



#### Lecture 8. Adaptive Online Convex Optimization

Advanced Optimization (Fall 2023)

**Peng Zhao** zhaop@lamda.nju.edu.cn Nanjing University

### Outline

Motivation

- Small-Loss Bounds
  - Small-Loss bound for PEA
  - Self-confident Tuning
  - Small-Loss bound for OCO

### General Regret Analysis for OMD

OMD update:

$$\mathbf{x}_{t+1} = \underset{\mathbf{x}\in\mathcal{X}}{\operatorname{arg min}} \left\{ \eta_t \langle \mathbf{x}, \nabla f_t(\mathbf{x}_t) \rangle + \mathcal{D}_{\psi}(\mathbf{x}, \mathbf{x}_t) \right\}$$

**Lemma 1** (Mirror Descent Lemma). Let  $\mathcal{D}_{\psi}$  be the Bregman divergence w.r.t.  $\psi$ :  $\mathcal{X} \to \mathbb{R}$  and assume  $\psi$  to be  $\lambda$ -strongly convex with respect to a norm  $\|\cdot\|$ . Then,  $\forall \mathbf{u} \in \mathcal{X}$ , the following inequality holds  $f_t(\mathbf{x}_t) - f_t(\mathbf{u}) \leq \frac{1}{\eta_t} \left( \mathcal{D}_{\psi}(\mathbf{u}, \mathbf{x}_t) - \mathcal{D}_{\psi}(\mathbf{u}, \mathbf{x}_{t+1}) \right) + \frac{\eta_t}{\lambda} \left\| \nabla f_t(\mathbf{x}_t) \right\|_{\star}^2 - \frac{1}{\eta_t} \mathcal{D}_{\psi}(\mathbf{x}_{t+1}, \mathbf{x}_t)$ 

bias term (range term)

variance term (stability term)

negative term

#### Proof of Mirror Descent Lemma

**Proof.** 
$$f_t(\mathbf{x}_t) - f_t(\mathbf{u}) \leq \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}_{t+1} \rangle + \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_{t+1} - \mathbf{u} \rangle$$
  
term (a) term (b)

Lemma 2 (Stability Lemma).

$$\lambda \left\| \mathbf{x}_{1} - \mathbf{x}_{2} \right\| \leq \left\| \mathbf{g}_{1} - \mathbf{g}_{2} \right\|_{\star}$$

 $\|\mathbf{x}_t\|_{\star}^2 = \{ \text{think of two updates: one for } \mathbf{x}_{t+1} \text{ with } \nabla f_t(\mathbf{x}_t) \text{ and another one for } \mathbf{x}_t \text{ with } \mathbf{0} \}$ 

$$\begin{array}{c} \text{Lemma 3 (Bregman Proximal Inequality).} \\ \langle \mathbf{g}_{t}, \mathbf{x}_{t+1} - \mathbf{u} \rangle \leq \mathcal{D}_{\psi}(\mathbf{u}, \mathbf{x}_{t}) - \mathcal{D}_{\psi}(\mathbf{u}, \mathbf{x}_{t+1}) - \mathcal{D}_{\psi}(\mathbf{x}_{t+1}, \mathbf{x}_{t}) \\ \hline \\ \hline \\ \end{pmatrix} \text{ term (b)} \leq \frac{1}{\eta_{t}} \left( \mathcal{D}_{\psi}(\mathbf{u}, \mathbf{x}_{t}) - \mathcal{D}_{\psi}(\mathbf{u}, \mathbf{x}_{t+1}) - \frac{\mathcal{D}_{\psi}(\mathbf{x}_{t+1}, \mathbf{x}_{t})}{\int \\ \\ \\ \end{pmatrix}} \begin{array}{c} \text{(negative term, usually dropped;} \\ \text{but sometimes highly useful)} \\ \hline \\ \\ \\ \\ \\ \\ \end{array} \right) \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \right) f_{t}(\mathbf{x}_{t}) - f_{t}(\mathbf{u}) \leq \frac{1}{\eta_{t}} \left( \mathcal{D}_{\psi}(\mathbf{u}, \mathbf{x}_{t}) - \mathcal{D}_{\psi}(\mathbf{u}, \mathbf{x}_{t+1}) \right) \\ + \frac{\eta_{t}}{\lambda} \left\| \nabla f_{t}(\mathbf{x}_{t}) \right\|_{\star}^{2} - \frac{1}{\eta_{t}} \mathcal{D}_{\psi}(\mathbf{x}_{t+1}, \mathbf{x}_{t}) \\ \\ \\ \\ \end{array} \right) \\ \hline \end{array}$$

Advanced Optimization (Fall 2023)

#### General Analysis Framework for OMD

**Lemma 1** (Mirror Descent Lemma). Let  $\mathcal{D}_{\psi}$  be the Bregman divergence w.r.t.  $\psi : \mathcal{X} \to \mathbb{R}$ and assume  $\psi$  to be  $\lambda$ -strongly convex with respect to a norm  $\|\cdot\|$ . Then,  $\forall \mathbf{u} \in \mathcal{X}$ , the following inequality holds

$$f_t(\mathbf{x}_t) - f_t(\mathbf{u}) \le \frac{1}{\eta_t} \left( \mathcal{D}_{\psi}(\mathbf{u}, \mathbf{x}_t) - \mathcal{D}_{\psi}(\mathbf{u}, \mathbf{x}_{t+1}) \right) + \frac{\eta_t}{\lambda} \left\| \nabla f_t(\mathbf{x}_t) \right\|_{\star}^2$$

Using Lemma 1, we can easily prove the following regret bound for OMD.

**Theorem 4** (General Regret Bound for OMD). Assume  $\psi$  is  $\lambda$ -strongly convex w.r.t.  $\|\cdot\|$ and  $\eta_t = \eta, \forall t \in [T]$ . Then, for all  $\mathbf{u} \in \mathcal{X}$ , the following regret bound holds

$$\sum_{t=1}^{I} f_t(\mathbf{x}_t) - \sum_{t=1}^{I} f_t(\mathbf{u}) \le \frac{\mathcal{D}_{\psi}(\mathbf{u}, \mathbf{x}_1)}{\eta} + \frac{\eta}{\lambda} \sum_{t=1}^{I} \left\| \nabla f_t(\mathbf{x}_t) \right\|_{\star}^2$$

Advanced Optimization (Fall 2023)

### Online Mirror Descent

• Our previous mentioned algorithms can all be covered by OMD.

| Algo.               | OMD/proximal form                                                                                                                                                                 | $\psi(\cdot)$                 | $\eta_t$                 | $\operatorname{Regret}_T$             |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|---------------------------------------|
| OGD for<br>convex   | $\mathbf{x}_{t+1} = \arg\min_{\mathbf{x}\in\mathcal{X}} \eta_t \langle \mathbf{x}, \nabla f_t(\mathbf{x}_t) \rangle + \frac{1}{2} \ \mathbf{x} - \mathbf{x}_t\ _2^2$              | $\ \mathbf{x}\ _2^2$          | $\frac{1}{\sqrt{t}}$     | $\mathcal{O}(\sqrt{T})$               |
| OGD for strongly c. | $\mathbf{x}_{t+1} = \arg\min_{\mathbf{x}\in\mathcal{X}} \eta_t \langle \mathbf{x}, \nabla f_t(\mathbf{x}_t) \rangle + \frac{1}{2} \left\  \mathbf{x} - \mathbf{x}_t \right\ _2^2$ | $\ \mathbf{x}\ _2^2$          | $\frac{1}{\sigma t}$     | $\mathcal{O}(\frac{1}{\sigma}\log T)$ |
| ONS for exp-concave | $\mathbf{x}_{t+1} = \arg\min_{\mathbf{x}\in\mathcal{X}} \eta_t \langle \mathbf{x}, \nabla f_t(\mathbf{x}_t) \rangle + \frac{1}{2} \ \mathbf{x} - \mathbf{x}_t\ _{A_t}^2$          | $\ \mathbf{x}\ _{A_t}^2$      | $\frac{1}{\gamma}$       | $\mathcal{O}(\frac{d}{\gamma}\log T)$ |
| Hedge for<br>PEA    | $\mathbf{x}_{t+1} = \arg \min_{\mathbf{x} \in \Delta_N} \eta_t \langle \mathbf{x}, \nabla f_t(\mathbf{x}_t) \rangle + \mathbf{KL}(\mathbf{x} \  \mathbf{x}_t)$                    | $\sum_{i=1}^{N} x_i \log x_i$ | $\sqrt{\frac{\ln N}{T}}$ | $\mathcal{O}(\sqrt{T\log N})$         |

