IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Lecture 13. Advanced Topics

LAVIDA

Learning And Mining from DatA

Peng Zhao
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Machine Learning

* Machine Learning has achieved great success in recent years.

0 |y
r o' & ¥
®e
AH Siri '\Jg | y
= Rey Siri INERZE g
g - $
search engine voice assistant recommendation

. ChatGPT

Hi, can you introduce yourself to us?

@ I'm ChatGPT, an Al language model developed by OpenAl. How can |
help you?

ALL SYSTEMS GO

AlphaGo Games automatic driving medical diagnosis large language model

Peng Zhao (Nanjing University) 2



Machine Learning

* A standard pipeline for machine learning deployments.

training data learning algorithm

* Learning as optimization: using ERM to learn the model

m

min S £(x; 2;) learning the model based on the (offline)
xex =] training dataset S = {z1,...,2m}

Peng Zhao (Nanjing University)




Online Learning

 In many applications, data are coming in an online fashion

base station manufacturing

* Online learning/optimization

- update the model in an iterated optimization fashion

- need to have guarantees for the online update

Peng Zhao (Nanjing University) 4



Outline

* Problem Setup

Peng Zhao (Nanjing University) 5



Online Learning

* View online learning as a game between learner and environment.

Online Convex Optimization
Ateachroundt=1,2---,T
1. learner first provides a model w; € W;

2. and simutaneously the environment picks
a convex pnline function f; : W — [0, 1];

3. the learner then suffers loss f;(w;) and
observes some information of f;.

Example: online function f; : W — R is composition of
(1) loss £ : ) x Y — R, and
(ii) dataitem: (x;,y¢) € X x ).

—> fi(w) = 4w x¢,55)

Peng Zhao (Nanjing University)

Y + d
e w, ER
A classifier +/t

/

An instance, feature x, € R%

Predict a label by wx; h g

Receive the true label y;

A loss function

fe(w) = max(1 — y,w'x,,0)
Suffer f;(w;) and update w;

% Spam Filtering

Regular vs Spam ?



Online Learning

* View online learning as a game between learner and environment.

Online Convex Optimization RN t . )
& ol \/ > A classifier + we el

Ateachroundt=1,2---,T N L
1. learner first provides a model w, € W, An instance, feature x, € R%

Predict a label by wx; h g

a convex online function f; : W — [0, 1];

A loss function

3. the learner then suffers loss f;(w;) and > | fe(w) = max(1 - yw'x, 0)
observes some information of f;. Suffer f; (W) and update w;
full information partial information . %

ﬂ-.- Spam Filtering

Regular vs Spam ?

multi-armed bandits

Peng Zhao (Nanjing University) 7



Outline

* Non-stationary Online Learning

Peng Zhao (Nanjing University) 8



Non-stationary Online Learning

* Distribution shift: data are usually collected in open environments

* For the online learning scenario, the distributions will evolve over time.

continuous
distribution

shift

Peng Zhao (Nanjing University) 9

provably robust methods for
non-stationary online learning




Community Discussions

turing lecture

DOI:10.1145/3448250

“Deep Learning for AI”

How can neural networks learn the rich
internal representations required

for difficult tasks such as recognizing
objects or understanding language?

Communication of ACM

| BY YOSHUA BENGIO, YANN LECUN, AND GEOFFREY HINTON

July, 2021. Vol 64. No 7.

Deep
Learning
for Al

TURING LECTURE

Yoshua Bengio, Yann LeCun, and Geoffrey Hinton are recipients
of the 2018 ACM A.M. Turing Award for breakthroughs that have
made deep neural networks a critical component of computing

RESEARCH ON ARTIFICIAL neural networks was
motivated by the observation that human intelligence
emerges from highly parallel networks of relatively
simple, non-linear neurons that learn by adjusting
the strengths of their connections. This observation
leads to a central computational question: How is it
possible for networks of this general kind to learn

the complicated internal representations that are
required for difficult tasks such as recognizing

Yann LeCun

Yoshua Bengio

Geoffrey Hinton

58 COMMUNICATIONS OF THEACM | JULY 2021 | VOL B4 | NO.7

objects or language?
Deep learning seeks to answer this
question by using many layers of activ-
ity vectors as representations and
leaming the connection strengths that
give rise to these vectors by following
the stochastic gradient of an objective
function that measures how well the
network is performing. It is very sur-
prising that such a conceptually simple
approach has proved to be so effective
when applied to large training sets us-
ing huge amounts of computation and
it appears that a key ingredient is
depth: shallow networks simply do not
work as well.

We reviewed the basic concepts
and some of the breakthrough
achievements of deep learning several
years ago.® Here we briefly describe
the origins of deep leaming, describe
a few of the more recent advances, and
discuss some of the future challenges.
These challenges include learning with
little or no external supervision, coping
with test examples that come from a
different distribution than the training
examples, and using the deep learning
approach for tasks that humans solve
by using a deliberate sequence of steps
which we attend to consciously—tasks
that Kahneman™ calls system 2 tasks as
opposed to system 1 tasks like object
recognition or immediate natural lan-
guage understanding, which generally
feel effortless.

From Hand-Coded Symbolic
Expressions to Learned Distributed
Representations

There are two quite different para-
digms for AL Put simply, the logic-in-
spired paradigm views sequential rea-
soning as the essence of intelligence
and aims to implement reasoning in
computers using hand-designed rules
of inference that operate on hand-de-
signed symbolic expressions that for-
malize knowledge. The brain-inspired
paradigm views learning representa-
tions from data as the essence of in-
telligence and aims to implement
learning by hand-designing or evolv-
ing rules for modifying the connec-

What needs to be improved. From
the early days, theoreticians of ma-
chine learning have focused on the iid
assumption, which states that the test
cases are expected to come from the
same distribution as the training ex-
amples. Unfortunately, this is not a re-
alistic assumption in the real world:

just consider the non-stationarities
due to actions of various agents chang-
ing the world, or the gradually expand-
ing mental horizon of a learning agent
which always has more to learn and
discover. As a practical consequence,
the performance of today’s best Al sys-
tems tends to take a hit when they go
from the lab to the field.

