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Motivation

* Consider that we are making predictions based on external experts.

A Chinese Odyssey Part Two - Oppenheimer Titanic
Cinderella
BEe OE= OE=
9.2/10 87%  7.8/10 8.8/10 93%  8.5/10 9.5/10 88%  7.9/10
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Prediction with Expert Advice

* Other examples include

___________________________________________________________

Weather report: | 1 , 3 A
|

Stock prediction: .
| aml 4 2 a3 a4
|

___________________________________________________________
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PEA Problem Setup
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PEA Problem Setup
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PEA: Formulization

* The online learner (player) aims to make the prediction based
by combining N experts” advice.

Ateachroundt=1,2,---
(1) the player first picks a weight p, from a simplex A y;
(2) and simultaneously environments pick a loss vector ¢, € R";

(3) the player suffers loss f;(p,) = (p,,£;), observes £; and updates the model.

The feasible domain is the (N — 1)-dim simplex Ay = {p € RY | p; > 0, Zfil p; =1}.

We typically assume that 0 < ¢, ; < 1 holds forallt € [T] and i € [N].
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PEA: Formulization

* The online learner (player) aims to make the prediction based
by combining N experts” advice.

Ateachroundt=1,2,---
(1) the player first picks a weight p, from a simplex A y;
(2) and simultaneously environments pick a loss vector ¢, € R";

(3) the player suffers loss f;(p,) = (p,,£;), observes £; and updates the model.

* The goal is to minimize the regret with respect to the best expert:
T T T T

Regret = Z (py, £:) — min (p, £y) = Z (Dy, Le) — mi]{} thﬂ;

cA
t—1 P==Ni T t—1
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A Natural Solution

 Follow the Leader (FTL)

Select the expert that performs best so far, specifically,

prL = argmin (p, L;—1) = argmin L,_1 ;

PEAN ZE[N]

where L; _; € RY is the cumulative loss vector with L; ;; = 22;11 s i

T
© [l ot =] - Rosy = 3 )~ i S

:T—gzmﬂ

FTL achieves linear regret
in the worst case!
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A Natural Solution

 Follow the Leader (FTL)

Select the expert that performs best so far, specifically,

prL = argmin (p, L;_1) = argmin L, 1 ;

PEAN ZE[N]

where L; 1 € RY is the cumulative loss vector with Ly 1, £ Z’;;ll Us.i.

> Pitfall: decision is actually a one-hot vector, which can be very unstable.

> | Replacing the ‘max’ operation in FTL by ‘softmax’.
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Hedge: Algorithm

* Hedge: replacing the ‘max” operation in FTL by “softmax’.

Ateachroundt=1,2,---
(1) compute p, € Ay such that p, ; oc exp (—nL;_1 ;) fori € [V]
(2) the player submits p,, suffers loss (p,, £;), and observes loss £; € RY
(3) update L; = L,_; + ¢,

FTL update Hedge update
prL — argmax <p7 _Lt—1> Pt X €XP (_nLt—l f,;), Vi € [N]
pEAN ) )

Advanced Optimization (Fall 2023) Lecture 6. Prediction with Expert Advice

11



Lazy and Greedy Updates

* Hedge algorithm

; lazy update
Pi+1,i < exp (—nLy;), Vi € [N] Ly = ng,ia Vi € [N|
s=1

* Another equivalent update (when the learning rate 7 is fixed)

. greedy update
Pt+1,i X Pti €xXp (—1l,i), Vi € [N]

where we set the uniform initialization as py ; = 1/N, Vi € [N].

|:> But the two updates can be significantly different when learning rate is changing.
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Hedge: Regret Bound

Theorem 1. Suppose that Vt € |T'| and ¢ € |[N|,0 < ¥;; <1, then Hedge with
learning rate n guarantees

Regret < % +nl' = (9(\/TlogN),

where the last equality is by setting n optimally as \/(In N)/T.

