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* Extension to Composite Optimization
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Part 1. GD for Smooth Optimization

* Smooth and Convex
* Smooth and Strongly Convex

* Extension to Constrained Case
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Overview

Table 1: A summary of convergence rates of GD for different function families,
where we use k £ L /o to denote the condition number.

Function Family Step Size Output Sequence  Convergence Rate
D > 1 T
convex = — = =D . O(1/VT
G-Lipschitz ! G\f o ;Zt_zl Tt (/VT) last lecture
o-strongly convex n: = 5y X7 =D X O(1/T)
1 —
convex n=+ X7 = X O(1/T)
L-smooth s B . this lecture
o-strongly convex 1= —— X7 = X7 O (exp (—21))

For simplicity, we mostly focus on unconstrained domain, i.e., X = R<,
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Convex and Smooth

Theorem 1. Suppose the function f : R* — R is convex and differentiable, and also
L-smooth. GD updates by x;11 = x¢ — 'V f(x¢) with step size n, = %, and then GD
enjoys the following convergence guarantee:

Floer) — o) < 22 =X (1)

T —1

Note: we are working on unconstrained setting and using a fixed step size tuning.
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The First Gradient Descent Lemma

Lemma 1. Suppose that f is proper, closed and convex; the feasible domain X is
nonempty, closed and convex. Let {x;}]_, be the sequence generated by the gradi-
ent descent method, X* be the optimal set of the optimization problem and f* be the
optimal value. Then for any x* € X* andt > 0,

i1 — X% < e — x*[° = 2 (f(xe) — %) + 0 IV F (x0) |1

Proof: |[xi11 — X*HQ = [Ty [xt — eV f(x¢)] — X*HQ

x: — eV f(xe) — x|

xp — |7 = 2 (VF(xe), %0 —X%) + 07 [V F(x0)|7
o — x| 7 = 20 (f(xe) = f*) + 07 |V £ (xe)||°

I

N

[]
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Refined Result for Smooth Optimization

Proof: |xi11 — X*HQ = [T [xs — mV f(xt)] — X*HQ
x¢ — 0V f (%) — x*|°

Xt — X*HQ —2n(V f(xt), %t — X7) : (Xt)H2
x| = 2m0(f () = ) 0 [V F ()

VAN

VAN

Lemma 2 (co-coercivity). Let f be convex and L-smooth over RY. Then for all
x,y € RY, one has

(VI(x) = Vi) x—y) > TIVFx) - V)P
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Co-coercive Operator

Lemma 2 (co-coercivity). Let f be convex and L-smooth over RY. Then for all
x,y € RY, one has

(VI(x) = Vi) x—y) > TIVFx) - V)P

Definition 1 (co-coercive operator). An operator C is called [$-co-coercive (or
B-inverse-strongly monotone, for 5 > 0, if for any z,y € H,

(Cz — Cy,z —y) > B||Cz — Cy|*.

The co-coercive condition is relatively standard in operator splitting literature and variational inequalities.
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Smooth and Convex

Proof: |xi11 — X*H2 = [ [xs — mV f(xt)] — X*HQ
< % — eV f(x) — x*||?
= ||x; — x* - 277t<vf(Xt) Xt — X*> T 77t2 va(xt)”2
2
< eI+ (o - 2 o el

exploiting coercivity of smoothness and unconstrained first-order optimality

%112 2 t
= [ — x| < = x4+ (= ) IV F ()|
2
<P —x*|" = = IV (x|

< ||x: — X*H2 < lx1 — X*H2 which already implies the convergence
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Smooth and Convex

Proof: Now, we consider the function-value level,

f(xiw1) — f(x7) = f(xeq1) = fxe) + f(x0) — f(x7)

f(xe41) — f(xy)
= f(x¢ =V f(xy)) — f(x¢)

< (V) V1) + 5 V()]

L
= (-4 52 VTGP

1
= — o= IVFG)I

= S(xi) — [x) £ =5 ISP+ fx0) — 1)

one-step
improvement

Advanced Optimization (Fall 2023)
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Smooth and Convex

Proof: |
= Oxenn) = J) S —5E IVAEIIP + S (xe) = S ()

Next step: relating ||V f(x;)|| to function-value gap to form a telescoping structure.

)~ F0) < (V7Gx %) < IV FGellbee — ) = 9SG > =L

% — x|

:> f(Xt—|—1) o f(X*) < - (f(Xt) - f(X*)2)2

+ f(x¢) — f(xX7)

< — (f(Xt) o f(X*)2)2 + f(Xt) o f(X*)
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Smooth and Convex

Proof: f(x.1)— f(x") < —QLHxll_ U = ) + o) = F )

Define §, £ f(x;) — f(x*) and § £ 1

2L ||x1 —x*||?"

— Opr1 < 0p — 55752

= <P 1y
515 5t+1 5t+1 5t+1
T—1
= B<— - <—
or 01 O
t=1
1 2L ||x; — x*||°
o = — f(x*) < = .
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Key Lemma for Smooth GD

* During the proof, we have obtained an important lemma for smooth
optimization, that is, one-step improvement

o) = ) < (—m+ 5 ) IVSGOP =5 flxe) -~ 1x) <0 (7).

last-iterated convergence

« Compare a similar result that holds for convex and Lipschitz functions.

Lemma 2. Under the same assumptions as Theorem 1. Let {x;}!_, be the sequence
generated by GD. Then we have

Zm —HX1 — x|+ 5 Zn IV f (o).

This lemma usually implies convergence like f(X7) — f* < ... withxp 2 33/, % (or other average).

average-iterated convergence

Advanced Optimization (Fall 2023) Lecture 4. Gradient Descent Method 11 13



Key Lemma for Smooth GD

* One-step improvement for smooth GD under unconstrained setting.

Lemma 3 (one-step improvement). Suppose the function f : RY — R is convex
and differentiable, and also L-smooth. Consider the following unconstrained GD up-
date: x' = x — nV f(x). Then,

Fx) - fx) < ( n+Ln)HVf< 2.

In particular, when choosing n = +, we have

F(x= 7 9160) = 160 < 5 197G
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Smooth and Strongly Convex

* Recall the definition of strongly convex functions ( first-order version).

Definition 5 (Strong Convexity). A function f is o-strongly convex if, for any
x € dom(df),y € dom(f) and g € 9f(x),

F(y) = f(x) + (g.y —x) + = |y — xII”
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Smooth and Strongly Convex

f is o-strongly convex f is L-smooth

F)+ (V) y %)+ 2l —yl3% f(3) < T+ (V.5 —x)+ 5 x5

f(x) +(Vf(x),y —x)+ 5llx—¥|3

fy)
f(x)+(Vf(x),y —x)+ Zllx - yl3

<
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Smooth and Strongly Convex

Theorem 2. Suppose the function f : R? — R is a—strongly—convex and differen-
tiable, and also L-smooth; and the feasible domain X C RYis compact and convex

with a diameter D > 0. Then, setting n, = + ——, GD satisfies
L A(T — 1) Lo T
_ < = _ _ — _
foxr) = 1) < F oo (~ 2= o - = 0 (o0 (1))

where k = L /o denotes the condition number of f.

Note: we are working on unconstrained setting and using a fixed step size tuning.
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Smooth and Strongly Convex

Proof: X441 — X*H2

VAN

sy —x*|| " — 2

e[ — 7eV f ()] — x*|°
% — eV f(xe) = x|

(Vf(x4), x4 — x5)

+ 02 V(x|

ol
o+ L

(Vix) -Vf(y)x—y) >

Lemma 4 (co-coercivity of smooth and strongly convex function). Let f be L-
smooth and o-strongly convex on R%. Then for all x,y € R?, one has

1
Ix — ylI* + o A NGO VIiy)I®
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Coercivity of Smooth and Strongly Convex Function

Lemma 4 (co-coercivity of smooth and strongly convex function). Let f be L-
smooth and o-strongly convex on Re. Then for all x,y € R?, one has

oL 1

(VI() = VL) x=y) = =22 x =y |2+ = [V(x) = V()2

Proof: Define h(x) = f(x) — Z||x/|*. Then, h enjoys the following properties:
- his convex: by o-strong convexity (see previous lecture).

- his (L — o)-smooth. V*h(x) = V?f(x) — ol < (L —o0)I.