Our desire to achieve greater robust-
ness when confronted with changes in
distribution (called out-of-distribution
generalization) is a special case of the

2018 Turing Award Recipients

Peng Zhao (Nanjing University)

more general objective of reducing
sample complexity (the number of ex-
amples needed to generalize well) when
faced with a new task—as in transfer
learning and lifelong learning®—or
simplywith a change in distribution or

10




Performance Measure

Regret: online prediction as good as the best offline model

T I T I
ety £ 2 Fw0) S, 2 ) i o
Dynamic Regret oP?nmr?;nnjgfaemjig:g:f -
- - environments
D-Regret(uy,--- ,ur) = Z fr(wWy) — th(ut)
= a//cfm:/ ihanging comparators
The comparators uy, . . ., ur essentially depict the underlying (unknown) distributions of all rounds.

. : : T

* stationary environments: u; = w, € argmingcyy > ;1 ft(W)

e piecewise-stationary environments: u; = wZt for a stationary interval ¢t € Z;,
%

Peng Zhao (Nanjing University) 11



Fundamental Challenge

T T
D-Regret(uy, -+ ,ur) = Y  fi(we) = »  fi(u)
t=1 t=1

Key difficulty: the uncertainty due to unknown environmental changes.

Basic idea: Ensemble Methods

Machine Learning & Pattern Recognition Series
Ensemble Methods
Foundations and Algorithms

* Protocol: combine multiple base [}.ccicamer1
learners to achieve robustness \
base-learner 2

* Advantage: achieve more robust T combiner |— output
results under uncertain or even : / |
. . Zhi-Hua Zhou. Ensemble Methods:
changing environments base-learner N Foundations and Algorithms.

Chapman & Hall/CRC, Jun. 2012.

Peng Zhao (Nanjing University) 12



Online Ensemble ({EZ£ERK)

Basic Components

(1) base learner: an online learner to cope with a certain amount of non-stationarity
(2) schedule: a set of parameters for initiating base learners that encourage diversity

(3) meta learner: an expert-tracking learner that can combine base learners’ decisions

4 surrogate correction\
v — v — T
] B M QI
v — v — =T=
v — v — =T =
\_ step size covering specification y
schedule meta learner

Peng Zhao (Nanjing University) 13



Deploying Online Ensemble

We will showcase that properly deploying online ensemble can
etfectively resolve several important online learning problems.

* Dynamic Regret of Bandit Convex Optimization

* Problem-dependent Dynamic Regret

Peng Zhao (Nanjing University) 14



Deploying Online Ensemble

We will showcase that properly deploying online ensemble can
etfectively resolve several important online learning problems.

* Dynamic Regret of Bandit Convex Optimization

Peng Zhao (Nanjing University) 15



Bandit Convex Optimization (BCO)

* BCO with one-point feedback

the learner sends a single point w, € W, and
then receives the function ,value ft (Wt) Only ry Amazon Prime today.a.r.ld get unlim.i.tecl fast, FREE shipping seen -!- :

[Flaxman et al., SODA 2005; Bubeck et al., STOC 2017]

* BCO with two-point feedback

the learner sends two points w;, w7 € W,

and then receives their function values, namely,
ft(W%) and ft(W%), only online recommendation

[Agarwal et al., COLT 2010; Shamir, JMLR 2017]

Peng Zhao (Nanjing University) 16



A Gentle Start

Online Gradient Descent (OGD)

fort=1to7T do

Challenge: with only bandit feedback,
the learner cannot evaluate the gradient

Play model w; and suffer loss f;(w,)

Update the model

wi1 = Hyw[wi — nV fr(wy)]

end for

https://www.nature.com/articles/s41534-017-0043-1

FKM estimator [Flaxman et al., SODA’05]

construct w; using the perturbation technique

s; is random vector sampled

.~
Wi =W t0S: LR - (v ||v] <1}

d -

E> & [gft(wt) : St] = V fi(wy)
[proved by Stokes equation]
with ﬁ(w) £ Eye|fi (W + 6v)] being smoothed function.

|:> define g, = % ft(W; + Js;) - s; as gradient estimator

Peng Zhao (Nanjing University)
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A Gentle Start

Online Gradient Descent (OGD)

fort=1to7T do

Challenge: with only bandit feedback,
the learner cannot evaluate the gradient

Play model w; and suffer loss f;(w,)

Update the model

wi1 = Hyw[wi — nV fr(wy)]

end for

https://www.nature.com/articles/s41534-017-0043-1

FKM estimator [Flaxman et al., SODA’05]

construct w; using the perturbation technique

s; is random vector sampled

.~
Wi =W t0S: LR - (v ||v] <1}

Consider the 1-dim case (d = 1).

Escs [gft(ﬁf + s) - s]

| 1 -
— i@+ 6) = o= fu(i — 9)

Peng Zhao (Nanjing University)

18




Base Algorithm : BGD

e Gradient estimator: g; = % fe(Wy 4 0st) - 8¢

e Perform Online Gradient Descent using this gradient estimator.

Bandit Gradient Descent (BGD)
fort =1to 71 do
Select a unit vector s; uniformly at random

Submit Wi = {7\/Vt -+ 5St
Receive f;(w;) as the feedback

Construct the gradient estimator by g; = % fe(Wy + 0sy) - sy .
~ ~ Elg:| = Vfi(wy)
Wir1 = H(l—a)w[wt — Ngt]

end for fr(w) 2 Evep[fi(w + 6v)]

Peng Zhao (Nanjing University) 19



Base Algorithm: Dynamic Regret

Theorem 1. Under certain standard assumptions, for any perturbation parameter
o0 > 0, step size n > 0, and shrinkage parameter « = J/r, the expected dynamic
regret of BGD(T), 9, a, ) for the one-point feedback model satisfies

E [D-Regret(uy,...,ur)]

2 { RP 2027 L
A RPp  nd O (ap 4 LB 5
4n 262

r

1

_o (X ),
n 0%

T . .
where Pr = ) ,_, |[u; — u;_1|| measures the non-stationarity level.