Advanced Optimization (Fall 2023)

### Online Mirror Descent

• Our previous mentioned algorithms can all be covered optimal

| Algo.               | OMD/proximal form                                                                                                                                                                                       | $\psi(\cdot)$                 | $\eta_t$                 | $\operatorname{Regret}_T$             |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|---------------------------------------|
| OGD for<br>convex   | $\mathbf{x}_{t+1} = \arg\min_{\mathbf{x}\in\mathcal{X}} \eta_t \langle \mathbf{x}, \nabla f_t(\mathbf{x}_t) \rangle + \frac{1}{2} \ \mathbf{x} - \mathbf{x}_t\ _2^2$                                    | $\ \mathbf{x}\ _2^2$          | $\frac{1}{\sqrt{t}}$     | $\mathcal{O}(\sqrt{T})$               |
| OGD for strongly c. | $\mathbf{x}_{t+1} = \arg\min_{\mathbf{x}\in\mathcal{X}} \eta_t \langle \mathbf{x}, \nabla f_t(\mathbf{x}_t) \rangle + \frac{1}{2} \ \mathbf{x} - \mathbf{x}_t\ _2^2$                                    | $\ \mathbf{x}\ _2^2$          | $\frac{1}{\sigma t}$     | $\mathcal{O}(\frac{1}{\sigma}\log T)$ |
| ONS for exp-concave | $\mathbf{x}_{t+1} = \underset{\mathbf{x}\in\mathcal{X}}{\arg\min} \eta_t \langle \mathbf{x}, \nabla f_t(\mathbf{x}_t) \rangle + \frac{1}{2} \ \mathbf{x} - \mathbf{x}_t\ _{A_t}^2$                      | $\ \mathbf{x}\ _{A_t}^2$      | $rac{1}{\gamma}$        | $\mathcal{O}(\frac{d}{\gamma}\log T)$ |
| Hedge for<br>PEA    | $\mathbf{x}_{t+1} = \arg\min_{\mathbf{x}\in\Delta_N} \eta_t \langle \mathbf{x}, \nabla f_t(\mathbf{x}_t) \rangle + \frac{\mathrm{KL}(\mathbf{x}\ \mathbf{x}_t)}{\mathrm{KL}(\mathbf{x}\ \mathbf{x}_t)}$ | $\sum_{i=1}^{N} x_i \log x_i$ | $\sqrt{\frac{\ln N}{T}}$ | $\mathcal{O}(\sqrt{T\log N})$         |

Lecture 8. Adaptive Online Convex Optimization

minimax

# Beyond the Worst-Case Analysis

- All above regret guarantees hold against the worst case
  - Matching the *minimax optimality*
  - The environment is *fully adversarial*



- However, in practice:
  - We are not always interested in the *worst-case scenario*
  - Environments can exhibit *specific patterns*: gradual change, periodicity...



We are after some more *problem-dependent* guarantees.

# Beyond the Worst-Case Analysis

- Beyond the worst-case analysis, achieving more adaptive results.
  - (1) *adaptivity*: achieving better guarantees in easy problem instances;
  - (2) *robustness*: maintaining the same worst-case guarantee.



Advanced Optimization (Fall 2023)

### Prediction with Expert Advice

• Recall the PEA setup

At each round  $t = 1, 2, \cdots$ 

- (1) the player first picks a weight  $p_t$  from a simplex  $\Delta_N$ ;
- (2) and simultaneously environments pick a loss vector  $\ell_t \in \mathbb{R}^N$ ;
- (3) the player suffers loss  $f_t(\mathbf{p}_t) \triangleq \langle \mathbf{p}_t, \boldsymbol{\ell}_t \rangle$ , observes  $\boldsymbol{\ell}_t$  and updates the model.
- Performance measure: *regret*

$$\operatorname{Regret}_{T} \triangleq \sum_{t=1}^{T} \langle \boldsymbol{p}_{t}, \boldsymbol{\ell}_{t} \rangle - \min_{i \in [N]} \sum_{t=1}^{T} \ell_{t,i}$$

*benchmark the performance with respect to the* **best expert** 

## Prediction with Expert Advice

• Hedge algorithm: taking the "softmax" operation

At each round  $t = 1, 2, \cdots$ (1) compute  $p_t \in \Delta_N$  such that  $p_{t,i} \propto \exp(-\eta L_{t-1,i})$  for  $i \in [N]$ (2) the player submits  $p_t$ , suffers loss  $\langle p_t, \ell_t \rangle$ , and observes loss  $\ell_t \in \mathbb{R}^N$ (3) update  $L_t = L_{t-1} + \ell_t$ 

• Another greedy update:  $p_{t+1,i} \propto p_{t,i} \exp(-\eta \ell_{t,i})$  for  $i \in [N]$ 

where we set the uniform initialization as  $p_{0,i} = 1/N$ ,  $\forall i \in [N]$ .

• The two updates are significantly different when learning rate is changing.

### Hedge: Regret Bound

**Theorem 1.** Suppose that  $\forall t \in [T]$  and  $i \in [N], 0 \leq \ell_{t,i} \leq 1$ , then Hedge with learning rate  $\eta$  guarantees

$$\operatorname{Regret}_{T} \leq \frac{\ln N}{\eta} + \eta T = \mathcal{O}(\sqrt{T \log N}),$$
 minimax optimal

where the last equality is by setting  $\eta$  optimally as  $\sqrt{(\ln N)/T}$ .

- What if there exists an *excellent* expert? i.e.,  $L_{T,i} \ll T$  holds for some  $i \in [N]$ .
- Goal: can we achieve a "small-loss" bound? something like  $\mathcal{O}(\sqrt{L_{T,i^*} \log N})$ .

### Small-Loss Bounds for PEA

**Theorem 2.** Suppose that  $\forall t \in [T]$  and  $i \in [N], 0 \leq \ell_{t,i} \leq 1$ , then Hedge with learning rate  $\eta \in (0, 1)$  guarantees

 $\mathbf{T}$ 

Regret\_T 
$$\leq \frac{\ln N}{\eta} + \eta \sum_{t=1}^{T} \langle \boldsymbol{p}_t, \boldsymbol{\ell}_t \rangle,$$
  
which can further imply  
Regret\_T  $\leq \frac{1}{\eta} \left( \frac{\ln N}{1 + \eta L_T} \right) = \mathcal{O}\left(\sqrt{L_T} \int_{\mathbb{T}} \frac{\log n}{1 + \eta L_T}\right)$ 

 $\operatorname{Regret}_{T} \leq \frac{1}{1-\eta} \left( \frac{\operatorname{In} T}{\eta} + \eta L_{T,i^{\star}} \right) = \mathcal{O}\left( \sqrt{L_{T,i^{\star}} \log N} + \log N \right),$ by setting  $\eta = \min\left\{ \frac{1}{2}, \sqrt{\frac{\ln N}{L_{T,i^{\star}}}} \right\}.$ 

- When  $L_{T,i^*} = \mathcal{O}(T)$ , it can recover the *minimax*  $\mathcal{O}(\sqrt{T \log N})$  guarantee.
- When  $L_{T,i^*} = \mathcal{O}(1)$ , the regret bound is  $\mathcal{O}(\log N)$ , which is independent of T!

