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Stochastic Multi-Armed Bandit (MAB)

e MAB: A player is facing K arms. At each time ¢, the player pulls one arm
a € [K] and then receives a reward 7;(a) € [0, 1]:

Arm 1 7“1(1) ’7‘2(1) 0.6 ’7‘4(1) ’7‘5(1)
Arm 2 1 ro(2) r3(2) 0.2 rs(2)
Arm3 | 71(3) 0.7 r3(3)  ra(3) 0.3

e Stochastic:
Each arm a € [K| has an unknown distribution D, with mean pu(a),

such that rewards ry(a),r2(a), ..., rr(a) are i.i.d samples from D,.
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Stochastic MAB: Formulation

Ateachroundt=1,2,---
(1) the player first chooses an arm a; € [K|;
(2) and then environment reveals a reward r;(a;) € [0, 1];

(3) the player updates the model by the pair (a, r:(a¢)).

* The goal is to minimize the (pseudo)-regret:
T T T

E[Regret;] = max E Zn(a) — Z ri(ay) | = Tu(a™) — Z,u(at)

t=1 t=1 —

a€[K] —1

where a* = argmax, ¢ p1(a) is the best arm in the sense of expectation.
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Deploying Exp3 to Stochastic MAB

* Stochastic MAB is a special case of Adversarial MAB
:> Directly deploying Exp3 for stochastic MAB achieves

Theorem 1. Suppose that ¥Vt € [T| and i € [K|,0 < /¢,(i) <1, then Exp3 with
learning rate n = \/(In K) /(T K) guarantees

Zﬁt at} —aréun Zét <O(\/TK1HK>,

where the expectation is taken on the randomness of the algorithm.

E[Regret| =

|:> Not yet exploit benign stochastic assumption.... instance-dependent analysis
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Regret Decomposition

* For stochastic MAB, a natural characterization of the arms:

(i) Suboptimality gap: A, = p(a*) — p(a);

(ii) Number of times arm a is pulled in t rounds: n;(a) = >.._, 1{a, = a}.

* Regret can be reformulated as

E[Regret;] = max E Zrt(a) -~ Zrt(at) =Tu(a™) — Z,u(at)

a€|K] =1

a€[K] a€[K]
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A Natural Solution

* Explore-then-Exploit (ETE):
(1) Do explore for the first Ty round by pulling each arm for 7,/ K times;
(2) Do exploit for the rest T'— T round by always pulling @ = arg max, ¢k fi1, (a)-

Theorem 1. Suppose that ¥Vt € [T| and a € [K],0 < ri(a) <1, then ETE with
exploration period Ty guarantees

T 2T A
E[Regret,] < Z (% + 27 exp (— 2( a)) Ag.
a€[K]

Advanced Optimization (Fall 2023) Lecture 12. Stochastic Bandits 7



Proof of ETE Regret Bound

Proof. E[Regret,| = Z Agnr(a

nr(a) =Ty/K + (T —Ty) Pr{a = a}

<To/K + (T — To) Pr{jir,(a) > pir,(a™)} or fig, (a) < Maltila) < 5 (g*)
< Ty/K + (T —Ty) Pr {ﬁTo(a) _ #a) Z M) e (a%) < P9 +2 u(a®) }
<Ty/K + (T — Tp) (pr {ﬁTo(a) C) 4;“(0,*) } Py {ﬁTO(a*) PC) Jrzu(a*) })

Union bound Pr{X UY} < Pr{X} + Pr{Y}
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Proof of ETE Regret Bound

Proof. nr(a) < To/K + (T —Tp) (Pr {MTO( ) > M(a)zu(a*)}JrPr{ﬁTo(a*) < p(a)
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Issue of ETE

Theorem 1. Suppose that ¥Vt € [T] and a € |K|,0 < ry(a) <1, then ETE with
explore period Ty guarantees

T 2Ty A2
E[Regrety] < Z (?0 + 21 exp (— E( a’)) A,.
a€[K]

* Need to tune 1

~

Tune T, with prior of suboptimality gap A,: E[Regret;] = O(VT)

Tune Ty without prior of suboptimality gap A,: E[Regret,| = O (T2/3)

— Solution: do explore and exploit adaptively.
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Upper Confidence Bound

* ETE

) fe(3) @
2(1) e Hee u(3) e
t(l) pie(2) @
n(l) e

Relying on the estimate of the previous 1yrounds.