Optimal parameter setting is

- step size 7, = <7R21}RPT) ! —> (’)(T3/4(1 4 pT)1/4)

1
- perturbation parameter J. = 7

Peng Zhao (Nanjing University) 20



Base Algorithm: Dynamic Regret

Theorem 1. Under certain standard assumptions, for any perturbation parameter
o0 > 0, step size n > 0, and shrinkage parameter « = J/r, the expected dynamic
regret of BGD(T), 9, a, ) for the one-point feedback model satisfies

3L + —
r

E [D-Regret(uy,...,ur)] < in 9252

14+ Pr T
:O( _ T+”—+5T),

2 22
TR +RPT+ndOT+( LR>5T

n 02

T . .
where Pr = ) ,_, |[u; — u;_1|| measures the non-stationarity level.

Optimal parameter setting is

. Comparators uy, ..., ur can be arbitrary,
we cannot know non-stationarity Pr in
advance, so how to tune the step size ?

3
. 2 4
- step size 1. = (7R LI T)

1
- perturbation parameter J. = 7

Peng Zhao (Nanjing University) 21



Online Ensemble for BCO

Deploying a proper online ensemble to deal with the issue of
unknown non-stationarity, so that we can optimally tune step size.

N
Wil = ZPt+1,th+1,i
1=1
» Multiple candidates: to cover uncertainty =~ » Base learners: each updated using n; € ‘H

diversity consideration: cover all the possible range

N o — >N ¥
using as fewer as possible discretization items BGD(:): W1, = Ha—ayw Wei — i8]

Wil = Wip1,s + 08¢

m 72 n3 NN
SR » Meta algorithm: provide the weight p;,; € Ay
H= {m =21 dC T34 [i=1,...,N } increase weight on base-learners with better performance
with N = [logy(1 +2T/7)[ +1 = O(log T). Hedge: pty1,i o ptiexp(—eft(wi))

Peng Zhao (Nanjing University) 22



Online Ensemble for BCO

Deploying a proper online ensemble to deal with the issue of
unknown non-stationarity, so that we can optimally tune step size.

N
Wil = E Pt+1,iWit41,4
1=1
» Multiple candidates: to cover uncertainty =~ » Base learners: each updated using n; € ‘H
diversity consideration: cover all the possible range BGD(r;): W R ~
using as fewer as possible discretization items L Witli = (1_O‘)W[Wt’7’ N 77

Wil = Wip1,s + 08¢

monz s bandit feedback , , , A
VR makes it hard to initiate ithm: provide the weight 1 € Ax
H= {m =l JOT3/4 [i=1, multiple base learners eight on base-learners with better performance

Hedge: Pit+1,i X Dt,g eXP(—)

Peng Zhao (Nanjing University) 23
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Multiple base learners in BCO

* A closer look at dynamic regret analysis

Wir1 = Ha_ayw[We — g, Elgd = Vi (wy).

T T smoothed function f,(w) = Eyep[fi(w + V)]
Z fe(wi) — Z ft(uz) rescaled comparator v, = (1 — a)u,
T T T T T
= Fo(We) = > Feve) D fe(we) = > F(Wa)|HD | fe(ve) = D fol(uy)
t=1 t=1 t=1 t=1 =1 t=1
term (a) term (b) term (c)
depends on Pr < 2L6T < (L6 + LaR)T
crucial term, related to not involve the unknown non-stationarity measure Pr
non-stationarity measure Pr (approximation error due to the perturbation operation)

Peng Zhao (Nanjing University) 24



Multiple base learners in BCO

* Key idea: surrogate optimization

Proposition 1. For any ¢ € [T, the following holds true:

E[fe(W:) — fe(ve)] < Ellge, Wy — V)],

where g; = % fit(wW, + ds;) - s; is the one-point gradient estimator.

* Construct the surrogate loss £;(w) 2 (g, W)

which is a linearized loss parametrized by the gradient estimator g;.

Feed this surrogate loss to online ensemble to maintain multiple base learners!

Peng Zhao (Nanjing University) 25



Surrogate Loss

e Construct the surrogate loss £;(w) = (g;, w) and feed it to online ensemble.

Theorem 2. The constructed surrogate loss satifies the following properties:

(i) E[f:(W:) — f:(v)] < E[l:(%;) — £;(v)] holds for any v € W.

(ii)) V4, (w) = g holds for any w € W.

» Property (i) implies that it suffices to optimize dynamic regret of surrogate loss.

* Property (ii) implies that it is feasible to deploy multiple base learners to perform
BGD over the surrogate loss.

All the gradients V/;(w}) = V{;(w?) = -+« = V/,(W}') = g, so they can be
obtained by querying the function value of f; only once.

Peng Zhao (Nanjing University) 26



Online Ensemble for BCO

Deploying a proper online ensemble to deal with the issue of
unknown non-stationarity, so that we can optimally tune step size.

N
Wil = E Pt+1,iWit41,4
1=1
» Multiple candidates: to cover uncertainty =~ » Base learners: each updated using n; € ‘H
diversity consideration: cover all the possible range BGD(r;): W R ~
using as fewer as possible discretization items L Witli = (1_O‘)W[Wt’7’ N 77

Wil = Wip1,s + 08¢

monzm bandit feedback , , , A
VR makes it hard to initiate ithm: provide the weight 1 € Ax
H= {m =l JOT3/4 [i=1, multiple base learners eight on base-learners with better performance

Hedge: Pit+1,i X Dt,g eXP(—)

Peng Zhao (Nanjing University) 27
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Online Ensemble for BCO

Deploying a proper online ensemble to deal with the issue of
unknown non-stationarity, so that we can optimally tune step size.

N ~
gt = %ft(wt + 0s¢) - 8y
Wil = ZPt+1,th+1,i
i=1 l(W) = (8t, W)
» Multiple candidates: to cover uncertainty =~ » Base learners: each updated using n; € ‘H
diversity consideration: cover all the possible range o~ B ~
using as fewer as possible discretization items BGD(:): Wit1i = a-ayw[Wei =

Wil = Wip1,s + 08¢

surrogate loss
makes online ensemble
possible in bandit!

ithm: provide the weight p;,; € Ay

eight on base-learners with better performance

Hedge: pi114 < prj exp(—

Peng Zhao (Nanjing University) 28
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Dynamic Regret

Theorem 3. Under certain standard assumptions, with a proper setting of the pool of candi-

date step sizes H and the learning rate € for the meta-algorithm, our PBGD algorithm enjoys
the following expected dynamic regret guarantees.

o For the one-point feedback model, E[D-Regret.(uy, . .

