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General Regret Analysis for OMD

OMD update:

X¢11 = arg min {nt<x, Vfe(x¢)) + D¢(X,Xt)}
xcX

Lemma 1 (Mirror Descent Lemma). Let D,, be the Bregman divergence w.r.t. i :
X — R and assume ) to be \-strongly convex with respect to a norm || - ||. Then,
Yu € X, the following inequality holds

Foxe) = Few) < - (Dylaa,x0) = Dot xe0) + % V3000 2 = 2 Dyl 1)

bias term (range term) variance term (stability term) negative term
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Proof of Mirror Descent Lemma

Proof. fi(x:) — fr(u) < (Vfi(xe), %t — Xeq1) + (Ve (xX¢), X¢41 — 1)

Lemma 2 (Stability Lemma).
Mx1 —xo| < [[g1 — g2,

= term (@) = (V/ulxe). X0 = Xer1) < Vil 2

Lemma 3 (Bregman Proximal Inequality).
<gt, Xt4+1 — 11> < Dw(ua Xt) — sz (u, Xt+1) — D¢ (Xt+1, Xt)

I:> term (b) < %(Dw(u X¢) — Dy (0, X¢41) — D¢(Xt+1,xt))

1
t

|:>ftXt Sn

1
(D (,30) = Dy, x11)) + 5 IV Sl = =D 1,30
t
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General Analysis Framework for OMD

Lemma 1 (Mirror Descent Lemma). Let D, be the Bregman divergence w.r.t. ¢ : X — R
and assume 1 to be \-strongly convex with respect to a norm || - ||. Then, Yu € X, the
following inequality holds

1
t

fuloxe) = folw) < - (D, x0) = Dy x141)) + 3 Vi)

Using Lemma 1, we can easily prove the following regret bound for OMD.

Theorem 4 (General Regret Bound for OMD). Assume v is A-strongly convex w.r.t. || ||
and ny = n,Vt € |T|. Then, for all u € X, the following regret bound holds

T T T
th(Xt) — th(ll) S (1, x1) gz |V fe(x¢)
t=1 —
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Online Mirror Descent

* Our previous mentioned algorithms can all be covered by OMD.

Algo. OMD/proximal form ¥(+) Mt Regretr
: 1
OGD for X¢+1 = arg minng(x, V fi(x¢)) + 9 Ix — Xt||§ Hng % O(\/T)
convex xeX
, 1
OGD for X¢q41 = arg minng(x, V fi(x¢)) + = [|[x — XtHg HXH% % O(% log T')
strongly c. xEX 2
, 1
ONSHor ) = arg ming (x, Vfi(x)) + 5 [x — x5 | |x|3, | £ | O(LlogT)
exp-concave XEX 2 ! 7
Hedge for : al
Xe41 = arg minng(x, Vfi(xe)) + KL(x|x) |3 2 log a;ly /22X | O(V/Tlog N)
PEA XEAN i=1 T
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Online Mirror Descent

* Our previous mentioned algorithms can all be cove

minimax
optimal

Algo. OMD/proximal form () ut Regret
. 1
OGD for X1 = arg min (X, V fi(x¢)) + 5 |x — Xt“g 1|3 % O(T)
convex xeX
. 1
OGDfor |y | = arg minn (x, VA + 5 [x—x 2 | [xI3 | & | O(logT)
strongly c. xEX 2
| 1
ONSHOr |y, ) = arg ming (x, Vfi(x)) + 5 [x — x5 | |x|3, | £ | O(LlogT)
exp-concave xEX 2 ’ K
Hedge for X1 = arg min (X, V fi (x¢)) + KL(x|[x;) g: z; log z;| /BN | O(v/T log N)
PEA XCEAN i=1 ’ ‘ g
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Beyond the Worst-Case Analysis

* All above regret guarantees hold against the worst case

* Matching the minimax optimality oblivious adversary adaptive adversary
* The environment is fully adversarial F !"’! ‘!
examination interview

* However, in practice:
* We are not always interested in the worst-case scenario
« Environments can exhibit specific patterns: gradual change, periodicity...