Proof. We present a “potential-based’ proof here, where the potential is defined as

ln <Zexp —nLy,; )
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Proof of Hedge Regret Bound

N
. —nLy ; Z
M\ iz exp (=1 Lli—1,)

i (stp(—nLtl,i) ) eXp(—nﬁt,i)>>

i=1 €XP (—nLi—1,

Z Pt,i €XP (_ngt,i)> (update step of p,)

IA

N
In (Zpt,i (1 T ngt,z =+ 772€2 )) (Vaj >0, e <1—x+ IQ)

N
1 —n(p;, ) +1° Zpt,z-ff,i)>

1=1
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Proof of Hedge Regret Bound

N
PTOOf. O, — P, | = 1 In Z]:Vq;:l eXp (_nLt,z)
U D ie1exp (—nLi—1;)

< — <pt7 £t> +n Zpt,igii (In(14+2x) <a
i=1
Summing over ¢, we have
T N
Z Dy, Et < Py — P + T Z Zpt zgfz b, = % In (Zi\;1 eXp (_TILt,z')>
t=1 t=1 1=1
T N
lnN 1
< —— — —In(exp (—nLri)) +1 ) Y prili,
1 " t=1 i=1
T N
In N
S ) S
t=1 i=1
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Proof of Hedge Regret Bound

In N LY
(P be) < N + Lra 0 Y prili

1 t=1 =1

Proof.

E

t

Rearranging the term gives

E

T N
lnN
<pt7 £t> LT i < —— Z Zpt,igiz‘

In N
<n—+nT
Ui

Thus, setting n = /In N/T yields

In N
Regret, < il +nT =2VTInN.
Uy

t=1
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Lower bound of PEA

* As above, we have proved the regret bound for Hedge:

Regret < 2V T In N

* A natural question: can we further improve the bound?

Theorem 2 (Lower Bound of PEA). For any algorithm A, we have that

Regret 1
SUp max ST > —.

TN L,-Ar A/TIn N — /2

Hedge achieves minimax optimal regret (up to a constant of ) for PEA.

Advanced Optimization (Fall 2023) Lecture 6. Prediction with Expert Advice

17



Lower bound of PEA

Theorem 2 (Lower Bound of PEA). For any algorithm A, we have that

Regret 1
sup max 50T 2

TN 2Ly V/TInN — /2

Proof. We construct the ‘hard” instance by randomization. Let D be the
uniform distribution over {0, 1}. We have
max Regretr > E, iiay [REgret ]
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Lower bound of PEA

Theorem 2 (Lower Bound of PEA). For any algorithm A, we have that

Regret 1
Sup max ST > —,

TN 2Ly V/TInN — /2

T T
P1’00f- max Regret, > ZEel,..-,ﬂt_l (P Ee, e | Le—1, ..., 41]) —Eey.. er lm[lj{}] Zet,i]
1€
t=1

L
1 T t—1

= e, ... 0,

T /1
— 4.

T
=T/2—-E min ly
/ £i,....81 [ie[lN]; t,

1 T
= Koy ... op |Mmax » o4,
2 T [iE[N]; t’]

Rademacher random variables
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Lower bound of PEA

Theorem 2 (Lower Bound of PEA). For any algorithm A, we have that

Regret 1
SUp max ST > —.

TN 2Ly V/TInN — /2

Proof.

T
1
max Regret- > —]K max O+ ;
oy, BT = 5B, o |:iE[N]t§_; t’z}

Rademacher random variables

Using the result from probability theory (Prediction, Learning, and Games, Chapter 3.7)
of Rademacher variables,
T
EO‘1,...,O'T |:maXiE[N] thl O-t,ii|

I:'> lim lim — /2. []
T—00 N—00 v T'In N
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Upper Bound and Lower Bound

Theorem 1. Suppose that Vt € |T'| and ¢ € |[N|,0 < ¥;; <1, then Hedge with
learning rate 1 guarantees

Regret < lnTN +nT = O(\/TlogN),

where the last equality is by setting n optimally as /(In N)/T.

Theorem 2 (Lower Bound of PEA). For any algorithm A, we have that

Regret 1
SUp max ST > —.

TN LA /TIn N — /2
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Prediction with Expert Advice: history bits

Nick Littlestone *

Harvard Univ.

Abstract

We study the construction of prediction algo-
rithms in a situation in which a learner faces
a sequence of trials, with a prediction to be
made in each, and the goal of the learner is
to make few mistakes. We are interested in the
case that the learner has reason to believe that
one of some pool of known algorithms will per-
form well, but the learner does not know which
one. A simple and effective method, based on

The Weighted Majority Algorithm

Aiken Computation Laboratory Dept. of Computer Sci.

Manfred K. Warmuth

U. C. Santa Cruz

most c{log|.A| +m) mistakes on that sequence,
where ¢ is fixed constant.