There is no way to revise the estimate!
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Upper Confidence Bound

« UCB
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Upper Confidence Bound

« UCB
With high probability p(a) < UCB,(a) = ji.(a) + S (a)
UCBy(2) UCB, (3)
UCB, (1) - 5(3)
B,(1) 0\ @ F:(2) fe(o) @
1) o 1 e
t pie(2) @
p(l) e

Optimism in Face of Uncertainty: a; = arg max,¢[x] UCB;(a)
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Upper Confidence Bound

« UCB
With high probability p(a) < UCB,(a) = jiy(a) 4 5(a)

UCB, (2)
UCB,(1) UCB.(3) % 3,(3)
Bi(1) u(2) e ﬁtgi%g 0
fi(1) @ e
Ht 1(2) @
pu(l) ®

Optimism in Face of Uncertainty: a; = arg max,¢[x] UCB;(a)
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Upper Confidence Bound

« UCB
With high probability p(a) < UCB,(a) = ji.(a) + S (a)

UCB,(2)
UCB,(1) UCB.(3) % 3,(3)
Bi(1) u(2) e ﬁtgi%g 0
fe(l) ® e
. pe(2) @
pu(l) ®

Optimism in Face of Uncertainty: a; = arg max,¢[x] UCB;(a)
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Upper Confidence Bound

« UCB
With high probability p(a) < UCB,(a) = ji.(a) + S (a)

UCB,(1) UCB,(2) UCB:(3) ©5,(3)
B:(1) 2) ® (3 e
- Aﬂ( ) Bt(2) ,LtLg33Q
re(l) @ 1:(2) ®
pu(l) @

Optimism in Face of Uncertainty: a; = arg max,¢[x] UCB;(a)
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Upper Confidence Bound

« UCB
With high probability p(a) < UCB,(a) = ji.(a) + S (a)

UCB,(1) UCB,(2) UCB:(3) ©5,(3)
B:(1) 2) ® (3 e
- Aﬂ( ) Bt(2) ,LtLg33Q
re(l) @ 1:(2) ®
pu(l) ®

Optimism in Face of Uncertainty: a; = arg max,¢[x] UCB;(a)
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Upper Confidence Bound

« UCB
With high probability p(a) < UCB,(a) = ji.(a) + S (a)

UCB;(2) UCB.(3) 7 5,(3)
UCB., (1 n2)e ; e (3) @
¢(1) 8(1) 7(2) '/3/@ ,Lttg330
pe(1l) ® .
u(l) e

Optimism in Face of Uncertainty: a; = arg max,¢[x] UCB;(a)
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Upper Confidence Bound

« UCB
With high probability p(a) < UCB,(a) = jiy(a) 4 5(a)

UCB;(2) UCB.(3) 7 5,(3)
UCB., (1 n2)e ; e (3) @
¢(1) 8(1) 7(2) 'ﬁ/@) ,Lttg330
pe(1l) ® .
u(l) e

Optimism in Face of Uncertainty: a; = arg max,¢[x] UCB;(a)

A large UCB means uncertainty or good arm.
Choosing the largest UCB means either exploring or exploiting.
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UCB Algorithm: Formulation

UCB Algorithm
Ateachroundt=1,2,---

(1) Choose arm a; = arg max, (x| UCB;—1(a)
(2) Observe reward r; and update the estimation i

(3) Update upper confidence bounds UCB; by new estimation

* Estimation: empirical average
t

! Z H{a, =a}r.(a)

T (CL) T=1

He(a) =

* UCB construction: Hoeftding’s inequality
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Construct UCB

Lemma 1 (Estimation error). With probability at least 1 — 2K /T, we have,

Inl/é

Va € |K],t € [T],|u(a) — Hi(a)] < nu(a)”

So we have p(a) < UCB,(a) = fiy(a) + /2L

ne(a)

Proof. For each arm a, by Hoeffding inequality and union bound, we have

- Pr{X —E[X]>e} <e
Pr {|M(a) — pie(a)| < ;ntl(/j)} >1-29 Pr {){( E[X] < — { s e

Further more, by union bound again and let § = 1/77,

Pr{\m € K]t € [T],Ju(@) ~ Fin(a)] < ij(f)} >1-27 O
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UCB: Distribution-Dependent Bound

Theorem 2 (Distribution-dependent). Suppose that vVt € [T']| and a € [K],
0 < ri(a) < 1, then with probability at least 1 — 2K /T, UCB satisfies

AInT

E[Regret,] < Z + A,.