1 by co-coercivi
:> <Vh(X) - Vh( ) y> _ (X) B Vh(Y) ||2 ngZtChOZnCd cgv(\j]eixfunctions
Then, rearranging the terms finishes the proof. []
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Smooth and Strongly Convex

Proof |xii1 — x|

VAN

xp —x*||* — 2

2 L 2
= Ixien = x*° < (1= 22 ) b — x|+ (nf -

T [xs — 7V f(x2)] = %7
% = 7V f(xe) = x|

(Vf(x¢), x4 — xF)

210 L 5 5
1 — — x* -~

+ 02 V(x|

21y 2
20 ) 195 )

2 ) |V ()]

serving as the “one-step improvement” in the analysis
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Smooth and Strongly Convex

Proof: | 7 < (1 — %) I — x4 " + (77? — 5—10) V£l

The step size configuration:

2?7750'[/

(i) first, we need 1 — -

< 1 to ensure the contraction property;

(ii) second, we hope (17 — f—fa) < 0, or it becomes 0 is enough.
2

L+o

—> a feasible (and simple) setting: 17 =7 =

2 5 L \2 ,
= s = < (1= i) I == (52) = =

k+1

k—1

k+1

1 — x> < exp (L5 ) 3y — x|

2
) I — x|
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Smooth and Strongly Convex

2(T—1) _
Proof:  |x, —x*|* < (2—1}) %, — x*||” < exp (—4(5—“1)) I — x*|”

Next step: relating ||xr — x*||” to f(x7) — f(x*).

L L
Fxe) < F(x7) + (VAT xe = x7) + S flxe — x| = f(x) + 5 llxe — x|

= flxr) - f(x) < 2 exp (—‘“T - ”) xi = x*[? = O (exp (—3)).
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Constrained Optimization

* A generalized one-step improvement lemma for smooth optimization.

Lemma 5. Suppose f is L-smooth. Let x,u € X, x;41 = v |x; — %Vf(xt)], and
g(x) = L(x — x441). Then the following holds true:

Floxin) — F(w) < (gxe), % —w) — o lg(x0)]1>

comparator u is introduced because now GD is not necessary “descent” due to the projection
- In unconstrained case, g(x;) = V f(x;).

- In unconstrained case, setting u = x; recovers the one-step improvement:
f(xe1) = f(xe) < —gp IV f ()2

Advanced Optimization (Fall 2023) Lecture 4. Gradient Descent Method 11 23



Constrained Optimization

Same convergence rates as unconstrained case can be obtained in
the constrained setting for smooth convex optimization.

Detailed proofs for the constrained optimization will
not be presented. The proof follows the same vein

yet requires some additional twists, we refer anyone
interested to the following parts in Bubeck’s book:

now

R ———_wee o weeage

* Constrained + smooth + convex: Section 3.2 o
Convex Optimization:

* Constrained + smooth + strongly convex: Section 3.4.2 Algorithms and Complexity
Sebastien Bubeck
Foundations and Trends in ML, 2015
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Lower Bound

Lower bounds reflect the difficulty of the problem, regardless of algorithms.

notice: this lower bound only holds for first-order methods

Table 1: A summary of convergence rates of GD for different function families.
I

Function Family Convergence Rate | Lower Bound | Optimal?
O /vT Q1 /T
G-Lipschitz COnYEX (1/VT) (1/VT)
o-strongly convex O/T) Q(1/T)
convex O(1/T) Q(1/T?)

X
L-smooth
o-strongly convex O (exp (—1)) Q (eXp (— %) ) X

—> GD is suboptimal in smooth convex optimization!
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Part 2. Nesterov’s Accelerated GD
* AGD Algorithm

* Smooth and Convex

* Smooth and Strongly Convex
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Nesterov’s Accelerated GD

1
Vit1 = X; — va(xt)

Xi41 = (1 — o) yi41 + ouyy

- Define X1 =Y.
- oy < 01is a time-varying mixing rate of y; and y;4 .

- X1 = Yir1+ o (Ye—Ye+1) is an extrapolated point, i.e., with momentum.
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Nesterov’s Accelerated GD

* a momentum term is added to
boost the convergence

Example

minimize log Z exp(a x+bj)
i=1

° the descent property iS relaxed e two randomly generated problems with p = 2000, n = 1000
and nOt ensured now e same fixed step size used for gradient method and FISTA

e figures show (f(x(K)) — f*)/f*

100 — ey 10° - \ =

— GD — GD
10! — AGD 10-! — AGD

1072 ]0—2
10_3 10—3
10~ 1074
1073 |
1076+ > : ‘ —— 1076 - et i
0 50 100 150 200 0 50 100 150 200
k k

Accelarated GD Accelerated proximal gradient methods 7.9

https://www.seas.ucla.edu/~vandenbe/236C/lectures/fgrad.pdf
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Convergence of Nesterov’s Accelerated GD

Theorem 3. Let f be convex and L-smooth. Nesterov’s accelerated GD is configured
as

1
Yti+1 — Xt — va(xt)v Xt+1 = (1 — Oét)}"t+1 + oy,

where A\g = 0, \; = H\/l_;l/\t‘l, and oy = &;’\f Then, we have
o 2L)x — x| 1
flyr) — f(x") < = =0(—= ).
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Proot of AGD Convergence

Proof: First, we prove the following generalized one-step improvement lemma.

Lemma 6. Foranyu € X, if x;41 = x¢ — 1V f(xy), then the following holds true:

Floxen) = Flu) < (V5 (xe), %0 — ) — o [V ()|

a comparator variable u is introduced here,

because now AGD is not necessary “descent” due to the momentum

Setting u = x; recovers the one-step improvement used in earlier analysis.

1
f(xer1) — f(xp) < — Y7 |V f(x2) H2 GD for smooth and convex functions
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Generalized One-Step Improvement

Lemma 6. Foranyu € X, if x41 = x4 — 1V f(xy), then the following holds true:

Floxen) = Flu) < (V5 (xe), %0 — ) — o [V ()|

Setting u = x; recovers the one-step improvement used in earlier analysis.
Proof:
f(xep1) = f(w) = f(xep1) = f(xe) + f(x0) = f(u)
L
< (Vf(xe), X1 = o) + S [Xep1 — xi||* +(V (%), % — )

1

= (Vf(x¢),X¢11 — ) + 5T IV f(xe)|)?

= (Vf(x).x ) = o [ V£
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Proof of AGD Convergence | vii=x-7v/tx)

Xer1 = (1 — ) ye41 + ey

Proof: (continued proving Theorem 3)

Lemma 6. Foranyu € X, if x' = x — £V f(x), then the following holds true:

F) — f(w) < (VFG).x ) — o [ V5

(i) Plugging in u = yy: f(yir1) = f(ye) <A(Vf(xe), % —ye) — % \Vf(xt)HQ.
(Vf(xe),xe —x*) — 52 [V f(x0) .

VAN

(i) Plugging inu = x*: f(y.+1) — f(x*)
LHS of (A — 1)(i) + (ii) equals:

(Ae = D)(f(yer1) = F(ye) + F(yer1) = F(X) = Me(f(yerr) = F(xF)) = (A = D)(f(ye) — f(x7))
Define 6; = f(y:) — f(x*), LHS = \y6s1 — (M — 1)6; Goal: design a telescoping series
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Proot of AGD Convergence

Proof: (continued proving Theorem 3)

(i) Plugginginu =y:: f(yir1) — f(ye) < (Vf(xe), %
(ii) Plugging in u = x*: f(yir1) — f(x*) <V f(xe),x:

RHS of (A — 1)(i) + (ii) equals:

1
Vitl = X¢ — va(xt)

Xer1 = (1 — ) ye41 + ey

i) = VAo
—x*) = V)1

= 1) (91603 = 9) = S IVFGR)IP ) + (V7Gx = x°) = 52197

At
= (Vf(x¢), Adexg — (A — Dy — x7) — iHVf(Xt)HQ
That is

At
Mdir1 — (A — 1)0 <AV f(xe), Mxy — (M — Dy — x7) — EHVJC(Xt)H2
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Proof of AGD Convergence | vii=x-7v/tx)

Xer1 = (1 — ) ye41 + ey

Proof: (continued proving Theorem 3)

At
MO — (A — 1)0y <AV (%), Mxe — (A — Dy — x7) — ﬁHVf(XtW

= Af0ip1— (A — 1)6; < 21L 2V F(xe), LAxe — (A — Dy — x7)) — MV (x0) )
Requirement (1): At(At 1) =
= A=A 6 < ( (A Vf(Xt) L(Ax; — (A — 1)y — x)) = AV f(x0)[|?)

