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Outline
• Motivation

• Small-Loss Bounds
• Small-Loss bound for PEA

• Self-confident Tuning

• Small-Loss bound for OCO
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General Regret Analysis for OMD

OMD update:

bias term (range term) variance term (stability term) negative term
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Proof of Mirror Descent Lemma
Proof.

term (a) term (b)

(negative term, usually dropped; 
but sometimes highly useful)
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General Analysis Framework for OMD

Using Lemma 1, we can easily prove the following regret bound for OMD.
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Online Mirror Descent
• Our previous mentioned algorithms can all be covered by OMD.

OGD for 
convex

OGD for 
strongly c.

ONS for 
exp-concave

Hedge for 
PEA

OMD/proximal formAlgo.
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Online Mirror Descent
• Our previous mentioned algorithms can all be covered by OMD.

OGD for 
convex

OGD for 
strongly c.

ONS for 
exp-concave

Hedge for 
PEA

OMD/proximal formAlgo.

minimax 
optimal
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Beyond the Worst-Case Analysis
• All above regret guarantees hold against the worst case

• Matching the minimax optimality
• The environment is fully adversarial

interview

adaptive adversaryoblivious adversary

examination

We are after some more problem-dependent guarantees.

• However, in practice:
• We are not always interested in the worst-case scenario
• Environments can exhibit specific patterns: gradual change, periodicity…
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Beyond the Worst-Case Analysis
• Beyond the worst-case analysis, achieving more adaptive results.

(1) adaptivity: achieving better guarantees in easy problem instances;

(2) robustness: maintaining the same worst-case guarantee.

[Slides from Dylan Foster, Adaptive Online Learning @NIPS’15 workshop]

https://event.cwi.nl/easydata2015/slides/dylan.pdf
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Prediction with Expert Advice
• Recall the PEA setup

• Performance measure: regret

benchmark the performance 
with respect to the best expert
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Prediction with Expert Advice
• Hedge algorithm: taking the “softmax” operation

• Another greedy update:

• The two updates are significantly different when learning rate is changing.
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Hedge: Regret Bound

minimax optimal
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Small-Loss Bounds for PEA
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Small-Loss Bounds for PEA
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Review: Potential-based Proof
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Review: Potential-based Proof
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Review: Potential-based Proof
Proof.
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Improved Analysis for Small-Loss Bound
Proof.
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Improved Analysis for Small-Loss Bound
Proof.

(rearrange)
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Learning Rate Tuning Issue

Fortunately, we can remedy it by the self-confident tuning framework.
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Self-confident Tuning Framework
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Self-confident Tuning Framework
• Self-confident tuning: utilize the available empirical quantities to 

approximate the unknown ones.
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Self-confident Tuning Framework

Proof. 
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Self-confident Tuning Framework
• Consider the small-loss bound for PEA problem.

Key challenge:
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Self-confident Tuning Framework
• Consider the small-loss bound for PEA problem.
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Self-confident Tuning Framework
• Consider the small-loss bound for PEA problem.
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Self-confident Tuning Framework
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Proof

Proof. 
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Proof

Proof. 
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Proof

Proof. 

(telescoping)
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Proof

Proof. 
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Proof

Proof. From the potential-based proof, we already know that

How to bound this term?

This is actually a common structure to handle.
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Self-confident Tuning Lemma

The two lemmas are useful for analyzing algorithms with self-confident tuning.
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Proof

Proof.
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Proof

Proof.
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Proof

Proof.
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Proof

Proof.
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Proof

Proof.

(Lemma 1)
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Small-Loss bound for PEA: Proof

Proof.  From previous potential-based proof, we already known that
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Small-Loss bound for PEA: Proof

Proof. 

(squaring 
both sides)
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Recall: Small-Loss Bound for PEA
• So far, we have obtained a PEA algorithm with small-loss bound.

• Can we further extend the result to more general OCO setting?
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Small Loss in General OCO Setting
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Self-bounding Property
• We require the following self-bounding property to ensure the 

small-loss bound for general OCO.

Proof.  
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Self-bounding Property
Proof.   

(actually one-step improvement lemma)
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Self-bounding Property
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Achieving Small-Loss Bound
• We show that under the self-bounding condition, OGD can 

yield the desired small-loss regret bound.
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Proof
Proof.  
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Proof
Proof.  

(self-bounding property)
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Proof
Proof.  
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Remember how we solve a similar problem in PEA:

Proof.  

Proof
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Several Remarks
• Remark 1: about the non-negative assumption

When the online functions are non-negative, it is possible to redefine the 
small-loss quantity by incorporating each-round minimal function value.
 

• Remark 2: about the smoothness assumption
Smoothness is necessary to obtain small-loss regret bound by the first-order 
method (can be proved by the online-to-batch conversion and existing lower 
bounds for deterministic optimization).

• Remark 3: take care of the way dealing with variance term 
In OGD here we use Lemma 1, while in PEA Hedge for PEA we use Lemma 2.
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Summary

Q & A
Thanks!