a:A\,>0 a

Proof. [E|[Regret;| = Z Agnr(a)
a€[K]
With probability at least 1 — 2K/T
Aq, = p(a”) — plar) < UCBy—1(a”) — plar) Va € [K], pla) < UCB,(a)
< UCB;-1(at) — plar) a; = arg max, i UCB;, 1 (a)

<2 InT M(a) < UCBt(CL) £ ﬁt(a> + nh:(g)
nt—1<at)
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Proof of UCB Regret Bound

InT’

nt—l(at)

Proof. A, < 2\/

Let ¢ be the last time a is selected, then with probability at least 1 — 2K/T,

InT InT
A, <2 = 2
ni—1(a) nr(a) —1

InT InT
E[Regret;| = Z Agnr(a) < A, (4 22 + 1) — Z 4 Z +
Ay >0

a€[K] a:Ag, @ a:Ay>0

A,
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UCB: Distribution-Dependent Bound

Theorem 2 (Distribution-dependent). Suppose that for all t € [T'] and a € K],
0 < ri(a) < 1, then with probability at least 1 — 2K /T, UCB satisfies

AIn'T

E[Regret| < Z A

a:A\,>0

+ A,.

e Smaller the A,, larger the regret. Its harder to distinguish the optimal
arm from the suboptimal one.

e However, tiny A, should not lead to larger regret. Always pick arm a
should just lead to E[Regret.| = A,T.

|:> E[RegretT] < min { max AT, Z 4XIT + Aa}

a€[K] a:Ag>0
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UCB: Distribution-Free Bound

Theorem 3 (Distribution-free). Suppose that for all t € [T']| and a € K],
0 < ri(a) <1, then UCB satisfies

E[Regret;] < 2VTK InT + Z A, =0 (\/TK logT)

a€[K]
Proof.
E[Regret,| = Z Agnr(a Z Agnr(a) + Z Agnr(a)
a:Ag <A a:Ag>A nT( ) < 4111; +1
InT KnT
<TA+ ) Aa(4AZ )gTA+4 < + Y A,
a:Ag>A a€[K]
<2VTKInT + Z Aq Choosing A = 2/KInT/T ]
a€[K]
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Upper Bound and Lower Bound

Theorem 3 (Distribution-free). Suppose that for all t € [T and a € K],
0 < ri(a) <1, then UCB satisfies

E[Regrety] <2VTKInT + 3 A, = O (\/TK log T)
a€[K]

sequence of loss vectors such that

irjf sup E|[Regret;| = Q(VTK)
bi,....81

Theorem 4 (Lower Bound for MAB). For any bandit algorithm A, there exists a

Advanced Optimization (Fall 2023) Lecture 12. Stochastic Bandits

26




Dynamic Programming
and Optimal Control

Dynamic Programming
and Optimal Control (2
Vol Set)

> Dimitri P. Bertsekas
) & & ¢ ¢ ‘€1
Hardcover
$134.50

$19.02 shipping

Reinforcement Learning
and Optimal Control

(e g |

Reinforcement Learning
and Optimal Control
Dimitri Bertsekas
Ak 33
Hardcover

$89.00
$13.13 shipping

NONLINEAR
PROGRAMMING

£V

Nonlinear Programming:

3rd Edition
Dimitri Bertsekas
' o & & @& ‘@]
Hardcover

$89.00
$16.03 shipping

Stochastic Linear Bandits

* A ubiquitous problem in real life:

\ wetne
Rollout, Policy Iteration,
and Distributed

Reinforcement Learning
Dimitri Bertsekas

Yok ik 12
Hardcover

$89.00
$13.03 shipping

Dynamic Programming
ant Optimal Control

Dynamic Programming
and Optimal Control,

Vol. |, 4th Edition

Dimitri Bertsekas
Ak 16

Hardcover
$89.00
$14.19 shipping

Only 16 left in stock (more...

Reinforcement
Learning

- -

Reinforcement Learning,
second edition: An
Introduction (Adaptive
Computation and...

> Richard S. Sutton
Ak oy 478
Hardcover

$80.00

$15.37 shipping

* Each arm represent a book and has side information;
* Arm set could be very large or even infinite.
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Stochastic LB: Formulation

Each arm is represented as a feature vector x € X C R¢

Ateachroundt¢t=1,2,---
(1) the player first chooses an arm X; from arm set X’;

(2) and then environment reveals a reward r; € R.

