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Beyond the Worst-Case Analysis

* All above regret guarantees hold against the worst case

* Matching the minimax optimality oblivious adversary adaptive adversary
* The environment is fully adversarial F !"’! ‘!
examination interview

* However, in practice:
* We are not always interested in the worst-case scenario
« Environments can exhibit specific patterns: gradual change, periodicity...

> We are after some more problem-dependent guarantees.
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Beyond the Worst-Case Analysis

* Beyond the worst-case analysis, achieving more adaptive results.
(1) adaptivity: achieving better guarantees in easy problem instances;

(2) robustness: maintaining the same worst-case guarantee.
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[Slides from Dylan Foster, Adaptive Online Learning @NIPS’15 workshop]

Advanced Optimization (Fall 2023) Lecture 9. Optimistic Online Mirror Descent 3


https://event.cwi.nl/easydata2015/slides/dylan.pdf

Small-L.oss Bounds for PEA

Theorem 2. Suppose that ¥t € [T] and v+ € [N],0 < ¢,; <1, then Hedge with
learning rate n € (0, 1) guarantees

In N
Regret < n_ + 772 Py, L),
which can further imply

1 In N
Regret, < 1 ( = + nLT,Z-*> =0 (\/LT,Z-* log N + log N),
— 7 n

by setting n = min {%, o }

e When L7 ;« = O(T), it can recover the minimax O(/1 log N) guarantee.
e When Lt ;« = O(1), the regret bound is O(log N ), which is independent of 7"
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Small-L.oss Bounds for PEA

e Addressing the unpleasant dependence on Lt ;+ via self-confident tuning.

Theorem 4. Suppose that ¥Vt € [T and i € [N|,0 < €,,; <1, then Hedge with

In N
L:+1

adaptive learning rate 1, = quarantees

Regret < 8\/(LT,Z-* +1)In N +3InN

= O(\/Lr.logN +1log ),

where Ly =Y.' _,(p,, £,) is cumulative loss the learner suffered at time t.
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Key Analysis in Self-confident Tuning

Proof. From the potential-based proof, we already know that

T T
> (pple) — Ly < /(Lo + DIn N+ nii(p,, &)
t=1 t=1

<+V(Lr_i+1) lnNJrZ pt’£t>

L/

How to bound this term?

—> This is actually a common structure to handle.
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Small-Loss Bound for PEA: Proof

Proof. From previous potential-based proof, we already known that

L
Z ptaet LT’L* < \/LT 1—|—1 IDN—l—Z <pt’ t>
t=1 \/Zs 1 ps’
Lemma 2. Let ay,asq,...,ar be non-negative real numbers. Then
d a
Z ! <4 1+Zat+maxat
tl\/l—l—zsls \ telT]
|:> Ly — Ly <+/(Ly—1+1)InN +4\/1+ Ly +1
<V (Lr+1DInN+4y/1+Lyr+1
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Small-LLoss Bounds for OCO

Definition 4 (Small Loss). The small-loss quantity of the OCO problem (online
function f; : X — R) is defined as

One essential property for small-loss bound for OCO: self-bounding property.

Corollary 1. For an L-smooth and non-negative function f : R% — R, we have that

IVE(x)||le < V2Lf(x), ¥x€X.
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Achieving Small-Loss Bound

* We show that under the self-bounding condition, OGD can
yield the desired small-loss regret bound.

Xt4+1 = erX[Xt — Utvft(Xt)]

Theorem 6 (Small-loss Bound). Assume that f, is L-smooth and non-negative for all t &

T, when setting n, = ——2—, the reqret of OGD to any comparator u € X is bounded as
8 NiEReD s 4 p

Regrety = i fi(xe) — i fuolw) < O (V/1+ Fr)

where Gy =Y.' _ ||V f+(x)||3 is the empirical cumulative gradient norm.
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Proof

M*ﬂ

Proof. > fi(x:) -

t=1

IIMH

9,01 +Z (Hu—xtHS _ uu—xtmr%)

V fi(
Zmum <. ||2—DZ [Vl

1—|—Gt

s, 2 < op, 143 9 Ax)IB + 6

t=1

Lemmal. Let aq,as,...
T

2

t=1

a¢

< 2

\/1 + Zizlas

, ar be non-negative real numbers. Then

\

T
1 -+ Zat
t=1
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Several Remarks

* Remark 1: about the non-negative assumption

When the online functions are non-negative, it is possible to redefine the
small-loss quantity by incorporating each-round minimal function value.

