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Recap: Reinvent Hedge Algorithm

* Proximal update rule for OGD:

. 1
Xt41 = arg min {7715<X7 Vfi(xe)) + 9 |x — Xt”;}
XeX

* Proximal update rule for Hedge:

X411 = arg min {nt<x, Vfi(x:)) + KL(XHXt)}
xcX

* More possibility: changing the distance measure to a more general
form using Bregman divergence

i1 = arg min {m(x, Vfi(x:)) + Dy (x. ) |
xeX
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Bregman Divergence

Definition 1 (Bregman Divergence). Let ¢ be a strongly convex and differ-
entiable function over a convex set X, then for any x,y € &, the bregman
divergence D, associated to v is defined as

Dy(x,y) = ¥(x) —¥(y) — (VY(y), x — y).

* Bregman divergence measures the difference
of a function and its linear approximation.

 Using second-order Taylor expansion, we know

1
Dy(x,y) = 5% = ¥lT2ye) =

for some £ € [x,y]. y X
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Bregman Divergence

Definition 1 (Bregman Divergence). Let ¢ be a strongly convex and differ-
entiable function over a convex set X, then for any x,y € &, the bregman
divergence D, associated to v is defined as

D¢(X7Y) — ¢(X) — w(Y) — <v¢(Y)7X — Y>'

Table 1: Choice of ¥(-) and the corresponding Bregman divergence.

P (x) Dy (x,y)
Squared Lo-distance |x][3 |x — yll5
Mahalanobis distance |x|% Ix -yl
Negative entropy > ;vilogz;  KL(x|y)
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Online Mirror Descent

Online Mirror Descent
Ateachroundt=1,2,---

xi+1 = arg min {7:(x, Vfi(x:)) + Dy (x, %) |
xeX

where Dy (x,y) = ¢¥(x) — ¢¥(y) — (V¥(y),x — y) is the Bregman divergence.

e ¢(-) is a required to be strongly convex and differentiable over a convex set X.

e Strong convexity of ¢ will ensure the uniqueness of the minimization problem,
and actually we further need some analytical assumptions (see later mirror
map defintion) to ensure the solutions’ feasibility in domain X'
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Online Mirror Descent

* So we can unity OGD and Hedge from the same view of OMD.

X;41 = arg min

{m e V() + Dy (x,31) |

XEX
Algo. OMD/proximal form () ul Regret
OGD | 31 = arg min {ny (e, Vfilx)) + 5 [ —xi[2}] 1x[3 = O(VT)
xeX 2
N
Hedge X1 = arg gnin {nt<x, Vfe(xt)) + KL(Xth)} 231 zilogx; |/ 1 O(/Tlog N)
XCEAN 1=

* We also learn ONS for exp-concave functions, can it be included?
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Recap: ONS in a view of Proximal Gradient

Convex Problem Exp-concave Problem
Property: fi(x) > fi(y) + V/fi(y)' (x—y)| | Property:fi(x) > fily)+ V/fi(y) (x—y)

5 I =311 v
1
OGD: x¢4+1 =11y [Xt — vat(xt)] ONS: A= Ai1 + Vii(x)VSir(xe)'

1 _
Xt4+1 — Hfgt Xt — ;At 1vft(Xt)

Proximal type update: Proximal type update:
. 1 :
X1 = arg min(x, V fi(x¢)) + o |x — Xt“g X441 = arg min(x, V fi(x¢)) + ! |x — Xt”ixt
xeX Tt xeX 2
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Online Mirror Descent

* Our previous mentioned algorithms can all be covered by OMD.

Algo. OMD/proximal form ¥(+) Mt Regretr
: 1
OGD for X1 = arg min (X, V fi(x¢)) + 5 [x — Xt||§ 1x||2 % O(\/T)
convex xcX
1
OGD for X¢q41 = arg minng(x, V fi(x¢)) + = [|[x — XtHg HXH% % O(% log T')
strongly c. xEX 2
1
ONS for X¢41 = arg minn(x, Vfi(x¢)) + = ||x — Xt”ixt IxI1% % O(5 log T)
exp-concave XEX 2 ! 7
Hedge for _ : \V/ KL a In N
PRA Xt+1 = alg Min (X, Vfe(x¢)) + KL(x[|x:) |3 @5 log o)/ 2N | O(v/T'log N)
XEAN i=1
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General Regret Analysis for OMD

OMD update:

X¢11 = arg min {nt<x, Vfe(x¢)) + D¢(X,Xt)}
xcX

Lemma 1 (Mirror Descent Lemma). Let D,, be the Bregman divergence w.r.t. i :
X — R and assume ) to be \-strongly convex with respect to a norm || - ||. Then,
Yu € X, the following inequality holds