Denote by a = )\tVf(Xt), b =S L()\txt — ()\t — 1)yt — X*).

1 1
= NSt = A0 < o= (2(a,b) — [la]) < o= (1B — [ — al®)
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Proof of AGD Convergence | vii=x-7v/tx)

Xer1 = (1 — ) ye41 + ey

Proof: (continued proving Theorem 3)
Denote by a = )\tVf(Xt), b =S L()\tXt — ()\t — 1)yt — X*).

A26ii1 — AP 6

1
< E(LQH)‘txt — (A = Dy = x> = [[L(Axy — (A = D)y —x*) = AV f(x¢) %)
L Vf(Xt)

)\txt — (>\t — 1)yt — X* — )\t 7

)

=3 <H>\tXt — (M= Dy —x*I* - ‘

L
2

(Nexe — (e = Dy — x*)° = Ay — (e — Dy — x*7)

Goal: design a telescoping series
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Proof of AGD Convergence | vii=x-7v/tx)

Xer1 = (1 — ) ye41 + ey

Proof: (continued proving Theorem 3)

L
AfOip1 — Af_10; < g(H)\tXt — (M — Dy —x*)° = Aeyeer — (v — Dy — x*[]%)

Requirement (2): \yyiy1 — (A — 1)y = Mr1Xer1 — (Aeg1 — 1) yera

L * *
Afdi41=A7_10; < 5 ([Aexe=(Ae—1)y:—x =A% — A — Dy —x1?)
telescope
Define Zy = )\tXt — ()\t — 1)Yt — X
NGii1 = N6, < Z(lz)” — %) S A2 6 — A26, = = ? ’
2001 = NP 100 < S (2l = ll2esa|2) = N30 — Aoy = < (12 — [z
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Proof of AGD Convergence | vii=x-7v/tx)

Xer1 = (1 — ) ye41 + ey

Proof: (continued proving Theorem 3)

L
A 107 — \jo1 = 5(\\21“2 — ||z |]?)

Requirement (3): \o = 0

L L|z1]|* Li|Aixi — (A — 1Dy —x*|?
Ap_107 < Zza])? = or < =
Requirement (4): x; =y

L Llz.]]?  L|x; —x*|?
Ap_107 < Z|za])? = or < =
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Theorem 3. Let f be convex and L-smooth. Nesterov's accelerated GD is configured
as

PrOOf Yi+1 = Xt — %Vf(xt), Xi+1 = (1 — o) yes1 + ouye,

14+4/144X2

where A\g = 0, \; = > ,and oy = f\:—;\f Then, we have
Proof: (continued proving Theorem 3 o 2L — x| 1
f: ( p & ) o) - ey < 2L o (1),
Requirement (1): \j(N\; — 1) = A2
A\ 14+4/14+402_
t — 2
Requirement (2): \yyiy1 — (At — 1)y = Mp1Xer1 — (M1 — 1)yet1
Xt+1 = Yt+1 — &:f (Yt = Yi+1) = ar = lgrf
Requirement (3): \og = 0
Requirement (4): x; = y1
2 * |12
14/TH4AZ_, t+1 Li|x; —x*| 2L||x1 — x*|| 1
— =N > — =07 < < — O — []
At 2 =9 = a2 o T2 T2
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Smooth and Strongly Convex

Theorem 4. Let f be o-strongly convex and L-smooth, then Nesterov’s accelerated
gradient descent:

V7 -1

Naha

1
Yti+1 — Xt — va(xt)v Xi4+1 = Yi+1 T (Yt+1 — Yt)

satisfies

N o+ L 5 T
Flyr) = ) < T2 e =P esp (2 ).

where v = L /o denotes the condition number.

core technique: estimate sequence
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Smooth and Strongly Convex

e Proof sketch

Core technique: construct an estimate sequence
o

Dy (x) = f(x1) + ;

Pri1 () £ (1= 0)2(x) + 0 (Fx0) + (VI (3x0),x = x0) + 5 [x = %]

Ix = x1|°

The estimate sequence {®;}/_; is required to satisify some nice properties:
(i) Dpq(x)— f(x) < (1—=0)"(P(x)— f(x)) = approximate f well.
(ii) f(y:) < min,cpa P;(x) = useful when giving the convergence rate.

It can be proved that the above construction satisfies the two properties.
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Smooth and Strongly Convex

* Proof sketch

Core technique: construct an estimate sequence

D1(x) £ f(x1) + 3 x =

Bri () 2 (1= 0),(6) +0 () + (VS (x0)x = 3 + 5 = x|

)

2
Fye) = 1) S min () — J(x°) < Bu(x) — F(x)
21— 0) @y (x") - F(x)

(1=0) (fGx) + 5 " = xall® = F(x"))
S (0 + 1) |x" = x1|* exp(~0t)
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Estimate Sequence

* Admittedly, how to construct estimate sequence is highly tricky

Foundations and Trends® in

Machine Learning
8:3-4 ZhUUChen Lln Estimate sequence methods:

. extensions and approximations
Huan Li

Cong Fang

Accelerated

Optimization
for Machine
Learning

First-Order Algorithms

Michel Baes®

August 11, 2009

Abstrac

References:

@ Springer

new
I ———Eree e o eage

Chapter 3.7 Chapter 2.1 M. Baes, Estimate sequence methods:
extensions and approximations.
Technical report, ETH, Ziirich (2009)
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References for Nesterov’s Accelerated GD

Nesterov’s four ideas (three acceleration methods):

* Y. Nesterov (1983), A method for solving a convex
programming problem with convergence rate O(1/k?)

* Y. Nesterov (1988), On an approach to the construction
of optimal methods of minimization of smooth convex
functions

* Y. Nesterov (2005), Smooth minimization of non-smooth

functions Yurii Nesterov
1956 —
* Y. Nesterov (2007), Gradient methods for minimizing UCLouvain, Belgium

composite objective function
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Nesterov, Y. (1983), A method of solving a convex programming problem with
convergence rate O(1/k?), Soviet Mathematics Doklady 27(2), 372-376.

S

Hoxa. Axan, Hayx CCCP
Tom 269 (1983), N* 3

A METHOD OF SOLVIN
A CONVEX PROGRAMMING P

WITH CONVERGENCE RATE @
unc 51

YU. E. NESTEROV

L. In this note we propose a method of solving a conve
Hilbert space E. Unlike the majority of convex programmi
this method constructs a minimizing sequence of points (;
This property allows us to reduce the amount of computatig
Al the same time, it is possible to obtain an estimate of col
improved for the class of problems under consideration (seé

2. Consider first the problem of unconstrained minimizati
We will assume that f(x) belongs to the class C"'(E), i@
L >0suchthatforallx, y E E

(1) Lf(x) = ()= Lix =yl
From (1) it follows that forall x, y € E
(2) fy)<sf(x)+ (f(x), y—x)+ 050

To solve the problem min( f(x)|x € E} with a nonempty
the following method.

0) Select a point y, € E. Put
(3) k=0,
wherk z is an arbitrary point in E, z = y, and f'(z) # ["(,)e

1) kth iteration. a) Calculate the smallest index / = 0 for

a=1, xy3=x, a,=ls—zA

(4) Fr) = Ay = 2% () 2 27 ey
b) Put
o =2"%_i» =n—-aflnl
(s) G = (14 f4ai +1) 12,

Yiwr = X+ (a = D(x, — x, )4

The way in which the one-dimensional search (4) is halted
[2). The difference is only that in (4) the subdivision in the:
with a, _, (and not with 1 as in [2]). In view of this (see the p
sequence {x, )7 is constructed by method (3)-(5), no more
sions will be made. The recalculation of the points y; in (5)

1980 Mathemarics Subpect Classification. Primary 90C25.

Let us also remark that method (3)-(5) does not guar
the sequences {x, ) and (v, ).