### Small-Loss Bounds for PEA

**Theorem 2.** Suppose that  $\forall t \in [T]$  and  $i \in [N], 0 \leq \ell_{t,i} \leq 1$ , then Hedge with learning rate  $\eta \in (0, 1)$  guarantees

Regret<sub>T</sub> 
$$\leq \frac{\ln N}{\eta} + \eta \sum_{t=1}^{T} \langle \boldsymbol{p}_t, \boldsymbol{\ell}_t \rangle,$$
  
which can further imply

$$\operatorname{Regret}_{T} \leq \frac{1}{1-\eta} \left( \frac{\operatorname{Im} N}{\eta} + \eta L_{T,i^{\star}} \right) = \mathcal{O} \left( \sqrt{L_{T,i^{\star}} \log N} + \log N \right)$$
  
by setting  $\eta = \min \left\{ \frac{1}{2}, \sqrt{\frac{\ln N}{L_{T,i^{\star}}}} \right\}.$ 

- When  $L_{T,i^*} = \mathcal{O}(T)$ , it can recover the *minimax*  $\mathcal{O}(\sqrt{T \log N})$  guarantee.
- When  $L_{T,i^*} = \mathcal{O}(1)$ , the regret bound is  $\mathcal{O}(\log N)$ , which is independent of T!

#### Review: Potential-based Proof

*Proof.* Recall the (worst-case regret) analysis of Hedge. We present a 'potential-based' proof, where the potential is defined as

$$\begin{split} \Phi_t &\triangleq \frac{1}{\eta} \ln \left( \sum_{i=1}^N \exp\left(-\eta L_{t,i}\right) \right). \\ \Phi_t - \Phi_{t-1} &= \frac{1}{\eta} \ln \left( \frac{\sum_{i=1}^N \exp\left(-\eta L_{t,i}\right)}{\sum_{i=1}^N \exp\left(-\eta L_{t-1,i}\right)} \right) \\ &= \frac{1}{\eta} \ln \left( \sum_{i=1}^N \left( \frac{\exp\left(-\eta L_{t-1,i}\right)}{\sum_{i=1}^N \exp\left(-\eta L_{t-1,i}\right)} \exp(-\eta \ell_{t,i}) \right) \right) \\ &= \frac{1}{\eta} \ln \left( \sum_{i=1}^N p_{t,i} \exp\left(-\eta \ell_{t,i}\right) \right) \quad \text{(update step of } p_t) \end{split}$$

$$\frac{1}{\eta} \ln \left( \sum_{i=1}^{N} p_{t,i} \left( 1 - \eta \ell_{t,i} + \eta^2 \ell_{t,i}^2 \right) \right) \qquad (\forall x \ge 0, e^{-x} \le 1 - x + x^2)$$

Advanced Optimization (Fall 2023)

 $\leq$ 

#### Review: Potential-based Proof

*Proof.* Recall the (worst-case regret) analysis of Hedge. We present a 'potential-based' proof, where the potential is defined as

$$\Phi_t \triangleq \frac{1}{\eta} \ln \left( \sum_{i=1}^N \exp\left(-\eta L_{t,i}\right) \right).$$

$$\Phi_{t} - \Phi_{t-1} \leq \frac{1}{\eta} \ln \left( \sum_{i=1}^{N} p_{t,i} \left( 1 - \eta \ell_{t,i} + \eta^{2} \ell_{t,i}^{2} \right) \right)$$

$$= \frac{1}{\eta} \ln \left( 1 - \eta \langle \boldsymbol{p}_{t}, \boldsymbol{\ell}_{t} \rangle + \eta^{2} \sum_{i=1}^{N} p_{t,i} \ell_{t,i}^{2} \right)$$

$$\leq - \langle \boldsymbol{p}_{t}, \boldsymbol{\ell}_{t} \rangle + \eta \sum_{i=1}^{N} p_{t,i} \ell_{t,i}^{2} \qquad (\ln(1+x) \leq x)$$

$$\longrightarrow \quad \Phi_{t} - \Phi_{t-1} \leq - \langle \boldsymbol{p}_{t}, \boldsymbol{\ell}_{t} \rangle + \eta \sum_{i=1}^{N} p_{t,i} \ell_{t,i}^{2}$$

Advanced Optimization (Fall 2023)

#### Review: Potential-based Proof

**Proof.** 
$$\Phi_t - \Phi_{t-1} \leq -\langle \boldsymbol{p}_t, \boldsymbol{\ell}_t \rangle + \eta \sum_{i=1}^N p_{t,i} \ell_{t,i}^2$$

Summing over *t*, we have

$$\sum_{t=1}^{T} \langle \boldsymbol{p}_{t}, \boldsymbol{\ell}_{t} \rangle \leq \Phi_{0} - \Phi_{T} + \eta \sum_{t=1}^{T} \sum_{i=1}^{N} p_{t,i} \ell_{t,i}^{2} \qquad \Phi_{t} \triangleq \frac{1}{\eta} \ln \left( \sum_{i=1}^{N} \exp\left(-\eta L_{t}(i)\right) \right)$$
$$\leq \frac{\ln N}{\eta} - \frac{1}{\eta} \ln \left( \exp\left(-\eta L_{T,i^{\star}}\right) \right) + \eta \sum_{t=1}^{T} \sum_{i=1}^{N} p_{t,i} \ell_{t,i}^{2}$$
$$\leq \frac{\ln N}{\eta} + L_{T,i^{\star}} + \eta \sum_{t=1}^{T} \sum_{i=1}^{N} p_{t,i} \ell_{t,i}^{2}$$
$$\Longrightarrow \qquad \sum_{t=1}^{T} \langle \boldsymbol{p}_{t}, \boldsymbol{\ell}_{t} \rangle - L_{T,i^{\star}} \leq \frac{\ln N}{\eta} + \eta \sum_{t=1}^{T} \sum_{i=1}^{N} p_{t,i} \ell_{t,i}^{2}$$

Advanced Optimization (Fall 2023)

### Improved Analysis for Small-Loss Bound

**Proof.**  $\sum_{t=1}^{T} \langle \boldsymbol{p}_t, \boldsymbol{\ell}_t \rangle - L_{T,i^\star} \leq \frac{\ln N}{\eta} + \eta \sum_{t=1}^{T} \sum_{i=1}^{N} p_{t,i} \ell_{t,i}^2$ 