Foxe) = Few) < - (Dylaa,x0) = Dot xe0) + % V3000 2 = 2 Dyl 1)

bias term (range term) variance term (stability term) negative term
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Proof of Mirror Descent Lemma

Lemma 1 (Mirror Descent Lemma). Let D, be the Bregman divergence w.r.t. v :
X — R and assume ) to be \-strongly convex with respect to a norm || - ||. Then,
Yu € X, the following inequality holds

1 . 1
fe(x¢) = fr(u) < E(’Dw(u,xt)—pw(u,XH_l))—l-% vat(xtﬂlz_EDQA(XH—laxt)

(V fi(x¢),x¢ — 1)
(Vfie(xt),x¢ — xeq1) + (Vfie(Xt), X101 — 1)

Proof. fi(x:) — f:(u)

IA A

In the following, we will use the stability lemma to analyze term (a), and use the
Bregman proximal inequality to analyze term (b).
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Proof of Mirror Descent Lemma

Proof. fir(xe) — fe(u) < (Vfe(xe),xe — Xe1) + (V fe(Xt), X1 — 1)

We introduce the following stability lemma to analyze term (a):

Lemma 2 (Stability Lemma). Consider the following updates:

X = arg minge x (g, X) + Dy (x, )
x' = arg mingey (g8, x) + Dy (x,C)

When the reqularizer 1) : X — R is a A\-strongly convex function with respect to norm || - ||, we have

Alx—x| < lg—gl.-
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Stability Lemma

Lemma 2 (Stability Lemma). Consider the following updates:

{X = arg minke x (g, X) + Dy (%, €)

x' = arg minge x (g, %) + Dy (%, c)

AMx—x| < lg—gl.-

When the reqularizer 1) : X — R is a A\-strongly convex function with respect to norm || - ||, we have

Proof. For any convex function f, we have the first-order optimality condition:
f)<fly) VWyeX = Vfx)'(y—x)>0 VyedX
Therefore, for x" = arg minge x {(g’, x) + Dy (%, c)}, we have

(g + Vi (x') — Vip(c),u — x’) > 0 holds for Vu € X.
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Stability Lemma

Lemma 2 (Stability Lemma). Consider the following updates:

X = arg minye x (g, X) + Dy (%, )
x' = arg minge x (g, %) + Dy (%, c)

AMx—x| < lg—gl.-

When the reqularizer 1) : X — R is a A\-strongly convex function with respect to norm || - ||, we have

Proof. (g + Vi (x') — Vip(c),u — x’) > 0 holds for Vu € X.

By the first-order optimality conditions of x and x’,
(Vih(x) = Vip(c) + g,x" —x) = 0
(Vip(x') = Vip(c) + g, x = x') > 0

—> & -xg-g)>(V¥(x)-Vy(x),x-x) (1)
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Stability Lemma

Lemma 2 (Stability Lemma). Consider the following updates:

{X = arg minke x (g, X) + Dy (%, €)

x' = arg minge x (g, %) + Dy (%, c)

AMx—x| < lg—gl.-

When the reqularizer 1) : X — R is a A\-strongly convex function with respect to norm || - ||, we have

Proof. Besides, by the strong convexity of 1, we have
/ / )\ /
(Vih(x),x = x') > (%) = (x') + 7 [Ix = x|
/ / / )\ /
(Vih(x), %' = x) 2 (x) —9(x) + 3 [x = x|

Summing them up, we get
(V9 (x) = Vo (<) x =) > A [l = x|

(2)
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Stability Lemma

Lemma 2 (Stability Lemma). Consider the following updates:

X = arg minye x (g, X) + Dy (%, )
x' = arg minge x (g, %) + Dy (%, c)

When the reqularizer 1) : X — R is a A\-strongly convex function with respect to norm || - ||, we have

AMx—x| < lg—gl.-

Proof. (x'—x,g-8g") > (VY (x) - VY (x),x—x) (1)
(Vi (x) — Vo (x),x—x) > A [x =% @
—> AMix —x'|* < (Vo (x) — Vo (x),x —x) < (x' —x,8 — &)

< [x—x'|l lg —&'ll.

— Ax—x<llg—gl. [
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Proof of Mirror Descent Lemma

Proof. fir(xe) — fe(u) < (Vfe(xe),xe — Xe1) + (V fe(Xt), X1 — 1)

We further introduce following lemma to analyze term (b).

