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Machine Learning
• Machine Learning has achieved great success in recent years.

automatic drivingAlphaGo Games

recommendationimage recognition search engine voice assistant

large language modelmedical diagnosis
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Machine Learning
• A standard pipeline for machine learning deployments.

training data learning algorithm model

• Learning as optimization: using ERM to learn the model

learning the model based on the (offline)

training dataset      
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Online Learning
• In many applications, data are coming in an online fashion

• Online learning/optimization

- update the model in an iterated optimization fashion
- need to have guarantees for the online update

base station manufacturing
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Outline
• Problem Setup

• Non-stationary Online Learning

• Universal Online Learning

• Conclusion
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Online Learning
• View online learning as a game between learner and environment.

An instance, feature 𝐱𝐱𝑡𝑡 ∈ ℝ𝑑𝑑

Predict a label by 𝐰𝐰𝑡𝑡
T𝐱𝐱𝑡𝑡

Receive the true label 𝑦𝑦𝑡𝑡

Regular vs Spam ?
Spam Filtering

A loss function
𝑓𝑓𝑡𝑡 𝐰𝐰 = max 1 − 𝑦𝑦𝑡𝑡𝐰𝐰T𝐱𝐱𝑡𝑡 , 0
Suffer 𝑓𝑓𝑡𝑡 𝐰𝐰𝑡𝑡  and update 𝐰𝐰𝑡𝑡

Online Convex Optimization
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full information

horse racing

partial information

multi-armed bandits
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Non-stationary Online Learning
• Distribution shift: data are usually collected in open environments

species monitoring
summer

winter

urban computing route planning

• For the online learning scenario, the distributions will evolve over time.

continuous
distribution 

shift

provably robust methods for 
non-stationary online learning
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Community Discussions

“Deep Learning for AI”
Communication of ACM 
July, 2021. Vol 64. No 7.

2018 Turing Award Recipients
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Performance Measure
Regret: online prediction as good as the best offline model

cumulative loss of the 
best offline model

Dynamic Regret optimal model changes
in non-stationary 

environments

allow changing comparators 
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Fundamental Challenge

Key difficulty: the uncertainty due to unknown environmental changes.

Zhi-Hua Zhou. Ensemble Methods: 
Foundations and Algorithms. 

Chapman & Hall/CRC, Jun. 2012. 

• Protocol: combine multiple base 
learners to achieve robustness 

• Advantage: achieve more robust 
results under uncertain or even 
changing environments

Basic idea: Ensemble Methods
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Online Ensemble (在线集成)
Basic Components

(1) base learner: an online learner to cope with a certain amount of non-stationarity
(2) schedule: a set of parameters for initiating base learners that encourage diversity
(3) meta learner: an expert-tracking learner that can combine base learners’ decisions

schedule meta learnerbase learner

step size specification

correctionsurrogate

covering

…
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Deploying Online Ensemble 
We will showcase that properly deploying online ensemble can 
effectively resolve several important online learning problems.

• Dynamic Regret of Bandit Convex Optimization

• Problem-dependent Dynamic Regret
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Bandit Convex Optimization (BCO)
• BCO with one-point feedback

[Flaxman et al., SODA 2005; Bubeck et al., STOC 2017]

• BCO with two-point feedback

[Agarwal et al., COLT 2010; Shamir, JMLR 2017]

online recommendation
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A Gentle Start
Online Gradient Descent (OGD)

https://www.nature.com/articles/s41534-017-0043-1

FKM estimator [Flaxman et al., SODA’05]

Challenge: with only bandit feedback, 
the learner cannot evaluate the gradient

[proved by Stokes equation]
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A Gentle Start
Online Gradient Descent (OGD)

https://www.nature.com/articles/s41534-017-0043-1

Challenge: with only bandit feedback, 
the learner cannot evaluate the gradient

Consider the 1-dim case (𝒅𝒅 = 𝟏𝟏).

FKM estimator [Flaxman et al., SODA’05]
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Bandit Gradient Descent (BGD)

Base Algorithm : BGD
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Base Algorithm: Dynamic Regret

Optimal parameter setting is
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Base Algorithm: Dynamic Regret

Optimal parameter setting is
Comparators   can be arbitrary, 
we cannot know non-stationarity      in 
advance, so how to tune the step size ?
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Online Ensemble for BCO
Deploying a proper online ensemble to deal with the issue of 
unknown non-stationarity, so that we can optimally tune step size.