Multi-Armed Bandits

Linear Bandits

Arm set | finite arm set [K]

infinite arm set X = {||x||» < L}

t=1

Elr(a)] = p(a) X0+ ) =xT0,
Model
Vt € [T],a € [K],ri(a) € [0,1] n¢: sub-Gaussian noise
T
E[Regret,] =T - E[Regrety] = T'max x'0,— Y X,'0.
Regret | E[Regrety] =T max yi(a) > [Regret.;] = 7' max Z

Advanced Optimization (Fall 2023)
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Deploying UCB to Linear Bandits

* Linear Bandits is a special case of MAB with infinite arm:

> Why not directly deploy UCB to address Linear Bandits?

Theorem 3 (Distribution-free). Suppose that ¥Vt € [T'] and a € K],
0 < ri(a) <1, then UCB satisfies

E[Regret;] < 2vVTKInT + Z A, =0 (\/TK lnT)
a€[K]

Infinite arm set (K — o00) leads to meaningless regret guarantee!

:> Not yet exploit the addition contextual feature information...
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LinUCB Algorithm: Formulation

LinUCB Algorithm
Ateachroundt=1,2,---
(1) Select X; = arg max, ., UCB;_;(x)
(2) Observe reward r; and update the estimation fu;
(3) update upper confidence bounds UCB; by new estimation

* Estimation: regularized least square (linear regression)

t—1
0, = argmin A|0]|3 + > (X0 — re)?
OcRd

s=1

Closed form: 6, = V,~} (z’;;ll TSXS), Viii = A+ S0 X, XT
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LinUCB Algorithm

Optimism in Face of Uncertainty

I

Construct UCB;

i

u(x) = x7 0. < fie(x) + B l|xlly, 1 = UCBy(x

Regularized Least Square Estimator
0, = arg ming.ga A||0||3 + Zt ; (X6 —

\ 1 (x) = x "0,

~

I:> X = arg max, ¢y UCB;_1(x)

4

Submit Xt_|_1,
observe r;y; € R

4

)2 <7“t

)

_vT
=X, 0, +m [Learnmg H18t01‘y1

(lerl) (Xtvrt)

Advanced Optimization (Fall 2023)
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LinUCB Algorithm

* UCB for stochastic MAB
(1) estimate p(a) by average estimation;
(2) construct upper confidence bound for p(a) by concentration inequalities.

» UCB for stochastic LB (LinUCB)

* More information can be used to estimate expected reward.

UCB estimation LinUCB estimation
. t—1
]. é\ L . 2 T 2
SN _ ¢ = argmin \||0]|5 + X, 0—rg
pela) = z_:l Har = ajr-(o) bere ; ( )
ﬁt (X) = XTHt
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Construct UCB

Lemma 2 (Estimation error). Forany x € X,d € (0,1), with probability at least
1 — 6, the following holds for all t € |T]

I 1 —1)L?
|xT(0t — «9)‘ < ﬁt_1||x||vt__11, where 3;_1 = R\/Q log (5> + dlog (1 + (t )\d) )—I—\/XS

So we have pi(x) < UCBy(x) = fix(x) + Be—1]1x[ly,—

t—1
~ n — t—1
Proof. 0, — 0, = ‘/;:11 < T3X3> — 0, 0, = Vt_ﬁ (Zszl TSXS)
s=1
t—1 t—1
S <Z (X 6. +ns) X) -V, (AId + ZXSXsT) 0,

s=1 s=1

Vin 2T+ 50 X, XT
s=1
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Proof of Estimation Error Bound

Proof. 515 9, = V;;ll (Z NsXs — >\9*> Viei =M + Zi;ll X, X!

s=1

|XT (gt - 9*) < HXHVt—_ll gt — 0. Cauchy-Schwarz inequality: \aTb\ < |la||||b]]«
t—1
< Ixlly-s (Do msXsll [+ (A0l
s=1 Vi

Core difficulty: The actions { X, },—1 . :are neither fixed nor independent but
are intricately correlated via the rewards {rs}s=1. .
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Self-Normalized Concentration

Theorem 4 (Self-normalized concentration for Vector-Valued Martingales). Let {F}}$°, be a filtration. Let
{n:}$2 be a real-valued stochastic process such that n, is Fy-measurable and n, is conditionally R-sub-Gaussian
for some R > 0 i.e.

A2 R?
VAeRE [eXp()\nt)‘Xlztynlzt—l] < exp ( 9 ) .