Lemma 3 (Bregman Proximal Inequality). Let X' be a convex set in a Banach space 3. Let
f + X — Rbea closed proper convex function on X. Given a convex regularizer ¢ : X — R,
we denote its induced Bregman divergence by Dy (-, ). Then, any update of the form

X¢41 = argmin {(g, x) + Dy (X, X¢)}
xeX

satisfies the following inequality for any u € X’:

(8, Xt41 — 1) < Dy(u,x¢) — Dy(u,X¢41) — Dy (Xp41,X¢).

Crucial for analysis of first-order optimization methods based on Bregman divergence.
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Bregman Proximal Inequality

Lemma 3 (Bregman Proximal Inequality). The Bregman proximal update in the form of
X1 = argming . v {(&8:, X) + Dy (x, %)} satisfies

<gtaxt+1 — 11> < D¢(U,Xt) — D¢(uaxt+1) — D¢(Xt+1,Xt)-

Proof. Recall that for any convex function f, we have the following first-order
optimality condition:

f)<fly) VWyeX = Vfx)'(y—x)>0 VyedX
Therefore, for x;+1 = arg mingex {(g:, %) + Dy (X, %)}, we have

(g + Vi (x¢41) — V(x¢), 1 — x441) > 0 holds for any u € X.
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Bregman Proximal Inequality

Lemma 3 (Bregman Proximal Inequality). The Bregman proximal update in the form of
X1 = argming . v {(&8:, X) + Dy (x, %)} satisfies

<gtaxt+1 — 11> < D¢(U,Xt) — D¢(uaxt+1) — D¢(Xt+1,Xt)-

Proof. (gt + V(x411) — Vib(x¢),u — x441) > 0 holds for any u € X.
On the other hand, the right side of Lemma 3 is:

Dy(u,x;) — Dy (u,X¢41) — Dy (Xeg1,Xe)

=) — Pixe) — (VY (xe), 0 == —Ptu) + Y1) + (VP (Xe41), 0 — Xig1)
— Y(Xpp1) + Ple) + (Vo (xt), Xp1 =)

= (VY (xt+1) — VY(Xt), 0 — Xp41) -

Rearranging the terms can finish the proof.
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Proof of Mirror Descent Lemma

Proof. fir(xe) — fe(u) < (Vfe(xe),xe — Xe1) + (V fe(Xt), X1 — 1)

Lemma 2 (Stability Lemma).
Mx1 —xo| < [[g1 — g2,

= term (@) = (V/ulxe). X0 = Xer1) < Vil 2

Lemma 3 (Bregman Proximal Inequality).
<gt, Xt4+1 — 11> < Dw(ua Xt) — sz (u, Xt+1) — D¢ (Xt+1, Xt)

I:> term (b) < %(Dw(u X¢) — Dy (0, X¢41) — D¢(Xt+1,xt))

1 1
> fi(xt) = fr(u) < —(Dy(u, %) =Dy (0, x¢11)) + TN fo(xe) |2 = =Dy (xes1, %)
ul A ul [
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General Regret Analysis for OMD

Lemma 1 (Mirror Descent Lemma). Let D,, be the Bregman divergence w.r.t. ¢ : X — R
and assume 1 to be \-strongly convex with respect to a norm || - ||. Then, Vu € X, the
following inequality holds

fe(x¢) = fe(u) < l(D¢(u,Xt)—D¢(u,xt+1))+% vat(Xt)Hi—lpw(xtﬂaxt)

T)t Tt

Using Lemma 1, we can easily prove the following cumulative regret bound for OMD.

Theorem 4 (General Regret Bound for OMD). Assume v is A\-strongly convex w.r.t. |||
and n, = n,Vt € [T|. Then, for all u € X, the following regret bound holds

> i) =3 fulw < PR 1S

Ui

IIMﬂ
4
=
2
=,

|

I |~
]
3
<
2
T
¥
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General Regret Analysis for OMD

Theorem 4 (General Regret Bound for OMD). Assume 1) is A-strongly convex w.r.t. || ||
and n, = n,Vt € [T|. Then, for all u € X, the following regret bound holds

T T T
Dy(u,x1) 77
Y filx) =) filw) < +5 Z IV fi(x)ll; — = szb (X¢41,%¢)
t=1 t=1 t=1 =
Proof.
T T 1 1 T
D fix) =Y fi(w) <Y (= Dylu,x;) — —Dy(u,x¢41)) + Z IV fi(xa)l} — Dw (X415 %¢)
t=1 t=1 =1 't 77 t=1 =1 't
= Lpux) - 2Dy x )+2T:<i— 1>D(ux) Z”—fou—z D11,
m Py W &1 n Y (W AT+1 s ; -1 P\ Wy &g st \ t t ’gb t+1y ¢
Dy(u,x1) 7 a 1
< = XZHVft(Xt I = =D Dy(xes1,%0) O
n t=1 n t=1
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General Regret Analysis for OMD

