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Outline
• GD for Smooth Optimization

• Smooth and Convex Functions

• Smooth and Strongly Convex Functions 

• Nesterov’s Accelerated GD

• Extension to Composite Optimization
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Part 1. GD for Smooth Optimization
• Smooth and Convex

• Smooth and Strongly Convex

• Extension to Constrained Case



Lecture 4. Gradient Descent Method IIAdvanced Optimization (Fall 2023) 4

Overview

last lecture

this lecture
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Convex and Smooth

Note: we are working on unconstrained setting and using a fixed step size tuning.
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The First Gradient Descent Lemma

Proof:
(Pythagoras Theorem)

(GD)
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Refined Result for Smooth Optimization
Proof:

(Pythagoras Theorem)

(GD)

only exploited convexity, but haven’t used smoothness
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Co-coercive Operator

The co-coercive condition is relatively standard in operator splitting literature and variational inequalities.
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Smooth and Convex
Proof:

(Pythagoras Theorem)

(GD)

exploiting coercivity of smoothness and unconstrained first-order optimality

which already implies the convergence
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Smooth and Convex
Proof: Now, we consider the function-value level,

one-step 
improvement

(smoothness)

(utilize unconstrained update)
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Smooth and Convex
Proof:
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Smooth and Convex
Proof:
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Key Lemma for Smooth GD
• During the proof, we have obtained an important lemma for smooth 

optimization, that is, one-step improvement

• Compare a similar result that holds for convex and Lipschitz functions.

last-iterated convergence 

average-iterated convergence 
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Key Lemma for Smooth GD
• One-step improvement for smooth GD under unconstrained setting.
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Smooth and Strongly Convex
• Recall the definition of strongly convex functions ( first-order version).
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Smooth and Strongly Convex
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Smooth and Strongly Convex

Note: we are working on unconstrained setting and using a fixed step size tuning.
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Smooth and Strongly Convex
Proof:

(Pythagoras Theorem)

(GD)

how to exploiting the strong convexity and smoothness simultaneously
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Coercivity of Smooth and Strongly Convex Function

Then, rearranging the terms finishes the proof.

Proof :

by co-coercivity of 
smooth and convex functions
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Smooth and Strongly Convex
Proof:

(Pythagoras Theorem)

(GD)

exploiting co-coercivity of smooth and strongly convex function

serving as the “one-step improvement” in the analysis
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Smooth and Strongly Convex
Proof:

The step size configuration:



Lecture 4. Gradient Descent Method IIAdvanced Optimization (Fall 2023) 22

Smooth and Strongly Convex
Proof:
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Constrained Optimization
• A generalized one-step improvement lemma for smooth optimization.



Lecture 4. Gradient Descent Method IIAdvanced Optimization (Fall 2023) 24

Constrained Optimization
Same convergence rates as unconstrained case can be obtained in 
the constrained setting for smooth convex optimization.

Detailed proofs for the constrained optimization will 
not be presented. The proof follows the same vein 
yet requires some additional twists, we refer anyone 
interested to the following parts in Bubeck’s book:

• Constrained + smooth + convex: Section 3.2

• Constrained + smooth + strongly convex: Section 3.4.2
Convex Optimization: 

Algorithms and Complexity
Sebastien Bubeck 

Foundations and Trends in ML, 2015
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Lower Bound
Lower bounds reflect the difficulty of the problem, regardless of algorithms. 

GD is suboptimal in smooth convex optimization!

notice: this lower bound only holds for first-order methods
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Part 2. Nesterov’s Accelerated GD
• AGD Algorithm

• Smooth and Convex

• Smooth and Strongly Convex
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Nesterov’s Accelerated GD
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Nesterov’s Accelerated GD
• a momentum term is added to 

boost the convergence
• the descent property is relaxed 

and not ensured now

GD Accelarated GD

https://www.seas.ucla.edu/~vandenbe/236C/lectures/fgrad.pdf
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Convergence of Nesterov’s Accelerated GD
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Proof of AGD Convergence
Proof:  First, we prove the following generalized one-step improvement lemma.

GD for smooth and convex functions
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Generalized One-Step Improvement

Proof:

(smoothness and convexity)
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Proof of AGD Convergence

Goal: design a telescoping series

Proof: (continued proving Theorem 3)
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Proof of AGD Convergence

That is

Proof: (continued proving Theorem 3)
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Proof of AGD Convergence
Proof: (continued proving Theorem 3)
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Proof of AGD Convergence

Goal: design a telescoping series

Proof: (continued proving Theorem 3)
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Proof of AGD Convergence

telescope

Proof: (continued proving Theorem 3)
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Proof of AGD Convergence
Proof: (continued proving Theorem 3)
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Proof
Proof: (continued proving Theorem 3)
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Smooth and Strongly Convex

core technique: estimate sequence (developed by Yurii Nesterov)
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Smooth and Strongly Convex
• Proof sketch

Core technique: construct an estimate sequence (developed by Yurii Nesterov)

It can be proved that the above construction satisfies the two properties.