* Remark 2: about the smoothness assumption

Smoothness is necessary to obtain small-loss regret bound by the first-order
method (can be proved by the online-to-batch conversion and existing lower
bounds for deterministic optimization).

* Remark 3: take care of the way dealing with variance term
In OGD here we use Lemma 1, while in PEA Hedge for PEA we use Lemma 2.
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Towards a Unified Framework

* Previous small-loss bounds seem to be ad-hoc designed.

* Is there a unified framework to get problem-dependent bounds?

* A reflection: Adaptive to the niceness of the environment. What
does a “nice” environment actually mean?

—> The environment is “predictable”.
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Outline

* Optimistic Online Mirror Descent
* A Unified Framework
* Small-Loss bound
* Gradient-Variance bound

 Gradient-Variation bound
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Optimistic Online Learning

* Intuition: what if the environment is “predictable” ?

—> We can to some extent “guess” the next move.

__________________________________________________________________

Mon. Tues. Wed. Thurs. Fri.

= = = > 9

S

If it is within the same season
and no extreme weather

Guess: It still seems to rain
on Friday?
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Our Previous Efforts

* Review OMD update:

OMD updates: Xt+1 = arg min,c y {m(x, V fi(x¢)) + Dy (%, Xt)}

* This framework provides a unified framework for the algorithmic
design and regret analysis for the worst-case scenarios.

* We aim to encode “predictable” information in the update such that
the overall algorithm can adapt to the niceness of environments.
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Optimistic Online Mirror Descent

e We introduce a sequence of optimistic vector { M,};_, serving as the

available predictable information of future gradients.

Optimistic Online Mirror Descent
X; = arg min, y {7715 (My,x) + Dy, (X,/}Zt)}

Xi1 = arg ming ¢ y {nt (Vfi(x¢),%x) + Dy (x, ﬁt)}

where M; € R? is the optimistic vector at each round.

essentially two-step mirror-descent updates
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Understand Optimistic OMD

X¢ = arg min, . y {m (My,x) + sz(X,ﬁt)}

X¢p1 = arg min, ¢ y {77t <Vft(xt)a X> + Dw(x,it)}

Advanced Optimization (Fall 2023) Lecture 9. Optimistic Online Mirror Descent
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Optimistic OMD: Regret Analysis

Theorem 4 (Regret for Optimistic OMD). Assume 1 is -strongly convex w.r.t.
|- 1l, the regret of Optzmzstzc OMD w.r.t. any compamtor u € X is bounded as:

th Xt th <Z77t vat Xt) MtH2

_________________________________________________

VT
: 1 . I
T EZ E (D¢ (U., Xt) - DT# (U., Xt-l-l))
=Ll
N A
i 1
_ EZ (D¢ (Xt—|-17 Xt) -+ D¢ (Xt7 Xt)) (negatlve term)
| Mt
t=1

_________________________________________________

The proof still relies on the stability lemma and the Bregman proximal inequality,
but now it requires taking the two-step updates (with optimism) into account.
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Proof

* The key is to have a proper regret decomposition.

* Due to the two-step updates, we need to incorporate optimism
and intermediate decision in regret analysis.