N[V
N[

ur) <OT+(1+ Pr)?).

).

We further establish the lower bound to demonstrate the hardness of the problem:
an Q(\/T Pr) regret is unavoidable for bandit feedback models.

e For the two-point feedback model, E[D-Regret.(uy, . .

N[
N[

ur)] <O(T=2(1+ Pr)

:> Our algorithm is minimax optimal for two-point BCO model;
while it remains open how to close the gap in one-point BCO.

Peng Zhao (Nanjing University) 29



Online Ensemble for BCO

Deploying a proper online ensemble to deal with the issue of
unknown non-stationarity, so that we can optimally tune step size.

N

Wil = E Pt+1,iWit41,4
i=1

Proper surrogate loss is essential for deploying
online ensemble to bandit online problems.

» Multiple candidates: to cover uncertainty

diversity consideration: cover all the possible range
using as fewer as possible discretization items

n 72 13 T NN

%:{mzﬁ‘l VTR \z'=1,...,N}

dCT3/4
with N = [log,(1427/7)] + 1= O(logT).

Peng Zhao (Nanjing University)

» Base learners: each updated using n; € H

BGD(n;): Wit1,i = La_ayw (Wi, — 77

Wil = Wip1,s + 08¢

» Meta algorithm: provide the weight p,,; € An

increase weight on base-learners with better performance

Hedge: Pt+1,i X Dti exp(—

30



Deploying Online Ensemble

We will showcase that properly deploying online ensemble can
etfectively resolve several important online learning problem.

* Problem-dependent Dynamic Regret

Peng Zhao (Nanjing University) 31



Beyond the worst-case analysis

* Previously, we have achieved minimax results like O(,/T(1 + Pr)).

* More ambitious: achieving problem-dependent guarantees

» become tighter than worst-case results for benign problems

» safeguard the same minimax rate in the worst case

. . ° 800— —
gradient variation
i o(T) _
2 i _
Vr = Z sup [V fi-1(w) = Vi (w)l; 400
€

2" : O(Vr) -

It is also essential due to profound connections with many other 0 4'00 | 8'00

areas such as online games, stochastic optimization, etc. T

Peng Zhao (Nanjing University) 32



Exploiting historical information

* How to exploit the niceness of the environments?
focusing on the gradient feedback for simplicity

Optimistic Online Gradient Descent [Rakhlin and Sridharan, 2013]

wir1 = Iy [Wy =V fi (wy)]
wit1 = Iy (Wi — M),

where { M, My, ..., Mr} is the hint sequence encoding prior knowledge of future.

e [If the environment is benign, which means it is “predictable”, and thus we can
provide the {M,}]_; sequence by exploiting historical information.

e A two-step update fashion, and it will degenerate as the standard OGD when
there is no external hint (simply setting M, = 0).

Peng Zhao (Nanjing University) 33



Base Algorithm Analysis

* Optimistic OGD can serve as the base learner for problem-dependent dynamic
regret minimization.
Wii1 = Iy [Wy — nV fi (wy))]
wir1 = 1y [VAVtH — 77Mt+1] -

Theorem 4. Under certain standard assumptions, the dynamic regret of optimistic OGD

over comparator sequence uy, ..., ur € YW is bounded as
T T 1 T 1 T
> filw) =D filw) <GD + 2—<D2 +2DPp)+ 0> IV fi(we) = M|l = [lwe — wia ||
t=1 t=1 n non-stationarity t=2 adaptivity U t=2 negative term
_ 0 (1 + Pr g AT) crucial for gradient variation
7

where Pr = 23;2 |uy — uy_1|| measures non-stationarity and Ap = Z;‘;Q |V fi(wy) — My ||? reflects adaptivity.

Peng Zhao (Nanjing University) 34



Online Ensemble for Adaptive Bounds

* An online ensemble to balance between non-stationarity and adaptivity.

N

Wil = E Pt+1,iWt+1,4
i=1

» Multiple candidates: to cover uncertainty

diversity consideration: cover all the possible range
using as fewer as possible discretization items

m 12 UE; e NN

: D
H:{nZZZZ_lm—T|Z:177N}

with N = [log,(GT/(8D?L?))| +1 = O(logT).

Peng Zhao (Nanjing University)

» Base learners: each updated using n; € H

Wil = Ly [Wes — 0V fr(wWy)]
Wiy = Hw [Wep1s — 0iMigq] .

» Meta algorithm: provide the weight p;,; € AN

also include the “hint” in the performance evaluation

Hedge: pi41,i o< exp (—e(Lsi +miy14)), Vi € [N].

Ly

A

t t

Zes(ws,i) - Z<st(ws)7ws,i>a mt—l—l,i é <Mt—|—17 Wt,i>°

35



Online Ensemble for Adaptive Bounds

* An online ensemble to balance between non-stationarity and adaptivity.

N

Wil = E Pt+1,iWt+1,4
i=1

I 7
D fewe) =) fu(w) <O (1 J:?PT
=l t=1

+nr ) =0 (VAr(i+ Pr))

» Multiple candidates: to cover uncertainty

diversity consideration: cover all the possible range
using as fewer as possible discretization items

m 12 UE; e NN

: D
H:{nZZZZ_lm—T|Z:177N}

with N = [log,(GT/(8D?L?))| +1 = O(logT).

Peng Zhao (Nanjing University)

» Base learners: each updated using n; € H

Wil = Ly [Wes — 0V fr(wWy)]
Wiy = Hw [Wep1s — 0iMigq] .

» Meta algorithm: provide the weight p;,; € AN

also include the “hint” in the performance evaluation

Hedge: pi41,i o< exp (—e(Lsi +miy14)), Vi € [N].