1 Intreduction

We study on-line prediction algorithms that
learn according to the following protocol.
Learning proceeds in a sequence of triak. In
each trial the algorithm receives an instance
from some fixed domain and is to produce a

weighted voting, is i d for

a compound algorithm in such a circumstance.
We call this method the Weighted Ma jority Al
gorithm. We show that this algorithm is ro-
bust w.r.t. errors in the data. We discuss var-
ious versions of the Weighted Majority Algo-
rithm and prove mistake bounds for them that
are closely related to the mistake bounds of the
best algorithms of the pool Forexample, given
a sequence of triak, if there is an algorithm in
the pool A that makes at most m mistakes then
the Weighted Majority Algorithm will make at

*Supported by ON R grant N00014-85-K0445. Part
of this rescarch was dane while this author was at the
University of Calif st Samta Cruz with support from
ONR grant N00O14-86-K-0454

'Supported by ONR grant N0001 486 K-0454. Part
of this rmesrch was done whik this suthor was on
sabbatical at Aikes Computation Laboratory, Harvard,

' ial support from the ONR grants N 0001485
K-0445 and NOOO14-S6-K-0454

binary prediction. At the end of the trial the al
gorithm receives a binary reinforcement, which
can be viewed as the correct prediction for the
instance. We evaluate such algorithms accord-
ing to how many mistakes they make as in
[Lit88,Lit59). (A mistake occurs if the predic-
tion and the reinforcement disagree.)

In this paper we investigate the situation
where we are given a pool of prediction algo-
rithms that make varying numbers of mistakes.
‘We aim to design a master algorithm that uses
the predictions of the pool to make its own pre-
diction. Ideally the master algorithm should
make not many more mistakes than the best
algorithm of the pool, even though it does not
have any a priori knowledge as to which of the
algorithms of the pool make few mistakes for a
given sequence of trials,

The overall protocol proceeds as follows in
each trial: The same instance is fed to all al-
gorithms of the pool Fach algorithm makes

Manfred Warmuth
UC Santa Cruz

CH2B06-38%0000/0256/501.00 © 1089 IEEE

Nick Littlestone and Manfred K. Warmuth.
"The Weighted Majority Algorithm." FOCS 1989: 256-261.

FOCS 30-year
Test of Time Award!

AGGREGATING STRATEGIES

Volodimir G. Vovk™
Research Council for Cybernetics
40 ulitsa Vavilova,.
Moscow 117333, USSR

ABSTRACT

The following situation is considered. At each moment of
discrete time a decision maker. who does not know the current
state of Nature but knows all its past states, must make a
decision. The decision together with the current state of
Nature determines the loss of the decision maker. The
performance of the decision maker is measured by his total
loss. We suppose there is a pool of the decision maker's
potential strategies one of which is believed Lo perform well,
and construct an “aggregating™ strategy for which the total
loss is not much bigger than the total loss under strategies in
the pool, whatever states of Nature. Our construction
generalizes both the Weighted Majority Algerithm of
N.Littlestone and M.K.Warmuth and the Bayesian rule.

NOTATION

N, @ and R stand for the sets of positive integers, rational
numbers and real numbers respectively, B symbolizes the set
€0.1>. We put
g"= u B "= u B.
t<n tSn
The empty sequence is denoted by o. The notation for logarithms
is ln Cnatural, 1b Cbinary) and log, Cbase AJ. The integer

part of a real number ¢ is denoted by [t]. For A € R®, con 4 is
the convex hull of A.

1. UNIFORM MATCHES

We are working within C(the finite horizon variant of)
A.P.Dawid's “prequential” Cpredictive sequential) framework
Csee (Dawid, 1 in detail it is described in C(Dawid,
1988)). Nature and a decision maker function in discrete time
€0,1 .+n-1>. Nature sequentially finds itself in states Sor

comprising the string s = s, For

. . s R e
1 n=1 P 071 n-1
simplicity we suppose s €« B'. At each moment i the decision
maker does not know the current state s, of Nature but knows

"aadress for correspondence: ©9-3-451 ulitsa Ramenki, Moscow
117007, USSR.

Volodimir G. Vovk
Royal Holloway,
University of London

Volodimir G. Vovk. “Aggregating Strategies."

COLT 1990: 371-383.
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Prediction with Expert Advice: history bits

Yoav Freund

Robert Schapire

Goldel Prize 2003

........

