst-case response of y-player is maxy x " Ay,
so the best way for x-player would be argmin, max, x " Ay.

minmax x' Ay > maxmin x' Ay
X y y X

* maximin strategy

y* € argmax, miny x| Ay

H' M . -player goes first, and given y, the worst-case response of x-player is miny x ' Ay,
In tu’t’on' there ShOUld be no goIihey bes% way for y—pla%/er Wguld be argmax, mini x ' Ay. r Y
disadvantage of playing second

Proof: Define x* € arg min, max, x' Ay and y* € arg max, min, x' Ay.

. T T : .
minmax x' Ay = max x* Ay > x*' Ay* > minx' Ay* = maxmin x ' Ay.
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Von Neumann’s Minimax Theorem

* For two-player zero-sum games, it is kind of surprising that the
reverse direction is also true and thus minimax equals to maximin.

Theorem 1. For any two-player zero-sum game A € [—1,1]™*", we have

minmax x' Ay = maxmin x ' Ay.

The original proof relies on a fixed-point theorem (which is highly non-trivial).

Here gives a simple and constructive proof by running an online learning algo.
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Connection with Online Learning

* Recall the OCO framework, regret notion, and the history bits.

Online Conv

* OCO framework

* feasible domain is
* online functions ai

Another VieJ

e Ultimate goal: min

e The cumulative los

History: Two-Player Zero-Sum Games

Theory of repeated games Zero-sum 2-person games played more than once

T w2 ..

@ Row player (player)

2 1¢2,1) £22) ... has N actions
At each round t = 1 2 S50 we need a bend : : @ Column player (opponent)
! ;1' N has M actions
(1) the player flrSt F Regﬂ L-;',ﬂ% l For each gameround t =1,2,...
= James Hannan David Blackwell @ Player chooses action i, and opponent chooses action y
(2) and environmer (1922-2010) (1919-2010) @ The player suffers loss (i, y) (= gain of opponent)
(3) the player Suffe L We hope the regrei Learning to play a game (1956) Player can learn from opponent’s history of past choices yi, ..., Y1 |
Play a game repeatedly against a possibly suboptimal opponent
updates the mod
Regret -
o J ——— a5 i
From this point forward, we u T Nicolo Cesa-Bianchi, Online Learning and Online Convex Optimization. Tutorial at the Simons Institute. 2017.
Advanced Optimization (Fall 2023) Advanced Optimization (Fall 2023) Advanced Optimization (Fall 2023) Lecture 5. Online Convex Optimization 24
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Repeated Play

* It is often that a game is repeatedly played for many times

Ateachround ¢t =1,2,...,T:
(1) x-player picks a mixed strategy x; € A,
(2) simitaneously y-player picks a mixed strategy y; € A,
(3) x-player and y-player submit their strategies together

(4) x-player receives loss x, Ay, and observes Ay,; y-player receives

loss —x, Ay, and observes — Ax;

The loss function that x-player receives is f*(-) = - ' Ay,. assume a gradient feedback

—> y: candepend on xy, . .., X;—1, meaning that x-player is facing an adptive adversary.
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Repeated Play

e Assume x-player and y-player run online algorithms with regret Reg’} and Reg%ﬁ

Our goal: prove miny, max, x' Ay < maxy min, x' Ay via repeated play.

Key idea: use the quantity + Zt . x, Ay, as abridge between min, max, x' Ay

T
and max, miny x' Ay.

Re
—ZX Ay; < xrélin —ZXTAyt + fT

Reg
T T
= Ay

IR, AT

Reg’
T T
max min x' A

Inax min X AY+ —r

IA
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Repeated Play
e Assume x-player and y-player run online algorithms with regret Reg7. and Reg?.

Our goal: prove miny, max, x' Ay < maxy min, x' Ay via repeated play.

Key idea: use the quantity + Zt . x, Ay, as abridge between min, max, x' Ay

: T
and maxy min, X' Ay.

——ZX Ay, < min ——Zx Ay+RegT

yEA,
Reg?
_T T
= min —X+-A
yeEA, T y+ T
Reg” Reg”
< max min —-x' A T — _ min maxx A L
T x€A,, YEA, y+ T XEA,, YEA, y+ T

Advanced Optimization (Fall 2023) Lecture 10. Online Learning in Games 13



Repeated Play

e Assume x-player and y-player run online algorithms with regret Reg’} and Reg%ﬁ

Our goal: prove miny, max, x' Ay < maxy min, x' Ay via repeated play.