Let {X;}22, be an R¥-valued stochastic process such that X, is F;_,-measurable. Assume that V isa d x d
positive definite matrix. For any t > 0, define

t t
Vi=Vo+ ) XX, Si=) nX.
s=1

s=1

Then, for any 6 > 0, with probability at least 1 — 9, forall t > 0,

N

det(V;)z det(Vp) ™
HStHQt—l §2R210g< =) 56( 0 )
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Proof of Estimation Error Bound
tz_insXs

Proof.  [x" (0 —6.)| < lIxl-, VA

—1
Vt—l

Theorem 4 (Self-normalized concentration). For any ¢ € (0, 1), with probability
at least 1 — 9, forall t > 0,

N[

det(V;)z det(Vp) ™
1¢I5, - <23210g< U 56( " )

det(v;)f[l)\ig (ngll)\i>d (TI'C(Z‘/t))dS (Adtltp)d

det(AN) =4 V= Al

t
Tr (V;) = Tr(MN) + Tr (Z X, x/) ) < \d +tL? Vi=AM+3' X X]

det(V@)
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Proof of Estimation Error Bound
< [1xlly— ( insXs o A9*vt11>

Proof. |XT (@ — «9*)

t—1 3 —3 V72 &
Z Do X, < |2R2 108 det (V;)2 det (V) < | 2R210g 1/ Ad+ (t—1)L
) 0 \ 5 bV
=
1 t12 A+ tL2\ “
= Ry/2log (5) + dlog (1 + v) det (V) < g
| ! s det(Vp) = \?
[AOslly -1 < [AOilly < —= [[Abi]l; < VAS
Vi \/Amin (Vvt—l) ’ \/X °

‘XT(@—9*> < ||x]|y,-1 | R{/2log d + dlog 1—|—E +VAS
— e 0 Ad »
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LinUCB: Regret Bound

Theorem 5. Let A\ = d, the regret of LinUCB is bounded with probability at
least 1 — 1/T, by

E[Regret;| < O (dﬁ)

Proof. Let X, = argmaxycx X' 0., each of the following holds with probability at
least 1 — ¢,

vt € [T],XJH* < X;ré\t + Bi—1 ||X*||V't__11

vt € [T], X0, > X6 = B [ Xilly
With probability at least 1 — 20,
vt e [T], X0, — X[ 0. < X0 — X0, + Bt (X1 + 11Xl )

<201 lXellvs s X704 81 1 Xully 1 < X0+ B [1X ]y
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LinUCB: Regret Bound

Proof. With probability at least 1 — 25, Vit € T, X'o, — XtTQ* < 281 HXt”Vt—_ll

T T T
E[Regret;] = Y (X, 0. — X,[0.) <2670 ) [ Xilly—1 <260, T D [1Xelly
t=1

t=1 t=1

Lemma 4 (Elliptical Potential Lemma). For any sequence {X1,...,Xr} € REXT
suppose Vo = A, V, = V,_1 + X X, , and || X,||, < L, then

T
L?T

ST < dtog (14 7 ) |

— ! Ad proofed in Lecture 6

T
L?T
E[Regret,] < 25T\ T ||Xt||%/t—_11 < 25T\/leog (1 LSV )

t=1
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LinUCB: Regret Bound

Ad

1
E[Regret .| < QBT\/leog (1 + %) B = \/2 log <—> + dlog (1 + —) + VS

1 L2T
< 2| RByf2log | = | +dlog 1+— +VAS | /Tdlog 1+—Ad

Let 6 = 1/2T, then with probability at least 1 — 1/7,

T TL L2T
E[Regret| <2 (R\/Q log <§> + dlog (1 + v + \/_S> \/leog 1+ v)

2
Proof. With probability at least 1 — 24, [E[Regret.| \/ Td 10g 1 n L T)

%)

= O(dVT) ]
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Improved Algorithms for Linear Stochastic Bandits

Yasin Abbasi-Yadkori David Pal Csaba Szepesvari
abbasiya@ualberta.ca dpal@google.com szepesva@ualberta.ca
Dept. of Computing Science  Dept. of Computing Science  Dept. of Computing Science
University of Alberta University of Alberta University of Alberta
Abstract

We improve the theoretical analysis and empirical performance of algorithms for
the stochastic multi-armed bandit problem and the linear stochastic multi-armed
bandit problem. In particular, we show that a simple modification of Auer’s
UCB algorithm (Auer, 2002) achieves with high probability constant regret.
More importantly, we modify and, consequently, improve the analysis of the
algorithm for the for linear stochastic bandit problem studied by Auer (2002),
Dani et al. (2008), Rusmevichientong and Tsitsiklis (2010), Li et al. (2010).
Our modification improves the regret bound by a logarithmic factor, though
experiments show a vast improvement. In both cases, the improvement stems
from the construction of smaller confidence sets. For their construction we use a
novel tail inequality for vector-valued martingales.