This paper introduced AdaBoost, an

adaptive algorithm to improve the
accuracy of hypotheses in machine
learning. The algorithm demonstrated
novel possibilities in analyzing data and
is a permanent contribution to science
even beyond computer science.

Reference: Y. Freund and R. Schapire. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. JCSS 1997.

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 55, 119-139 (1997)
ARTICLE NO. SS971504

A Decision-Theoretic Generalization of On-Line Learning
and an Application to Boosting*

Yoav Freund and Robert E. Schapire®

AT&T Labs, 180 Park Avenue, Florham Park, New Jersey 07932

Received December 19, 1996

In the first part of the paper we consider the problem of dynamically
apportioning resources among a set of options in a worst-case on-line
framework. The model we study can be interpreted as a broad, abstract
extension of the well-studied on-line prediction model to a general
decision-theoretic setting. We show that the multiplicative weight-
update Littlestone-Warmuth rule can be adapted to this model, yielding
bounds that are slightly weaker in some cases, but applicable to a con-
siderably more general class of learning problems. We show how the
resulting learning algorithm can be applied to a variety of problems,
including gambling, multiple-outcome prediction, repeated games, and
prediction of points in R”. In the second part of the paper we apply the
multiplicative weight-update technique to derive a new boosting algo-
rithm. This boosting algorithm does not require any prior knowledge
about the performance of the weak learning algorithm. We also study
generalizations of the new boosting algorithm to the problem of
learning functions whose range, rather than being binary, is an arbitrary
finite set or a bounded segment of the real line.  © 1997 Academic Press

converting a “weak” PAC learning algorithm that performs
just slightly better than random guessing into one with
arbitrarily high accuracy.

We formalize our on-line allocation model as follows. The
allocation agent A has N options or strategies to choose
from; we number these using the integers 1, ..., N. At each
time stepz=1, 2, ..., T, the allocator 4 decides on a distribu-
tion p’ over the strategies; that is p/>0 is the amount
allocated to strategy i, and Y | p’= 1. Each strategy i then
suffers some /loss /! which is determined by the (possibly
adversarial) “environment.” The loss suffered by A is then
U pili=p"- (', ie, the average loss of the strategies with
respect to A’s chosen allocation rule. We call this loss func-
tion the mixture loss.

In this paper, we always assume that the loss suffered by
any strategy is bounded so that, without loss of generality,
/1 €[0, 1]. Besides this condition, we make no assumptions

Advanced Optimization (Fall 2023)
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PEA vs. OCO

Ateachroundt=1,2,--- Prediction with Expert Advice
(1) the player first picks a weight p, from a simplex A y;

(2) and simultaneously environments pick an loss vector £, € RY;

(3) the player suffers loss f;(p,) = (p,, £:), observes £; and updates the model.

PEA is a special case
of OCO!

Ateachroundt=1,2,--- Online Convex Optimization

(1) the player first picks a model x; € &;

(2) and simultaneously environments pick an online function f; : ¥ — R;

(3) the player suffers loss f;(x;), observes f; and updates the model.
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Deploying OGD to PEA

* PEA is a special case ot OCO:

Why not directly deploy OGD (proposed in last lecture) to address PEA?

Theorem 4 (Regret bound for OGD). Under Assumption 1, 2 and 3, online gra-
dient descent (OGD) with step sizes 1, = GL\/Z for t € [T'] guarantees:

T T
RegretT = Z ft (Xt) — Hél;(l Z ft (X) < gGD\/T
=1 =T =

Regret guarantee: D = max |[x—yla=v2 G = max [[&],=VN

X7y€AN EtERN
T T

—> Regrety =} (P, &) — min » (p, &) < O(VTN)
t=1 Ni=1

Advanced Optimization (Fall 2023) Lecture 6. Prediction with Expert Advice
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Deploying OGD to PEA

e OGD for PEA Problem:
D= max |[x—yl2=Vv2 G = max |4, = VN
X,yeAN EtERN
T T
—> Regret, = Z (py, Lt) — pIéliAIl Z (p, ) < O(VTN)
t=1 Ni=1

e A natural question: is the O(v/T'N) regret bound tight enough?
e recall that the lower bound of PEA is (/7 log N)

e OGD is not optimal with respect to N (number of experts)

Advanced Optimization (Fall 2023) Lecture 6. Prediction with Expert Advice

26



Deploying OGD to PEA

* PEA is a special case ot OCO:
Why not directly deploy OGD (proposed in last lecture) to address PEA?