Key idea: use the quantity ~ 5"/ | x, Ay, asabridge between min, max, x' Ay

: T
and max, miny x' Ay.

T b
1 T . T RegT
() 77 2 Ave < puage Jin Ay + =

1 Reg”
T . T T
——g X Ay < — min max x Ay—l—
(2) Z 1 ¢ t xEAl m yEAn 1
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Repeated Play

e Assume x-player and y-player run online algorithms with regret Reg’} and Reg%ﬁ

Our goal: prove miny, max, x' Ay < maxy min, x' Ay via repeated play.

Key idea: use the quantity ~ 5"/ | x, Ay, asabridge between min, max, x' Ay

: T
and max, miny x' Ay.

] — Reg’ ] — Reg?>
(1) T ; x; Ay; < ;lél%)i xrgg,ln x' Ay + TT 2) — ; x, Ay, < — Xrélir:n ;2%}2 x' Ay + TT
(2) 1 Reg”, (1) Reg’. Reg”
: T T T T T T
axx Ay < — ) x, A < ma x A
ain e xTAy < 7 ) x Ayik =0t < max min xTAy+ =28 4
If Reg’. and Reg?, are sublinear in 7, the gap becomes to 0 when 7" — co. [
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Minimax Solution and Nash equilibrium

Definition 2 (Nash equilibrium). A mixed strategy (x*,y”*) is called a Nash
equilibrium if neither player has an incentive to change her strategy given that
the opponent is keeping hers, i.e, forallx € A, and y € A,, it holds that

X*TAy S X*TAy* S XTAy*.

 Relationship beween Nash equilibrium and minimax solution.

Theorem 2. A pair of mixed strategy (x*,y™) is a Nash equilibrium if and only if
it is also a minimax solution (optimizer of miny max, x' Ay = maxy min, x' Ay),
ie., X* € arg miny maxy, x' Ay,y* € argmax, miny, x'Ay.

We denote by (x*,y*) a Nash equilibrium, which will be proved as a minimax solution.
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Proof

Prooﬁ We denote by (x*,y*) a Nash equilibrium, which will be proved as a minimax solution.

e (Nash  minimax solution)

. T T : .
minmax x' Ay < max x*' Ay =x* Ay* = min x' Ay* < maxminx' Ay

By Von Neumann’s minimax theorem, the above inequality is in fact an equality.

e (minimax solution  Nash)

. T T . .
minmax x' Ay = max x* Ay > x*' Ay* > min x' Ay* = maxminx ' Ay

By Von Neumann’s minimax theorem, the above inequality is in fact an equality.
[]
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Minimax Solution and Nash equilibrium

* Relationship beween Nash equilibrium and minimax solution

Theorem 2. A pair of mixed strategy (x*,y™) is a Nash equilibrium if and only if
it is also a minimax solution (optimizer of min, maxy, x' Ay = maxy, min, x' Ay),
ie., x* € arg miny max, x' Ay,y* € arg max, miny, x' Ay.

* Existence of Nash equilibrium

Since the minximax solution always exists, by Theorem 2, Nash equilibrium
also always exists in the two-player zero-sum games.
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Nash Equilibrium Calculation

* How to compute an approximate a Nash equilibrium?

Ateachround ¢t =1,2,...,T:
(1) x-player picks a mixed strategy x; € A,
(2) simitaneously y-player picks a mixed strategy y; € A,
(3) x-player and y-player submit their strategies together

(4) x-player receives loss x, Ay; and observes Ay;; y-player receives

loss —x, Ay, and observes —Axt

Submit X1 = T Zt | X, and yr £ T Zt 1Yt
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Nash Equilibrium Calculation

* How to compute an approximate a Nash equilibrium?