► Multiple candidates: to cover uncertainty
diversity consideration: cover all the possible range 
using as fewer as possible discretization items

increase weight on base-learners with better performance 

► Base learners: each updated using

► Meta algorithm: provide the weight 
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diversity consideration: cover all the possible range 
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► Base learners: each updated using

► Meta algorithm: provide the weight 
bandit feedback 

makes it hard to initiate 
multiple base learners
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Multiple base learners in BCO
• A closer look at dynamic regret analysis

(approximation error due to the perturbation operation)
not involve the unknown non-stationarity measure  crucial term, related to 

non-stationarity measure  

rescaled comparator
smoothed function
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Multiple base learners in BCO
• Key idea: surrogate optimization

• Construct the surrogate loss

Feed this surrogate loss to online ensemble to maintain multiple base learners!
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Surrogate Loss

• Property (i) implies that it suffices to optimize dynamic regret of surrogate loss.

• Property (ii) implies that it is feasible to deploy multiple base learners to perform 
BGD over the surrogate loss.
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Online Ensemble for BCO
Deploying a proper online ensemble to deal with the issue of 
unknown non-stationarity, so that we can optimally tune step size.

► Multiple candidates: to cover uncertainty
diversity consideration: cover all the possible range 
using as fewer as possible discretization items

increase weight on base-learners with better performance 

► Base learners: each updated using

► Meta algorithm: provide the weight 
surrogate loss 

makes online ensemble 
possible in bandit!
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Dynamic Regret

Our algorithm is minimax optimal for two-point BCO model; 
while it remains open how to close the gap in one-point BCO. 
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Online Ensemble for BCO
Deploying a proper online ensemble to deal with the issue of 
unknown non-stationarity, so that we can optimally tune step size.

► Multiple candidates: to cover uncertainty
diversity consideration: cover all the possible range 
using as fewer as possible discretization items

increase weight on base-learners with better performance 

► Base learners: each updated using

► Meta algorithm: provide the weight 

Proper surrogate loss is essential for deploying 
online ensemble to bandit online problems.
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Deploying Online Ensemble 
We will showcase that properly deploying online ensemble can 
effectively resolve several important online learning problem.

• Dynamic Regret of Bandit Convex Optimization

• Problem-dependent Dynamic Regret
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Beyond the worst-case analysis

• More ambitious: achieving problem-dependent guarantees
► become tighter than worst-case results for benign problems

► safeguard the same minimax rate in the worst case

0

400

800

800400

• Previously, we have achieved minimax results like .

gradient variation

It is also essential due to  profound connections with many other 
areas such as online games, stochastic optimization, etc.
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Exploiting historical information
• How to exploit the niceness of the environments?

focusing on the gradient feedback for simplicity

Optimistic Online Gradient Descent [Rakhlin and Sridharan, 2013]
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Base Algorithm Analysis
• Optimistic OGD can serve as the base learner for problem-dependent dynamic 

regret minimization.

crucial for gradient variation

adaptivity negative term non-stationarity
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Online Ensemble for Adaptive Bounds
• An online ensemble to balance between non-stationarity and adaptivity.

► Multiple candidates: to cover uncertainty

diversity consideration: cover all the possible range 
using as fewer as possible discretization items

► Base learners: each updated using

also include the “hint” in the performance evaluation

► Meta algorithm: provide the weight 
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Gradient-Variation Dynamic Regret
• From adaptive bound to gradient-variation regret bound

only “data-dependent”

gradient variation problem-dependent
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Stability Analysis
• Stability of the meta-base online ensemble

• Decompose the overall dynamic regret into the meta-base two levels:

negative term for self-cancellation

only for a particular base learner, 
not sufficient for cancellation

meta stability weighted combine of base stability
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Stability Analysis
• Stability of the meta-base online ensemble

correction:penalizing 
instable base learners

meta stability weighted combine of base stability
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Collaborative Online Ensemble
• Dynamic regret of the modified algorithm (with corrections):

these two terms are 
due to correction
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Collaborative Online Ensemble
• Dynamic regret of the modified algorithm (with corrections):

with suitable parameter configurations

these two terms are 
due to correction

Collaborations between meta and base learners:
simultaneously exploiting 
 negative terms in the regret analysis 
 correction terms in the algorithm design
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Online Ensemble for Gradient Variation
• An online ensemble to balance between non-stationarity and adaptivity.