X; = arg min, . y {7775 (My,x) 4+ Dy (x, ﬁt)}

X¢t1 = arg mingc {Ut (V fi(x4),%x) + Dy (x, it)}

> filxe) = fie(w) <V fi(xe), % — 1)

= (Vfi(x¢) — My, x¢ — Xpp1) + (M, x¢ — Xeq1) + (V fir(X4), Xe41 — 1)

\ 4 \ . >4 \ . 7
~ ~ ~

term (a) term (b) term (c)
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Proof

Proof. fi(x¢) — fi(u) < évft(xt) — My, Xy — §t+1z+$Mt7Xt — >A<t+12+§vft(xt)a§t+1 - uz

Ve "~ V.

term (a) tern (b) term (c)

For term (a), we use the stability lemma.

Lemma 2 (Stability Lemma). Consider the following updates:

{x = arg minkecx (g, x) + Dy (%, C)

x' = argminger (g, %) + Dy (x, )
When the regqularizer 1) : X — R is a A-strongly convex function with respect to norm || - ||, we have

Alx—x|| <lg—gl.-

term (a) — <Vft(Xt) — Mt,Xt — §t+1>
< ||V fe(xe) — My, |1xe — Reall < 06 ||V fe(xe) — My

Advanced Optimization (Fall 2023) Lecture 9. Optimistic Online Mirror Descent 20



Proof

Proof. fi(x¢) — fi(u) < Svft(xt) — My, Xy — §t+1z+$Mt7Xt — >A<t+12+§vft(xt)a§t+1 - uz

Ve "~ V.

term (a) tern (b) term (c)

For term (b), we adopt the Bregman Proximal inequality.

Lemma 3 (Bregman Proximal Inequality). Consider convex optimization problem with the

ollowing update form :
e L = arg min {(g:, %) + Dy, %)}
XE

Then, it satisfies the following inequality for any u € X:

(8, X¢y1 —u) < D¢(U7Xt) - D¢(u, X 41) — Dw(XtJrh X¢t).

Thus, according to update rule: x, = arg min, ¢y {n: (M, x) + Dy (x,X¢) }

AN 1 AN AN A AN
term (b) = (M, x; — Xp11) < 77_ <D¢(Xt+1yxt) — Dy (Xtr1,%Xt) — Dw(xtaxt))
¢
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Proof

Proof. fi(x¢) — fi(u) < Svft(xt) — My, Xy — §t+1z+$Mt7Xt — >A<t+12+§vft(xt)a§t+1 - uz

Ve "~ V.

term (a) tern (b) term (c)

For term (c), we also adopt the Bregman Proximal inequality.

Lemma 3 (Bregman Proximal Inequality). Consider convex optimization problem with the

ollowing update form :
e L = arg min {(g:, %) + Dy, %)}
XE

Then, it satisfies the following inequality for any u € X:

(8, X¢y1 —u) < D¢(U7Xt) - D¢(u, X 41) — Dw(XtJrh X¢t).

Thus, according to update rule: X; 11 = arg min, ¢ y {1:(V f1(x1), X)+ Dy (x,X¢) }

AN 1 AN AN AN AN
term (c) = (Vfi(x¢),Xe41 — 1) < 77— (D«p(ua xt)—D¢(u,xt+1)—D¢(Xt+1,Xt)>
t
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Proof

Proof. fi(x¢) — fi(u) < évft(xt) — My, Xy — ﬁt—l—lZ‘f’éMtaXt — >A<t+12+§vft(xt)a§t+1 - UZ

Ve "~ V.

term (a) tern (b) term (c)

Put the three terms together, we can finish the proof.

term (a) < 1 |V fi(x:) — Mt”i

1 N ~ ~
term (b) < o (DMX\Q — Dy (Xet1,%t) — Dy (x4, Xt))
t

1 A A AN AN
term (c) < o <D¢(U,Xt) — Dy(u,X¢11) — Dy Xt))
t

= i) = fi(w) < Vi) = M2 + (D) — Dol &)

1

_n_(pw(it—i—laxt) +D¢(Xt,§t)) []
t
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Example: Optimistic OGD

e Consider the Euclidean regularizer Dy, (x,y) = %||x — y||3, i.e.,

. 1 I
x; = arg minn (M;, x) + §HX — xt||§
xcX
A~ . 1 -
Xt+1 = arg minn (V fi(x¢), x) + §||X =k
xXeX