• For previous worst-case analysis, we simply utilize  $\ell_{t,i} \leq 1$ :

$$\eta \sum_{t=1}^{T} \sum_{i=1}^{N} p_{t,i} \ell_{t,i}^2 \leq \eta T$$

• To get a small-loss bound, we improve the analysis to be:

$$\eta \sum_{t=1}^{T} \sum_{i=1}^{N} p_{t,i} \ell_{t,i}^{2} \leq \eta \sum_{t=1}^{T} \sum_{i=1}^{N} p_{t,i} \ell_{t,i} = \eta \sum_{t=1}^{T} \langle \boldsymbol{p}_{t}, \boldsymbol{\ell}_{t} \rangle$$
$$\Longrightarrow \qquad \sum_{t=1}^{T} \langle \boldsymbol{p}_{t}, \boldsymbol{\ell}_{t} \rangle - L_{T,i^{\star}} \leq \frac{\ln N}{\eta} + \eta \sum_{t=1}^{T} \langle \boldsymbol{p}_{t}, \boldsymbol{\ell}_{t} \rangle$$

Advanced Optimization (Fall 2023)

### Improved Analysis for Small-Loss Bound

**Proof.**  $\longrightarrow \sum_{t=1}^{T} \langle \boldsymbol{p}_t, \boldsymbol{\ell}_t \rangle - L$ 

$$\mathcal{L}_{T,i^{\star}} \leq \frac{\ln N}{\eta} + \eta \sum_{t=1}^{I} \langle \boldsymbol{p}_{t}, \boldsymbol{\ell}_{t} \rangle$$

T

$$(1-\eta)\left(\sum_{t=1}^{T} \langle \boldsymbol{p}_t, \boldsymbol{\ell}_t \rangle - L_{T,i^\star}\right) \leq \frac{\ln N}{\eta} + \eta L_{T,i^\star}$$
 (rearrange)

$$\implies \sum_{t=1}^{T} \langle \boldsymbol{p}_t, \boldsymbol{\ell}_t \rangle - L_{T,i^*} \leq \frac{1}{1-\eta} \left( \frac{\ln N}{\eta} + \eta L_{T,i^*} \right) \qquad \Box$$

Therefore, we get the small-loss regret bound of order  $\mathcal{O}\left(\sqrt{L_{T,i^{\star}} \log N} + \log N\right)$ when setting the learning rate optimally as  $\eta^* = \min\left\{\frac{1}{2}, \sqrt{\frac{\ln N}{L_{T,i^{\star}}}}\right\}$ .

# Learning Rate Tuning Issue

• We have showed that Hedge with learning rate  $\eta$  enjoys

$$\sum_{t=1}^{T} \langle \boldsymbol{p}_t, \boldsymbol{\ell}_t \rangle - L_{T,i^{\star}} \leq \frac{1}{1-\eta} \left( \frac{\ln N}{\eta} + \eta L_{T,i^{\star}} \right)$$

Therefore, we get the small-loss regret bound of order  $\mathcal{O}\left(\sqrt{L_{T,i^{\star}} \log N} + \log N\right)$ when setting the learning rate optimally as  $\eta^* = \min\left\{\frac{1}{2}, \sqrt{\frac{\ln N}{L_{T,i^{\star}}}}\right\}$ .

However, this online algorithm is not legitimate, due to the requirement of using  $L_{T,i^{\star}}$  (the cummulative loss of the best expert) as the input.



Fortunately, we can remedy it by the self-confident tuning framework.

• Recall the OGD algorithm for convex function:

 $\mathbf{x}_{t+1} = \Pi_{\mathcal{X}} \left[ \mathbf{x}_t - \eta_t \nabla f_t(\mathbf{x}_t) \right]$ 

which enjoys the following regret bound

$$\sum_{t=1}^{T} f_t(\mathbf{x}_t) - \min_{\mathbf{x} \in \mathcal{X}} \sum_{t=1}^{T} f_t(\mathbf{x}) \le \frac{D^2}{\eta} + \eta G^2 T.$$
  
We can set  $\eta = \frac{D}{G\sqrt{T}}$  to obtain an  $\mathcal{O}(\sqrt{T})$  regret bound.

**Question:** can we remove the dependence of *T* when tuning the step size?

$$\Rightarrow$$
 A natural guess is to set  $\eta_t = \frac{D}{G\sqrt{t}}$ .

Advanced Optimization (Fall 2023)

• *Self-confident* tuning: utilize the available empirical quantities to approximate the unknown ones.

$$\implies$$
 use  $\eta_t = \frac{D}{G\sqrt{t}}$  to approximate  $\eta^* = \frac{D}{G\sqrt{T}}$ , ensuring the same bound (in order).

**Theorem 3.** Suppose the diameter of non-empty closed convex set  $\mathcal{X}$  is D and  $\|\nabla f_t(\mathbf{x})\| \leq G$  for any  $\mathbf{x} \in \mathcal{X}$ . Then OGD with step size tuning  $\eta_t = \frac{D}{G\sqrt{t}}$  ensures the following regret bound:

$$\sum_{t=1}^{T} f_t(\mathbf{x}_t) - \sum_{t=1}^{T} f_t(\mathbf{u}) \le \frac{3}{2} GD\sqrt{T}.$$

Advanced Optimization (Fall 2023)

**Theorem 3.** Suppose the diameter of non-empty closed convex set  $\mathcal{X}$  is D and  $\|\nabla f_t(\mathbf{x})\| \leq G$  for any  $\mathbf{x} \in \mathcal{X}$ . Then OGD with step size tuning  $\eta_t = \frac{D}{G\sqrt{t}}$  ensures the following regret bound:

$$\sum_{t=1}^{T} f_t(\mathbf{x}_t) - \sum_{t=1}^{T} f_t(\mathbf{u}) \le \frac{3}{2} GD\sqrt{T}.$$

Advanced Optimization (Fall 2023)

• Consider the small-loss bound for PEA problem.

Achieving small loss bound  $\mathcal{O}\left(\sqrt{L_{T,i^{\star}} \log N} + \log N\right)$  with  $\eta = \min\left\{\frac{1}{2}, \sqrt{\frac{\ln N}{L_{T,i^{\star}}}}\right\}$ .

**Goal**: tuning  $\eta$  without the knowledge of  $L_{T,i^{\star}}$ 

Deploying self-confident tuning: how can we empirically approximate  $L_{T,i^{\star}}$ ?

$$L_{T,i} \triangleq \sum_{t=1}^{T} \ell_{t,i}, \ i^{\star} = \arg\min_{i \in [N]} L_{T,i} \qquad \qquad L_{t,i} \triangleq \sum_{s=1}^{t} \ell_{s,i}, \ i^{\star}_{t} = \arg\min_{i \in [N]} L_{t,i}$$

 $\square$  Key challenge: index  $i^*$  and index sequence  $\{i_t^*\}_{t=1}^T$  can be highly different

• Consider the small-loss bound for PEA problem.

Achieving small loss bound 
$$\mathcal{O}\left(\sqrt{L_{T,i^{\star}} \log N} + \log N\right)$$
 with  $\eta = \min\left\{\frac{1}{2}, \sqrt{\frac{\ln N}{L_{T,i^{\star}}}}\right\}$ .

We need to dive into the regret analysis.  $\sum_{t=1}^{T} \langle \boldsymbol{p}_t, \boldsymbol{\ell}_t \rangle - L_{T,i^*} \leq \frac{\ln N}{\eta} + \eta \sum_{t=1}^{T} \langle \boldsymbol{p}_t, \boldsymbol{\ell}_t \rangle$ 

$$\sum_{t=1}^{T} \langle \boldsymbol{p}_t, \boldsymbol{\ell}_t \rangle - L_{T,i^{\star}} \leq 2 \sqrt{(\ln N) \sum_{t=1}^{T} \langle \boldsymbol{p}_t, \boldsymbol{\ell}_t \rangle}$$

by setting 
$$\eta = \sqrt{\frac{\ln N}{\sum_{t=1}^{T} \langle \boldsymbol{p}_t, \boldsymbol{\ell}_t \rangle}}.$$

$$\begin{array}{l} & \longleftarrow \\ & & \text{Denoted by } \widetilde{L}_T = \sum_{t=1}^T \langle \boldsymbol{p}_t, \boldsymbol{\ell}_t \rangle \\ & & \text{we obtain } \widetilde{\boldsymbol{L}}_T - \boldsymbol{L}_{T,i^*} \leq 2\sqrt{(\ln N)\widetilde{\boldsymbol{L}}_T} \end{array}$$

**Lemma.** For 
$$x, y, a \in \mathbb{R}_+$$
 that satisfy  $x - y \leq \sqrt{ax}$ , it implies  $x - y \leq \sqrt{ay} + a$ .