Theorem 4 (General Regret Bound for OMD). Assume 1) is A-strongly convex w.r.t. || ||
and n, = n,Vt € [T|. Then, for all u € X, the following regret bound holds

T T T
Sk - Y fulw) < Pelnx) §Z IV ()12 = = Zm (Xet1, X¢)
t=1 t=1 t=1 t 1

With this general regret bound for OMD, it will become straightforward to
analyze OGD/Hedge/ONS in a unified way, which we previously analyzed
specifically for each algorithm.
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OMD Implication: Recovering OGD

Algorithm. With Theorem 3, it is straightforward to recover OGD:

OGD for convex X¢41 = arg min {(X, %vft(xt» + % |x — XtHg}

xeX
e (x) =3 |x||3 is 1-strongly convex w.r.t. || - ||2
e The dual norm of || - ||z is still || - ||2
Regret Analysis
T T
—> > filx) th < = el = - a4 ) +Zm ¥ £
) 1 1 - a
2 2
= la = x5 = — flu = x5 + ;(E o ) lu— x5 + Z | fo(x)ll5
D? D?
<—4+ =+ G* < 3DGVT
S m T ;m B O]
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OMD Implication: Recovering Hedge

Algorithm. With Theorem 3, it is straightforward to recover Hegde:

Hedge for PEA | X¢+1 = arg min {<X7 NV fi(x:)) + KL(XHXt)}

xeX

e Negative entropy is 1-strongly convex w.r.t. || - |1

e The dual norm of || - |1 is || - [|c

e We initialize the initial prediction x; = {%, e %}
Regret Analysis.

T T L(u||x1) In N
—> > filx) Z ; +772H5t\| s -t
t=1 t=1
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OMD Implication: Recovering ONS

Algorithm. With Theorem 3, it is straightforward to recover ONS:

1
ONS for exp-concave | X¢+1 = arg min {(X, ;Vft(xt» +

1 2
> lx =%, }

xeX

e (x) = 2 HxHi5 is 1-strongly convex w.r.t. ||-||4, with Ay = eT+30 . V(%) V fo(xy) T

e The dual norm of || - || 4, is || - || 42
i
Regret Ana1y51s
T
<
— th x;) th < 23 (Il =xil%, = =1, =l - xt|ywt<wft(xtw) + —ZHVft (x0) %+
= ‘7! 7=
T
y
— 52 (HU-—XtHAt — Hu—meAt) + —ZHVft (3¢t |1 -
t=1 7=
gl
< 5lu —X1HAO+—ZHVft (3¢t 1% -+ _
t 1
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OMD Implication: Recovering OGD for S.C.

Algorithm. With Theorem 3, we can recover OGD for strongly convex function:

1 1
OGD for strongly convex | Xt+1 = arg min {<X7 — Ve(xe)) + 5 llx — XtHg}

xeX
o Yy (x) = % Hng is 1-strongly convex w.r.t. || - ||2
e The dual norm of || - [[2is || - |2
Regret Analysis.
T r 1 1 2 1 2 2 S 2
|:> th(xt) - th(u) <5 Z — lu—x¢|5 — = [[u—xealls —ollu—xll5 | + 5 Zm IV fe(xt) |3
t=1 t=1 205\ Nt 25
T
1 1 1 2 1 2
— — — — — G
2 ; (m M1 0) el ;m
T
1 «— G?
=0+ 5 E []

Advanced Optimization (Fall 2023) Lecture 7. Online Mirror Descent 27



A Summary of OMD Deployment

* Our previous mentioned algorithms can all be covered by OMD.

Algo. OMD/proximal form ¥(+) Mt Regretr
_ 1
OGDIor | 5 11 = arg minn (x, VAG) +5 %2 | [x|3 | & | oWT)
convex xeX
| 1
OGD fOr X¢41 = arg mmm(x, Vft(xt)> + = HX_XtHg HXH% % O(%logT)
strongly c. xEX 2
| 1
ONS for X¢41 = arg minn(x, Vfi(x¢)) + = ||x — Xt”ixt IxI1% % O(5 log T)
exp-concave xEX 2 ¥ K
Hedge for _ : \V/ KL a In N
X1 = arg minny(x, V fi(x)) + KL(x||x;) > xilog x|/ B O(v/T'log N)
PEA XEAN i=1
28
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Another View for Mirror Descent

Theorem 5. The OMD update form

Xt+1 = arg mingc y {m(x, Vfi(xe)) + Dy(x,x¢)} (%)
is equivalent to the following two-step updates:

{ Vi(yit1) = Vp(xs) — 0V fi(x4)