> We are after some more problem-dependent guarantees.
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Beyond the Worst-Case Analysis

* Beyond the worst-case analysis, achieving more adaptive results.
(1) adaptivity: achieving better guarantees in easy problem instances;

(2) robustness: maintaining the same worst-case guarantee.

o

S

IR Pessimiss

Be

: b{& . cautiously
/t\/:f £, optimistic
N

7+ Easy Data Realworld \worst-Case W B
/A A

Data ; . . .
[Slides from Dylan Foster, Adaptive Online Learning @NIPS’15 workshop]
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https://event.cwi.nl/easydata2015/slides/dylan.pdf

Prediction with Expert Advice

* Recall the PEA setup

Ateachroundt=1,2,---
(1) the player first picks a weight p, from a simplex A y;

(2) and simultaneously environments pick a loss vector £; € RY;

(3) the player suffers loss f;(p,) = (p,, £:), observes £; and updates the model.

* Performance measure: regret

T
Regret, = by) — mm bti
grety Z Py t iE[N Z benchmark the performance

t=1 )
with respect to the best expert
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Prediction with Expert Advice

* Hedge algorithm: taking the “softmax” operation

Ateachroundt=1,2,---
(1) compute p, € Ay such that p; ; < exp (—nL;—1 ;) fori € [N]
(2) the player submits p,, suffers loss (p,, £;), and observes loss £; € RY
(3) update L; = L,_; + ¢,

» Another greedy update: P¢i1,i € Pr,; €xp (=1t ;) for i € [N

where we set the uniform initialization as py ; = 1/N, Vi € [N].

* The two updates are significantly different when learning rate is changing.
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Hedge: Regret Bound

Theorem 1. Suppose that ¥t € [T] and i € [N|,0 < /¢, ; <1, then Hedge with
learning rate 1) guarantees

Regret, < IHTN + 0T = C’)(\/TlogN),

minimax optimal

where the last equality is by setting n optimally as \/(In N)/T.

e What if there exists an excellent expert? i.e., Ly ; < T holds for some ¢ € [N].

e Goal: can we achieve a “small-loss” bound? something like O(/ L ;- log N).
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Small-L.oss Bounds for PEA

Theorem 2. Suppose that ¥t € [T] and v+ € [N],0 < ¢,; <1, then Hedge with
learning rate n € (0, 1) guarantees

In N
Regret < n_ + 772 Py, L),
which can further imply

1 In N
Regret, < 1 ( = + nLT,Z-*> =0 (\/LT,Z-* log N + log N),
— 7 n

by setting n = min {%, o }

e When L7 ;« = O(T), it can recover the minimax O(/1 log N) guarantee.
e When Lt ;« = O(1), the regret bound is O(log N ), which is independent of 7"
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Small-L.oss Bounds for PEA

Theorem 2. Suppose that ¥t € [T] and v+ € [N],0 < ¢,; <1, then Hedge with
learning rate n € (0, 1) guarantees

In N
Regret < n_ + 772 Py, L),
which can further imply

1 In N
Regret, < 1 ( = + nLT,Z-*> =0 (\/LT,Z-* log N + log N),
— 7 n

by setting n = min {%, o }

e When L7 ;« = O(T), it can recover the minimax O(/1 log N) guarantee.
e When Lt ;« = O(1), the regret bound is O(log N ), which is independent of 7"
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Review: Potential-based Proof

Proof. Recall the (worst-case regret) analysis of Hedge. We present a “potential-based” proof,
where the potential is defined as

N
1
o, £ 511’1 (Z exp (—nLt,i)> .
i=1

i( f]Xp(—ﬂLt—u) )eXP(Uft,z')>>

i=1 Zi:l exp (—nLi—1

N
In (Z Dr.i €XD (ngm.)> (update step of p,)

N
I Zpt’i (1= nli + 7726?@)) (Vx> 0,e™* <1 -2+ 27
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Review: Potential-based Proof

Proof. Recall the (worst-case regret) analysis of Hedge. We present a “potential-based” proof,
where the potential is defined as
ln <Z exp (—m L ) .