1 Introduction

Linear stochastic bandit problem is a sequential decision-making problem where in each time step
we have to choose an action, and as a response we receive a stochastic reward, expected value of
which is an unknown linear function of the action. The goal is to collect as much reward as possible
over the course of n time steps. The precise model is described in Section 1.2.

Several variants and special cases of the problem exist differing on what the set of available
actions is in each round. For example, the standard stochastic d-armed bandit problem, introduced
by Robbins (1952) and then studied by Lai and Robbins (1985), is a special case of linear stochastic
bandit problem where the set of available actions in each round is the standard orthonormal basis of
R4, Another variant, studied by Auer (2002) under the name “linear reinforcement learning”, and
later in the context of web advertisement by Li et al. (2010), Chu et al. (2011), is a variant when the
set of available actions changes from time step to time step, but has the same finite cardinality in
each step. Another variant dubbed “sleeping bandits”, studied by Kieinberg et al. (2008), is the case
when the set of available actions changes from time step to time step, but it is always a subset of the
standard orthonormal basis of BY. Another variant, studied by Dani et al. (2008), Abbasi-Yadkori
et al. (2009), Rusmevichientong and Tsitsiklis (2010), is the case when the set of available actions
does not change between time steps but the set can be an almost arbitrary, even infinite, bounded
subset of a finite-dimensional vector space. Related problems were also studied by Abe et al.
(2003), Walsh et al. (2009), Dekel et al. (2010).

In all these works, the algorithms are based on the same underlying idea—the optimism-in-the-
Jface-of-uncertainty (OFU) principle. This is not surprising since they are solving almost the same
problem. The OFU principle elegantly solves the exploration-exploitation dilemma inherent in the
problem. The basic idea of the principle is to maintain a confidence set for the vector of coefficients
of the linear function. In every round, the algorithm chooses an estimate from the confidence
set and an action so that the predicted reward is maximized, i.e., estimate-action pair is chosen
optimistically. We give details of the algorithm in Section 2.

1

Improved algorithms for linear stochastic bandits
Authors  Yasin Abbasi-Yadkori, Csaba Szepesvari, David Pal
Publication date 2011
Conference  Advances in Neural Information Processing Systems
Pages 2312-2320

Description  We improve the theoretical analysis and empirical performance of algorithms for the
stochastic multi-armed bandit problem and the linear stochastic multi-armed bandit
problem. In particular, we show that a simple modification of Auer’s UCB algorithm (Auer,
2002) achieves with high probability constant regret. More importantly, we modify and,
consequently, improve the analysis of the algorithm for the for linear stochastic bandit
problem studied by Auer (2002), Dani et al.(2008), Rusmevichientong and Tsitsiklis
(2010), Li et al.(2010). Our modification improves the regret bound by a logarithmic
factor, though experiments show a vast improvement. In both cases, the improvement
stems from the construction of smaller confidence sets. For their construction we use a
novel tail inequality for vector-valued martingales.
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Victor H.de la Pefia
Tze Leung Lai
Qi-Man Shao

Self-Normalized
Processes

Limit Theory and Statistical Applications

Self-Normalized Processes: Limit
theory and Statistical Applications

Victor H. de la Pena, Tze Leung Lai,
and Qi-Man Shao

Probability and Its Applications
Series. Springer. 2009.

@ Springer
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Generalized Linear Bandits (GLB)

Extension: want to model Non-linear reward.

* Generalized linear model: ¢ = ,M(XtT 0.) + e

Special cases: linear model: u(z) = z, logistic model: u(z) =

o Link function p : R — R k,,-Lipschitz

Cp = inf{||9||2§57x€)(} ,LL (QTX) > (

« GLM-UCB
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Advanced Topic: Best of Both Worlds
e gz 3 5)

th ay ] —arénlr{l Zﬁt (\/7K)

Can one algorithm achieve the best of both worlds, without knowing
whether the world is stochastic or adversarial?

* Best of adversarial MAB: E[Regret;] = max E

e Best of stochastic MAB: E[Regret,| =

« UCB: can get almost linear regret under adversarial setting.