Xt+1 — arg minxeX D¢ (X7 Yt—l—l) (©)

Proof. (o) Xt+1 = arg minyc y Dy (X, ye+1)
= arg min,c y Y(x) = Y(yr+1) — (VY (Y1) s X — Ye41)
= arg min, .y ¥(x) — (VY(yt+1),X)
= arg min, ¢ y Y(x) — (Vih(x¢) — 1V fo(x1), %)

Advanced Optimization (Fall 2023) Lecture 7. Online Mirror Descent
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Another View for Mirror Descent

Theorem 5. The OMD update form

X1 = arg Minyey {7(X, Vfi(xe)) + Dy (3, %) }
is equivalent to the following two-step updates:

{ Vw(ym) — Vw(Xt) — eV fe(%¢)

X¢41 = arg min,ey Dy (X, yi41)

Proof. (x) Xuy1 = arg mineey {m (Vfe(xe),%) + Dy (x,%¢) |

= arg min, cy {n (Vfie(xe), %) + (%) — (x¢) — (Vip(xy),x — x¢) }

— arg mingy {1 (Vo) %)+ $(x) — (V) (x¢) , %) }

Advanced Optimization (Fall 2023) Lecture 7. Online Mirror Descent
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Another View for Mirror Descent

* A two-step update for mirror descent

( Vi(yis1) = Vo(xe) — 0V fi(X¢)

| X¢+1 = arg mingcx Dy(X,yi41)

» The first step is somehow similar to a “gradient descent” step;

» The second step looks like a “projection” step.

|:> Key role in mirror descent: the operator V()

Advanced Optimization (Fall 2023) Lecture 7. Online Mirror Descent
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Primal-Dual View for Mirror Descent

* Recall the gradient descent update
x =V f(x)

but this simply does not make sense for general non-Euclidean space...

* Bits in convex analysis

- consider a Banach space BB, whose dual space is denoted by B*

- x is in the primal space B, and V f(x) is in the dual space B*

—> asimple intuition: f(x + Ax) =~ (V f(x), Ax)

Advanced Optimization (Fall 2023) Lecture 7. Online Mirror Descent
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Primal-Dual View for Mirror Descent

primal space

dual space

Vip(xy)

gradient step
(%)

®<«--
* Il

projection
.)

Vi (yisr)

) Vip(yii1) = Vib(xe) — nV f(x)

0) X¢41 € Hl;b( Vit1]

(I [y] = arg min,exqp Dy (X, ¥))

V) (-) is the mirror map to link two spaces

33
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Mirror Map

Definition 2 (Mirror Map). Let D C R" be a convex open set such that X’ is
included in its closure, thatis X C D, and X N D # (. We say that ¢ : D — R
is a mirror map if it safisfies the following properties:

(i) % is strictly convex and differentiable;
(ii) The gradient of v takes all possible values, that is V¢ (D) = R";
(iii) The gradient of ¥ diverges on the boundary of D, that is
Tim | Vi(x)| = +oc

See Chapter 4.1 of Bubeck’s book for rigorous discussions.
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Mirror Map Calculation

Vi(yit1) = Vp(xs) — 0V fir(x4)

Xt+1 = alg mianX D@D (Xa Yt—l—l)

equivalent Yit1 = V¢* (V@D (Xt) — ntvft (Xt))
— X¢+1 = arg minyc y Dy (X, yit+1)

e Here, V1" (-) is the Fenchel Conjugate of Vi (-).

Definition 3 (Fenchel Conjugate). For a function f : R? — [—o00, 0o], we define
its Fenchel conjugate f* : R — [—o0, oo] as

f*(g) = supycra {(g,y) — f(¥)}-
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Mirror Map Calculation

Proof. We first show for any convex and closed f, g = Vf(x) +<— x =V f*(g).

By the convexity of f (f(y) > f(x) + (g, y — x), Vy):

(g, x) — f(x) > (g,y) — f(¥),Vy

which means (g,y) — f(y) achieves its supremum in y at y = x. Thus, by the
definition of Fenchel Conjugate:

f(g)=sup(g,y) — fly) = (g,x) — f(x)

y R4
By taking the gradient w.r.t. g at both sides:

Vf*(g) =x
Therefore we have proved that g = Vf(x) < x = Vf*(g).
By setting f(-) = ¢ (-) and x = y+1, we finish the proof. ]

Advanced Optimization (Fall 2023) Lecture 7. Online Mirror Descent
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Mirror Descent: history bits