• Consider the small-loss bound for PEA problem.

Achieving small loss bound  $\mathcal{O}\left(\sqrt{L_{T,i^{\star}} \log N} + \log N\right)$  with  $\eta = \min\left\{\frac{1}{2}, \sqrt{\frac{\ln N}{L_{T,i^{\star}}}}\right\}$ .

More specifically, setting 
$$\eta = \sqrt{\frac{\ln N}{\tilde{L}_T}}$$
, yields  
 $\widetilde{L}_T - L_{T,i^*} \leq \frac{\ln N}{\eta} + \eta \widetilde{L}_T \implies \widetilde{L}_T - L_{T,i^*} \leq 2\sqrt{(\ln N)\widetilde{L}_T} \implies \widetilde{L}_T - L_{T,i^*} \leq \mathcal{O}\Big(\sqrt{(\log N)L_{T,i^*}} + \log N\Big)$ 

While  $\tilde{L}_T$  cannot be obtained ahead of time, a *natural* emperical approxiamtion is:

$$\eta_t = \sqrt{\frac{\ln N}{\tilde{L}_t}}, \text{ where } \widetilde{L}_t = \sum_{s=1}^t \langle \boldsymbol{p}_s, \boldsymbol{\ell}_s \rangle \qquad p_{t+1,i} \propto \exp\left(-\eta_t L_{t,i}\right), \forall i \in [N]$$

**Theorem 4.** Suppose that  $\forall t \in [T]$  and  $i \in [N], 0 \leq \ell_{t,i} \leq 1$ , then Hedge with adaptive learning rate  $\eta_t = \sqrt{\frac{\ln N}{\tilde{L}_t + 1}}$  guarantees Regret $_T \leq 8\sqrt{(L_{T,i^*} + 1)\ln N} + 3\ln N$  $= \mathcal{O}(\sqrt{L_{T,i^*}\log N} + \log N),$ where  $\tilde{L}_t = \sum_{s=1}^t \langle \boldsymbol{p}_s, \boldsymbol{\ell}_s \rangle$  is cumulative loss the learner suffered at time t.

*Proof.* We again use 'potential-based' proof here, where the potential is defined as

$$\begin{split} \Phi_{t}(\eta) &\triangleq \frac{1}{\eta} \ln \left( \sum_{i=1}^{N} \exp\left(-\eta L_{t,i}\right) \right) \\ \Phi_{t}(\eta_{t-1}) - \Phi_{t-1}(\eta_{t-1}) &= \frac{1}{\eta_{t-1}} \ln \left( \frac{\sum_{i=1}^{N} \exp\left(-\eta_{t-1} L_{t,i}\right)}{\sum_{i=1}^{N} \exp\left(-\eta_{t-1} L_{t-1,i}\right)} \right) \\ &= \frac{1}{\eta_{t-1}} \ln \left( \sum_{i=1}^{N} \left( \frac{\exp\left(-\eta_{t-1} L_{t-1,i}\right)}{\sum_{i=1}^{N} \exp\left(-\eta_{t-1} L_{t-1,i}\right)} \exp(-\eta_{t-1} \ell_{t,i}) \right) \right) \\ &= \frac{1}{\eta_{t-1}} \ln \left( \sum_{i=1}^{N} p_{t,i} \exp\left(-\eta_{t-1} \ell_{t,i}\right) \right) \quad (\text{update rule of } p_{t}) \\ &\qquad (p_{t,i} \propto \exp\left(-\eta_{t-1} L_{t-1,i}\right), \forall i \in [N] \end{split}$$

Advanced Optimization (Fall 2023)

Proof.

$$\begin{split} \Phi_{t}(\eta_{t-1}) - \Phi_{t-1}(\eta_{t-1}) &= \frac{1}{\eta_{t-1}} \ln \left( \sum_{i=1}^{N} p_{t,i} \exp\left(-\eta_{t-1}\ell_{t,i}\right) \right) \\ &\leq \frac{1}{\eta_{t-1}} \ln \left( \sum_{i=1}^{N} p_{t,i} \left(1 - \eta_{t-1}\ell_{t,i} + \eta_{t-1}^{2}\ell_{t,i}^{2}\right) \right) \quad (\forall x \ge 0, e^{-x} \le 1 - x + x^{2}) \\ &= \frac{1}{\eta_{t-1}} \ln \left( 1 - \eta_{t-1} \langle \boldsymbol{p}_{t}, \boldsymbol{\ell}_{t} \rangle + \eta_{t-1}^{2} \sum_{i=1}^{N} p_{t,i}\ell_{t,i}^{2} \right) \\ &\leq - \langle \boldsymbol{p}_{t}, \boldsymbol{\ell}_{t} \rangle + \eta_{t-1} \sum_{i=1}^{N} p_{t,i}\ell_{t,i}^{2} \qquad (\ln(1+x) \le x) \end{split}$$

Advanced Optimization (Fall 2023)

$$\Phi_t(\eta) \triangleq \frac{1}{\eta} \ln \left( \sum_{i=1}^N \exp\left(-\eta L_{t,i}\right) \right)$$

**Proof.**  $\Phi_t(\eta_{t-1}) - \Phi_{t-1}(\eta_{t-1}) \le -\langle p_t, \ell_t \rangle + \eta_{t-1} \sum_{i=1}^N p_{t,i} \ell_{t,i}^2$ 

Advanced Optimization (Fall 2023)

$$\Phi_t(\eta) \triangleq \frac{1}{\eta} \ln \left( \sum_{i=1}^N \exp\left(-\eta L_{t,i}\right) \right)$$

**Proof.** 
$$\sum_{t=1}^{T} \langle \boldsymbol{p}_t, \boldsymbol{\ell}_t \rangle \leq \sqrt{\left(\widetilde{L}_{T-1} + 1\right) \ln N} + L_{T,i^*} + \sum_{t=1}^{T} \eta_{t-1} \langle \boldsymbol{p}_t, \boldsymbol{\ell}_t \rangle + \sum_{t=1}^{T} \left( \Phi_t(\eta_t) - \Phi_t(\eta_{t-1}) \right)$$