Theorem 4 (Regret bound for OGD). Under Assumption 1, 2 and 3, online gra-
dient descent (OGD) with step sizes 1, = GL\/Z for t € [T'] guarantees:

T T
RegretT = Z ft (Xt) — Hél;(l Z ft (X) < gGD\/T
=1 =T =

Regret guarantee: D = max |[x—yla =Vv2 |G = max [[&], = VN

X7y€AN EtGRN
T T

—> Regrety =} (P, &) — min » (p, &) < O(VTN)
t=1 Ni=1
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Why OGD Fails for PEA

* PEA has a special structure whereas general OCO doesn’t have.

Convex Problem PEA Problem
Domain: convex set X Domain: (simplex X = Ay
Online function: convex function f; Online function:linear f;(p) = (p, £;)
Lower Bound: Q(GD\/T) Lower Bound: €2(/1'log N)
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Why OGD Fails for PEA

* Remember that for the general OCO, we linearized the function
to analyze the first gradient descent lemma:

|41 — x*|* = | [xe — 7V f(x0)] — x|
< |lxe — eV F(xe) — x|
= |lx¢ = x*|I* = 200 (V f (x4), %0 — x*) + 07 [V f(x0)|”
< llxe = x*|1* = 206 (£ (30) — ) + 0 [V f (x0) I

* So, linearized loss is not the essence, but the simplex domain of
the PEA problem is worthy specifically considering.
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Why OGD Fails for PEA?

* Recall that for general OCO, we update the model as follows:

General Online Convex Optimization

OGD: Proximal type update:

. 1
X¢p1 = lx [x¢ — 1V f(x4)] Xt41 — al'g r)r{nn {<X, neV fe(Xe)) + 9 |x — Xt”%}
X EC

* In PEA, is it proper to use 2-norm (ball) to measure distance?

(>

7

Ball Simplex

A ball is too pessimistic (loose)
to measure a simplex!
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Proximal View

* Recall that for general OCO, we update the model as follows:

General Online Convex Optimization

OGD: Proximal type update:
: 1
Xi+1 = Hx [x¢ — eV f(x¢)] Xt4+1 = arg r)r{nn {<X, neV fe(Xt)) + 9 |x — Xt”%}
x €

* In PEA, is it proper to use 2-norm (ball) to measure distance?

—> We need to find an alternative distance measure
for the special structure in PEA.
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Proximal View

—> We need to find an alternative distance measure
for the special structure in PEA.

* Intuitively, for Euclidean space, 2-norm is the most natural measure:
Ix —¥l3
* For PEA problem

= the decision can be viewed as a distribution within the simplex

= for two distributions P and Q, KL divergence is a natural measure:

i - o (12)
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Reinvent Hedge Algorithm

Theorem 3. Consider fi(p) = (p, €:). An online learning algorithm that updates
the model following

Py = 8Ig min {n{p, V f:(p,)) + KL(p|lp,) }
PEAN

is equal to Hedge update, i.e.,
D414 X priexp (—nly ;) for alli € [N].

Proof. Pit1 = argininmp, Vfi(p,)) + KL(p|lp;)
PEAN

= arg min7n(p, V fi(p,)) sz In (

PEAN

)
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Reinvent Hedge Algorithm

* Proximal update rule for OGD:

. 1
Xt41 = arg min {7715<X7 Vfi(xe)) + 9 |x — Xt”;}
XeX

* Proximal update rule for Hedge:

X411 = arg min {nt<x, Vfi(x:)) + KL(XHXt)}
xcX

* More possibility: changing the distance measure to a more general
form using Bregman divergence

i1 = arg min {m(x, Vfi(x:)) + Dy (x. ) |
xeX
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Bregman Divergence

Definition 1 (Bregman Divergence). Let ¢ be a strongly convex and differ-
entiable function over a convex set X, then for any x,y € &, the bregman
divergence D, associated to v is defined as

Dy(x,y) = ¥(x) —¥(y) — (VY(y), x — y).

* Bregman divergence measures the ditference
of a function and its linear approximation.