N
1
¢ — P < 5111 (Zpt,i (1=l + 772@,1'))

=1
1 N
= Eln (1 — 0 (py, £e) +17° Zpt,¢€?,¢)>
=1
< — (P le) +1 Y prils, (In(l+2z) < z)
=1
N
|:> Py — Py < — (P, &) + nzpt,iéii

1=1
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Review: Potential-based Proof

Proof. Oy — Dy < — (p . be) +1 Y prili,
1=1

Summing over ¢, we have

T N
N .
Z (D, 4) < ©o — Pr + Uzzpt zf%z ¢, = %ln (Zizl CXp (—TILt(Z))>
t=1 t=1 =1
InN 1
< —— — ~lIn(exp (—nLz,+) +n22pm€?z
U U t=1 =1
T N
In N
PNl )3t
t=1 i=1

T
|:> Z Pt,et LTz*SM‘H?ZZPtzé?z
t=1

t=1 1=1
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Improved Analysis for Small-Loss Bound

r N T
Proof. Z (py, €t) — Ly ir < —— ZZPt,if?,i
t=1 t=1 1=

T

e To get a small-loss bound, we improve the analysis to be:

T N
Uzzptszz Snzzptz t,1 —772 ptaet

t=1 1=1 t=1 1=1

d In N
—> D (Prte) — Ly < — =+ nzpt,ft

t=1
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Improved Analysis for Small-Loss Bound

a In N
Proof. :> Z (D, £t) — Ls Sn—+ﬁz (g £e)

t=1

T
In N
<Z (Dt £t) LT,i*) < N + nLlr -

t=1

T
1 In N
:> E (pg, €t) — L ix < ( + 77LT,7;*> []
t—1

I—m \ 7

Therefore, we get the small-loss regret bound of order O (/L ;+ log N + log V)

when setting the learning rate optimally as " = min { z, LII;N* }
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Learning Rate Tuning Issue

e We have showed that Hedge with learning rate 7 enjoys

T

1 In N

> (py ) — Ly < —— (— + nLT,,,;*)
IL—n\ n

t=1

Therefore, we get the small-loss regret bound of order O (/L ;« log N + log V)

when setting the learning rate optimally as " = min {%, LII;N* }

— However, this online algorithm is not legitimate, due to the requirement
of using L ;+ (the cummulative loss of the best expert) as the input.

> Fortunately, we can remedy it by the self-confident tuning framework.
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Self-confident Tuning Framework

e Recall the OGD algorithm for convex function:

xe+1 = Ly [x¢ — 0V fe(x4)]
which enjoys the following regret bound

T
th(xt mlﬂth ) < —‘|‘77G2
=1

We can set n = G—\/T to obtain an O(v/T) regret bound.

Question: can we remove the dependence of T when tuning the step size?

- D
—> A natural guess is to set ; = NG
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Self-confident Tuning Framework

* Self-confident tuning: utilize the available empirical quantities to
approximate the unknown ones.

> usen; = % to approximate n* = GL\;T’ ensuring the same bound (in order).

Theorem 3. Suppose the diameter of non-empty closed convex set X is D and
IV fi(x)|| < G for any x € X. Then OGD with step size tuning n; = GL\/Z ensures
the following regret bound:
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Self-confident Tuning Framework

Theorem 3. Suppose the diameter of non-empty closed convex set X is D and
IV fe(x)|| < G forany x € X. Then OGD with step size tuning n; = — \/ ensures
the following regret bound:

S filx Z ) < GD\F

d 1
PTOOf. ;ft(xt) — ft(u) < 5 Z

=1 N\t Tl t=1

D <& (1 1 ) G?
<Dy (E- ) S

2 =\ M1 2 =
D GDET: 1

DVT
< G 2f+GD¢_:gGDﬁ
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Self-confident Tuning Framework

 Consider the small-loss bound for PEA problem.

