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Outline
• Algorithmic Framework

• Regret Analysis

• Interpretation from Primal-Dual View

• Follow-the-Regularized Leader
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Recap: Reinvent Hedge Algorithm
• Proximal update rule for OGD:

• Proximal update rule for Hedge:

• More possibility: changing the distance measure to a more general 
form using Bregman divergence
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Bregman Divergence

• Bregman divergence measures the difference 
of a function and its linear approximation.

• Using second-order Taylor expansion, we know
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Bregman Divergence
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Online Mirror Descent

Online Mirror Descent
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Online Mirror Descent
• So we can unify OGD and Hedge from the same view of OMD.

OGD

Hedge

OMD/proximal formAlgo.

• We also learn ONS for exp-concave functions, can it be included?
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Recap: ONS in a view of Proximal Gradient

Convex Problem
Property:

Proximal type update:

OGD: 

Exp-concave Problem
Property:

Proximal type update:

ONS: 
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Online Mirror Descent
• Our previous mentioned algorithms can all be covered by OMD.

OGD for 
convex

OGD for 
strongly c.

ONS for 
exp-concave

Hedge for 
PEA

OMD/proximal formAlgo.
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General Regret Analysis for OMD

OMD update:

bias term (range term) variance term (stability term) negative term
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Proof of Mirror Descent Lemma

Proof.

term (a) term (b)

In the following, we will use the stability lemma to analyze term (a), and use the 
Bregman proximal inequality to analyze term (b).
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Proof of Mirror Descent Lemma
Proof.

We introduce the following stability lemma to analyze term (a):

term (a) term (b)
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Stability Lemma

Proof.



Lecture 7. Online Mirror DescentAdvanced Optimization (Fall 2023) 14

Stability Lemma

(1)

Proof.



Lecture 7. Online Mirror DescentAdvanced Optimization (Fall 2023) 15

Stability Lemma

(2)

Proof.
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Stability Lemma

(2)

(1)

(Hölder’s inequality)

Proof.
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Proof of Mirror Descent Lemma
Proof.

We further introduce following lemma to analyze term (b).

term (a) term (b)

Crucial for analysis of first-order optimization methods based on Bregman divergence.
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Bregman Proximal Inequality

Proof.
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Bregman Proximal Inequality

Proof.
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Proof of Mirror Descent Lemma
Proof.

term (a) term (b)

(negative term, usually dropped; 
but sometimes highly useful)
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General Regret Analysis for OMD

Using Lemma 1, we can easily prove the following cumulative regret bound for OMD.
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General Regret Analysis for OMD

Proof.
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General Regret Analysis for OMD

With this general regret bound for OMD, it will become straightforward to 
analyze OGD/Hedge/ONS in a unified way, which we previously analyzed 
specifically for each algorithm.
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OMD Implication: Recovering OGD
Algorithm. With Theorem 3, it is straightforward to recover OGD:

OGD for convex

Regret Analysis.
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OMD Implication: Recovering Hedge
Algorithm. With Theorem 3, it is straightforward to recover Hegde:

Hedge for PEA

Regret Analysis.
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OMD Implication: Recovering ONS
Algorithm. With Theorem 3, it is straightforward to recover ONS:

ONS for exp-concave

Regret Analysis.
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OMD Implication: Recovering OGD for S.C.
Algorithm. With Theorem 3, we can recover OGD for strongly convex function:

OGD for strongly convex

Regret Analysis.
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A Summary of OMD Deployment
• Our previous mentioned algorithms can all be covered by OMD.

OGD for 
convex

OGD for 
strongly c.

ONS for 
exp-concave

Hedge for 
PEA

OMD/proximal formAlgo.
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Another View for Mirror Descent

(definition of Bregman divergence)

Proof.
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Another View for Mirror Descent

Proof.