THEOREM 1. Let f(x) be a convex function in C
sequence {x, |7 is constructed by method (3)—(5), ther
1) Forany k = 0;

(6) Mx,) —f<sC/(k
where C = 4L||y, — x*|* and f* = f(x*). x* € X*.
2) In order to achieve accuracy € with respect to the |
a) to compute the gradiemt of the objective function n
b) to evaluate the objective function no more than N
Here and in what follows, |(-)[ is the integer part of
Proor. Let y,(a) = y, — af'( y,). From (2) we obtdl
f(») = f(y(a)) = 0.5q(2
2

Consequently, as soon as 2 'a, , becomes less than
and a, will not be further decreased. Thus a, = 0.5L

,L:I Py =(ay — I{x,_; —x;,). Then p;;y — 2
Consequently,
2 3
lewsi = ®isr + x*1" =llps — x + x*I” + 2(a, §

t2ap 00, (S (D50 0) 3

Using inequality (4) and the convexity of f(x), we g
(IO )s Pusr = =) fx,44) — 1Y

05a, [ Cra ) < S(pear) — ]
ail\ ( 1(rid

We substitute these two inequalities into the precedin|

Bpaer = 5o+ x*17 =l — 2, + 31" < 24
2ay oy ((S(xpey = %) + (aisy a3
< 2ay 04 (f(x420) ’f')*z[“i"n 1
=2ay . dx( (%) = 1*} — 2, 4af . (
sz“A“f[f“'A”f'} 2a; a5 flx,

Thus

20344884, (f(x40)) — f*) < 2oy, \"iq“’(-‘Aq

2

<2aa,( flxy) = 1) +lp — x + x4
< 2apad(f(xo) = 1*) +llpo = %o
It remains to observe thata, , | > a, + 0.5 > 1 + 0.5¢
It follows from the estimate of the convergence ral
method (3)-(5) needs to achieve accuracy & will be 1
each iteration, one gradient and at least two values of

+x*" <[y 9
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be calculated. Let us remark, however. that to each addil
function corresponds a halving of a,. Therefore the total
not exceed Jlog,(2La_,)[ + 1. This completes the proof of

If the Lipschitz constant L is known for the gradient ol
can take a; = L™ in the method (3)-(5) for any k = 0. 1d
to hold. and therefore Theorem 1 remains valid
Wye — x*IlyZL/e[ —1 and NF = 0.

To conclude this section we will show how one may m
the problem of minimizing a strictly convex function.

Assume that f(x) — f* = 0.5m||x — x*|* for all x €
constant m is known,

We introduce the following halting rule in the method

¢) We stop when

(7 k>2/2/ (ma,) — 2.

Suppose that the halting has occurred in the Nth step
(3)-(5), one has N < 4/L/m| — L. At the same time,
2y -2
Ak FA ”~ < 0.25mlly, — x*

flxy)=ro<
ay(N +2)

After the point x has been obtained, 1t is necessary:
begin calculating, by the method (3)-(5), (7). from the pol
As a result we obtain that after each J4/L/m|[ — 1 it
to the function decreases by a factor of 2. Thus the
cannot be improved (up to a dimensionless constant) amg
class of strictly convex functions in C*'( E) (see [1]).

3. Consider the following extremal problem:

(8) min{ F(/(x)) | x € off

where Q is a convex closed set in E, F(u), with w € R"”,
positive homogeneous of degree one, and f(x) = (fi(x
continuously differentiable functions on E. The set X
assumed to be nonempty. In addition to this, we will 4
functions { F(+), f( +)) has the following property:
(») If there exists a vector A € 3F(0) such that A*) < 0§
The notation 8F(0) means the subdifferential of the fd
As is well known, the identity F(u) = max{{X, u )|\
tions that are positive homogeneous of degree one. Thef
the convexity of the function £( f(x)) on all of £.
Problem (8) can be written in minimax form:

9) mln{mux[(l,fﬂ.\))!hE aF(0)]

One can show that the fact that the set X* is nonemf
the existence of a saddle point (A*, x*) for problem (9).
of problem (9) can be written as @* = A* X X*, where

A* = Argmax{¥(A)| A € 3F(0)), ¥(A)=
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The problem
max{¥(A)| A € 3K(0) N domW¥
will be called the problem dual to (8).
Suppose the functions fi(x), k = 1
with constants L% 2 0, Let L = (L™,
Consider the function

.vm, in problem (
L,

Dy, A, z) = F( f(y,2)) + 0.54]||8
where
Flre2) = (Y 2)een f ™y, x)),
oy ) =g+ (SO e -y R
and A is a positive constant. Let
*(y, A) = min[®(y, 4,2)|2 € Q),
Observe that the mapping v — 7(y, @) is a natural generali
“gradient” mapping introduced in [1] in connection with
minimizing functions of the form max, . < fi(x). For the
as for the “gradient™ mapping of [1]) we have

TNy, A) = al

(10) @*(y, A)+ A{y—T(y, 4), x —y)+ 054|y — 1
forallx € @,y € Eand A = 0,and if A = F(L), then
@*(y, A) = F(f(T(v, 4))).
To solve problem (8) we propose the following method.
0) Select a point y, € E. Put
(1) k=0, ap=1, x;=w. 4,
where Ly = (L. .L{™), L = 11 i) = KW/ 1%
inkE, z+# y,.
1) kth iteration. a) Calculate the smallest index 1 = 0 for
(12) O*( 3,24, ) = F{ (T 4. 24,4
b) Put A, = 24, _ . x; = T(y. A,) and
(13) u‘_‘¢(1+;4u‘:+l’/2,

Ny =+ (@ =12, =2 ),

It is not hard to see that the method (3)-(5) is simply
method (11)-(13) for the unconstrained minimization probles
and Q = E in (8)).

THEOREM 2. If the sequence (x| is constructed by methok
assertions are true:
1) Forany k = 0
F(j(x)) = F(f(x*) = C/ (k 4
where C, = 4F( Ly Py — |44 E X,

2) To obtain accuracy & with respect to the functional, one needs
a) to solve an auxiliary problem min{®( y,, A, x)|x € @) no more than

V€, /e [ + Imax{log,

fimes,
b) te evaluate the collection of gradients fi( y)
©) to evaluate the vector-valued function f( x)

(F(L)/A,),0)]

..... Lol ¥) na more than |, C, /¢ times, and
al most

2)C,zel + Imax{log,( F(L)/A_,).0}]

fimes.

Theorem 2 is provéd in essentially the same way as Theorem 1. It is only necessary to

use (10) instead of (2), while the analogue of a, f'( v, ) will be the vector ¥,

and the analogue of a, the values of A7'

Ty A

Just as in the method (3)-(5). in the method (11)-(13) one can take into account
information about the constant F( L) and the parameter of strict convexity of the function

Ff(x)
In conclusion let us mention two importan

m (for this, of course, we must have y, € Q).

t special cases of problem (8) in which the

auxiliary problem min(®( y,, 4, x)|x € @} turns out 1o be rather simple.
a) Minimization of a smooth function on a simple set. By a simple set we understand a set

for which the projection operator can be written in explicit form. In this case m

F(y) = y in problem (8). and
*(y, A)=f(y)
in the method (11)-(13), where
T{y. A) = argmin{ [y

b) Unconstrainted minimization (in problem (8), Q =

054 (I + 0547y, A)

1 and
v Al

A7'f(y) — 2

|2E€ _QJ' i

E). In this case the auxiliary

problem min{®( y. A, x)|x € E} is equivalent to the following dual problem:

m I.“
R RUARD]
&=

(14) mux-l 0.54 'i

P S
A
Here

Ty, A)y=y—A4"

Wl ) | (N0, 0., ™) e E‘F(U)‘

3 M) ().

where the M (y), k= 1,....m|}
remark that the set dF(0) is usu.
such cases problem (14) is the sta
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YIOK 51
10.E. HECTEPOB
METOJ PEWEHHA 3AIIAYH BHMYKJIOLO MPOI
CO CKOPOCTBHI CXOOHMOCTH O

(Mped 11B.

1. B cratse npeqjiaraeTcA MeTON PEICHMA 3aNadH
panHA B ruisbeproBom npocrpaicree E. B ornmuwe ot Gon
NOro MpOTPEMMHPOBAHHA, NPe/UIaraBIUKXCA paHee, ITOT Me
UIYH0 MOCTeNOBATENBHOCT: TOSEK |Xi} k=, KOTOpaA He ABM
0COGEHHOCT MO3BONIAET CBECTH K MHHHMYMY BBIVHCITHTEN
uware. B 1o e BpemA WA TaKOro MeTofa yAaeTcR mOMYd
mnpnneunu KJ1acoe 347124 OLEHKY CKOPOCTH CXOMHMOCTH (

3anavy
f(x). Mm Gynem npemlomrarb. qro dyHxumA f(x) npuHal
YTO CyuecTByer koHcradta L > 0, mix koropod npu BE
HEPABEHCTBO

(1) @ - (i< Lix -yl

M3 Hepapercrpa (1) cnemyer, 410 npH Beex X, y € E
@ NS IE)+HE), y -0+05L1y —xP.