From the previous analysis, we know that the algorithm ensures:

% tZT;XtTAYt < xlglgl T ;XTAYt + ReJ:gT = Xlglin x' Ayr + Reg; < ;Ielix xrélin x ' Ay + Reﬁi}
_% tZT;xtTAyf < yréuAn —— ZX;I_Ay 4 R?ST _ yrglAn _%T Ay + REC’Z:ST < max ynenAn _xT Ay + RG;;}T’
|:> X*TAy* < xrélir}n x' Ay + R;g? + ReTg%}
— pet <x"Ay* ReTg; " Reﬁ
Advanced Optimization (Fall 2023)
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Nash Equilibrium Calculation

* How to compute an approximate a Nash equilibrium?

From the previous analysis, we know that the algorithm ensures:

RegX  RegY
* 1 * T gT gT
A < A
<Ay < i xTAyr ot =pE
Reg”.  Reg”
A A _oT _oT
%%XXT Yy y + T + T

It shows that minyca, x' Ay7 and maXyecA,, )‘(} Ay converges to the minimax
value of the game at a rate of (Reg’. + Reg?.)/T.

—> If x-player and y-player both run Hedge (Reg’. = Reg’. = O(V'T)),
the convergence rate is O(7~'/?).
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Faster Convergence via Gradient Variation
e Can we do faster than the O(\/T) rate?

Yes! We can use the Optimistic Online Mirror Descent of the last lecture.

e Recall in gradient-variation regret, the negative term is crucial.

: 1 .
xi = arg min g (V1 (1), %) + 5 1x — %l
XEX
Gradient Variation

X¢+1 = arg minn (V fe(x¢),x) + §HX — XI5
xcX

T
) < UZHVft x¢) = Vfi1(xe1)ll; + Z Ixe1 — x¢ll3

(negative term)

IIMﬂ

|:> th(xt
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Faster Convergence via Gradient Variation
e Can we do faster than the O(\/T) rate?

Yes! We can use the Optimistic Online Mirror Descent of the last lecture.
If x-player runs OOMD with NE-entropy and gradients g¥ = Ay, fort € [T

T T T
RegT = Z<Ayt,xt — X> 5 T]AXEFT] Z HAYt — Aytl%Lnx Z HXt - thﬂ
t=1 t=2 t=2

Similarly,

T T T
1 1
Reg}, = Z (—Axp, yi—y) S WErny z; [ Ax: — Axeslleg=—5 > lye - Ytl%
t—1 t—

t=2

> Regr + Reg”. = O(1), which leads to a much faster O(T~!) convergence rate! []
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Recap: negative terms in gradient variation

Optimistic OMD for Gradient-Variation Bound
. 1 -
X = arg min, y {777: (Vfi—1(x¢-1),%x) + §HX — XtH%}

AN . 1 <
Xt+1 — arg My - y {7775 (V fe(x¢),%x) + §HX - Xt”%}

Theorem 4 (Gradient Variation Regret Bound). Assume that 1)(x) = %|x||3 and f; is
L-smooth for all t € [T, when setting n; = min{ -, ——=——1} and M; = V fi_1(x1_1),

vV 1+Vi_1

the regret of Optimistic OMD to any comparator u € X is

Regret, — i fo(x;) — ift(u) <O (\/1 + VT>

where V,_, = ZE;; |V fs(xs—1) — Vfs_1(x5-1) Hg is the empirical estimates of V;.
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Gradient-Variation Bound

5|
p—

T
tHVft Xt) MtHQ Z

Mﬂ
IIMH

Proof. th(xt) -

(nu—itua _ ||u—§t+1||%)

(nm 2+ e — %2

(negative term)

M= T
M‘b—\

t177t

T
term (a) <2) nL?[Ix; — x¢_1]3 + 4D\/1 4 Vp + (4D + 1)G?
t=2

1
term (b) < 5 max{4(L + 1)D,D+/1+ Vp + D}

T
1 2
term (c) > — | Xt — X1 — min{ 3 D
(c) ;:2: o, [xt —xe—1ll; (s {7 TLVH})
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Proof of Gradient-Variation Bound

Proof. Finally, putting three terms together yields

T
term (a) <2) L |l +4D/1+ Vi + (4D 4+ 1)G?
t=2

1
term (b) < 5 max{4(L +1)D,D+/1+ Vy + D}

2 .
—1”2 (e = mln{41L, \/14{)‘771})
t_

> Regret, = term (a) 4+ term (b) — term (c)

<5D\1+ Vi + (4D + 1)G?> +2LD = O(v/1+ V7).