LT,i*

Achieving small loss bound O (\/ L1+ log N +log N ) with 7 = min { %, n N }

Goal: tuning n without the knowledge of L ;-

Deploying self-confident tuning: how can we empirically approximate Lz ;«?

T

¢

A

Y L ek . A . .

L ; E bty i* = arg min, Lt Li; = E lsi, i} = arg Min,; ¢y Ly ;
t=1 s=1

|:> Key challenge: index i* and index sequence {i¥}L_ | can be highly different
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Self-confident Tuning Framework

 Consider the small-loss bound for PEA problem.

Achieving small lossbound O (/L1 ;+ log N + log N ) with = min { go o e

3

We need to dive into the regret analysis. <{—> Denotedby Ly = 3., , (p,, ;)

T _ —
Z <pt7£t> LT " < In N 4 T]Z pt,Et we Obtain LT — LT,i* S 2\/(111 N)LT
t=1

- - Lemma. For x,y,a € R that satisfy
Z<Pt £t>LTz'*<2\l In V) Zpt 2) r—y < +az, it impliesz —y < \/ay + a.
t=1 t=1 .

—> Ly — Ly <2/(InN)Lz; +4InN

by setti = A -

y SR 1 >i—1(Pete) by resolving L.
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Self-confident Tuning Framework

 Consider the small-loss bound for PEA problem.

Achieving small lossbound O (/L1 ;+ log N + log N ) with = min { z, L“;N* }

More specifically, setting 7 = | /=~ =, ylelds

~ In N
LT_LTz < —+77LT :> LT_LTz <2\/ In N LT |:> LT—LTz <O<\/(10gN)LT,Z'* —|—logN>

While L, cannot be obtained ahead of time, a natural emperical approxiamtion is:

In N ~ )
Nty = nEt , Where L; = Zi:ﬂps,ﬁﬁ Pt+1,5 X €XP (_ntLt,i)/ Vi € [N]
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Self-confident Tuning Framework

Theorem 4. Suppose that ¥Vt € [T and v € [N|,0<4¥,,; <1, then Hedge with

lnN
L:+1

Regret, < 8\/(LT,Z'* +1)InN+3InN

- O(\/LT,Z-* log N -+ log N),

adaptive learning rate 1, =

guarantees

where L, = S (p,, L) is cumulative loss the learner suffered at time t.
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Proof

Proof. We again use ‘potential-based” proof here, where the potential is defined as

D,(n) £ T 1n (Z exp (—an)>

1=1

N
1 . . ex — L i
Oy (1) — ®_1(n_1) = —— In z]:vz—l p(—n—1L¢)
g D i1 exXp (—mi—1Li—15)

_ ! In (i (ZSXP(_m_lLt_l’i) )eXP(—ntlgt,z’))>

i—1 i—1 €XP (_nt—lLt—l,z‘

1 N
= In Ptie€xp (—ne—14¢;) (update rule of p,)
1

Tht—1

(pt,i X €XP (_77,5_1[/,*/_177;), V1 € [ND
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Proof

Proof.

(I)t(nt—1> N 1(77t 1

Tt—1

Tt—1

In

ol
ol

n(meeXp — 1) 1€m)>

=1

.

Zpt,z (1= m—1be; + M- 1€?z)
1=1

) (Vo >0,e % <1—x+2?)