1 T
i1 (Hﬁm 2+ [ —ﬁtué)
=1
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Example: Optimistic OGD

e Consider the Euclidean regularizer D, (x,y) = %||x — y||3, i.e.:

: 1 ~
x; = arg minn (M;, x) + §HX — xt||§
xcX
~ : 1 ~
X¢+1 = arg minn (V fi(x¢),X) + §||X =k
xeX
. - . 2| Jlu— X1||2
> Y filxe) =) fi(a) <> IV filxe) — Myl + - Z Ixe+1 — %13
t=1 t=1 t=1
T ) D2 5 S IV fe(xe)— My |12
SUZHVft(Xt) — M5 + % <0 1+Z”Vft xt) — M5 is not available
t=1

- self-confident tuning
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Optimistic OMD: Regret Analysis

Theorem 4 (Regret for Optimistic OMD). Assume 1 is -strongly convex w.r.t.
|- 1l, the regret of Optzmzstzc OMD w.r.t. any compamtor u € X is bounded as:

th Xt th <Z77t vat Xt) MtH2

_________________________________________________

_________________________________________________

_________________________________________________

* For problem-independent bounds, negative terms of OMD is usually dropped;

* For problem-dependent bounds, the negative term of optimistic OMD can be
sometimes extremely crucial.
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Optimistic OMD: Applications

 Small-Loss Bound
 Gradient-Variance Bound

e Gradient-Variation Bound

Advanced Optimization (Fall 2023) Lecture 9. Optimistic Online Mirror Descent
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Optimistic OMD: Applications

 Small-Loss Bound
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Small-L.oss Bound

* Recall the guarantee of optimistic OGD:

Xi+1 = arg ming {77t (V fe(x¢),x) + Dy (x, ﬁt)}

X; = arg min, . y {nt (M, x) + DMX,%)}

e Consider the Euclidean regularizer Dy (x,y) = 3||x — y||3, i.e.;

T

I:> th(Xt) -

t=1

~

th(u) <0 (J I+ Z [V fi(xq) — Mt%)

=1

Setting My =0 C—> Y fi(xe)— Y fe(u) <O (J 1+ Vft(Xt)g)

t=1

Advanced Optimization (Fall 2023)
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Small-L.oss Bound

* Employing the self-bounding property of smooth and non-negative functions.

Corollary 1. For an L-smooth and non-negative function f : R? — R, we have that

IVF(x)|2 < 2Lf(x), VxeAX.

Setting M; = 0 in Optimistic OMD (with Euclidean regularizer):

I:> th(xt) - th(u) <0 (\l 1+ Z IV fi Xt)|2> <0 (J 1+ L th(&))

t=1

E

T
|:> Regret, = Z fe(xz) —
t=1

t

filw) =0 (DJ LY fiw)+1 +G2> .
1 t=1 |:|
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Small-L.oss Bound

* Since we are using optimistic OMD with a fixed step size, the algorithm
requires Gr £ Zthl |V f+(x¢)]|3 when achieving small-loss bound.

* This is can be rectified by the self-confident tuning. We can use the
optimistic OMD with time-varying step sizes.

2

Vit+G,
OMD to any comparator u € X is bounded as

T

Regret, = th(xt) — ET:ft(u) <0 (\/ 1+ FT) ,

t=1

where Gy = . _ ||V f+(x4)||3 is the empirical cumulative gradient norm.