* Exp3: can’t have adaptive regret bound in stochastic case.1

> |Using OMD with Tsallis entropy regularizer.

Reference: Julian Zimmert, Yevgeny Seldin. An Optimal Algorithm
for Stochastic and Adversarial Bandits. AISTATS 2019.
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Advanced Topic: Bayesian Optimization

Gaussian Process Optimization in the Bandit Setting:
No Regret and Experimental Design

Niranjan Srinivas
Andreas Krause

California Institute of Technology, Pasadena, CA, USA

Sham Kakade
University of Pennsylvania, Philadelphia, PA, USA

Matthias Seeger
Saarland University, Saarbriicken, Germany

Abstract

Many applications require optimizing an un-
known, noisy function that is expensive to
evaluate. We formalize this task as a multi-
armed bandit problem, where the payoff function
is either sampled from a Gaussian process (GP)
or has low RKHS norm. We resolve the impor-
tant open problem of deriving regret bounds for
this setting, which imply novel convergence rates
for GP optimization. We analyze GP-UCB, an
intuitive upper-confidence based algorithm, and
bound its cumulative regret in terms of maximal
information gain, establishing a novel connection
between GP optimization and experimental de-
sign. Moreover, by bounding the latter in terms
of operator spectra, we obtain explicit sublinear
regret bounds for many commonly used covari-
ance functions. In some important cases, our
bounds have surprisingly weak dependence on
the dimensionality. In our experiments on real
sensor data, GP-UCB compares favorably with
other heuristical GP optimization approaches.

1. Introduction

In most stochastic optimization settings, evaluating
the unknown function is expensive, and sampling
is to be minimized. Examples include cho:
advertisements in sponsored search to
profit in g_gli =

2007) or 14
(Lizotte d
to this
paradigm
maximize
exploration
(Chaloner
is to be e

Appearing in Proceedings of the 27" International Confer-
ence on Machine Learning, Haifa, Istael, 2010. Copyright
2010 by the author(s)/owner(s).

NIRANJAN@CALTECH.EDU
KRAUSEA@CALTECH.EDU

SKAKADE@WHARTON.UPENN.EDU

MSEEGER@MMCI.UNI-SAARLAND.DE

as possible, for example by maximizing information
gain. The challenge in both approaches is twofold: we
have to estimate an unknown function f from noisy
samples, and we must optimize our estimate over some
high-dimensional input space. For the former, much
progress has been made in machine learning through
kernel methods and Gaussian process (GP) models
(Rasmussen & Williams, 2006), where smoothness
assumptions about f are encoded through the choice
of kernel in a flexible nonparametric fashion. Beyond
Euclidean spaces, kernels can be defined on diverse
domains such as spaces of graphs, sets, or lists.

We are concerned with GP optimization in the multi-
armed bandit setting, where f is sampled from a GP
distribution or has low “complexity” measured in
terms of its RKHS norm under some kernel. We pro-
vide the first sublinear regret bounds in this nonpara-
metric setting, which imply convergence rates for GP
optimization. In particular, we analyze the Gaussian
Process Upper Confidence Bound (GP-UCB) algo-
rithm, a simple and intuitive Bayesian method (Auer
et al., 2002; Auer, 2002; Dani et al., 2008). While
objectives are different in the multi-armed hands

- PoTcralizes stochastic
near optimization in a bandit setting, where the un-
known function comes from a finite-dimensional linear
space. GPs are nonlinear random functions, which can
be represented in an infinite-dimensional linear space.
For the standard linear setting, Dani et al. (2008)

Reward function: r; = f(X;) +

|H | /
m=1 Pm\X)Pm (X

f(x) belongs to RKHS with & (x, x’

H|

m=1

X)) "0+ n

Rewrite f(x) = O om () = o(2) 70

Ty = Linear bandits in RKHS
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4t 1 4t J
3t — 3r 1

3} N -3r 1
4t | 4t |
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Iteration t Iteration t + 1

Gaussian Process Optimization in the Bandit Setting: No Regret
and Experimental Design. ICML 2010.
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Advanced Topic: Linear MDPs

Linear MDPs UCB-VI for Linear MDPs

* Exists feature map ¢: S x A — R * In every round:
* Such that: 1. Run Ridge regression for estimating the model
n—1
rh(s,a) =0y - #(s,a), Pr([s,a) = upé(s,a),Vh AR, = argminegisixa y_ [|u(sh, ah) = 8(shin) [ + Al