1= i1 (g, 8e) + 17— 1zpt’b€?z>

1=1

< —(pg, £e) + M1 Zpt,igii

1=1

(In(1 4+ 2x) < x)

Advanced Optimization (Fall 2023)

Lecture 8. Adaptive Online Convex Optimization 29



d 1=1

Proof @) 2 1 n (ivj exp <—nLt,i>>

Proof. Pr(ne—1) — Pe—1(me—1) < — (Py, €e) + M1 Zpt,z'f?,i
i=1

N
:> (Dis ) < Pp1(ne—1) — Pe(me—1) + M1 Zpt,z[?,i

=1
T T N T
S (b te) < Po(mo) — Brlnr—1) + (m_lzpt,w%,i) + 3 (@lm) = @4 (m1))
t=1 t=1 ) t=1
In N 1 a al
< _

< In (exp(—nr—1L7 i) +Z?7t 12]% zftz—l-z (@s(ne) — Pe(M—1))
nr—1 nNr—1 1 1 1

T T
= \/(LT—l + 1) lnN—|— LT)i* + Znt—l <pt7'et + Z ¢t 77t ¢t nt 1))
1
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Proof @) 2 1 n (ivj exp <—nLt,i>>

d 1=1

T T

T
Proof. > (pty) < \/(LT_1 + 1) NN + Ly + Y m—1(p £e) + Y (<I>t ne) — Dy (n— 1))
t=1

To bound Z;‘F:l (Cbt(nt) — Cbt(nt_l)>, we prove that ®,(7) is increasing w.r.t. n:

1SN Lysexp(—nLy ;)

2 %/ 2 i=1 Lt g
n“®i(n) =n" | —— In(— g exp( nLt i) — —

( n S exp(—nLi,)

1=1 71=1
Z —1 eXp( nLy j)
A Zpt“ ’ ( jeXp( 77Lt,7;)
T
—InN — Zptﬂ ) >0 |:> ; ((I)t<77t) — (I)t(nt—l)) <0
t—l— )2 =
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Proof

Proof From the potential-based proof, we already know that

Z (e, £t) LTz*<\/LT 1+1)1HN+Z?% 1{Pyg: £t)
t=1

t=1

pt7£t>

D

How to bound this term?

<\/LT L+ 1) lnN+Z\/

—> This is actually a common structure to handle.

Advanced Optimization (Fall 2023) Lecture 8. Adaptive Online Convex Optimization
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Self-confident Tuning Lemma

Lemma 1. Letf ay, a9, ..., ar be non-negative real numbers. Then

T

T
at <201+ ¢
Z\/l‘I‘ZZ—las \ ; t

t=1

Lemma 2. Let ay,aq,...,ar be non-negative real numbers. Then

T

2 <401+ + ma
tzl\/1+25 1 Qs \ Zat g[ﬁa]t

The two lemmas are useful for analyzing algorithms with self-confident tuning.
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Proof

Lemma 1. Letf ay, a9, ..., ar be non-negative real numbers. Then
T T
3 o <2, 14+ a
t=1 \/1 + Zizlas \ t=1

Proof.

Letag £ 1, by set z = a;/ Zi:o G

a
t <1-

2 Zi:o Us

1
§:c§ 1 —+v1—2z,Vrel01]

a¢

ZZ:O Us

1 —

Advanced Optimization (Fall 2023)

Lecture 8. Adaptive Online Convex Optimization

34



Proof

Proof. : Z?t - 1o
s=0 Us

o < as — as — s
— ST DR DT

By telescopling from ¢ = 1to 7"

T T

1 0 T
at < as — as — as < |1+ a
; 2\/1+Z§:1a8 \z_% \z_:o 5=0 \ ; t

Advanced Optimization (Fall 2023) Lecture 8. Adaptive Online Convex Optimization
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Proof

Lemma 2. Let ay, a9, ..., ar be non-negative real numbers. Then

T

i <4,|1+ a—l—maxa
;\/1+Zs—13 \ Z t t

Proof. We define that max;cf a; = B.
eCase1.1fY, , a, < B:

T T
Z at < Z a; < B, Lemma 2 is obviously satisfied.

tl\/1+23—1s t=1
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Proof

T

Lemma 2. Let aq,as,...

a¢

, ar be non-negative real numbers. Then

2

= 1\/1—|—ZS g

< 4\ 1—|—Zat—|—maxat

Proof. We define that max;cf a; = B.
e Case 2. If 23:1 a; > B, we define ty £ min {t : 22;11 Te > B}:

T

at
;\/Mrzs 1 Qs

d at d ay
<B+ ) <B+)"

t=tg \/1—|—ZS 1 Ag t=to \/1+ Zs 1as‘|‘at

Advanced Optimization (Fall 2023)
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Proof

Lemma 2. Let ay, a9, ..., ar be non-negative real numbers. Then

T T

_ < 4 1+ + ma

Proof. We define that max;cf a; = B.
e Case 2. If 23:1 a; > B, we define ty £ min {t : 22;11 Te > B}:

T T T
a 2a
B+§: ’f <B+§: ‘ < B4+4 1+§ja,t
t=tg \/1_|_ Zs 12G,S-|—at t=to \/1—'—2221 Ag \ t=1
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Small-LLoss bound for PEA: Proof

Proof. From previous potential-based proof, we already known that

14
Z pt,ft LTz* < \/LT 1_|_1 IDN“‘Z <pt7 t>
t=1

\/Zs (P> £

T

>

t=1

Lemma 2. Let aq,as,...

ag

\/1‘|‘Zs1s

<4

, ar be non-negative real numbers. Then

\

1+ a; + maxa
Z t te[T] ‘

:> ET_LT,Z'*S\/(ZT—1+1)IHN+4\/1+ET+1
<\/(Tr + )N + 41+ Lp+1

Advanced Optimization (Fall 2023)
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Small-LLoss bound for PEA: Proof

Proof. —> ET—LﬂﬁgykﬁwwumN+4V1+ET+1

Then we solve above inequality. Let z £ Ly + 1:

2 2
vin N +4 vin N +4
r— (VInN +4)\/x < Lp;+ + 2 |:> (\/5_ n2+ ) SLT’iHLQJr( n2+ )

This implies that

2
= VIhN +4\ vIoN +4
VLT1<JLﬂN+2+< n2+ )% n2+

|:> Ly < 3In N + L ;- +8\/(LT,7;* +1)InN = O(\/LT7,L-* logN+logN).
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Recall;: Small-L.oss Bound for PEA

* So far, we have obtained a PEA algorithm with small-loss bound.

Theorem 4. Suppose that ¥Vt € |T'| and + € |[N|,0 < ¥£;,; <1, then Hedge with

lnN
L:+1

adaptive learning rate 1, = quarantees

Regret, < 8\/(LT,7;* +1)In N +3In N

— (’)(\/LT&-* log N + 1ogN),

where L, = 2221 (ps, £s) is cumulative loss the learner suffered at time t.

* Can we further extend the result to more general OCO setting?
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Small Loss in General OCO Setting

Definition 4 (Small Loss). The small-loss quantity of the OCO problem (online
function f; : X — R) is defined as

T
Fr = min ; fi(x)
e By taking f;(x) = (x,£;) and X = Ay, we recover the definition of the small-loss
quantity of PEA problem:
T
FT:xIéliAnN Xet Zetz —LTz
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Self-bounding Property

* We require the following self-bounding property to ensure the
small-loss bound for general OCO.

Lemma 3 (Self-bounding Property). For an L-smooth function f : R? — R with
x* € arg min, pa f(Vv), we have that

V)2 < V2L(f(x) - f(x*), YxeX.

Proof. By the smoothness of f, for any x, 8 € R? we have

Fx+8) < Fx) + (VF(x). ) + = 3.

Advanced Optimization (Fall 2023) Lecture 8. Adaptive Online Convex Optimization
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Self-bounding Property

Proof Flx+8) < F(x) + (VF(x).6) + 5 6]
Choosing § = — Y1) giyes
; (X_ VfL(X)) < Fx) uvj;gcwé
Notice that f(x*) < f(x — YLX)) by definition, which implies
Foey < f (x-S < o) - Y/l

Rearranging the above terms finishes the proof. [J

Advanced Optimization (Fall 2023) Lecture 8. Adaptive Online Convex Optimization
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Self-bounding Property

Lemma 3 (Self-bounding Property). For an L-smooth function f : R? — R with
x* € arg min, pa f(Vv), we have that

IVl < V2L(f(x) - f(x*), YxeX.