Ly

A

t t

Zes(ws,i) - Z<st(ws)7ws,i>a mt—l—l,i é <Mt—|—17 Wt,i>°
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Gradient-Variation Dynamic Regret

« From adaptive bound to gradient-variation regret bound

non-stationarity Pr = Z?ZQ |ur — w1

(uy) <O (\/AT 1—|—PT)>

IIMﬂ

T
D Jelwe) -
t=1

adaptivity Ar = 3,_, |V fe(we) — M2

gradient variation Vp & Z sup ||V fi—1(w) — Vfu(w)] problem-dependent

— 2WEVV

:> setting M1 = V fy(wy) as the last-round gradient

T T
Z fe(wy) — Z fi(uy) <O (J (14 Pr) - Z |V fe(wy) — Vftl(wt1)2> only “data-dependent”

t=2

need to analyze ||w; — w;_1]|? (stability of the dynamics)

Peng Zhao (Nanjing University) 37



Stability Analysis

» Stability of the meta-base online ensemble

N N
2
Wit = ZPt+1,th+1,z‘ |::> Wy — wt-1H§ < 2D? Hpt — pt—1H1 + ZZpt,i Wi — Wi_1 ] ;
i=1 i=1
meta stability weighted combine of base stability

* Decompose the overall dynamic regret into the meta-base two levels:

D fewe) =D fr(w) =D folwe) = > filwes) + Y fe(Wea) = D fi(ug)

Vv Vv
meta-regret base-regret

T

1+ P
e meta-regret < O <5VT + 52 ||Wt _ Wt—1||§ 4 +

) negative term for self-cancellation
t=2

T T
1 1 i
e base-regret < O | mVi +n; Z lwy — Wt—lH; L2 Z Iwis — Wt_uH; only for a pgrtlcular base /eqrnef,
P o N not sufficient for cancellation

Peng Zhao (Nanjing University) 38



Stability Analysis

» Stability of the meta-base online ensemble

N N
2 2 2 2
Wipl = ) Pre1,iWisl :> Iwe = wi_ill; 2D |lp, —prq||] 2 prillwes — wie1ll;
meta stability weighted combine of base stability
e Stablization: meta algorithm p;11 ; oc exp (—e(Ly; + my414)) with
e surrogate loss £; € RY with ¢, ; = (V fy (Wi) , We i) + AWy — Wt—l,ng; correction:penalizing

: L N - 2 Iinstable base learners
e hint predlctlon miyq € R with Miy1,i = <Mt_|_1, Wt—|—1,z’> + A\ HWH-Li — Wt,ng-

77 772 771\/—1 771\/
Wi Wi o Wi N—1 Wi N

Peng Zhao (Nanjing University) 39



Collaborative Online Ensemble

* Dynamic regret of the modified algorithm (with corrections):

1+ Pr
E

2

I

T T
l
e meta-regret < (9( +eVr + ez Wy — Wt—1||§ - Z P, — Py
T t=2

t=2

1z , T N 4
+ — Z Wi —wWe1ll5 — Z Z ;pt,i

L t=2 i=1 I*

|Wt,7j — W1

2 | these two terms are
2 due to correction

T T
1 1
e base-regret < O(nz-VT + 77_ + 1; Z |wy — Wt—ng — 77_ Z Wi — th,i§>

v t:2 v t:2
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Collaborative Online Ensemble

W — Wt—lug < 2D? Hpt _pt—lHi + zzpt,z‘ Wi — Wt—lyiH;
* Dynamic regret of the -~

- . . - ms):
meta stability weighted combine of base stability

-
1+ Pr 2 > 2
e meta-regret < O +eVpr+e Wi~W;_ D
gret < ( . T ;H ~We-illy — - ;) H?f\lf\ll
T T ,
2 2 | these two terms are
T Z Wiz Wil — Z Z o P — Wil 2) due to correction
L t=2i=1 "
1 a 1
2 2
o base—regret S (9 nzVT + — 4+ 7 — Wt—1H2 T Z HWt’Z‘ — Wt—l,i 5
i $=2 =
Collaborations between meta and base learners:
with suitable parameter configurations simultaneously exploiting
D-Regret, < O ( \/VT 1+ PT)) ¥* negative terms in the regret analysis
¥ correction terms in the algorithm design
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Online Ensemble for Gradient Variation

* An online ensemble to balance between non-stationarity and adaptivity.

N

T T
Wit1 = Zpt—l—l,iwt—l—l,i Z fe(we) — Z fi(u) <O (\/VT(1 + PT))
t=1 t=1

=1

» Multiple candidates: to cover uncertainty » Base-learners: each updated using 7, € ‘H

diversity consideration: cover all the possible range Wit = Iy [Wes — 0V fi(wy)]

using as fewer as possible discretization items ~
& P Wit = Hw (W1 — 0V fir(wy)] .

O » Meta-algorithm: provide the weight p;,; € Ay
Y i correction terms Hedge: piy1,: x exp(—e(Lei +mit14)), Vi € [N].
= "= enable collaborations
between meta and e surrogate loss ¢ ; = (V fi (W¢) , Wy ;)
with N = | logy(GT/(8D base levels e hint prediction m¢41,; = (Mi41, Wig1 ) 4
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Summary of Our Results

* Full-information online learning

gradient information is available to the learner
[Zhang et al., NeurIPS'18; Zhao et al., NeurIP’S'20; Zhao et al., NeurIPS'22; Zhao et al., JMLR"23]

* Partial-information online learning

gradient information cannot be observed, only function value is available
[Zhao et al., JMLR’21; Luo et al., COLT’22; Yan et al., JMLR’23]

* Decision-dependent online learning

current decision will atfect the future (incl. gradient & function value)
[Zhao et al., ICML’22; Zhao et al.,, AISTAST’23; Li et al., NeurIPS'23]
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Outline

* Universal Online Learning

Peng Zhao (Nanjing University) A4



OCQO: classic methods

* Classic Methods: require knowing the function curvature and
obtain worst-case regret guarantees

Function type Algorithm Regret

convex Online Gradient Descent with 7; ~ % OKT)
A-strongly convex | Online Gradient Descent with n, = 35 | O(logT)
a-exp-concave Online Newton Step with « O(dlogT)

Recent studies explore two levels of adaptivity.