=0
n—1
i =" 6(si1)$(sh,ah) T(AR) !
=0
2. Construct the exploration bonuses

br (s,a) = B1/(s,0) T (A})16(s, ),

3. Run optimistic value iterations, and update greedy
policy

* Implies a low-rank assumption in large-MDP case

(Jin et al., 2020) Provably efficient reinforcement learning with linear function approxirhation 1

Yu-Xiang Wang’s course CS292F Lecture 10 Exploration IV: Linear MDP
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https://sites.cs.ucsb.edu/~yuxiangw/classes/RLCourse-2021Spring/Lectures/Exploration_LinearMDP.pdf

History bits

* Bandit problems were introduced for the clinical trial design by William R.
Thompson in an article published in 1933 [Thompson, 1933].

ON THE LIKELIHOOD THAT ONE UNKNOWN
PROBABILITY EXCEEDS ANOTHER IN VIEW
OF THE EVIDENCE OF TWO SAMPLES.

By WILLIAM R. THOMPSON. From the Department of Pathology,
Yale University.

* Thompson Sampling (TS) was originally described in this paper but has
been largely ignored by the artificial intelligence community.

* TS was subsequently rediscovered numerous times independently in the
context of reinforcement learning.

Advanced Optimization (Fall 2023) Lecture 12. Stochastic Bandits 47



History bits

* Bandit problems were later formally restated in a short but influential
paper [Robbins, 1952] and further developed in [Lai and Robbins, 1985].

SOME ASPECTS OF THE SEQUENTIAL DESIGN
OF EXPERIMENTS

HERBERT ROBBINS

1. Introduction. Until recently, statistical theory has been re-
stricted to the design and analysis of sampling experiments in which
the size and ition of the les are letely determined
before the experimentation begins. The reasons for this are partly
historical, dating back to the time when the statistician was con-
sulted, if at all, only after the experiment was over, and partly in-
trinsic in the mathematical difficulty of working with anything but
a fixed number of independent random variables. A major advance
now appears to be in the making with the creation of a theory of the
sequential design of experiments, in which the size and composition
of the samples are not fixed in advance but are functions of the ob-
servations themselves.

The first important departure from fixed sample size came in
the field of industrial quality control, with the double sampling in-
spection method of Dodge and Romig [1]. Here there is only one
population to be sampled, and the question at issue is whether the
proportion of defectives in a lot exceeds a given level. A preliminary
sample of n; objects is drawn from the lot and the number x of de-
fectives noted. If x is less than a fixed value a the lot is accepted with-
out further sampling, if x is greater than a fixed value b (2 <b) the
lot is rejected without further sampling, but if a Sx £b then a second
sample, of size my, is drawn, and the decision to accept or reject the
lot is made on the basis of the number of defectives in the total sample
of m—+n; objects, The total sample size # is thus a random variable
with two values, n, and m,41, and the value of n is stochastically
dependent on the observations. A logical extension of the idea of
double sampling came during World War II with the development,
chiefly by Wald, of sequential analysis [2],in which the observations
are made one by one and the decision to terminate sampling and to ac- H R bb : S t f th
cept or reject the lot (or, more generally, to accept or reject whatever . O ].ns . Ome aspec S O e
statistical “null hypothesis” is being tested) can come at any stage.
The total sample size # now b a d variable ble in

principle of assuming infinitely many values, although in practice a Sequential deSign Of eXperimentS.

finite upper limit on # is usually set. The advantage of sequential

P i v ke the A, A, mecin of e S Bulletin of the American Mathematical

Southeastern Sectional Meetings; received by the editors December 10, 1951,

@1 Society, 58(5):527-535, 1952. Herbert Ellis Robbins (1915 -- 2001)
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History bits

* Techniques developed in bandit problems have been applied in many
areas, including machine learning, statistics, operational research, and
information theory [Bubeck and Cesa-Bianchi, 2012; Slivkins, 2019;

Lattimore and Szepesvari, 2020].

Bandit
Algorithms

TOR LATTIMORE
CSABA SZEPESVARI

V[,

Il

X
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Summary

Explore-Then-Exploit algorithm

~ STOCHASTIC MAB { UCB algorithm

LinUCB algorithm

STOCHASTIC LINEAR BANDIT Extension: generalized linear bandits

STOCHASTIC BANDITS

Best of both worlds

Bayesian optimization

- [ ADVANCED TOPICS ]
Linear MDPs
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