► Multiple candidates: to cover uncertainty

diversity consideration: cover all the possible range 
using as fewer as possible discretization items

► Base-learners: each updated using

► Meta-algorithm: provide the weight 
correction terms 

enable collaborations
between meta and 

base levels
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Summary of Our Results
• Full-information online learning

gradient information is available to the learner
[Zhang et al., NeurIPS’18; Zhao et al., NeurIPS’20;  Zhao et al., NeurIPS’22; Zhao et al., JMLR’23]

• Partial-information online learning
gradient information cannot be observed, only function value is available

• Decision-dependent online learning
current decision will affect the future (incl. gradient & function value)

[Zhao et al., JMLR’21; Luo et al., COLT’22; Yan et al., JMLR’23]

[Zhao et al., ICML’22; Zhao et al., AISTAST’23; Li et al., NeurIPS’23]



44Peng Zhao (Nanjing University)

Outline
• Problem Setup

• Non-stationary Online Learning

• Universal Online Learning

• Conclusion
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OCO: classic methods
• Classic Methods: require knowing the function curvature and 

obtain worst-case regret guarantees

Recent studies explore two levels of adaptivity.
• High-Level: adaptive to unknown function curvatures

• Low-Level: adaptive to unknown niceness of environments



46Peng Zhao (Nanjing University)

OCO: high-level adaptivity
• High-Level: adaptive to unknown function curvatures

universal algorithm

strongly 
convex

exp-
concaveconvex

Universal method aims to develop a single algorithm for different families: 
(i) agnostic to the specific function curvature; 
(ii) while achieving the same regret as if they were known.
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OCO: low-level adaptivity
• Low-Level: adaptive to unknown niceness of environments

Problem-dependent method aims to develop more adaptive bounds: 
(i) regret guarantee can be substantially improved for easy environments；
(ii) while can simultaneously safeguard the worst-case minimax rate.

measure the cumulative variations in gradients

Gradient variation:
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Guiding Question

Is it possible to design an algorithm with two-level adaptivity? 

i.e., universal to function curvature, and adaptive to gradient variations
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Main Result
• We provide an affirmative answer by providing the following result.

A single algorithm with simultaneously near-optimal gradient-variation 
regret bounds for convex/exp-concave/strongly convex functions.
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Why Gradient Variation?
• Importance in Theory and Practice:

• Exploiting the niceness of environments, while safeguarding the minimax rate

• Implications in Games & Stochastic Optimization
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Implications: Games
• Gradient Variation in Games: 

Example:

Rock Scissors Paper
Rock (0,0) (1,−1) (−1,1)

Scissors (−1,1) (0,0) (−1,1)
Paper (1,−1) (−1,1) (0,0)

Game matrix 𝑨𝑨

𝑥𝑥-player decision 𝐱𝐱𝑡𝑡 =
0
⁄1 2
⁄1 2

𝑦𝑦-player decision 𝐲𝐲𝑡𝑡 = ⁄1 2 ⁄1 2 0 ⊤

[Syrgkanis et al., NIPS'15]
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Implications: Games
• Gradient Variation in Games:

Gradient-variation online learning plays an important role in games.

Online Game Protocol

[Syrgkanis et al., NIPS'15]
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Implications: Games
Deploying gradient-variation algorithm (e.g., online mirror descent with last-round gradient) attains: 

negative stabilitygradient variation

Deploying gradient-variation algorithm (e.g., online mirror descent with last-round gradient) attains: 

negative stabilitygradient variation

Regret summation is usually related to some global performance measures 
in games, such as Nash equilibrium regret and duality gap.
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Implications: Games
Deploying gradient-variation algorithm (e.g., online mirror descent with last-round gradient) attains: 

negative stabilitygradient variation

Deploying gradient-variation algorithm (e.g., online mirror descent with last-round gradient) attains: 

negative stabilitygradient variation

which is essential for the             fast rate in games.
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Implications: Stochastic Opt. 

How is loss function
𝑓𝑓𝑡𝑡 generated?

stochastic optimization

adversarial optimization

 The studies on these two fields are previously separate.