* High-Level: adaptive to unknown function curvatures

* Low-Level: adaptive to unknown niceness of environments

Peng Zhao (Nanjing University)
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OCO: high-level adaptivity

* High-Level: adaptive to unknown function curvatures

Universal method aims to develop a single algorithm for different families:
(i) agnostic to the specific function curvature;
(ii) while achieving the same regret as if they were known.

universal algorithm

\
exp- strongly
concave convex

:> An algorithm achieves O(v/T), O(dlogT), and O(logT) regret for convex/
exp-concave/str. convex functions, respectively.
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OCO: low-level adaptivity

* Low-Level: adaptive to unknown niceness of environments

Problem-dependent method aims to develop more adaptive bounds:
(i) regret guarantee can be substantially improved for easy environments;
(ii) while can simultaneously safeguard the worst-case minimax rate.

Gradient variution* w00l
, (1)
E : 2
Vp = sup ||V fi(x) — V fi_1(x)|] 4001 :
g XEA ! OVr) |
measure the cumulative variations in gradients 0 w e

:> Improved regret of O(v/Vr), O(dlog Vr), and O(log Vr) can be attained for convex/
exp-concave/str. convex functions, respectively (using different algorithms).
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Guiding Question

Is it possible to design an algorithm with two-level adaptivity?

i.e., universal to function curvature, and adaptive to gradient variations

OCO: high-level adaptivity

* High-Level: adaptive to unknown function curvatures

Universal method aims to develop a single algorithm for different families:
(i) agnostic to the specific function curvature;
(ii) while achieving the same regret as if they were known.

universal algorithm

' exp- strongly
concave convex

An algorithm achieves O(v/T), O(dlogT), and O(logT) regret for convex/
exp-concave/str. convex functions, respectively.

Peng Zhao (Nanjing University)

Peng Zhao (Nanjing University)

OCO: low-level adaptivity

* Low-Level: adaptive to unknown niceness of environments

Problem-dependent method aims to develop more adaptive bounds:
(i) regret guarantee can be substantially improved for easy environments;
(ii) while can simultaneously safeguard the worst-case minimax rate.

Gradient variation: o
T
A . 2
Vr = E sup |V fi(x) — Vo1 (x)|| 400
t—2 xeX
44
measure the cumulative variations in gradients ° w e

|:> Improved regret of O(v/Vr), O(dlog V), and O(log Vi) can be attained for convex/
exp-concave/str. convex functions, respectively (using different algorithms).

Peng Zhao (Nanjing University) 11
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Main Result

* We provide an affirmative answer by providing the following result.

Theorem 1 (Yan-Z-Zhou; NeurIPS 2023). Under standard assumptions, our algorithm ensures that
e it achieves O(log Vi) regret for strongly convex functions;

e it achieves O(dlog V) regret for exp-concave functions;

o it achieves O(+/Vr) regret for convex functions.

Here, Vip = ZtTIQ SUpy ey |V fi(x) = V fi—1(x)||? is gradient variation and O(-) omits log Vi factors.

A single algorithm with simultaneously near-optimal gradient-variation
regret bounds for convex/exp-concave/strongly convex functions.
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Why Gradient Variation?

* Importance in Theory and Practice:

* Exploiting the niceness of environments, while safequarding the minimax rate

- Vr denotes the variation in gradients that can be much smaller than O(T).

- Gradient-variation regret bounds O(log V1), O(dlog V1), and O(v/Vr) can
recover the minimax rate of O(log T'), O(dlog T), and O(V/T).

* Implications in Games & Stochastic Optimization

- Gradient variation bounds are essential for obtaining fast rates in games.

- Gradient variation can bridge stochastic and adversarial optimization.
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Implications: Games

* Gradient Variation in Games: [Syrgkanis et al., NIPS'15]

Example: Y'player decision Yy = (1/2 1/2 ())T
9

Game matrix 4

Rock | Scissors | Paper

0 Rock | (0,0) | (1,-1) | (-1L,D)

x-player decision X; = zz Scissors | (—1,1)| (0,0) (—1,1)
i Paper |(1,—1)| (—1,1) (0,0)

Peng Zhao (Nanjing University) 51



Implications: Games

* Gradient Variation in Games: [Syrgkanis et al., NIPS'15]

Online Game Protocol

The environments decide a payoff matrix A

Ateachroundt=1,2,...,T:
- x-player submits x; € A, and y-player submits y; € Ay

- the z-player suffers loss x, Ay; and receives gradient Ay;, the y-player
receives reward x, Ay, and receives gradient Ax;

Gradient-variation online learning plays an important role in games.

Peng Zhao (Nanjing University) 52



Implications: Games

Deploying gradient-variation algorithm (e.g., online mirror descent with last-round gradient) attains:

T T
fr(x) = x" Ay
F) © Regn 143 Aye— AyealZ = 5 ke — x|
fri(x)=x" Ay t=2 t=2
gradient variation_ ﬂnegative stability

AN Z

Deploying gradient-variation algorithm (e.g., online mirror descent Mt—round gradient) attains:

i g7
Regi S 1+ Z Ix; A —x,_; All% Z ly: —ye-1li
1Ay t=2

gradient variation n_egative stability

Regret summation is usually related to some global performance measures
in games, such as Nash equilibrium regret and duality gap.
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Implications: Games

Deploying gradient-variation algorithm (e.g., online mirror descent with last-round gradient) attains:
fi(x) = x' Ay
fizq (%)

T T
Reg, <1+ Z lAy: — Ayi—1llZ, - Z Ix: — %17

gradient variation_ ﬂnegative stability

[I>

XTAYt—1

AN Z

Deploying gradient-variation algorithm (e.g., online mirror descent Mt—round gradient) attains:

fL(y) = X;r Ay y o T T 2 a 2
Reg; <1+ E :HXt A—x; 1 Al% — E |y — ye—1l7
7 1(y) = X;—1AY t=2 t=2""" .
gradient variation negative stability

—> Reg’ . + Reg’. < O(1)  which is essential for the O (1) fast rate in games.
Peng Zhao (Nanjing University)
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Implications: Stochastic Opt.

» Gradient Variation in Stochastic/Adversarial Optimization :
[Sachs et al., NeurIPS'22]

stochastic optimization f ~ D

How is loss function
ft generated?

adversarial optimization { ft };gr: 1

» The studies on these two fields are previously separate.