Theorem 6 (Small-loss Bound). Assume that 1)(x) = ||x||3 and f; is L-smooth and
non-negative for all t € [T, when setting n; = ——— and M, = 0, the regret of Optimistic

Advanced Optimization (Fall 2023) Lecture 9. Optimistic Online Mirror Descent
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Small-L.oss Bound

T
) <> eIV felxe) — M3

t: t:

Mq

Proof. ) fi(x) —

‘ H

T
+Z (’|u_§t’|g_ Hu_§t+1|‘§>
=1 =Nt

-y

=1 't

DO

9
—_

(e =l + I~ %13 )

For term (a),

d T

V fi(x
> mivax) -l = D HEHE 62 <om 14 D19ttt
B t t=1

T
<D\|1+20)  fi(x) + G
t=1
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Small-L.oss Bound

1 ~ ~
P1’00f° term (b) — Z 2— (Hu — Xt”% — Hu — Xt—l—lH%)

— <t
1 T
< — u—x2 - llu-=x 12>
I (CELT SN IRE T
1 ~
< o %
nr
a D
< —,|14+2L —
< ot ; fe(xe) + 5
T T T T
> Regrety = Y filxe) =Y fi(u) <3D|1+2LY filxe) +G2<O [ DL fi(u) +14G
t=1 t=1 t=1 t=1
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Optimistic OMD: Applications

 Gradient-Variance Bound
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Gradient-Variance Bound

Definition 3 (Gradient Variance). Let T be the time horizon and X C R be

the feasible domain. For the function sequence fi, ..., fr with f; : X — R for
t € [T], its gradient variance is defined as
T
Varr = sup Z |V fe(x¢) — HT”S

{x1,..,xr}eX 14

where pir £ arg min , 2321 IV fi(x:) — pll3 = % ZtT:1 Vfi(xe).

Implicit prior on the enviornment:

Vi) | there exists a latent mean gradient B[V f,(x;)].
/\/\I\ o\ lET)Vft(xt)
v V\/ V\/\/\/V \/V\/ v \/ A e.g. SGD (sampled from a set of data)
. 1 e.g. Classification (sampled from training set)
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Gradient-Variance Bound

Definition 3 (Gradient Variance). Let T be the time horizon and X C R be

the feasible domain. For the function sequence fi, ..., fr with f; : X — R for
t € [T], its gradient variance is defined as
T
Varr = sup Z |V fe(x¢) — HT”S

{x1,..,xr}eX 14

where pir £ arg min , 2321 IV fi(x:) — pll3 = % ZtT:1 Vfi(xe).

Optimistic Online Mirror Descent

. 1 ~
Xy = arg min, . y {7715 (M, %) + §HX _ XtH%} How to choose M:t?

AN . 1 <
Xt4+1 = arg My e {7775 (Vi (xt),x) + §HX - Xtug}
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Gradient-Variance Bound

Definition 3 (Gradient Variance). Let T be the time horizon and X C R be

the feasible domain. For the function sequence fi, ..., fr with f; : X — R for
t € [T], its gradient variance is defined as
T
Varr = sup Z |V fe(x¢) — HT”S

{x1,..,xr}eX 14

where p; = + Zthl V fi(x¢) is the gradient mean.

Optimistic Online Mirror Descent
of gradient mean:

. 1 ~
x, = arg mingey {m (M, %) + =[x — %3}

AN . 1 <
Xt4+1 = arg My e {7775 (Vi (xt),x) + §HX - Xtug}

self-confident estimate

My = % 2221 VfS<X3>
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Gradient-Variance Bound

Theorem 5 (gradient-variance bound). Assume that ¢(x) = 1||x||3, when setting n, =

\/1+1\;V and M; = p,_,, the regret of Optimistic OMD to any comparator u € X is
ar{—1

bounded as

T T
Regret; = Z fe(x¢) — Z fi(u) <O <\/1 + VarT>
t=1 t=1

where Vary_; = 22;11 |V fs(xs) — |5 is the self-confident estimate of variance Varr, and
p, = L3570 Vfi(xs) is the empirical gradient mean.