Advanced Optimization (Fall 2023) Lecture 10. Online Learning in Games

26



History bits: Game Theory

* John von Neumann

John von Neumann was a Hungarian
mathematician. By 26, he had already published 32
papers. He has been credited with founding game
theory based on a paper he wrote in 1928. In 1944,
he wrote, alongside Oskar Morgestern, the seminal

book Theory of Games and Economic Behavior.

John von Neumann
1903-1957

| 1
il | THEORY OF
GAMES
AND
ECONOMIC
BEHAVIOR
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History bits: Game Theory

* John Forbes Nash Jr.

John Forbes Nash Jr., American mathematician who

was awarded the 1994 Nobel Prize for Economics.

John Forbes Nash Jr.

He submitted a paper to the Proceedings of 1926-2015

the National Academy of Sciences in 1949,
where he proved that an equilibrium exists

in every game. ®
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History bits: Game Theory

=, 1 g CARNEGIE INSTITUTE OF TECHNOLOGY

= SCHENLEY PARK
PITTSBURGH 13, PENNSYLVANIA

DEPARTMENT OF MATHEMATICS
COLLEGE OF ENGINEERING AND ECIENCE February 11 » 1 91;8

Professor 5, Lefschets
Department of Mathematics
Princeton University
Princeton, N, J,

sy ol Dear Professor Lefschetz:

s RGIMN TR

This is to recommend Mr, John F, Nash, Jr,
who has applied for entrance to the graduate college
at Princeton,

Mr, Nash is nineteen years old and is
graduating from Carnegie Tech in June, He is a
mathematical genius,

RUSSELL
\ - _ROWE

rowrs sincerely,  He is a mathematical genius.

Richard J, Duffin

VB

RJD:hl

Advanced Optimization (Fall 2023) Lecture 10. Online Learning in Games 29



History bits: Online Learning in

* Yoav Freund & Robert Schapire

Yoav Freund and Robert Schapire’s
seminal paper in 1999 reveals the
fundamental relationship between
game theory and online learning,
specifically, “a simple proof of the

min-max theorem” .

Games and Economic Behavior 29, 79-103 (1999) i
Aticle ID game.1999.0738, available online at http://www.idealibrary.com on IDEML®

Adaptive Game Playing Using Multiplicative Weights
Yoav Freund! and Robert E. Schapire!

AT&T Labs, Shannon Laboratory, 180 Park Avenue, Florham Park,
New Jersey 07932-0971

E-mail: yoav@r att.com, schap att.com

Received July 15, 1997

‘We present a simple algorithm for playing a repeated game. We show that a
player using this algorithm suffers average loss that is guaranteed to come close to
the minimum loss achievable by any fixed strategy. Our bounds are nonasymptotic
and hold for any opponent. The algorithm, which uses the multiplicative-weight
methods of Littlestone and Warmuth, is analyzed using the Kullback-Liebler diver-
gence. This analysis yields a new, simple proof of the min-max theorem, as well as
a provable method of approximately solving a game. A variant of our game-playing
algorithm is proved to be optimal in a very strong sense. Journal of Economic Lit-
erature Classification Numbers: C44, C70, D83.  © 1999 Academic Press

1. INTRODUCTION

We study the problem of learning to play a repeated game. Let M be a
matrix. On each of a series of rounds, one player chooses a row i and the
other chooses a column j. The selected entry M(i, ) is the loss suffered by
the row player. We study play of the game from the row player’s perspective,
and therefore leave the column player’s loss or utility unspecified.

A simple goal for the row player is to suffer loss which is no worse than
the value of the game M (if viewed as a zero-sum game). Such a goal
may be appropriate when it is expected that the opposing column player’s
goal is to maximize the loss of the row player (so that the game is in fact
zero-sum). In this case, the row player can do no better than to play using a
min-max mixed strategy which can be computed using linear programming,
provided that the entire matrix M is known ahead of time, and provided
that the matrix is not too large. This approach has a number of potential

'http://www.research.att.com/~{yoav, schapire}

Robert Schapire
1963-now

Yoav Freund
1961-now

Reference: Y. Freund and R. Schapire. Adaptive Game Playing Using Multiplicative Weights. Games and Economic Behavior, 1999.
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History bits: Prediction with Expert Advice

Yoav Freund

Robert Schapire

Goldel Prize 2003

........