Jna pemenua samaw min{f(x)| x € E| ¢ venmycrsnl

X" npepnaraerca crefylonmii MeTog,
0) BuiGupaem TouKy Yo € E. [lonaraem

(3 k=0, xa=yo, @=lye—zU/1f(o)
ae z — mobas Touka u3 E,z# o f'(z) # (o)
1) k-z Hrepauns.
) Burascnsiem HanmeHbLImH HOMep {2 0, st koToporg

a=1,

@ SR =fx =2y SN2 27 a1
S)Ilomnen
a=2" Clg 1 Xk =Pk — o ['( Vi),

(5) ks =(1+VAL T2,

Yier =X +(ag — 1) (ex — X1 ) fagsy.

Cnocof mpephiBAHHA ONHOMEPHOTO TOHCKa (4) a
xerHOMy B [2]. Pasmiua maurs 8 Tom, o B (4) npoGnerd
H3BOIMTCH, HAWHHAA C ax_, (a He ¢ ejpHHuM, Kak B [2])
TensCTBO Teopemst 1) mpu nocrpoerk meromom (3) —(5) 0
Gyner cnenako He Gonee O (log, L) Taxmx apoGnerni. [epecy
BIAETCA C MOMOLIBIO "nlpuﬂtoro mara. OTMeTHM TaKxe, 9

newBaeT y6i by f(x) wa nocy
17kl k=0

Teopema 1. flycrs suinykaan gynwuus f(x) &
noc Hoers [ Xl k=0 P 3)-(5),

1) 0as awbozo k = 0
6)  flo) "< Ok +2),
20e C=4Llyo—x"I?, f*=f(x*), x*€X";
2) 0a% OOCTUNEHUR TOUKOCTU € NO FYHKUYUOHAAY Hi
) 8bIMUCAUTS 2DAOUENT yeaeaoil dyHKyuu Ke Bonee N

6) eblvUCAUTD 3NaueHue yenesoll  PyMKuyuu He
+ 1loga(2Lay)[ +1 pas.

3pecs v panee | (-) [ — nenas wacrs wcna ().

Doka3atenscrso. Mycm yi(a) = vx — af (.
nomysaem f(vx) —f(yx (@) > 05a(2 —aL) If'(yi) I7.
270,y cramer memsie, uem L~!, nepanencrso (4) Bbino:
yMeHbLIaTeca He 6ynyT. Taxum obpasom, ay 2 0,5L-! mna s

OGosnamm p = (@ — 1) (X — xx). Torma
+ @gay@ker S (Vre1). Crenosatemsno, lpgy; — Xpip +
+ 2agsr = Dogar ' Vkar)s P + 28561041 (F' (Pra),
X Uf (rea)l?.

Mons3ysce HepapeHCTBOM (4) M BRITYKNOCTHI0 BYHK

' (Prer) Yesr = X722 flxgay) =1 +05ay, 1

0,505+ 1/ (¥4 1)1 € f(Piesr) = [(xa1) < f(xx) —

““;11 L (Y1), Pr)-

I ITH [IBa Hef Ba B 1Ip 1y pase!

Ipkey —Xpgsy +x° 12— Ipy —xp +x* 12 < 2(a44y —

~2a 1001 SEhar — 1)+ @y —axer)ah, 1S

< 2041 @iy (F(exar) =17 + 24y —Bxar)ags

= 2ﬂx+|ﬂi(f(xk) -f7) —2“tr|‘1+1(f(7‘h1) -fM

— 20541844, (Sxker) —f*).
Taxum oGpazom,

zakﬂa:q(f(lku) -MH< 2°‘u|ﬂ:+|(f(*t+1) =

FUpgay —xpey +x* 12 < 2040, (fxx) —£7) + U py
< 20003 (f(x0) = f*)+ Ipo—xo+x° 12 < Iyp—x*1

OcTanock 3aMeTHT, YTO @4y >ax +0,521+05(k+1).

H3 onenkH ckopocTH cxomumocTi (6) cnefyer, 4ro
Moe Metoly (3)—(5) miA DOCTHXeHHA TOMHOCTH €, He Gy/leT
Tpw 3TOM Ha KXMOH MTepamm GyneT BRIWICIATHCA OHH
mBa # dynxum. 3 410
BHIMHCIICHHIO 3HaYeHHA [eNeBOH (YHKIMH COOTBETCTBYeT
prsoe. Ilostomy ofimee WHCIO TaKHX BBIMMCIIEHHH HE TIpeB:

Teopema foka3aHa.

Ecnu ana rpagmeHTa nenepod GYHKUMH H3BECTHA K
merone (3)—(5) MoxHo monoxute ay = L~ npr moGom
BencrBo (4) Gyner 3aBefioMO BBIMOJHEHO ¥ TOITOMY YTB
HyTcs BepHbIMA IpH C=2L0yo — x* 1P NG =1y — x* Iy
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fx)—f*205mlx — x*I*,rne m >0, n mycTs KoHCTaHTa A

B 3aximiouenMe 3TOTO pa3ena NOKakeM, KAaK MOXI
(3)—(5) mas peleHHA 3a0a%H MHHHUMH3ALAH CHITBHO BBITYKI
Tlpennonoxum, yro Ana GyHkumr f(x) npu Beex x €

Beepem B Metoq (3) —(5) cneflyloiee MpaBHiIo Npepsl
B) OcTaHaBTHBaeMCHA, ECITH

M k= 2/2may) —
Iycrs mpepsibatne npouzowno Ha N-m ware. Tak K|
205L", 10 N< |4v/L/m[ —1. B 10 e Bpems
2l yo—x*12
xXy) 18—
few) =1 ay(N+2)
[locne TOro Kax MONYuYeHa TOWKA X, HEOBXOIHMO O
wath cyeT MeTonoM (3) —(5), (7) M3 TOUKH X, KAK W3 Haua/lbl
B peaynkrate monmyuaem, UTO 33 KaXple ]4\/L;m
yHxums yobisaer BaBoe. Takum oGpasom, meton (3)—(5
eTCA HeyydlaeMmbiM (C TOWHOCTBIO [0 Ge3paaMepHOH KOHC
BOTO MOPANKA Ha KITACCE CHITBHO BBIMYKNBIX dyHKimit u3 C'!

3. PaccMOTpHM crieflyioLyio IKCTPEeMATIbHYI0 3a1ay :

(®) minfF(f () x€Q1,

roe (0 — BuINyKnOe 3aMKHYTOe MHOXecTBO W3 E, F (u), u €
R™ nonoiuTeNnsHO-OMHOPOMHAA CTEMEHH efHHHIA byHKUHA
vy fm(x¥)) — BexTOp BRIMYKNBIX HenpepbiBko auddepet

< 025mly,-x"1? < 0,

Muoxecrso X pewenwit 3ajaw (8) Bcerna np 2e’
™Mbl Beerga Bylem mpednonarars, ¥To cucremMa (GyHkuHiA |
JIYIOUIHM CBORCTBOM :

(#) Ecnm cymectayer sextop A € 9F (0) Takoil, yr
HeiHan GYHKIHA.
Uepes 8F (0) B (*) oBosnaven cybmudpideperuman hyH
Kak M3BecTHO, IIA BBITYKIIBIX TOJOKHTETBHO-OMIH
yHkumi cnpaseBo Toxmectso F(4) = maxi(A, ull
NpeanonoxeHus (*) cneyer BumyKknocTs hynkumu F ( f(x)
3anavy (8) MOXHO 3amMcaTh B MHHHMAKCHOH dopme:
(9)  minfmax{{\, f(x)} AEAF(0)}] x€Q}.
MosXHo ToKa3aTh, 9T M3 HemycTOTE MHOXecTBa X M Mpel
wecTaopanke y 3amaw (9) cemnosoi rouxn (A x*). Iog
Touexk 3amawn (9) mpencrasumo B Bupe 27 = A° X X', g
€ 3F(0)}, W(\) =min{(X, f(x))| x € Q). 3amauy
max {¥ ()| A€ 3F(0) N dom ¥ (-)}.