T T T
Proof. th(xt) — Z fr(u) < Z’nt IV fe(x0) — My|5 + Z (Hu — Xell5 — [Ju— >A<t+1\|§)
t=1 t=1 t=1 —

1 . ~
2— (||Xt+1 — x¢||3 + [|lx¢ — XtH%)

(negative term)

Mﬂ

t=1
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Gradient-Variance Bound

Proof. For term (a),

T T
Zntuvft(Xt)_MtHg — ZntHVft(Xt)—lj,t_lug_l_GQ
t=1 t=2

T T
2
< 227775 ||vft(Xt) - Nt”g + 227716 Hﬂt — Ht—lHQ +G?
d IV fo(xe) — gl 9G?
<2D)" RS i +2D ) — + G
t—1 2
ST IV R

T 2 2

- — 6
=2 14 DT V) — a2

Advanced Optimization (Fall 2023) Lecture 9. Optimistic Online Mirror Descent
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Gradient-Variance Bound

- s copN~ IVAG) — s e
PTOOf: Z?’]tHVft(Xt)—MtH2 SQDZ — 5 +18DG E"‘G
= = 1+ S IV () = 1
Lemma 2. Let a1, aq, ..., ar be non-negative real numbers. Then

T T
Z i <4 1+Zat—|—maxat
t=1 \/1 + Zt_la t=1 te[T]

= s=1Us =

2

T T
:> ZﬁtHVft(Xt) - Mt”% < SD\ 1+ Z IV fe(xe) — Ht”g +8DG* + 18DG* - % +G”
t=1 t=1

Recall that our goal is to obtain O <\/ZtT:1 |V fe(xt) — “T||§>
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Gradient-Variance Bound

2

T T
-
Proof. Z??tHVft(Xt) — M||5 < SD\ 1+ Z IV fe(xe) — pe,ll5 + 8DG? + 18DG? - 5 T G*
t=1 t=1

We need to measure the gap between Zle IV fi(x¢) — p Hg and Zle |V fe(x:) — g H§

Let us consider another online learning process: the online function is h; : R¢ — R,

1
hi(a) = 3 IV fe(xe) — a5,

which is evidently a 1-strongly convex function with respect to || - ||2.

Consider OGD over {h; }{_; with step size {n;}/_,, which updates by

aip1 = a; — 1 Vhe(ar) = ag —me (ae — Vfi(xe)) = (1 —me)ar + mVii(xe) (%)
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Gradient-Variance Bound

2

T T
-
Proof. > n:l|Vfi(x:) — M3 < SD\ L+ > IV fi(xe) = pll; +8DG? + 18DG? - 5 T G*

We need to measure the gap between Zle IV fi(x¢) — p Hg and Zle |V fe(x:) — g H§

Consider OGD over {h; }}_; with step size {n;}/_;, which updates by

arr1 = (1 —ne)ay + 0V fir(xy) (‘A’)
On the other hand, by definition of gradient mean, we have
t—1
Be= Mt Vft(xt)

Thus, seta; = 0, = 1, then {a, 11} sequence is equivalent to {u,}]_;' sequence.

More specifically, we have a; 1 = p, fort =1,...,7 — 1.
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Gradient-Variance Bound

1 t—1 1
P1’00f- hi(a) = 2 IV fe(x¢) — a||§, At+1 %) (1—mnp)ay + eV fi(xe), My = T#t—l + vat(xt)

Thus,seta; =0, n, = %, then {at+1}t sequence is equivalent to {ut}t | sequence.

Since (¥ ) is essentially OGD for 1-strongly convex, whose guarantee is:

T-1
Regret({h;},— Z he(pay) Z he(pe)
| - T-1,
= Z 5 IV fe(xe) — U’tHg - Z D) IV fi(xe) — H’THS
t=1 t=1
< QG - 1))

«
<2G*(1+InT)
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Gradient-Variance Bound

1 t—1 1
P1’00f- hi(a) = 2 IV fi(x¢t) — a||§, At %) (L=me)ae + eV fr(xe), My = T“’t—l + vat(xt)

Thus,seta; =0, n, = %, then {at+1}t sequence is equivalent to {p,t}t | sequence.