This paper introduced AdaBoost, an

adaptive algorithm to improve the
accuracy of hypotheses in machine
learning. The algorithm demonstrated
novel possibilities in analyzing data and
is a permanent contribution to science
even beyond computer science.

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 55, 119-139 (1997)
ARTICLE NO. SS971504

A Decision-Theoretic Generalization of On-Line Learning
and an Application to Boosting*

Yoav Freund and Robert E. Schapire®

AT&T Labs, 180 Park Avenue, Florham Park, New Jersey 07932

Received December 19, 1996

In the first part of the paper we consider the problem of dynamically
apportioning resources among a set of options in a worst-case on-line
framework. The model we study can be interpreted as a broad, abstract
extension of the well-studied on-line prediction model to a general
decision-theoretic setting. We show that the multiplicative weight-
update Littlestone-Warmuth rule can be adapted to this model, yielding
bounds that are slightly weaker in some cases, but applicable to a con-
siderably more general class of learning problems. We show how the
resulting learning algorithm can be applied to a variety of problems,
including gambling, multiple-outcome prediction, repeated games, and
prediction of points in R”. In the second part of the paper we apply the
multiplicative weight-update technique to derive a new boosting algo-
rithm. This boosting algorithm does not require any prior knowledge
about the performance of the weak learning algorithm. We also study
generalizations of the new boosting algorithm to the problem of
learning functions whose range, rather than being binary, is an arbitrary
finite set or a bounded segment of the real line.  © 1997 Academic Press

converting a “weak” PAC learning algorithm that performs
just slightly better than random guessing into one with
arbitrarily high accuracy.

We formalize our on-line allocation model as follows. The
allocation agent A has N options or strategies to choose
from; we number these using the integers 1, ..., N. At each
time stepz=1, 2, ..., T, the allocator 4 decides on a distribu-
tion p’ over the strategies; that is p/>0 is the amount
allocated to strategy i, and Y | p’= 1. Each strategy i then
suffers some /loss /! which is determined by the (possibly
adversarial) “environment.” The loss suffered by A is then
U pili=p"- (', ie, the average loss of the strategies with
respect to A’s chosen allocation rule. We call this loss func-
tion the mixture loss.

In this paper, we always assume that the loss suffered by
any strategy is bounded so that, without loss of generality,
/1 €[0, 1]. Besides this condition, we make no assumptions

Reference: Y. Freund and R. Schapire. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. JCSS 1997.

Advanced Optimization (Fall 2023)

Lecture 10. Online Learning in Games

31




Optimization, Learning, and Games with Predictable
Sequences

Alexander Rakhlin Karthik Sridharan
University of Pennsylvania University of Pennsylvania

Abstract

We provide several applications of Optimistic Mirror Descent. an online learning
algorithm based on the idea of predictable sequences. First, we recover the Mir-
ror Prox algorithm for offline optimization. prove an extension to Halder-smooth
functions, and apply the results to saddle-point type problems. Next, we prove
that a version of Optimistic Mirror Descent (which has a close relation to the Ex-
ponential Weights algorithm) can be used by two strongly-uncoupled players
a finite zero-sum matrix game to converge to the minimax equilibrium at the rate
of O((logT)/T). This addresses a question of Daskalakis et al [¢]. Further, we
consider a partial information version of the problem. We then apply the results
to convex programming and exhibit a simple algorithm for the approximate Max
Flow problem.

1 Introduction

Recently, no-regret algorithms have received increasing attention in a variety of communities, in-
cluding theoretical computer science, optimization, and game theory [, . The wide applicability
of these algorithms is arguably due to the black-box regret guarantees that hold for arbitrary se-
quences. However, such regret guarantees can be loose if the sequence being encountered
“worst-case”. The reduction in “arbitrariness™ of the sequence can arise from the particular s
ture of the problem at hand, and should be exploited. For instance, in some applications of online
methods. the sequence comes from an additional computation done by the learner, thus being far
from arbitrary.