To bound  $\sum_{t=1}^{T} \left( \Phi_t(\eta_t) - \Phi_t(\eta_{t-1}) \right)$ , we prove that  $\Phi_t(\eta)$  is increasing w.r.t.  $\eta$ :

$$\begin{split} \eta^{2} \Phi_{t}'(\eta) &= \eta^{2} \left( -\frac{1}{\eta^{2}} \ln(\frac{1}{N} \sum_{i=1}^{N} \exp(-\eta L_{t,i})) - \frac{1}{\eta} \frac{\sum_{i=1}^{N} L_{t,i} \exp(-\eta L_{t,i})}{\sum_{i=1}^{N} \exp(-\eta L_{t,i})} \right) \\ &= \ln N - \sum_{i=1}^{N} p_{t+1,i}^{\eta} \left( \ln\left(\sum_{j=1}^{N} \exp(-\eta L_{t,j})\right) + \eta L_{t,i}\right) \qquad (p_{t+1,i}^{\eta} \propto \exp(-\eta L_{t,i})) \\ &= \ln N - \sum_{i=1}^{N} p_{t+1,i}^{\eta} \ln\left(\frac{\sum_{j=1}^{N} \exp(-\eta L_{t,j})}{\exp(-\eta L_{t,i})}\right) \\ &= \ln N - \sum_{i=1}^{N} p_{t+1,i}^{\eta} \ln\frac{1}{p_{t+1,i}^{\eta}} \ge 0 \qquad \qquad \sum_{t=1}^{T} \left(\Phi_{t}(\eta_{t}) - \Phi_{t}(\eta_{t-1})\right) \le 0 \\ &(\eta_{t} \le \eta_{t-1}) \\ \end{split}$$

Advanced Optimization (Fall 2023)

*Proof.* From the potential-based proof, we already know that

$$\sum_{t=1}^{T} \langle \boldsymbol{p}_t, \boldsymbol{\ell}_t \rangle - L_{T,i^{\star}} \leq \sqrt{(\widetilde{L}_{T-1}+1) \ln N} + \sum_{t=1}^{T} \eta_{t-1} \langle \boldsymbol{p}_t, \boldsymbol{\ell}_t \rangle$$

$$\leq \sqrt{(\widetilde{L}_{T-1}+1)\ln N} + \sum_{t=1}^{T} \frac{\langle \boldsymbol{p}_{t}, \boldsymbol{\ell}_{t} \rangle}{\sqrt{\sum_{s=1}^{t-1} \langle \boldsymbol{p}_{s}, \boldsymbol{\ell}_{s} \rangle + 1}} \begin{pmatrix} \eta_{t-1} = \sqrt{\frac{\ln N}{\widetilde{L}_{t-1}+1}} \end{pmatrix} \\ (\widetilde{L}_{t-1} = \sum_{s=1}^{t-1} \langle \boldsymbol{p}_{s}, \boldsymbol{\ell}_{s} \rangle) \end{pmatrix}$$

How to bound this term?

 $\Box$  This is actually a common structure to handle.

### Self-confident Tuning Lemma

**Lemma 1.** Let  $a_1, a_2, \ldots, a_T$  be non-negative real numbers. Then

$$\sum_{t=1}^{T} \frac{a_t}{\sqrt{1 + \sum_{s=1}^{t} a_s}} \le 2\sqrt{1 + \sum_{t=1}^{T} a_t}$$

Lemma 2. Let 
$$a_1, a_2, \dots, a_T$$
 be non-negative real numbers. Then  

$$\sum_{t=1}^T \frac{a_t}{\sqrt{1 + \sum_{s=1}^{t-1} a_s}} \leq 4\sqrt{1 + \sum_{t=1}^T a_t} + \max_{t \in [T]} a_t$$

The two lemmas are useful for analyzing algorithms with self-confident tuning.

**Lemma 1.** Let  $a_1, a_2, \ldots, a_T$  be non-negative real numbers. Then

$$\sum_{t=1}^{T} \frac{a_t}{\sqrt{1 + \sum_{s=1}^{t} a_s}} \le 2\sqrt{1 + \sum_{t=1}^{T} a_t}$$

Proof.  $\frac{1}{2}x \le 1 - \sqrt{1-x}, \forall x \in [0,1]$ 

Let 
$$a_0 \triangleq 1$$
, by set  $x = a_t / \sum_{s=0}^t a_s$ :  
$$\frac{a_t}{2\sum_{s=0}^t a_s} \le 1 - \sqrt{1 - \frac{a_t}{\sum_{s=0}^t a_s}}$$

Advanced Optimization (Fall 2023)

**Proof.** 
$$\frac{a_t}{2\sum_{s=0}^t a_s} \le 1 - \sqrt{1 - \frac{a_t}{\sum_{s=0}^t a_s}}$$

By telescopling from t = 1 to T:

$$\sum_{t=1}^{T} \left( \frac{a_t}{2\sqrt{1 + \sum_{s=1}^{t} a_s}} \right) \le \sqrt{\sum_{s=0}^{T} a_s} - \sqrt{\sum_{s=0}^{1} a_s} - \sum_{s=0}^{0} a_s \le \sqrt{1 + \sum_{t=1}^{T} a_t} \quad \Box$$

Advanced Optimization (Fall 2023)

Lemma 2. Let  $a_1, a_2, \dots, a_T$  be non-negative real numbers. Then  $\sum_{t=1}^T \frac{a_t}{\sqrt{1 + \sum_{s=1}^{t-1} a_s}} \leq 4\sqrt{1 + \sum_{t=1}^T a_t} + \max_{t \in [T]} a_t$ 

**Proof.** We define that  $\max_{t \in [T]} a_t = B$ .

• Case 1. If 
$$\sum_{t=1}^{T} a_t \leq B$$
:

 $\sum_{t=1}^{T} \frac{a_t}{\sqrt{1 + \sum_{s=1}^{t-1} a_s}} \leq \sum_{t=1}^{T} a_t \leq B$ , Lemma 2 is obviously satisfied.

Lemma 2. Let  $a_1, a_2, \dots, a_T$  be non-negative real numbers. Then  $\sum_{t=1}^{T} \frac{a_t}{\sqrt{1 + \sum_{s=1}^{t-1} a_s}} \leq 4\sqrt{1 + \sum_{t=1}^{T} a_t} + \max_{t \in [T]} a_t$ 

**Proof.** We define that  $\max_{t \in [T]} a_t = B$ .

• Case 2. If 
$$\sum_{t=1}^{T} a_t \ge B$$
, we define  $t_0 \triangleq \min\left\{t : \sum_{s=1}^{t-1} x_s \ge B\right\}$ :

$$\sum_{t=1}^{T} \frac{a_t}{\sqrt{1 + \sum_{s=1}^{t-1} a_s}} \le B + \sum_{t=t_0}^{T} \frac{a_t}{\sqrt{1 + \sum_{s=1}^{t-1} a_s}} \le B + \sum_{t=t_0}^{T} \frac{a_t}{\sqrt{1 + \frac{\sum_{s=1}^{t-1} a_s + a_t}{2}}} (\frac{x+y}{2})$$

Advanced Optimization (Fall 2023)

Lemma 2. Let  $a_1, a_2, \dots, a_T$  be non-negative real numbers. Then  $\sum_{t=1}^T \frac{a_t}{\sqrt{1 + \sum_{s=1}^{t-1} a_s}} \leq 4\sqrt{1 + \sum_{t=1}^T a_t} + \max_{t \in [T]} a_t$ 

**Proof.** We define that  $\max_{t \in [T]} a_t = B$ . • Case 2. If  $\sum_{t=1}^T a_t \ge B$ , we define  $t_0 \triangleq \min\left\{t : \sum_{s=1}^{t-1} x_s \ge B\right\}$ :  $B + \sum_{t=t_0}^T \frac{a_t}{\sqrt{1 + \frac{\sum_{s=1}^{t-1} a_s + a_t}{2}}} \le B + \sum_{t=t_0}^T \frac{2a_t}{\sqrt{1 + \sum_{s=1}^{t} a_s}} \le B + 4\sqrt{1 + \sum_{t=1}^T a_t}$ 

Advanced Optimization (Fall 2023)