» Recent works reveal the essential role of gradient variation, which provides
an important interpolation between stochastic and adversarial optimization.
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Implications: Stochastic Opt.

* SEA (Stochastically Extended Adversarial) model sachs et al, Neurips2o)

Setup: at round ¢t € [T], SEA optimizes minygex f(x)

f¢ is the randomized function sampled from underlying distribution D;: f; ~ D,

F is the expected function of fi: Fi(-) 2 E ForDy LSt (4]

Two crucial complexity measures:

T T
DY E{neaf((Ewat[||Vft(x)_VFt(X)H2]a SipEE ) Sup IVFi(x) = VF_1(x)]|?
t=1 t=2 %

stochastic change adversarial change
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Implications: Stochastic Opt.

* SEA (Stochastically Extended Adversarial) model sachs et al, Neurips2o)
Setup: at round ¢t € [T], SEA optimizes minygex f(x)

f¢ is the randomized function sampled from underlying distribution D;: f; ~ D,

F is the expected function of fi: Fi(-) 2 E ForDy LSt (4]

—> SEA model can be solved by deploying gradient-variation algorithm over the
randomized function {f;}7_,.

Vi(x)=Vfi_1(x) = [V fi(x) =V E(x)|+[VF(x) =V F; 1 (%) +[VF-1(x) =V fi—1(x)]

gradient variation stochastic change adversarial change stochastic change

Approximately Vi ~ o7, + 37.,.. For stochastic optimization, o7, = 0?7 and

>7. = 0. For adversarial optimization, o%.,. = 0 and %% . = V7.
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Approach

[ [ [ N
* Basic idea: Online Ensemble x;: = > ", p:ix:;

- Py = [Pt1s- - 7pt,N]T

is the meta weight;

- {x;.;}{—; is the base decisions of the i-th base learners, i € [NV].

for convex
function

for exp-concave
function

Meta Learner

Base Learners

for strongly convex

function

also used in non-stationary online learning (for dynamic/adaptive regret minimization)

Peng Zhao (Nanjing University)
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Approach

* Regret decomposition: how to control meta-regret in two layers

T T T
REGy = [Z fe(oee) = D felxean) | + | D frlxee) — min Z fi(x }
t=1 t=1 t=1

meta regret base regret

* Key idea: exploiting the second-order regret bound on the meta level
[Zhang et al., ICML'22]

(second-order bound,
e.g., Adapt-ML-Prod)
[Gaillard et al, COLT"14]

T
Z ptagt

t=1

|:> gtzé Vft Xt) Xt7,>

é <pt7€t> g

Peng Zhao (Nanjing University)

1

T
(Vfie(xe), Xe — Xp0) S \l Z Vfi(xe), Xe — X% )2
t=1
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Approach

* Regret decomposition: how to control meta-regret in two layers

T T T
REGr = | fo(xe) = D folxeae) | + | D felxeiv) mmet }
t=1 t=1 t=1

meta regret base regret

* Key idea: exploiting the second-order regret bound on the meta level

A : I -
|:> Ui = (V [i(x4),%4,1) Z<Vft(Xt)7Xt — Xt ix) S \l Z Vfi(Xe), Xe — Xy 3% )?
t—1 t=1

Tt = <pt,€t> - ft,q;

e.g., exp-concave

T T T T
:> th(xt)_z fe(Xt,i) Z V fi(x¢), X¢e—X4,iv) Z Vfi(xe), % — X454)7 < O(1)
t=1 t=1 t=1
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Approach

* Regret decomposition: how to control meta-regret in two layers

T T T
REGr = | fo(xe) = D folxeae) | + | D felxeiv) mmet }
t=1 t=1 t=1

meta regret base regret

* Key idea: exploiting the second-order regret bound on the meta level

A : I -
|:> Ui = (V [i(x4),%4,1) Z<Vft(Xt)7Xt — Xt ix) S \l Z Vfi(Xe), Xe — Xy 3% )?
t—1 t=1

Tt = <pt,€t> - ft,q;

e.g., strongly convex

T T T
:> th(Xt) — th(xtz Z Vft Xt y Xt — th
t=1 t=1

I|M*ﬂ

\Xt—th I <o)
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Approach

* Regret decomposition: how to control meta-regret in two layers

T T T
REGr = | fo(xe) = D folxeae) | + | D felxeiv) mmet }
t=1 t=1 t=1

meta regret base regret

* Key idea: exploiting the second-order regret bound on the meta level

A . T g
|:> Ui = (V fi(x¢),%4,1) Z<Vft(Xt)7Xt — Xt ix) S \l Z Vfi(Xe), Xe — Xy 3% )?
t—1 t=1

Tt = <pt,€t> - Et,i

e.g., convex

T
:> ;ft Xt

Peng Zhao (Nanjing University) 62
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Achieving Two-Level Adaptivity

* Multi-layer Online Ensemble

Top L
A P HAYEr > Top layer & Middle layer:
a two-layer meta learner

Middle Layer
/% / \ / \ > Bottom layer:
Ao

O Q Q O Q Bottom Layer basic online ensemble idea

Why three layers? (mostly due to the technical reasons)

Technically, this is due to the simultaneous requirements of second-order bound (for universality)
and negative terms (for gradient variation). So we have to use a two-layer online algorithm
(MsMwC over MsMWwC) [Chen-weiLuo, coLT21] @S the meta-learner.
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Key Ingredients
* Ingredient I: novel optimism to reuse historical gradients universally

To obtain gradient-variation bounds, we need to reuse historical data,
i.e., optimistic online learning.

Recall meta regret: Zle fe(x¢) — Zle fr(xei+)

we optimize the linearized regret: Zle Py e = Zle (Vfi(xe),xe — Xg5%)

Mﬂ

T
Optimistic-Adapt-ML-Prod: Z reic < O (7 ix — 1104 i

[Wei et al., NIPS'16] t=1 \ t=1 opt/m/sm
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Key Ingredients

* Ingredient I: novel optimism to reuse historical gradients universally

Goal: to ensure an O(1) meta regret for exp-concave/strongly convex func-
tions, and O(+/V7) meta regret for convex functions.