« Using second-order Taylor expansion, we know

1 ~
Dy(x,y) = §HX_YHQV2¢(£) sl

for some £ € [x,y].
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Bregman Divergence

Definition 1 (Bregman Divergence). Let ¢ be a strongly convex and differ-
entiable function over a convex set X, then for any x,y € &, the bregman
divergence D, associated to v is defined as

D¢(X7Y) — ¢(X) — w(Y) — <v¢(Y)7X — Y>'

Table 1: Choice of ¥(-) and the corresponding Bregman divergence.

P (x) Dy (x,y)
Squared Lo-distance |x][3 |x — yll5
Mahalanobis distance |x|% Ix -yl
Negative entropy > ;vilogz;  KL(x|y)
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Online Mirror Descent

Online Mirror Descent
Ateachroundt=1,2,---

xi+1 = arg min {7:(x, Vfi(x:)) + Dy (x, %) |
xeX

where Dy (x,y) = ¢¥(x) — ¢¥(y) — (V¥(y),x — y) is the Bregman divergence.

e ¢(-) is a required to be strongly convex and differentiable over a convex set X.

e Strong convexity of ¢ will ensure the uniqueness of the minimization problem,
and actually we further need some analytical assumptions (see later mirror
map defintion) to ensure the solutions’ feasibility in domain X'
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Online Mirror Descent

* So we can unity OGD and Hedge from the same view of OMD.

X411 = arg min {7715<X, Vfi(x¢)) + Dy (X,Xt)}
xeX

Algo. OMD/proximal form () Mt Regret
OGD | xu1 = ang min {m(x, Vi(x:)) + o = OWT)
xXec

N
> wiloga; /X 1 O(\/Tlog N)

Hedge | xii1 = arg min {m(x, Vfi(x) + KLixx) | | 2

XEAN

> We will give the (unified) regret analysis in the next lecture.
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Why is PEA useful?

* Prediction with Expert Advice is essentially a meta-algorithm for
combining different experts, and the “expert” can be interpreted as
any learning model with a particular kind of expertise.

* It is used in a variety of algorithmic design.
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THEORY OF COMPUTING, Volume 8 (2012), pp. 121-164
www.theoryofcomputing.org

RESEARCH SURVEY

The Multiplicative Weights Update Method:
A Meta-Algorithm and Applications

Sanjeev Arora® Elad Hazan Satyen Kale

Reccived: July 22, 2008; revised: July 2, 2011; published: May 1, 2012.

Abstract:  Algorithms in varied fields use the idea of maintaining a distribution over a
certain set and use the multiplicative update rule to iteratively change these weights. Their
analyses are usually very similar and rely on an exponential potential function.

In this survey we present a simple meta-algorithm that unifies many of these disparate
algorithms and derives them as simple instantiations of the meta-algorithm. We feel that
since this meta-algorithm and its analysis are so simple, and its applications so broad, it
should be a standard part of algorithms courses, like “divide and conquer.”
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1 Introduction

The Multiplicative Weights (MW) method is a simple idea which has been repeatedly discovered in fields
as diverse as Machine Leaming. Optimization, and Game Theory. The setting for this algorithm is the
following. A decision maker has a choice of n decisions, and needs to repeatedly make a decision and
obtain an associated payoff. The decision maker's goal, in the long run, is to achieve a total payoff which
is comparable to the payoff of that fixed decision that maximizes the total payoff with the benefit of
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={J] Applications

Learning a linear classifier: the Winnow algorithm

Solving zero-sum games approximately

Plotkin, Shmoys, Tardos framework for packing/covering LPs
Approximating multicommodity flow problems

O(log n)-approximation for many NP-hard problems
Learning theory and boosting

Hard-core sets and the XOR Lemma

Hannan's algorithm and multiplicative weights

Online convex optimization

Other applications

Design of competitive online algorithms

The multiplicative weights update method: a meta-algorithm

and applications. S Arora, E Hazan, S Kale.
Theory of Computing, 2012
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More Results on PEA
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Prediction, Learning and Games.

Nicolo Cesa-Bianchi and Gabor Lugosi.

Cambridge University Press, 2006.

Introduction

Prediction with expert advice 0
Tight bounds for specific losses

Randomized prediction

Prediction with limited feedback
Prediction and playing games
Absolute loss

Logarithmic loss

10 Sequential investment

11 Linear pattern recognition

12 Linear classification
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Efficient forecasters for large classes of experts (3) (4)
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Summary
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