#### Small-Loss bound for PEA: Proof

*Proof.* From previous potential-based proof, we already known that

$$\sum_{t=1}^{T} \langle \boldsymbol{p}_t, \boldsymbol{\ell}_t \rangle - L_{T,i^{\star}} \leq \sqrt{(\widetilde{L}_{T-1}+1) \ln N} + \sum_{t=1}^{T} \frac{\langle \boldsymbol{p}_t, \boldsymbol{\ell}_t \rangle}{\sqrt{\sum_{s=1}^{t-1} \langle \boldsymbol{p}_s, \boldsymbol{\ell}_s \rangle + 1}}$$

Lemma 2. Let 
$$a_1, a_2, \ldots, a_T$$
 be non-negative real numbers. Then  

$$\sum_{t=1}^{T} \frac{a_t}{\sqrt{1 + \sum_{s=1}^{t-1} a_s}} \leq 4\sqrt{1 + \sum_{t=1}^{T} a_t} + \max_{t \in [T]} a_t$$

$$\Longrightarrow \qquad \widetilde{L}_T - L_{T,i^*} \leq \sqrt{(\widetilde{L}_{T-1} + 1) \ln N} + 4\sqrt{1 + \widetilde{L}_T} + 1 \qquad (\ell_i \leq 1, \forall i \in [N])$$

$$\leq \sqrt{(\widetilde{L}_T + 1) \ln N} + 4\sqrt{1 + \widetilde{L}_T} + 1$$

Advanced Optimization (Fall 2023)

#### Small-Loss bound for PEA: Proof

**Proof.** 
$$\longrightarrow$$
  $\widetilde{L}_T - L_{T,i^*} \le \sqrt{(\widetilde{L}_T + 1) \ln N} + 4\sqrt{1 + \widetilde{L}_T} + 1$ 

Then we solve above inequality. Let  $x \triangleq \widetilde{L}_T + 1$ :

This implies that

$$\sqrt{\widetilde{L}_T - 1} \le \sqrt{L_{T,i^*} + 2 + \left(\frac{\sqrt{\ln N} + 4}{2}\right)^2} + \frac{\sqrt{\ln N} + 4}{2}$$

Advanced Optimization (Fall 2023)

### **Recall: Small-Loss Bound for PEA**

• So far, we have obtained a PEA algorithm with small-loss bound.

**Theorem 4.** Suppose that  $\forall t \in [T]$  and  $i \in [N], 0 \leq \ell_{t,i} \leq 1$ , then Hedge with adaptive learning rate  $\eta_t = \sqrt{\frac{\ln N}{\tilde{L}_t + 1}}$  guarantees  $\operatorname{Regret}_T \le 8\sqrt{(L_{T,i^{\star}}+1)\ln N + 3\ln N}$  $= \mathcal{O}\Big(\sqrt{L_{T,i^{\star}}\log N} + \log N\Big),$ 

where  $\widetilde{L}_t = \sum_{s=1}^t \langle \boldsymbol{p}_s, \boldsymbol{\ell}_s \rangle$  is cumulative loss the learner suffered at time t.

• Can we further extend the result to more *general OCO* setting?

### Small Loss in General OCO Setting

**Definition 4** (Small Loss). The small-loss quantity of the OCO problem (online function  $f_t : \mathcal{X} \mapsto \mathbb{R}$ ) is defined as

$$F_T = \min_{\mathbf{x} \in \mathcal{X}} \sum_{t=1}^T f_t(\mathbf{x})$$

• By taking  $f_t(\mathbf{x}) = \langle \mathbf{x}, \boldsymbol{\ell}_t \rangle$  and  $\mathcal{X} = \Delta_N$ , we recover the definition of the small-loss quantity of PEA problem:

$$F_T = \min_{\mathbf{x} \in \Delta_N} \sum_{t=1}^T \langle \mathbf{x}, \boldsymbol{\ell}_t \rangle = \sum_{t=1}^T \boldsymbol{\ell}_{t,i^*} = L_{T,i^*}$$

Advanced Optimization (Fall 2023)

## Self-bounding Property

• We require the following *self-bounding property* to ensure the small-loss bound for general OCO.

**Lemma 3** (Self-bounding Property). *For an L*-*smooth function*  $f : \mathbb{R}^d \mapsto \mathbb{R}$  *with*  $\mathbf{x}^* \in \arg \min_{\mathbf{v} \in \mathbb{R}^d} f(\mathbf{v})$ , we have that

$$\|\nabla f(\mathbf{x})\|_2 \le \sqrt{2L(f(\mathbf{x}) - f(\mathbf{x}^*))}, \quad \forall \mathbf{x} \in \mathcal{X}.$$

**Proof.** By the smoothness of f, for any  $\mathbf{x}, \boldsymbol{\delta} \in \mathbb{R}^d$  we have  $f(\mathbf{x} + \boldsymbol{\delta}) \leq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \boldsymbol{\delta} \rangle + \frac{L}{2} \|\boldsymbol{\delta}\|_2^2.$ 

Advanced Optimization (Fall 2023)

Self-bounding PropertyProof.
$$f(\mathbf{x} + \boldsymbol{\delta}) \leq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \boldsymbol{\delta} \rangle + \frac{L}{2} \| \boldsymbol{\delta} \|_2^2$$

Choosing 
$$\delta = -\frac{\nabla f(\mathbf{x})}{L}$$
 gives  

$$f\left(\mathbf{x} - \frac{\nabla f(\mathbf{x})}{L}\right) \leq f(\mathbf{x}) - \frac{\|\nabla f(\mathbf{x})\|_2^2}{2L}$$
<sub>(actually one-step improvement lemma)</sub>

Notice that  $f(\mathbf{x}^{\star}) \leq f(\mathbf{x} - \frac{\nabla f(\mathbf{x})}{L})$  by definition, which implies

$$f(\mathbf{x}^{\star}) \le f\left(\mathbf{x} - \frac{\nabla f(\mathbf{x})}{L}\right) \le f(\mathbf{x}) - \frac{\left\|\nabla f(\mathbf{x})\right\|_{2}^{2}}{2L}$$

Rearranging the above terms finishes the proof.  $\Box$ 

Advanced Optimization (Fall 2023)

### Self-bounding Property

**Lemma 3** (Self-bounding Property). *For an L*-*smooth function*  $f : \mathbb{R}^d \to \mathbb{R}$  *with*  $\mathbf{x}^* \in \arg \min_{\mathbf{v} \in \mathbb{R}^d} f(\mathbf{v})$ , we have that

$$\|\nabla f(\mathbf{x})\|_2 \le \sqrt{2L(f(\mathbf{x}) - f(\mathbf{x}^{\star}))}, \quad \forall \mathbf{x} \in \mathcal{X}.$$

**Corollary 1.** For an *L*-smooth and non-negative function  $f : \mathbb{R}^d \mapsto \mathbb{R}$ , we have that

$$\|\nabla f(\mathbf{x})\|_2 \leq \sqrt{2Lf(\mathbf{x})}, \quad \forall \mathbf{x} \in \mathcal{X}.$$

### Achieving Small-Loss Bound

• We show that under the *self-bounding condition*, OGD can yield the desired small-loss regret bound.

$$\mathbf{x}_{t+1} = \Pi_{\mathbf{x}\in\mathcal{X}}[\mathbf{x}_t - \eta_t \nabla f_t(\mathbf{x}_t)]$$

**Theorem 6** (Small-loss Bound). Assume that  $f_t$  is L-smooth and non-negative for all  $t \in [T]$ , when setting  $\eta_t = \frac{D}{\sqrt{1+\tilde{G}_t}}$ , the regret of OGD to any comparator  $\mathbf{u} \in \mathcal{X}$  is bounded as

$$\operatorname{Regret}_{T} = \sum_{t=1}^{T} f_{t}(\mathbf{x}_{t}) - \sum_{t=1}^{T} f_{t}(\mathbf{u}) \le \mathcal{O}\left(\sqrt{1+F_{T}}\right)$$

where  $\widetilde{G}_t = \sum_{s=1}^t \|\nabla f_s(\mathbf{x}_s)\|_2^2$  is the empirical estimator of cumulative gradient  $G_T$ .