Challenge: can only use separate parameters to act as the optimism

my; = (Vfio1(Xe—1), Xt — X¢.4)
oxp different parameters
My ; — O - . .
tyi for dlfferen‘t functions
(not universal)
my.; =0 strongly
convex
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Key Ingredients

* Ingredient I: novel optimism to reuse historical gradients universally

Our solution:
universal parameter

My =1ri—1 = (Vfio1(Xe—1),Xe—1 — Xt—1,4)

- exp-
concave
strongly
convex

(T
Z (Vfe(xt),x¢ — X4+ >2, (exp-concave & strongly convex)
t—1

one parameter for different functions (universal)

T
E th* mtz* S <

=1
' Vr + Z lIx; — %1 ||%. (convex)

\

algorithm stability
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Key Ingredients

* Ingredient II: collaboration in multiple layers to handle the stability

Goal: to ensure the stability 3, ||x; — x,_1 |3 can be handled by the negative
regret within the dynamics of online ensemble.

Two layers: il
. 2 S | Z ;
[Zhao et al, 2021] H t ¢ 1”2 ~ Hpt pt—1H1 + pt,’b” t, t—1,1
1=1
meta stability weighted combination of base stability

- meta stability: handled by negative terms in meta regret

- weighted stability: collaboration among layers, penalizing unstable|base learners
T

T
Z<£t+btapt_ei*> <X |:>Z<£t,pt ) <X — Zzptzbtz+zbtz*

t=1 t=1 t=1 1=1
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Key Ingredients

* Ingredient II: collaboration in multiple layers to handle the stability

Goal: to ensure the stability ZtTZQ |x¢ — X1 Hg can be handled by the negative
regret within the dynamics of online ensemb]e.

Positive Term: ||x; — x;_1]|?
Three layers: e =%l
K ; ;
K g, — a, 1|7 > aklxen — X1 kll? FA Xk — Xem 1]
X, = Z X ~—————— 1 Top Layer
t k=1 qt’k tvk canceled by MSMwC-Top N ~ v
canceled by—fo:1 qt,kbe

N
Xtk — Zizl Pt ki Xt ki

N
1P = Peorgelf D PeeilXers i = Xema kel
~ - =1

~ _ Middle Layer
canceled by MSMwC-MID N ~~ 4
canceled by—S"N | p; px ibs x4
2
+)‘2||Xt,k*,i* — Xt—1,k*,i* | Bottom Layer

A principled way to control algorithmic stability in multi-layer structures.

Peng Zhao (Nanjing University)
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Algorithm

Algorithm 1 Universal OCO with Gradient-variation Guarantees

Input: Curvature coefficient pool H, MSMWC-MID number K, base learner number N

1: Initialize: Top layer: AP — MSMWC-ToP with , = (C - 2¥)~ and Gy 1, = 2/ S ry 172
Middle layer: { A"} ;cix) — MSMWC-MID with step size 21, and py , ; = 1/N
Bottom layer: { By ; } c|k],ic|n] — base learners as specified in Section 2

2: fort =1to1 do
3:  Receive x; 1 ; from By, ;, obtain x; i, = ) . Pt k.iX¢ k., and submit x; = ), G pX¢ &
4:  Suffer f;(x;) and observe the gradient information V f(-)
5. Construct (£, m;) (3.3) for AP and (£; j, m; ) (3.4) for AN
6: AP updates to q;. 1 and A?Qid updates to pPiy1 k
7.  Multi-Gradient Feedback Model:
8: Send gradient V f;(-) to By ; for update > O(log® T') gradient queries
9:  One-Gradient Feedback Model:
10: Construct surrogates 23 (-), by} (+), h§ ;(x) using only V f; (x)
11: Send the surrogate functions to By, ; for update > Only one gradient query
12: end for
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Main Result

* The first universal algorithm with near-optimal gradient-variation regret.

Theorem 1 (Yan-Z-Zhou; NeurIPS 2023). Under standard assumptions, our algorithm ensures that
e it achieves O(log Vi) regret for strongly convex functions;

e it achieves O(dlog V) regret for exp-concave functions;

o it achieves O(+/Vr) regret for convex functions.

Here, Vip = ZtTIQ SUpy ey |V fi(x) = V fi—1(x)||? is gradient variation and O(-) omits log Vi factors.

Immediate implications to game theory and SEA model.
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Result for SEA

* Stochastically Extended Adversarial (SEA) isachsetal, Newps22)

Interpolation between stochastic and adversarial online convex optimization

Two crucial complexity measures:

T T
ot = Z{(ﬂea%Ewat[||Vft(X)—VFt(X)HQ], Sir £ E ;igg IVFi(x) — VFt1(X)2]

stochastic change adversarial change

Theorem 2. Under standard assumptions, our algorithm obtains O((o2 . +32 .. ) log(o%.+
>4.7)) regret for strongly convex functions, O(dlog(o%.+33%.7.)) regret for exp-concave

functions and O(+/ (02 + $2...)) regret for convex functions.
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Result for Games

* Min-Max Optimization

min max f(x,y)

Consider two aspects:

(i) curvatures: f is bilinear/strongly convex-concave

(ii) honest: all players run the same algo; dishonest: otherwise (some may disobey)

Theorem 3. Under standard assumptions, for bilinear and strongly convex-concave games,

our algorithm enjoys O(1) regret summation in the honest case, (5(\/7) and O(logT)
bounds respectively in the dishonest case.
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Conclusion

* Online Ensemble: an effective theoretical framework (base learners;
meta learners; schedule) to handle uncertainty in online environments
* Non-stationary online learning: online ensemble for dynamic regret

* bandit convex optimization: surrogate loss is essential to exploit limited feedback

* problem-dependent guarantee: incorporating hint prediction, enable collaboration
between meta and base layers (via negative terms and corrections)

* Universal online learning: online ensemble adaptive to curvatures
* gradient-variation universal regret: multi-layer corrections, unifying optimism

* applications to SEA model, games, etc.

* Many todo: efficiency/real-time response? non-convexity? continual learning? ...

Thanks!
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