Lecture 4. Gradient Descent Method IIAdvanced Optimization (Fall 2023) 41

Smooth and Strongly Convex
• Proof sketch

(by property (ii))

(by property (i))

(smoothness)

Core technique: construct an estimate sequence (developed by Yurii Nesterov)
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Estimate Sequence
• Admittedly, how to construct estimate sequence is highly tricky

M. Baes, Estimate sequence methods: 
extensions and approximations. 
Technical report, ETH, Zürich (2009)

Chapter 2.1

References:

Chapter 3.7
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References for Nesterov’s Accelerated GD
Nesterov’s four ideas (three acceleration methods): 

Yurii Nesterov
1956 –  

UCLouvain, Belgium

• Y. Nesterov (1983), A method for solving a convex 
programming problem with convergence rate 

• Y. Nesterov (1988), On an approach to the construction 
of optimal methods of minimization of smooth convex 
functions 

• Y. Nesterov (2005), Smooth minimization of non-smooth 
functions 

• Y. Nesterov (2007), Gradient methods for minimizing 
composite objective function
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More Explanations for Nesterov’s AGD
• Ordinary Differentiable Equations

• Su, W., Boyd, S., & Candes, E. (2014). A differential equation for modeling Nesterov’s 
accelerated gradient method: theory and insights. In NIPS 27.

• Berthier, R., Bach, F., Flammarion, N., Gaillard, P., & Taylor, A. (2021). A continuized view on 
Nesterov acceleration. ArXiv preprint, arXiv:2102.06035.

• Variational Analysis
• Wibisono, A., Wilson, A. C., & Jordan, M. I. (2016). A variational perspective on accelerated 

methods in optimization. Proceedings of the National Academy of Sciences (PNAS), 113(47), 
E7351-E7358.

• Linear Coupling of GD and MD
• Allen-Zhu, Z., & Orecchia, L. (2017). Linear coupling: An ultimate unification of gradient and 

mirror descent. The 8th Innovations in Theoretical Computer Science Conference (ITCS).
• Cutkosky A. (2022). Chapter 14 Momentum & Chapter 15 Acceleration. In Lecture Notes for 

EC525: Optimization for Machine Learning. 
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Part 3. Extension to Composite Optimization
• Composite Optimization

• Proximal Gradient Method (PG)

• Accelerated Proximal Gradient Method (APG)

• Application to LASSO
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• Problem setup

Composite Optimization

How to effectively leverage the (partial) smoothness to improve convergence?

• The composite optimization problem is common in practice.
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Recall Non-composite Optimization 
Recall how we invent GD for unconstrained non-composite optimization.

• Idea: surrogate optimization
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Recall Non-composite Optimization 

surrogate objective
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Recall Non-composite Optimization 

(remove irrelative terms)

(rearrange)

Proof:
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Recall Non-composite Optimization 
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• Problem setup

Composite Optimization

A natural idea for surrogate objective:
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Composite Optimization

surrogate objective
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Composite Optimization

this will be abstracted as an operator, a subproblem to optimize

surrogate objective
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Composite Optimization
• Iteratively solve the surrogate optimization problem.



Lecture 4. Gradient Descent Method IIAdvanced Optimization (Fall 2023) 57

Proximal Gradient

Proximal Gradient Method

An equivalent notation:
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Proximal Gradient
Proximal Gradient Method

-  Algorithmically, PG induces famous algorithms for solving LASSO problem,  
   which are called ISTA (GD-type) and FISTA (Nesterov’s AGD-type).
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Smooth Composite Optimization

Convergence of Proximal Gradient

Smooth Optimization

GD: 

Convergence:

assumption: 

problem: 

Convergence:

assumption: 

problem: 

PG: 
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Convergence of Proximal Gradient
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Convergence of Proximal Gradient
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Proof of PG Convergence
Proof:
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Proof of PG Convergence
Proof:
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Proof of PG Convergence
Proof:
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Proof of One-Step Improvement Lemma

analyzing this quantity
Proof:

(convexity)
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Proof of One-Step Improvement Lemma

analyzing this quantity

Proof:

by Fermat’s 
optimality condition
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Proof of One-Step Improvement Lemma
Proof:

analyzing this quantity
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One-Step Improvement Lemma
• A fundamental result for GD of smoothed optimization.

specialized

general
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Accelerated Proximal Gradient Method
• A natural idea

 

Accelerated Proximal Gradient

Can we extend the Nesterov’s AGD to the composite optimization? 

Nesterov’s Accelerated GD

The covergence rates can be similarly obtained. Proofs are omitted.

This induces the Accelerated Proximal Gradient (APG) method.
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Accelerated Proximal Gradient Method

The convergence rates can be obtained same as those in non-composite optimization.
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Application to LASSO
• LASSO: 

commonly encountered in 
signal/image processing.
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Application to LASSO
• LASSO: 

• ISTA (Iterative Shrinkage-Thresholding Algorithm): PG for LASSO

• FISTA (Fast ISTA): APG for LASSO

composite optimization: first part is smooth, the other one is non-smooth

commonly encountered in 
signal/image processing.

Closed-form solution:
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Application to LASSO
• Comparison of ISTA and FISTA

Comparison of ISTA and FISTA.
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Summary
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