Mbi By/leM HassiBath 3afnavued, ABORCTBEeHHON K (
Tlycrs B 3anave (8) ynxumn [ (x), k=1,2,...,
CYY(E) ¢ xoHcTaHTaMH L™ > 0. Obosnawmm L = [IARNY/
Paccmotpum dyniumio O(y, 4, 2) = F(f(, 2)) +(
=32 D), 2D f B2 =l
v M1, A — MONOXHTENbHAA KOHCTaHTa. OGo3HaWHM
O (y, A)=min{b(y,4,2)| zEQ}. T(y,A)=ag

3.174

OrmeTumM, 'rro oroﬁmmme y = T(y. A) sBaserca ecrec
sagaw (8) os [
MeTONIOB mmmaaxmn d:ymcunu BHIa mlx fx (x). Ins

(xax u 1A “'rpammenTHOrO” oroﬁpaml-n-m H3 [l]) NpH BCE
TIOJTHAETCA HEPaBCHCTBO

(10) ©°(y, A)+Aly —T(y,A),x - y)+0,54ly - T(y, A
npauem ecmi A 2 F(L), 10
0°(y, A)2F(f(T(v.4))).

Jins pemenns 3anaw (8) mpeyaraeTca CAeLyIOLMAR Ml
0) Boibupaem Touky ¥o€ E. INonaraem

(A1) k=0, ao=1, x,=ys, A,=F(Ly),
me Lo=(Ly . L¢P, ., L§™), 187 = 1£itye) - FiW]
Touxa u3 E,z #y,,.

1) k-n Hrepaums.

a) Boramcnsem HammeHbluwi Homep | 2 0, muA K
PABEHCTBO

(12) O (yx, 242 1) > F(F(T(3k, 245 1))
6) Monaraem Ay =2/, _,, X3 = T(yy, Ay),

axsy =(1 +\/4"k! +1)/2,
Yot =Xk +(ax = 1) (X = X1 )agsr.

Herpymio 3ameruts, wro meton (3)—(5)
samuen Meroria (11)—(13) ana 3anam GeaycnoBHOH MHHH|
m=1, F(y)=y, 0=E).

Teopema 2. Ecau nocaedogareashocrs 1xxi k=0
(13),ro:

1) dna awbozo k = 0 F(f(x)) — F(f(x*))
=4F(L)ly,-x*I?, x*€X",

2) 04 doCTuNEHUR TOVHOCTU € NO HYHKYUOHANY Heol

a) pewurs @crnomozareavkylo 3adavy min{®( .
VT el + ] max}logy(F(L)/A_,),01[ pas,

6) @biyucauts Habop 2paduenTos
WCy /e[ pas,

B) @bIvuCAUTS arncrop-ﬁyuxumof(x) ue Goaee Z]\/E;
01[ pas.

Teopema 2 N0Ka3bIBAETCA MPAKTHYECKH TAK Xe, KaK
TO/ILKO BMECTO HEp Ba (2) ™
Bextopa ayf'(yx) Gymer sextop vy — T(yi Ax), a ana

Towo Tak e, kak H B merone (3)—(5), B merone

i 0 re [ (L) u nap pe i BBIMY]
—m (ans 310r0, NpaB/a, Heo6XomHMo, ¥TobBI ¥4 € ).

B 3aknoueHHE OTMETHM /IBA BaXKHBIX YACTHBIX CITYH
BCMoMorartenbHas 3amaya min{®(yg, A, x)| x € Q | oxa3sll

a) MuHHMH3aMA I7IA0KOA BBINYIUIOH QYHKIMH HA

MBI TaKoe BO, 1
exmposmmn JanKChIBAeTCA B ABHOM BHJie. B oTOM cryuae B

313)

A, fi(y,

546

u B Mmerone (11)—(13)

O (3, A)=f(¥) 054 If' (NI +0SAIT(y, A) -y + A7 [ (NP,
rae T(y, A)=argmin fly - A7 f'(») -zl |z €0},

6) Besycnosnaa munkmusamna (B 3anave (8) Q = E). B atom ciyvae Bernomo-
ratenbHas sanaua min|{®(y, 4, x)| x € E| jxkpuBaneHTHa Cneayouedl NBOHCTBEH-
HO#M 3a/1ave:

(14) max{ 054

"
e W o0 @D, Amye
k=1

€ aF(O).

"
Tipu 3tom T(y, A)=y — A T A8y fi(»), rae A®) (), k=1,2,..., m, — pe-
k=1

weknsa 3amaw (14) npu ¢uxcuposaHHoM ¥ € E. Ormerum, uto mHoxectso 8F (0)
0BbIYHO TIPOCTBIMH OTpaF MH — it 60 KBampaTHUHBIMK, B Ta-
KMX clyuasx 3ajasa (14) — CTaHmapTHas 3ajaua KBa[IPaTHYHOrO NPOTPAMMHPOBAHHA.

ABTOp MCKpeHHe Mpu AC. H )My 33 Beceibl, KOTOPbIE CTHMY-
JIHPOBAITH €T0 pec K p P Bonpocam

KHA MHCTHTYT TMocTymio

Axanemun Hayx CCCP, Mockea 19 VII 1982
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YIK 515.1 MATEMATHKA
E.H. HOYKA
K TEOPHH MEPOMOP®HbLIX KPHBbIX
(MTpedcraaneno axad: B.C. B p 18 vV 1982)

1. [ycTs 3anana MepoMopdHas KpHBas, T.e. MepoMopHoe oToGpaxenue

ff Cc-ocpP,
W MycTh rofloMopdHoe oTobpaxeHHe
f: C=C™ f=(f, fae oo fua)s

TCA P p p KPHBO#H F XapaKTepHCTHUECKY®  (YHK-
miio f ompenenum, cnenys A. Kaprany [1]:

- 1 in
U, N = o [ loglftre™)dy — loglfO)*.
0
Mycts A — runepmiockocts B CP" M @ — eIMHHHBIT BEKTOP TAKOH, YTO paBeH-
ctBo (w, @) =0 (ckobxu 0BGO3HAYAKT IPMHTOBO CKIAPHOE NMPOM3BENCHHE) ECTh YpaB-

HCHME THIEPIVIOCKOCTH A B O[IHOPOMIHEIX KOOP/HHATAX; 06o3HawM [ = (f, a).
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More Explanations for Nesterov’s AGD

* Ordinary Ditferentiable Equations

* Su, W, Boyd, S., & Candes, E. (2014). A differential equation for modeling Nesterov’s
accelerated gradient method: theory and insights. In NIPS 27.

 Berthier, R., Bach, F., Flammarion, N., Gaillard, P., & Taylor, A. (2021). A continuized view on
Nesterov acceleration. ArXiv preprint, arXiv:2102.06035.

* Variational Analysis

» Wibisono, A., Wilson, A. C., & Jordan, M. I. (2016). A variational perspective on accelerated
methods in optimization. Proceedings of the National Academy of Sciences (PNAS), 113(47),
E7351-E7358.

* Linear Coupling of GD and MD

* Allen-Zhu, Z., & Orecchia, L. (2017). Linear coupling: An ultimate unification of gradient and
mirror descent. The 8th Innovations in Theoretical Computer Science Conference (ITCS).

* Cutkosky A. (2022). Chapter 14 Momentum & Chapter 15 Acceleration. In Lecture Notes for
EC525: Optimization for Machine Learning.
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Part 3. Extension to Composite Optimization

* Composite Optimization
* Proximal Gradient Method (PG)
* Accelerated Proximal Gradient Method (APG)

* Application to LASSO
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Composite Optimization
* Problem setup

min F(x) £ f(x) + h(x)

xERd

where f is smooth (namely, gradient Lipschitz) while h is not smooth.

* The composite optimization problem is common in practice.

Example 1. The objective of LASSO: F(w) = 3 |[w'X — sz + A|wll;,
where X = [x1,...,X,],y = [Y1,.. ., yn] .

How to effectively leverage the (partial) smoothness to improve convergence?
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Recall Non-composite Optimization

Recall how we invent GD for unconstrained non-composite optimization.

* Idea: surrogate optimization

We aim to find a sequence of local upper bounds Uy, --- ,Ur, where the
surrogate function U; : RY — R may depend on x; such that

(1) f(x¢) = Us(xs);
(i) f(x) < Uy(x) holds for all x € R¢;

(iii) U:(x) should be simple enough to minimize.

:> Then, our proposed algorithm would be x;; = arg min, U;(x)
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Recall Non-composite Optimization

e Consider miny f(x), and assume f is L-smooth.

