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Outline
• Problem Setup

• Multi-Armed Bandits

• Bandit Convex Optimization

• Advanced Topics
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Online Convex Optimization
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Online Mirror Descent

OCO Algorithms learned so far
• Given first-order information oracle: worst-case bound 



Lecture 11. Adversarial BanditsAdvanced Optimization (Fall 2023) 5

OCO Algorithms learned so far
• Given first-order information oracle: worst-case bound 

OGD for 
convex

OGD for 
strongly c.

ONS for 
exp-concave

Hedge for 
PEA

OMD/proximal formAlgo.
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Optimistic Online Mirror Descent

OCO Algorithms learned so far
• Given first-order information oracle: problem-dedependent bound 
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OCO Algorithms learned so far
• Given first-order information oracle: problem-dedependent bound 

Assumption(s) Setting of 
Optimism

Problem-dependent 
Regret Bound

Small-loss 
Bound

L-Smooth +
 Non-negative

Variance 
Bound —

Variation 
Bound L-Smooth
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Online Convex Optimization

less information

full information

horse racing

partial information

multi-armed bandits

on the feedback information:
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Multi-Armed Bandit
Trial 1 Trial 2 Trial 3

Loss: 0.3 * Loss: 0.2

* Loss: 0.5 *

* * *

* * *

Arms

: chosen arm

: unobserved
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Formulation

on the difficulty of environments:
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Formulation

Goal: to minimize expected regret

where the expectation is taken over the randomness of algorithms.
deterministic algorithms will suffer            regret 

in the worst case under bandit setting!
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Comparison
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Comparison
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A Natural Solution for MAB
• MAB bares much similarity with the PEA problem (except for 

the amount feedback information).

Hedge for PEA

Deploying Hedge to MAB problem.
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A Natural Solution for MAB
• However, Hedge does not fit for MAB setting due to limited feedback.

Hedge for PEA
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Reduction for MAB

how to construct loss estimator?

Hedge 
for PEA

MAB
Problem 

reduction
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Loss Estimator

Importance-Weighted (IW) Loss Estimator

Hedge 
for PEA

MAB
Problem 

reduction



Lecture 11. Adversarial BanditsAdvanced Optimization (Fall 2023) 18

Loss Estimator

unbiasedness

IW Loss Estimator

Proof.
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Other Choice

cannot apply Hedge

Hedge 
for PEA

MAB
Problem 

reduction
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Importance-Weighted Loss Estimator

Hedge 
for PEA

MAB
Problem 

reduction
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Exp3: Algorithm
Exp3 (Exponential-weight for Exploration and Exploitation)
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Exp3: Regret Bound

Comparision:
Hedge for PEA

full-information feedback

Exp3 for MAB
bandit feedback

suffer a larger 
arm dependence



Lecture 11. Adversarial BanditsAdvanced Optimization (Fall 2023) 23

Proof of Exp3 Regret Bound
Proof.
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Proof of Exp3 Regret Bound
Proof.
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Proof of Exp3 Regret Bound
Proof.

regret bound
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Proof of Exp3 Regret Bound
Proof.
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Lower Bound for MAB
• As above, we have proved the regret upper bound for Exp3:

• A natural question: can we further improve the bound?

Maybe? Exp3 doesn’t achieve minimax optimal regret for MAB.
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Lower Bound for MAB



Lecture 11. Adversarial BanditsAdvanced Optimization (Fall 2023) 29

Proof Sketch

Proof (Sketch).

Adversarial

Stochastic
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Upper and Lower Bounds for MAB
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Advanced Topics
• How to shave off the extra          factor?

Using OMD with Tsallis entropy regularizer, also using the IW estimator 

Reference: Jean-Yves Audibert and S´ebastien Bubeck. Regret bounds and minimax policies 
under partial monitoring. Journal of Machine Learning Research, 11(Oct):2785–2836, 2010.

http://sbubeck.com/audibert10a.pdf
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IX Loss Estimator

Advanced Topics
• How to boost from expected guarantee to a high-probability one?

Using an improved estimator: Implicit eXploration (IX) Loss Estimator  

Reference: Gergely Neu. Explore no more: Improved high-probability 
regret bounds for non-stochastic bandits. NIPS 2015.

IW Loss Estimator

https://arxiv.org/pdf/1506.03271.pdf
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The Nonstochastic Multiarmed Bandit Problem. 
SIAM Journal on Computing (SICOMP). 2002.

https://epubs.siam.org/doi/10.1137/S0097539701398375
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Bandit Convex Optimization
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Formulation

Goal: to optimize expected regret,

where the expectation is taken over the randomness of algorithms.
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A Natural Solution for BCO
• BCO bares much similarity with the OCO problem.

Deploying OGD to BCO problem.

Online Gradient Descent

We actually don’t have the gradient information due to the limited feedback.
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Gradient Estimator
• Construct the final model using the perturbation technique.



Lecture 11. Adversarial BanditsAdvanced Optimization (Fall 2023) 38

Gradient Estimator

Can be proved by proved by Stokes equation. See [Flaxman et al., SODA’05; Proof of Lemma 2.1].
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Bandit Gradient Descent
• Deploy OGD to BCO problem using the gradient estimator.



Lecture 11. Adversarial BanditsAdvanced Optimization (Fall 2023) 40

Bandit Gradient Descent
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Proof Sketch
: exploitation cost

: exploration cost
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BCO with Smooth Functions
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anisotropy exploration strategy

Exploration

isotropy exploration strategy
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Dikin Ellipsoid

Anisotropy exploration strategy
: magnitude,     : direction

Inspiration: explore using the Dikin ellipsoid with local norm.

Analysis: 
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FTRL Deployment

•  

•  
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FTRL with General Regularizer
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Newton Decrement
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FTRL with General Regularizer
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Shifting the comparator
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FTRL with Self-Concordant Barrier
• Putting above components together yields the following results.
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Gradient Estimator
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Gradient Estimator
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FTRL with Self-Concordant Barrier
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FTRL with Self-Concordant Barrier
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Proof Sketch
: exploitation cost

: exploration cost
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Self-Concordant Functions/Barriers
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Self-Concordant Functions
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Self-Concordant Barrier

The notion of self-concordant barrier is defined based on the notion of self-concordant 
function. Thus, a self-concordant function is not necessarily a self-concordant barrier.

The self-concordant barrier is associated with the (convex) feasible domain.
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Self-Concordant Barrier
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History bits: Self-Concordant Barrier

Arkadi S. Nemirovski and Michael J. Todd, Interior-point 
methods for optimization, Acta Numerica, 2008

Yurii Nesterov and Arkadi S. Nemirovski, Interior Point 
Polynomial Methods in Convex Programming,  SIAM, 1994.
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Beyond
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Abraham D. Flaxman, Adam Tauman Kalai, and H. Brendan 
McMahan. Online convex optimization in the bandit setting: 
gradient descent without a gradient. SODA, 2004.

Jacob Abernethy, Elad Hazan, and Alexander Rakhlin. 
Competing in the dark: An efficient algorithm for bandit 
linear optimization. COLT, 2008.

COLT 2008
 best paper award



Lecture 11. Adversarial BanditsAdvanced Optimization (Fall 2023) 63

Summary

Q & A
Thanks!