**Proof.** 
$$\sum_{t=1}^{T} f_t(\mathbf{x}_t) - \sum_{t=1}^{T} f_t(\mathbf{u}) \le \sum_{t=1}^{T} \eta_t \|\nabla f_t(\mathbf{x}_t)\|_2^2 + \sum_{t=1}^{T} \frac{1}{2\eta_t} \left( \|\mathbf{u} - \mathbf{x}_t\|_2^2 - \|\mathbf{u} - \mathbf{x}_{t+1}\|_2^2 \right)$$

$$\sum_{t=1}^{T} \eta_t \|\nabla f_t(\mathbf{x}_t)\|_2^2 = D \sum_{t=2}^{T} \frac{\|\nabla f_t(\mathbf{x}_t)\|_2^2}{\sqrt{1+\widetilde{G}_t}} + G^2 \le 2D \sqrt{1+\sum_{t=1}^{T} \|\nabla f_t(\mathbf{x}_t)\|_2^2} + G^2$$
$$(\eta_1 \triangleq 1) \qquad (\widetilde{G}_t = \sum_{s=1}^{t} \|\nabla f_s(\mathbf{x}_s)\|_2^2)$$

Lemma 1. Let  $a_1, a_2, \dots, a_T$  be non-negative real numbers. Then  $\sum_{t=1}^T \frac{a_t}{\sqrt{1 + \sum_{s=1}^t a_s}} \leq 2\sqrt{1 + \sum_{t=1}^T a_t}$ 

Advanced Optimization (Fall 2023)

**Proof.** 
$$\sum_{t=1}^{T} f_t(\mathbf{x}_t) - \sum_{t=1}^{T} f_t(\mathbf{u}) \le \sum_{t=1}^{T} \eta_t \|\nabla f_t(\mathbf{x}_t)\|_2^2 + \sum_{t=1}^{T} \frac{1}{2\eta_t} \left( \|\mathbf{u} - \mathbf{x}_t\|_2^2 - \|\mathbf{u} - \mathbf{x}_{t+1}\|_2^2 \right)$$

$$\sum_{t=1}^{T} \eta_t \|\nabla f_t(\mathbf{x}_t)\|_2^2 = D \sum_{t=2}^{T} \frac{\|\nabla f_t(\mathbf{x}_t)\|_2^2}{\sqrt{1+\tilde{G}_t}} + G^2 \le 2D \sqrt{1+\sum_{t=1}^{T} \|\nabla f_t(\mathbf{x}_t)\|_2^2} + G^2$$
$$(\eta_1 \triangleq 1) \qquad (\tilde{G}_t = \sum_{s=1}^{t} \|\nabla f_s(\mathbf{x}_s)\|_2^2)$$

$$\leq 2D \sqrt{1 + 2L \sum_{t=1}^{T} f_t(\mathbf{x}_t) + G^2}$$

(self-bounding property)

**Proof.** 
$$\sum_{t=1}^{T} f_t(\mathbf{x}_t) - \sum_{t=1}^{T} f_t(\mathbf{u}) \le \sum_{t=1}^{T} \eta_t \|\nabla f_t(\mathbf{x}_t)\|_2^2 + \sum_{t=1}^{T} \frac{1}{2\eta_t} \left( \|\mathbf{u} - \mathbf{x}_t\|_2^2 - \|\mathbf{u} - \mathbf{x}_{t+1}\|_2^2 \right)$$

$$\sum_{t=1}^{T} \eta_t \|\nabla f_t(\mathbf{x}_t)\|_2^2 \le 2D \sqrt{1 + 2L \sum_{t=1}^{T} f_t(\mathbf{x}_t) + G^2}$$

$$\sum_{t=1}^{T} \frac{1}{2\eta_t} \left( \|\mathbf{u} - \mathbf{x}_t\|_2^2 - \|\mathbf{u} - \mathbf{x}_{t+1}\|_2^2 \right) \le \frac{D}{2} \sqrt{1 + 2L \sum_{t=1}^{T} f_t(\mathbf{x}_t) + \frac{D}{2}}$$

$$Regret_T = \sum_{t=1}^{T} f_t(\mathbf{x}_t) - \sum_{t=1}^{T} f_t(\mathbf{u}) \le 3D \sqrt{1 + 2L \sum_{t=1}^{T} f_t(\mathbf{x}_t) + G^2}$$

Advanced Optimization (Fall 2023)

**Proof.** Regret<sub>T</sub> = 
$$\sum_{t=1}^{T} f_t(\mathbf{x}_t) - \sum_{t=1}^{T} f_t(\mathbf{u}) \leq 3D \sqrt{1 + 2L \sum_{t=1}^{T} f_t(\mathbf{x}_t) + G^2}$$

#### Remember how we solve a similar problem in PEA:

Small-Loss bound for PEA: Proof  
Proof. 
$$\widetilde{L}_T - L_{T,i^*} \le \sqrt{(\widetilde{L}_T + 1) \ln N} + 4\sqrt{1 + \widetilde{L}_T} + 1$$
  
Then we solve above inequality. Let  $x \triangleq \widetilde{L}_T + 1$ :  
 $x - (\sqrt{\ln N} + 4)\sqrt{x} \le L_{T,i^*} + 2$   $\longrightarrow (\sqrt{x} - \frac{\sqrt{\ln N} + 4}{2})^2 \le L_{T,i^*} + 2 + (\frac{\sqrt{\ln N} + 4}{2})^2$   
This implies that  
 $\sqrt{\widetilde{L}_T - 1} \le \sqrt{L_{T,i^*} + 2 + (\frac{\sqrt{\ln N} + 4}{2})^2} + \frac{\sqrt{\ln N} + 4}{2}$   
 $\Longrightarrow \widetilde{L}_T \le 3\ln N + L_{T,i^*} + 8\sqrt{(L_{T,i^*} + 1)\ln N} = \mathcal{O}(\sqrt{L_{T,i^*}\log N} + \log N)$ . (squaring both sides)

$$\implies \operatorname{Regret}_{T} = \sum_{t=1}^{T} f_{t}(\mathbf{x}_{t}) - \sum_{t=1}^{T} f_{t}(\mathbf{u}) = \mathcal{O}\left(D_{\sqrt{L}}\sum_{t=1}^{T} f_{t}(\mathbf{u}) + 1 + G^{2}\right).$$

Advanced Optimization (Fall 2023)

### Several Remarks

- Remark 1: about the non-negative assumption When the online functions are non-negative, it is possible to redefine the small-loss quantity by incorporating each-round minimal function value.
- Remark 2: about the smoothness assumption

Smoothness is necessary to obtain small-loss regret bound by the first-order method (can be proved by the online-to-batch conversion and existing lower bounds for deterministic optimization).

• Remark 3: take care of the way dealing with variance term In OGD here we use Lemma 1, while in PEA Hedge for PEA we use Lemma 2.

### Summary



Advanced Optimization (Fall 2023)

Lecture 8. Adaptive Online Convex Optimization

Q & A

Thanks!