Corollary 1. For an L-smooth and non-negative function f : R — R , we have that

IVF(x)|s < V2LFf(x), VxeX.
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Achieving Small-Loss Bound

* We show that under the self-bounding condition, OGD can
yield the desired small-loss regret bound.

Xt4+1 = erX[Xt — Utvft(Xt)]

Theorem 6 (Small-loss Bound). Assume that f, is L-smooth and non-negative for all t &

T], when setting 1, = \/1117@'/ the regret of OGD to any comparator u € X is bounded as
T T
RegretT = Z ft(Xt) — Z ft(U) S @, (\/ 1+ FT>
t=1 t=1

where Gy = S IV £s(x)|13 is the empirical estimator of cumulative gradient Gr.
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Proof

M*ﬂ

Proof. > fi(x:) -

t=1

IIMH

9,01 +Z (Hu—xtHS _ uu—xtmr%)

V£ (x
Zntlwft X;) ||2—DZH fo(xe)ll5

t=2 \/1+Gt

+ G2 <D |14+ 3 VA + G

t=1

Lemmal. Let aq,as,...
T

2

t=1

a¢

< 2

\/1 + Zizlas

, ar be non-negative real numbers. Then

\

T
1 -+ Zat
t=1
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Proof

M*ﬂ
IIMH

T
Proof. " i) - VAl + Z = (1=l — = xesa3)
t=1

t=1

V fi(x
meft it = oY I | 62 cop 143 sl +

t=2 \/1+Gt t=1

T
< 2D\ 1+2L)  filxe) + G?

t=1
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Proof

M'ﬂ
||Mq

Pl’OOf, th(xt)

t=1

L T
Sl VEx)|3 < 2D 14203 filxi) + G2

t=1 t=1
1 D T
— 2 2
> o (Hu—xtllz - ||u—xt+1||2) <G\ 1Y A+ 5

T
fi(u) < 3D 1+2L2ft(xt)‘|‘G2

t=1

1M

T
Regretr = fi(xy) —
—> T ;
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Proof

T T T
Proof. Regret, = Z fe(x¢) — Z fe(u) < 3D, |1+ QLZ fi(x¢) + G?
t=1 t=1 t=1

Small-Loss bound for PEA: Proof

Proof. =  Ir-Lrw<y\@Er+DmN+4/1+Er+1

Remember how we solve a similar problem in PEA: e T

/ 2 2
. —
e— (VN + )VE < Lrpe +2 [ (\ﬂ - w) <Ly +2+ (M)

2

This implies that

2

2
= vinN +4 vinN +4
L1-1<JL-;\,-.+2+( :12+ ) 4 u.

|::> Z',- <3N+ Ly + 8\/(1_,-,-_,;‘ +1)InN = O(\ /Ly log N + lug:’\d’).
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> Regretp =Y filx) =Y filw)=0 DL fi(u)+1+G
t=1 t=1
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Several Remarks

* Remark 1: about the non-negative assumption

When the online functions are non-negative, it is possible to redefine the
small-loss quantity by incorporating each-round minimal function value.

* Remark 2: about the smoothness assumption

Smoothness is necessary to obtain small-loss regret bound by the first-order
method (can be proved by the online-to-batch conversion and existing lower
bounds for deterministic optimization).

* Remark 3: take care of the way dealing with variance term
In OGD here we use Lemma 1, while in PEA Hedge for PEA we use Lemma 2.
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Summary

ADAPTIVE ONLINE

CONVEX OPTIMIZATION

s [ SMALL-LOSS BOUND FOR PEA ]

SMALL-LOSS BOUND FOR OCO

Q&A
Thanks!
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