L
By smoothness: f(x) < f(x;) + (V [f(x),x — %) + §Hx — XtHQ

\ . 7/
V

£ Uy (x) surrogate objective

—> to minimize f(x), it suffices to minimize the surrogate sequence {U;(x)};_;.

Claim. GD for smooth functions can be equivalently represented by

. 1
it = argamin Uy(x) =T [z = £V (x)|
xcX

where U;(x) = f(x¢) + (Vf(xt),x — X¢) + £[|x — x¢]|? is a quadratic upper bound of f at x;.
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Recall Non-composite Optimization

Claim. GD for smooth functions can be equivalently represented by

. 1
x+1 = argmin Uy(x) = Ty [Xt : fvf(Xt)]7
xeX

where Ui (x) = f(x:) + (Vf(xt),x — x¢) + 2]|x — x¢||? is a quadratic upper bound of f at x;.

Proof:
X141 = arg min U;(x) = arg min {(Vf(xt),x> + £HXH2 — L(x,xt>}
xeX xeX 2
(L 1 ,
= arirgm {5 (—2<xt — va(xt)’x> + [|x]] )}
L 1 ? 1 1

— argmin — ||x — (Xt— —Vf(xt)) — argmin ||x — (Xt— —Vf(xt)>H =1y [Xt— —Vf(xt)]

xeX 2 L XEX L L

[]
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Recall Non-composite Optimization

Claim. GD for smooth functions can be equivalently represented by

. 1
x+1 = argmin Uy(x) = Ty [Xt : fvf(Xt)]7
xeX

where Ui (x) = f(x:) + (Vf(xt),x — x¢) + 2]|x — x¢||? is a quadratic upper bound of f at x;.

xeX xcX 2

L
X1 1 = arg min Uy (x) = arg min {f(xt) + (Vf(x¢),x — x¢) |+ |=||x — XtHQ}

linear approximation of f at x; prevent x; from getting too far
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Composite Optimization
* Problem setup

min F(x) £ f(x) + h(x)

xERd

where f is smooth (namely, gradient Lipschitz) while h is not smooth.

A natural idea for surrogate objective:

Following previous argument (for non-composite optimization), to minimize
F = f + h, it’s natural to optimize surrogate sequence {U;(x)}._; defined as

Up(x) = f(xe) + (Vf(xe),x = x¢) + gHX — x| + h(x)
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Composite Optimization
L

By smoothness: f(x) < f(x;) + (V[(x),x — %) + §HX — x||?

\ &

S

2, (x)

—> to minimize F'(x) = f(x) + h(x), it suffices to minimize

’

—

arg min U;(x) = arg min
X X L

( L
= arg min
X \

<
Pag
%

= arg min

h

surrogate objective

Us(x) = ug(x) + h(x).

L 2
F) + (70 x = x0) + 5 = x4 i)

)x) + 5 Il = L) + hi) |

min{ 2 (=2(xe = T x) 4 [ ) + 1o |
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Composite Optimization

L

By smoothness: f(x) < f(x;) + (V[(x),x — %) + §HX — x|

\ &

S

—> to minimize F'(x) = f(x) + h(x), it suffices to minimize

(—2<xt—

A

~

U+ (X)

Vﬁf{xy+mw>+h&ﬁ

surrogate objective

Us(x) = ug(x) + h(x).

arg min U;(x) = argmin <
X X

= |arg min <
X

(Xt_

V f(x¢)
L

)

+ h(X)}

this will be abstracted as an operator, a subproblem to optimize
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Composite Optimization

* [teratively solve the surrogate optimization problem.

Deploying the following update rule:

x— (Xt _ %Vf(xt)) T h(x)}

. , L
X411 = arg min U;(x) = arg min 2
xR xR

Definition 2 (proximal mapping). Given a function i : R% — R, the proximal
mapping (or called proximal operator) of h is the operator given by

1
prox; (x) £ arg min {h(u) 3 |x — uHQ} for any x € R%.
ucRd
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Proximal Gradient

Definition 2 (proximal mapping). Given a function h : R? — R, the proximal
mapping (or called proximal operator) of h is the operator given by

1
prox; (x) £ arg min {h(u) +3 lu — XH2} for any x € R%.
ucRd

Proximal Gradient Method

X411 = arg min {gHX — (Xt — %Vf(xt)> H2 + h(x)} = Prox ., (Xt — %Vf(Xt))

xEeR4

1
An equivalent notation: Xii1 = Pr(x;) 2 Prox.y (Xt - zvf (Xt)) :
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Proximal Gradient

Proximal Gradient Method

1
Xip1 = Pr(x;) 2 proxu, (Xt - va(xt)>

— arg min {gHX — (Xt — %Vf(xﬂ) H2 + h(X)} .

x R4

- In LASSO, where h(x) = ||x||1, P} is easy to compute and has closed
form solution.

- Algorithmically, PG induces famous algorithms for solving LASSO problem,
which are called ISTA (GD-type) and FISTA (Nesterov’s AGD-type).
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Convergence of Proximal Gradient

Smooth Optimization

lem: mi
problem iy f(x)

assumption: f is L-smooth

Convergence: f(xr)— f(x*) <O <—

1
GD: Xi41 = X¢ — va(xt>

1
T

)

Smooth Composite Optimization

problem: IIGI%RI%Z F(x) £ f(x) + h(x)

assumption: f is L-smooth, h not
1
PG: X471 = proxiy, (Xt — sz(}g))

Convergence: F(xp)— F(x*) <7
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Convergence of Proximal Gradient

Theorem 5. Suppose that f and h are convex and f is L-smooth. Setting the param-
eters properly, Proximal Gradient (PG) enjoys

o Llxo—x*2 _ (1
Flxr) = F(x) < 2000 _o(f)

Proximal gradient can also achieve an O (1/7") convergence rate, which is the
same as the non-composite optimization counterpart.

The result can be further boosted to O (exp(—71'/k)) when the function f is
o-strongly convex (where k = L /o is the condition number).
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Convergence of Proximal Gradient

e Generalized one-step improvement lemma on F = f + h

Lemma 7. Suppose that f and h are convex and f is L-smooth. Let x; 11 = P (x;)
and g(x) = L(x — X¢y1). Then foranyu € X,

Flxi1) — F(u) < {g(x). % — ) — o [lg(x)

Suppose the above lemma holds for a moment, we now prove the O(1/7") con-
vergence rate of PG.
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Proof of PG Convergence

Proof g 1 oo et o = il
Setting u = x* in Lemma 7: F(x¢41) — F(u) < (g(x¢),x; —u) — %Hg(xt)n%
1
F(xt1) — F(x7) < {g(xt),x¢ —x7) — ng(Xt)HQ
L
> F(x¢41) — F(x*) < L{xt — X1, %Xt — X*) — 5‘ x; — X¢p1])°

(2(xt — Xe41, Xt — XY — ||x¢ — X1 ||?)

= Y Fx) = (T = DF(x*) < lxo — x*||?
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Proof of PG Convergence

Proof:
L||xo—x*||*

T—1 *
—> ﬁ =1 F(xt) — F(x*) < 2(T—1)

which already gives an O(1/T) convergence rate of X = = Zthl Xt

What we want: F(xp) — F(x*)

Next step: analyzing F(xr) — —— tT:_ll F(xy).