One way to formally capture the partially benign nature of data is through a notion of predictable
sequences [|1]. We exhibit applications of this idea in several domains. First, we show that the
Mirror Prox method (7], designed for optimizing non-smooth structured saddle-point problems, can
be viewed as an instance of the predictable sequence approach. Predictability in this case is due
precisely 0 of the inner optimi part and the saddle-point structure of the problem.
We extend the results to Holder-smooth functions, interpolating between the case of well-predictable
gradients and “unpredictable” gradients.

Second, we address the guestion raised in [¢] about existence of “simple” algorithms that converge
at the rate of O(T ') when employed in an uncoupled manner by players in a zero-sum finite
matrix game, yet maintain the usual O(T~1/?) rate against arbitrary sequences. We give a positive
answer and exhibit a fully adaptive algorithm that does not require the prior knowledge of whether
the other player is collaborating. Here, the additional predictability comes from the fact that both
players attempt to converge to the minimax value. We also tackle a partial information version of
the problem where the player has only access to the real-valued payoff of the mixed actions played
by the two players on each round rather than the entire vector.

Ouwr third is to convex of a linear function subject to convex
constraints. This problem often arises in theoretical computer science, and we show that the idea of

Fast Convergence of Regularized Learning in Games

Alekh Agarwal

Microsoft Research Microsoft Research
New York, NY New York, NY
vasy@microsoft.com alekha@microsoft.com
Haipeng Luo Robert E. Schapire
Princeton University Microsoft Research
Princeton, NJ New York, NY
haipengl@cs.princeton.edu schapire@microsoft.com
Abstract

We show that natural classes of regularized learning algorithms with a form of
recency bias achieve faster convergence rates to approximate efficiency and to
coarse correlated equilibria in multiplayer normal form games. When each player
in a game uses an algorithm from our class, their individual regret decays at
O(T—3/1), while the sum of utilities converges to an approximate optimum at
O(T~"}-an improvement upon the worst case O(T~1/2) rates. We show a black-
box reduction for any algorithm in the class to achieve O(T—
adversary, while maintaining the faster rates against algorithms in the clas:
results extend those of Rakhlin and Shridharan [17] and Daskalakis et al. [4], who
only analyzed two-player zero-sum games for specific algorithms

1 Introduction

What happens when players in a game interact with one another, all of them acting independently
and selfishly to maximize their own utilities? If they are smart, we intuitively expect their utilities
— both individually and as a group — to grow, pethaps even to approach the best possible. We
also expect the dynamics of their behavior to eventually reach some kind of equilibrium. Under-
standing these dynamics is central to game theory as well as its various application areas, including
economics, network routing, auction design, and evolutionary biology.

Itis natural in this setting for the players to each make use of a no-regret learning algorithm for mak-
ing their decisions, an approach known as deceniralized no-regret dynamics. No-regret algorithms
are a strong match for playing games because their regret bounds hold even in adversarial environ-
ments. As a benefit, these bounds ensure that each player’s wtility approaches optimality. When
played against one another, it can also be shown that the sum of utilities approaches an approximate
optimum [2, 18], and the player strategies converge to an equilibrium under appropriate condi-
tions [6. 1, 8], at rates govemed by the regret bounds. Well-known families of no-regret algorithms
include multiplicative-weights [13, 7], Mirror Descent [14]. and Follow the Regularized/Perturbed
Leader [12]. (See [3, 19] for excellent overviews.) For all of these. the average regret vanishes at

the worst-case rate of O(1/v/T), which is unimprovable in fully adversarial scenarios.

However, the players in our setting are facing other similar, predictable no-regret learing algo-
rithms, a chink that hints at the possibility of improved convergence rates for such dynamics. This
was first observed and exploited by Daskalakis et al. [4]. For two-player zero-sum games, they de-
veloped a decentralized variant of Nesterov's accelerated saddle point algorithm [15] and showed
thateach player’s average regret converges at the remarkable rate of O(1/T). Although the resulting

History bits: Online Learning in Games

NIPS 2015
best paper award

Fast convergence of regularized
learning in games. NIPS 2015.

Optimization, learning, and games
with predictable sequences. NIPS 2013.
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Summary

ONLINE LEARNING

IN GAMES

[ TWO-PLAYER ZERO-SUM GAMES ]

MINIMAX THEOREM

Repeated Play

ONLINE LEARNING IN GAMES Faster Convergence via Adaptivity

Q&A
Thanks!
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