PROBLEM COMPLEXITY AND
METHOD EFFICIENCY IN
OPTIMIZATION

A. S. NEMIROVSKY
Senior Scientific Fellow, State University of Moscow, USSR.

R B
£ % DAwsON, A. S. Nemirovski (1947 - D. B. Yudin (1919 - 2006)
i i e i | A.S. Nemirovski, D.B. Yudin, Problem Complexity and Method

Efficiency in Optimization. Wiley-Interscience Series in Discrete
Mathematics (A Wiley-Interscience Publication/Wiley, New York, 1983)

JOHN WILEY & SONS | 23. Nemirovskiy, A. S., and Yudin, D. B. (1979). Efficient methods of solving convex-
CHAIR = TIPSR © BN S T e programming problems of high dimensionality. Ekonomika i matem. metody, XV,
No. 1. (In Russian.)
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Another OCO Framework: FITRL

e Recall: Follow the Leader (FTL)

Select the expert that performs best so far, specifically,
FTL

Dy — argmin <p7 Lt—1>
PEAN

where L; | £ 22;11 2, € RY is the cumulative loss vector.

© [ >l tamt fie> 0] - Rosy = 3 )~ i S

----------- T
___________ ~ T -5 = O(T)

y .' |
/ b2 = 0'51/ = / f22=0 / = :/ faa =1 /: °°°°° FTL achieves linear regret

—————————— in the worst case!
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Another OCO Framework: FITRL

e Recall: Follow the Leader (FTL)

Select the expert that performs best so far, specifically,

pi™t = argmin (p, L; )
PEAN

where L; | £ 22;11 2, € RY is the cumulative loss vector.

* As mentioned, FTL is sub-optimal due to its unstable nature.

> anatural idea: adding regularizers to stabilize the algorithm.
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Another OCO Framework: FITRL

Follow The Regularized Leader (FTRL)

xecX

X411 = arg min {Z fs(x) + i1 (x )}

where ¢, 1 : X — R is the regularizer at round ¢ + 1 update.

FTRL: essentially adding regularizer to stabilize the FTL algorithm.

We use time-varying regularizer to encode the potentially changing step sizes.

Advanced Optimization (Fall 2023)

Lecture 7. Online Mirror Descent

40




FTRL vs. OMD: Update Styles

* OMD update style:

xi11 = arg min { (x,1,V fy(x:)) + Dy (x, %) }
xeX

* FTRL update style:

X;11 = arg min {Zfs ) + e (x )}

xeX

Comparison:
— in OMD, x;,; depends on x; and f;(-);

— in FTRL, x4 1 depends on entire history {fs(-)}%_; and regularizer ;1.
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Linearization in FIRL

« FTRL update requires to store all the historical online functions.

X;q11 = arg min {Z fs(%) + a1 (x )}

xeX

* Surrogate optimization: maintain regret while achieving one-pass update
fe(xe) = fe(u) < (Vfe(xe), %0 —w) = Le(xe) — £e(u)

where we define the linear surrogate loss as /;(x) = (V fi(x;),x).

xcX

surrogate X411 = arg min < Zf ‘|' ¢t+1 )}

(¢
— arg min < Z<vfs (Xs), X> 4 ¢t+1(X)} It s_uff/ces to store

XEX \821

gradient vectors only.
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General Analysis of FTRL

Lemma 4 (FTRL Regret). We denote that F;(x) = 1 (x) + Zi;i fs(x). Thus, the
FTRL algorithm runs x; = arg min, » Fy(x). Then, for any u € X, we have

xcX

th(xt) — Z fr(u) = ¥ri1(u) — min ¢ (x)

+ XT: (Ft(xt) — Fyp1(Xe41) + ft(Xt))

+ Fri1(xr41) — Frii(u)
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General Analysis of FTRL ) .
Fi(x) = (%) + 2 _omn f5(%)

Y fexe) =) fr(w) = drya(u) — min g (x)

xcX

+ XT: (Ft(xt) — Fyp1(Xe41) + ft(Xt))

+ Fri1(xr41) — Frii(u)

Proof. The term Zf_l fi(x¢) appears at both side of the equality, thus we verify

_ Z fe(w) = Yr41(u)—min Pr(x)+) (Ft(Xt)—FtH(XtH))+FT+1(XT+1)_FT+1(‘1)°

t=1
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General Analysis of FTRL ) .
Fi(x) = (%) + 2 _omn f5(%)

Proof. The term Zthl fi(x¢) appears at both side of the equality, thus we verify

_th = Yri1(u)— )I(Ig(l%(X)JrZ (Ft(Xt)_Ft—l—l(Xt—l—l))+FT-|—1(XT-|—1)_FT+1(U')'

t=1

Recall that F; (x1) = minger 11 (x), telescoping over Zle (Ft(xt) — Fiq (Xt+1))