• Gradient Variation in Stochastic/Adversarial Optimization :
[Sachs et al., NeurIPS'22]

 Recent works reveal the essential role of gradient variation, which provides 
an important interpolation between stochastic and adversarial optimization.
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• SEA (Stochastically Extended Adversarial) model 

Implications: Stochastic Opt. 
[Sachs et al., NeurIPS'22]

Two crucial complexity measures:

stochastic change adversarial change
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• SEA (Stochastically Extended Adversarial) model 

Implications: Stochastic Opt. 
[Sachs et al., NeurIPS'22]

stochastic change stochastic changeadversarial changegradient variation
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• Basic idea: Online Ensemble

Approach

Meta Learner

Base Learners

for convex
function

for exp-concave
function

for strongly convex 
function

also used in non-stationary online learning (for dynamic/adaptive regret minimization)
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Approach
• Regret decomposition: how to control meta-regret in two layers

meta regret base regret

(second-order bound, 
e.g., Adapt-ML-Prod) 

[Gaillard et al, COLT’14]

• Key idea: exploiting the second-order regret bound on the meta level
[Zhang et al., ICML’22]
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Approach
• Regret decomposition: how to control meta-regret in two layers

meta regret base regret

• Key idea: exploiting the second-order regret bound on the meta level

e.g., exp-concave
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Approach
• Regret decomposition: how to control meta-regret in two layers

meta regret base regret

• Key idea: exploiting the second-order regret bound on the meta level

e.g., strongly convex
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Approach
• Regret decomposition: how to control meta-regret in two layers

meta regret base regret

• Key idea: exploiting the second-order regret bound on the meta level

e.g., convex
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• Multi-layer Online Ensemble

Achieving Two-Level Adaptivity

 Top layer & Middle layer: 

a two-layer meta learner

 Bottom layer: 

basic online ensemble ideaBottom Layer

Top Layer

Middle Layer

Why three layers? (mostly due to the technical reasons)
Technically, this is due to the simultaneous requirements of second-order bound (for universality) 
and negative terms (for gradient variation). So we have to use a two-layer online algorithm 
(MsMwC over MsMwC) [Chen-Wei-Luo, COLT’21] as the meta-learner.
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• Ingredient I: novel optimism to reuse historical gradients universally

Key Ingredients

To obtain gradient-variation bounds, we need to reuse historical data, 
i.e., optimistic online learning.

[Wei et al., NIPS’16] optimism
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• Ingredient I: novel optimism to reuse historical gradients universally

Key Ingredients

different parameters 
for different functions 

(not universal)

Challenge: can only use separate parameters to act as the optimism 

convex

exp-
concave

strongly
convex
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• Ingredient I: novel optimism to reuse historical gradients universally

Key Ingredients

algorithm stability

Our solution: convex

exp-
concave

strongly
convex

one parameter for different functions (universal)

universal parameter
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• Ingredient II: collaboration in multiple layers to handle the stability

Key Ingredients

meta stability

Two layers:
[Zhao et al, 2021]

- meta stability: handled by negative terms in meta regret
- weighted stability: collaboration among layers, penalizing unstable base learners

weighted combination of base stability
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• Ingredient II: collaboration in multiple layers to handle the stability

Key Ingredients

A principled way to control algorithmic stability in multi-layer structures.

Three layers:
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Algorithm
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Main Result
• The first universal algorithm with near-optimal gradient-variation regret.

Immediate implications to game theory and SEA model.
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• Stochastically Extended Adversarial (SEA) [Sachs et al., NeurIPS'22]

Result for SEA

Interpolation between stochastic and adversarial online convex optimization

Two crucial complexity measures:

stochastic change adversarial change
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• Min-Max Optimization 

Result for Games

Consider two aspects: 

(i)

(ii) honest: all players run the same algo; dishonest: otherwise (some may disobey)
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Conclusion
• Online Ensemble: an effective theoretical framework (base learners; 

meta learners; schedule) to handle uncertainty in online environments
• Non-stationary online learning: online ensemble for dynamic regret

• bandit convex optimization: surrogate loss is essential to exploit limited feedback
• problem-dependent guarantee: incorporating hint prediction, enable collaboration

between meta and base layers (via negative terms and corrections)

• Many todo: efficiency/real-time response? non-convexity? continual learning? …

• Universal online learning: online ensemble adaptive to curvatures
• gradient-variation universal regret: multi-layer corrections, unifying optimism
• applications to SEA model, games, etc.

Thanks!
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