A
=Y
Ly
o
A
-

Setting u = x; in Lemma 7: F'(x;41) — F(x;)

—> Zt (x¢41) — F(x¢)) <0
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Proof of PG Convergence

Proof:
What we want: F(xr)—F(x*) = Next step: analyzing F(x7)— ZtT:_ll F(x4).
S HF () — F(xi) = 3 #H(F(xes1) — F(x0) + Flxe) — F(xo)

= 3 (1P (ki) — (= DF(x)) = 3 Flxi) = (T = DF(xcr) = 3 Flxi) <0
What we have:

- F(xp) — 7 S 5 F(x) <0 -

o e P ) - P < L”Q}EOT _X1>H
- Y Flxe) - Fxr) < Ml -
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Proof of One-Step Improvement Lemma

Lemma 7. Suppose that f and h are convex and f is L-smooth. Let x; 1 = P} (x;)
and g(x;) = L(x; — X¢11). Then forany u € X,
1

I”

F(xe41) = F(u) < (g9(xe), % —w) — o [lg(xz)

Proof: What we have: F(x) < Uy (x) forany x € X = F(x¢41) — F(u) < Up(x¢41) — F(u)
analyzing this quantity

{Ut Xe1) = ) + (VF(%e), X1 — %) + F1xeq1 — %13 + Tl

F(u) = f(u)+h(u) = ) +(Vf(xe), u—x0) + fzema) + (VA(X41), u—Xp41)

L
D U(x¢41) — F(u) < (V[f(x)) + Vh(xpi1),Xep1 —u) + §th+1 — x5

\ . J/
V

Next step: relate V f(x;) + Vh(x11) to g(x¢). =57 l1g(xt)|l
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Proof of One-Step Improvement Lemma

Proof:

What we have: F(x) < Uy(x) forany x € X = F(x¢41) — F(u) < Up(x¢41) — F(u)

analyzing this quantity

—> Ui(x¢41) — F(0) <(Vf(x0) + VA(xp41), Xe41 — 1) + %Hg(xt)HZ

xepr = argmin { () +  [x — (e = £ £6x0) I
2 H(x)

by Fermat’s
optimality condition

Theorem 8 (Fermat’s Optimality Condition). Let f : R — (—oo, 0o be a
proper convex function. Then

x* € argmin{f(x) | x € R?}

if and only if 0 € O f (x*).

0 = VH(X¢41) = VA(X¢41) + L(Xep1 — x¢) + V[ (x4)
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Proof of One-Step Improvement Lemma

Proof:

What we have: F(x) < Uy(x) forany x € X = F(x¢41) — F(u) < Up(x¢41) — F(u)
analyzing this quantity

{ Up(x¢41) — F(u) <(Vf(x;) + VA(xi1), X1 —u) + %H!ﬂxt)HQ

and the fact that Vf(x;) + VhA(xt11) = —L(Xt11 — X¢) = —9(X¢)

> Uilxen) — Fu) < {g(x) 1 —u) + oo
1 2
= (9(x¢),x; —u) — EHQ(Xt)H -
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One-Step Improvement Lemma

* A fundamental result for GD of smoothed optimization.

1 2
f(xer1) = f(xt) < —ﬁHVf(Xt)H

Floi1) = F(w) < (VF(x0). %0 —w) = 52|V F(x0)]1

1

f(xe41) — f(a) < (g(x¢), % —u) — EHQ(Xt)HQ
Flxe1) — F(u) < (g(x0), % — ) — o= [lg(x0)]1

Corollary: the proof of PG can also be used to prove the O(1/7") convergence rate of GD.

specialized

U

general
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Accelerated Proximal Gradient Method

* A natural idea

Can we extend the Nesterov’s AGD to the composite optimization?

:> This induces the Accelerated Proximal Gradient (APG) method.

Nesterov’s Accelerated GD

1
Yti+1 — Xt — va(xt)v Xt+1 = (1 — at)Yt—l—l + oyt

Accelerated Proximal Gradient

Yt+1 — PQ(Xt)a Xt+1 = (1 — C‘ft)Yt—H + Qty

The covergence rates can be similarly obtained.
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Accelerated Proximal Gradient Method

Theorem 6. Suppose that f and h are convex and f is L-smooth. Setting the param-
eters properly, APG enjoys

2L

F(XT) _F(X*) < (T—I—l)

*H2°

2HX0 — X

Suppose that h is convex and f is o-strongly convex and L-smooth. Setting the pa-
rameters properly, APG enjoys

Floxr) = ) < exp (- ) (Floxo) = Fx) + 5 o = x°I7).

where k = L /o denotes the condition number.

The convergence rates can be obtained same as those in non-composite optimization.
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Application to LASS0O

e LASSQ: {i-regularized least squares

T > commonly encountered in
F(w) =3 ||w'X —y||" + Allwl, signal/image processing.

Interdisciplinary Applied Mathematics 40

SpringerSeries in Statistics
Monographs o d Applied Probabiility 143

Statistical Learning
with Sparsity

René Vidal

Trevor Hastie | YiMa
Robert Tibshirani S. Shankar Sastry
Jerome Friedman

The Lasso and

/ Generalizations ;
[
Generalized
Principal
Data Mining, Inference, and Prediction CO m p one nt
B B e .
i 1 Analysis =~
Trevor Hastie '
Robert Tibshirani A
FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression 'f‘w TSt :
(right). Shown are contours of the error and constraint functions. The solid blue &) Springer
areas are the constraint regions |B1| + |B2] < t and BT + B3 < 12, respectively,
while the red ellipses are the contours of the least squares error function.
55434 1996

Regression shrinkage and selection via the lasso

R Tibshirani
Journal of the Royal Statistical Society. Series B (Methodological), 267-288
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Application to LASS0O

e LASSQ: {i-regularized least squares

Fw)=1|wTX —y|* + Aw|,

commonly encountered in
signal/image processing.

> composite optimization: first part is smooth, the other one is non-smooth

* ISTA (Iterative Shrinkage-Thresholding Algorithm): PG for LASSO

* FISTA (Fast ISTA): APG for LASSO

Closed-form solution:

[PL (W)l = sign ([Wt - %Vf(wt)] Z) (' [Wt - %Vf(wt)]

1

A
L

).
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Application to LASSO

* Comparison of ISTA and FISTA

0 50 100 150 200
k

Comparison of ISTA and FISTA.

SIAM J. IMAGING SCIENCES @ 2009 Society for Industrial and Applied Mathematics
Vol. 2. No. 1, pp. 183-202

A Fast Iterative Shrinkage-Thresholding Algorithm
for Linear Inverse Problems*

Amir Beck! and Marc Teboulle!

Abstract, We consider the class of iterative shrinkage-thresholding algorithms (ISTA) for solving linear inverse
problems arising in signal /image processing. This class of methods, which can be viewed as an ex-
tension of the classical gradient algorithm, is attractive due to its simplicity and thus is adequate for
solving large-scale problems even with dense matrix data. However, such methods are also known to
converge quite slowly. In this paper we present a new fast iterative shrinkage-thresholding algorithm

(FISTA) which preserves the computa ith a global rate of convergence

which is proven to be significantly better, both theoretically and practic itial promising

merical results for wavelet-based image ing demonstrate the ilities of FISTA which is
shown to be faster than ISTA by several orders of magnitude

Key words. iterative shrinkage-thresholding algorithm, deconvolution, linear inverse problem, least squares and
{1 regularization problems, optimal gradient method, global rate of convergence, two-step iterative
algorithms, image deblurring

AMS subject classifications. 90C2!

90C06, 65F22

DOI. 10.1137/080716542

1. Introduction. Linear inverse problems arise in a wide range of applications such as
astrophysics, signal and image processing, statistical inference, and optics, to name just a
linary nature of inverse problems is evident through a vast literature
which includes a large body of mathematical and algorithmic developments; see, for instance,
the monograph [13] and the references therein.

A basic linear inverse problem leads us to study a discrete linear system of the form

(1.1) Ax=b+w,

where A € R™*" and b € R™ are known, w is an unknown noise (or perturbation) vector,
and x is the “true” and unknown signal/image to be estimated. In image blurring problems,
for example, b € R™ represents the blurred image, and x € R" is the unknown true image,
whose size is assumed to be the same as that of b (that is, m = n). Both b and x are
formed by stacking the columns of their corresponding two-dimensional images. In these
applications, the matrix A describes the blur operator, which in the case of spatially invariant
blurs rep a two-di sional ion operator. The problem of estimating x from
the observed blurred and noisy image b is called an image deblurring problem.

*Received by the editors February 25, 2008; accepted for publication (in revised form) October 23, 2008; published
electronically March 4, 2009. This research was partially supported by the Israel Science Foundation, ISF grant 489-
06.

http://www.siam.org /journals/siims/2-1/71654. html
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A fast iterative shrinkage-thresholding algorithm for linear inverse problems
A Beck, M Teboulle
SIAM journal on imaging sciences 2 (1), 183-202

12806

2009

Advanced Optimization (Fall 2023) Lecture 4. Gradient Descent Method 11

73



Summary

GD FOR SMOOTH OPTIMIZATION

NESTEROV’'S ACCELERATED GD

EXTENSION TO COMPOSITE
OPTIMIZATION

Smooth and Convex

Smooth and Strongly Convex

Constrained Optimization

Algorithm
Smooth and Convex

Smooth and Strongly Convex

Composite Optimization

Proximal Gradient Method (PG)

Accelerated Proximal Gradient Method (APG)

Application to LASSO
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