ZT: (Ft(Xt) — Ft+1(Xt+1)> = F1(x1) — Fry1(x741)

= =Y fi(w) =¢ri(u) = Fi(x1) + Fi(x1) = Frya(xr41) + Froa(xri1) — Proa(u)

= ¢ry1(u) — Fryi(u),
which is true by the definition of Fry1(x) £ ¢py1(x) + S0, fo(x). O
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General Analysis of FTRL

Lemma 4 (FTRL Regret). We denote that F;(x) = 1 (x) + Zi;i fs(x). Thus, the
FTRL algorithm runs x; = arg min, » Fy(x). Then, for any u € X, we have

xcX

th(xt) — Z fr(u) = ¥ri1(u) — min ¢ (x)

T
+ Z (Ft(Xt) _ Ft+1(Xt—|—1) + fi (Xt)) (stability term)
t=1

+ Fri1(xr41) — Frii(u)

* The first and third terms are similar to those in OMD regret analysis.

* The second term is the stability term, which is crucial for the regret analysis, and we
will explain why it’s called stability later.
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FTRL Stability F( ) A W ( )_|_ Zt_l f ( )

Lemma 5 (FTRL Stability). Assume that 1, is \;-strongly convex w.r.t. || - ||. Then,
the FI'RL update satisfies

2
Ft(Xt) — Ft—l—l(XH_l) + ft(Xt) < vat(xt)H*

+ e (Xpr1) — Vg1 (Xeg1)-

t

Proof. Fi(xi) — Fiy1(Xeq1) + fu(xe)

= Fy(x¢) + fr(x¢) — (Fe(Xer1) + [e(Xe01)) + e (Xer1) — Y1 (K1)

A
< AVE(%4) + Vi (%e)y Xt — Xe1) — = 1% = Xeqa || + e (%e1) — Y1 (Xe1)

2
At 2
1x¢ — Xeq1]|” + Ve(Xeg1) — Veg1 (Xe41)

< (Vfi(xe), X — Xeq1) — 5
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FTRL Stability F( ) A W ( )_|_ Zt_l f ( )

Lemma 5 (FTRL Stability). Assume that 1, is \;-strongly convex w.r.t. || - ||. Then,
the FI'RL update satisfies

|V fe(xo)ll

t

Fi(xt) — Fey1(Xer1) + fe(xe) <

+ e (Xpr1) — Vg1 (Xeg1)-

Proof. Fy(x¢) — Fyy1(Xe1) + fe(xe)

A
< (Vfe(xt),X¢ — Xpq1) — Et Ixe — X ||* + e(Xeg1) — Pepr (Xet1)
A
< vat(Xt)H* X — Xpp1 || — gt X — Xt+1H2 + Ve (Xe41) — Vi1 (Xeg1)
1 A
< — IV A = b =01 |7+ e (Xer1) — Py (xe11) []
Ay 4
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Regret Bound for FTRL . .
Fy(x) £ (%) + 023 fo()

Theorem 6 (Regret Bound for FTRL). Assume 1.(x) is \;-strongly convex on
domain X w.r.t. || - ||. We further assume that 1, (x) < ¢41(x) for t € |T|.Then, for
FTRL satisfies

T

T T T 1 ) )\t
> filx) = > fr(w) < Prga () + o IVA =)l - > 7 1% = X1
t=1 t=1 t=1 "t

t=2

xeX

T
Proof. ™ "(f,(x;) — fi(u)) = 4741 (u) — min ¢y (x)
t=1 T
+ Z (Ft(Xt) — Ft—|—1(Xt+1) + fi (Xt)> (stability term)

+ Fri1(xr11) — Frei(u)
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Regret Bound for FTRL . .
Fy(x) £ (%) + 023 fo()

Theorem 6 (Regret Bound for FTRL). Assume 1.(x) is \;-strongly convex on

domain X w.r.t. || - ||. We further assume that 1, (x) < ¢41(x) for t € |T|.Then, for
FTRL satisfies
T T T T
> felxe) Z u) < ¢riqi(u )+Z)\— IV fr(x)l —ZthXt—Xt—l\F-
t=1 t=1 t=1 "t t=2
Proof. T v
S Uelxe) — folw) < vra(w) + 3 (” O 1) - wm(xtm)
t=1 t=1

Z Z”Xt — X¢—1]

t=2

< Yryi(u

IIMﬂ
?
t’w
35
|
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FTRL can be equivalent to OMD

Claim 1. Under online linear optimization (OLO) setting, with the same con-
stant step size n > 0 and the same regularizer ¢ (which is required to be
strongly convex and a barrier function over X'), the OMD and FTRL algorithms
share the same output:

xEX s=1

X; = arg min {Z (ngs, %) + ¢(X)} ;

and

x; = arg min {(ng;—1,x) + Dy (X, X—1)} .
xcX
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FTRL vs. OMD: Equivalence Condition