(definition of Bregman divergence)
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Another View for Mirror Descent
• A two-step update for mirror descent

Ø The first step is somehow similar to a “gradient descent” step;
Ø The second step looks like a “projection” step.
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Primal-Dual View for Mirror Descent
• Recall the gradient descent update

but this simply does not make sense for general non-Euclidean space…

• Bits in convex analysis
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Primal-Dual View for Mirror Descent

gradient step

projection



Lecture 7. Online Mirror DescentAdvanced Optimization (Fall 2023) 34

Mirror Map

See Chapter 4.1 of Bubeck’s book for rigorous discussions. 
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Mirror Map Calculation

equivalent
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Mirror Map Calculation
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Mirror Descent: history bits

A. S. ‪Nemirovski (1947 - D. B. Yudin (1919 - 2006)

A.S. Nemirovski, D.B. Yudin, Problem Complexity and Method 
Efficiency in Optimization. Wiley-Interscience Series in Discrete 
Mathematics (A Wiley-Interscience Publication/Wiley, New York, 1983)
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Another OCO Framework: FTRL
• Recall: Follow the Leader (FTL)

Select the expert that performs best so far, specifically,

FTL achieves linear regret 
in the worst case!
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Another OCO Framework: FTRL
• Recall: Follow the Leader (FTL)

Select the expert that performs best so far, specifically,

a natural idea: adding regularizers to stabilize the algorithm.

• As mentioned, FTL is sub-optimal due to its unstable nature.
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Another OCO Framework: FTRL

Follow The Regularized Leader (FTRL)

FTRL: essentially adding regularizer to stabilize the FTL algorithm.

We use time-varying regularizer to encode the potentially changing step sizes.
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FTRL vs. OMD: Update Styles
• OMD update style:

• FTRL update style:

Comparison: 
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Linearization in FTRL
• FTRL update requires to store all the historical online functions.

• Surrogate optimization: maintain regret while achieving one-pass update

surrogate

It suffices to store 
gradient vectors only. 
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General Analysis of FTRL

(range term)

(stability term)
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General Analysis of FTRL

(range term)

(stability term)

(negative term)
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General Analysis of FTRL
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General Analysis of FTRL

(range term)

(stability term)

• The first and third terms are similar to those in OMD regret analysis.
• The second term is the stability term, which is crucial for the regret analysis,  and we 

will explain why it’s called stability later.
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FTRL Stability

Proof.

(strong 
convexity)
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FTRL Stability

Proof.

(Hölder’s inequality)
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Regret Bound for FTRL

Proof. (range term)

(stability term)
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Regret Bound for FTRL

(stability)Proof.



Lecture 7. Online Mirror DescentAdvanced Optimization (Fall 2023) 51

FTRL can be equivalent to OMD
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FTRL vs. OMD: Equivalence Condition

Proof. For OMD, taking the gradient and setting it to 0 will lead to:

On the other hand, for FTRL, setting the gradient to zero will lead to:
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FTRL as Dual Averaging
• Mirror Descent

• Dual Averaging (lazy mirror descent)

averaging updates in dual space

this is FTRL update
(consider fixed step size 

for simplicity)
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FTRL as Dual Averaging

Lin Xiao. Dual Averaging Method for Regularized 
Stochastic Learning and Online Optimization. NIPS 2009.

NIPS 2019 ten-year 

Test of Time Award!

Y. Nesterov. Primal-dual subgradient 
methods for convex problems, 2005.
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Yurii Nesterov
1956‪–‪‪

UCLouvain,‪Belgium
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FTRL vs. OMD
• FTRL and OMD frameworks can recover different OCO methods.

• They share many similarities in both algorithm and regret, but they 
are fundamentally different in essence, especially when the step 
size scheduling is time-varying.

• The dynamics of FTRL and OMD also exhibits great difference 
when considering beyond static regret minimization, such as in 
dynamic regret minimization, or repeated game convergence.
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Congrats to Nemirovski and Nesterov 
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Congrats to WLA Prize (actually)

2023年11月6日
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Summary

Q & A
Thanks!