Proof. For OMD, taking the gradient and setting it to 0 will lead to:
Ngi—1 + V(%) = Vi (xe-1) = 0

Telescoping from 1 to ¢ — 1, and define x¢ = arg min, . y 1 (x),

Vi (xi) = =1 ) & =
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FTRL as Dual Averaging

e Mirror Descent

Vi (Yir1) = Voe(xe) — 0V fe(%¢)

X¢+1 = arg mingc y Dy (X, yi+1)

* Dual Averaging (lazy mirror descent)

Vi (yie1) = VY (ye) — V(X)) averaging updates in dual space
X¢41 = arg min, ey Dy (X, yi41)
this is FTRL update

t—1
|:> Xt41 = arg minxeX {77 Z<Vf8 (XS), X> -+ ¢(X)} (consider fixed step size
s=1

for simplicity)
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FTRL as Dual Averaging

Dual Averaging Method for Regularized Stochastic Learning and
Online Optimization

Part of Advances in Neural Information Processing Systems 22 (NIPS 2009)
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function is the sum of two convex terms: one is the loss function of the learning task, and the other is
a simple regularization term such as L1-norm for sparsity. We develop a new online algorithm, the
regularized dual averaging method, that can explicitly exploit the regularization structure in an online
setting. In particular, at each iteration, the learning variables are adjusted by solving a simple
optimization problem that involves the running average of all past subgradients of the loss functions
and the whole regularization term, not just its subgradient. This method achieves the opti
convergence rate and often enjoys a low complexit i
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Abstract In this paper we present a new approach for constructing subgradient
schemes for different types of nonsmooth problems with convex structure. Our methods
are primal-dual since they are always able to generate a feasible approximation to the
optimum of an appropriately formulated dual problem. Besides other advantages, this
useful feature provides the methods with a reliable stopping criterion. The proposed
schemes differ from the classical approaches (divergent series methods, mirror descent
methods) by presence of two control sequences. The first sequence is responsible for
aggregating the support functions in the dual space, and the second one establishes a
dynamically updated scale between the primal and dual spaces. This additional flexi-
bility allows to guarantee a boundedness of the sequence of primal test points even in
the case of unbounded feasible set (however, we always assume the uniform bounded-
ness of subgradients). We present the variants of subgradient schemes for nonsmooth
convex minimization, minimax problems, saddle point problems, variational inequali-
ties, and stochastic optimization. In all situations our methods are proved to be optimal
from the view point of worst-case black-box lower complexity bounds.

Dedicated to B. T. Polyak on the occasion of his 70th birthday

Y. Nesterov. Primal-dual subgradient
methods for convex problems, 2005.
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1 Introduction
1.1 Prehistory

The results presented in this paper are not very new. Most of them were obtained by
the author in 2001-2002. However, a further purification of the developed framework
led to rather surprising results related to the smoothing technique. Namely, in [11] it
was shown that many nonsmooth convex minimization problems with an appropriate

At that moment of time, the author got an illusion that the importance of black-box
approach in Convex Optimization will be irreversibly vanishing, and, finally, this ap-
proach will be completely replaced by other ones based on a clever use of problem’s
structure (interior-point methods, smoothing, etc.). This explains why the results in-
cluded in this paper were not published at time. However, the developments of the last
years clearly demonstrated that in some situations the black-box methods are irrepla-

ceable. Indeed, the structure of a convex problem may be too complex for constructing Yurii Nesterov
a good self-concordant barrier or for applying a smoothing technique. Note also, that 1956 —
optimization schemes sometimes are employed for modelling certain adjustment pro- UCLouvain, Belgium

cesses 1n real-life systems. In this situation, we are not free in selecting the type
of optimization scheme and in the choice of its parameters. However, the results on
convergence and the rate of convergence of corresponding methods remain interesting.
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FIRL vs. OMD

e FTRL and OMD frameworks can recover different OCO methods.

* They share many similarities in both algorithm and regret, but they
are fundamentally different in essence, especially when the step
size scheduling is time-varying.

* The dynamics of FTRL and OMD also exhibits great ditference
when considering beyond static regret minimization, such as in
dynamic regret minimization, or repeated game convergence.
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Summary

7 [ ALGORITHMIC FRAMEWORK ]

Bregman proximal inequality

ONLINE MIRROR DESCENT *’j Stability Lemma
i REGRET ANALYSIS

Implications

- | FTRLVSOMD H

Q&A
Thanks!
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