Since (¥ ) is essentially OGD for 1-strongly convex, whose guarantee is:

T—-1 T—-1

T-—1
1 1
Regret({hq }1_ Z ho(pe) = D hilpr) = ) S IV file) = mally = D 5 IVFulxe) — pr |l < 26%(1+InT)
t=1

2

T T
> Y nl Vi) — M)} < SD\ L+ IV fe(xe) — 3 + 8DG? + 18DG? - % +G?

r 2
< SD\ 14+ Y IV filxe) = il +4G2(1 + InT) + 8DG? + 18DG? - % + G2
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Gradient-Variance Bound

Proof. We then analyze term (b) in the same way as before:

T
1 ~ ~
vern () = > 5 (Jlu R}~ u - %o

t=1
—fj(l : )Hu B+ - %
5 \21n  2Mp-1 T2 o :
T
1 1 1
<) (— - ) D? + —D?
5 \21n 2Mp-1 2m
2 1 D D
< — 4+ —D*<=\/1+V —
_277T+2771 _2\/+ EBLI“T-I-2
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Gradient-Variance Bound

Proof. Finally, putting three terms together achieves

term (a) < 8D+/1 4 Vary +4G2(1 +1nT) + (39D + 1)G?

D? 1 D D
t b) < D?< Z=\/1+V —
erm()_2nT+2771 _2\/+ zMT—|—2
term (c) >0

|:> Regret = term (a) + term (b) — term (c)

< 9D\/1 + Vary +4G2(1 + InT) + 39DG2 + G2 = 6(\/1 n VarT). n
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Optimistic OMD: Applications

e Gradient-Variation Bound
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Gradient-Variation Bound

Definition 3 (Gradient Variation). Let T be the time horizon and X C R be
the feasible domain. For the function sequence fi, ..., fr with f; : X — R for
t € [T, its gradient variation is defined as

T

Vp =Y sup |[Vfi(x) = Vimi(x)]5

t=2 XX

Gradient variation characterizes online functions’ shifting intensity.

* Adaptivity: it can be small in slowly changing environments.

» Robustness: Vi < 4G*T in the worst case.
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Gradient-Variation Bound

Definition 3 (Gradient Variation). Let T be the time horizon and X C R? be
the feasible domain. For the function sequence fi, ..., fr with f; : X — R for
t € [T, its gradient variation is defined as

T

Ve =Y sup |[Vfi(x) = Vfimr ()5
o XEX
Vfi(+) Implicit assumption:
[ /\/ Gradient (online function) shifts slowly
> 1 e.g., age forecasting by portraits
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Optimistic OMD for Gradient-Variation Bound

Optimistic Online Mirror Descent

. 1 ~
x, = arg mingey {m (M, %) + 2 |x - %3}

AN L3 1 <
Xt4+1 — arg mMily - {7775 (V fie(xt),x) + §HX — Xtug}

Question: How to choose ?

::> Imposing a prior on the change of the online functions

setting as the last-round gradient M; = V f;_1(x;_1)
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Optimistic OMD for Gradient-Variation Bound

Optimistic Online Mirror Descent
1

x; = arg minn; (M, x) + §||X — ﬁtH%
xeX
A~ . 1 AN
Xt+1 = arg minn; (V fe(x4), x) + §||X — %¢|5
XeEX

Optimistic OMD for Gradient-Variation Bound

. 1 .
x; = arg minn: (V fi—1(xi-1),%) + = ||x — XI5
xeX 2
~ . ]‘ _—
Xi41 = arg I)I(Hm?t (Vfi(x¢),x) + §HX — x5
XE
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Gradient-Variation Bound

Theorem 4 (Gradient Variation Regret Bound). Assume that (x) = %||x||3 and
ft is L-smooth for all t € [T], when setting n, = min{;-, m} cmd M, =

V fi—1(x¢—1), the regret of Optimistic OMD to any comparator u € X is

Regret, — i fi(x) — i folw) <O (V1+ V)

where V,_y = 22;12 |V fs(xs—1) — Vfs_1(Xs—1) H; is the empirical estimates of V.

T T T
Proof. Y~ fi0e) =Y fiw) < Y nlIVAx) ~ Ml + Z = (1= %l - - Renl)
t=1 t=1 t=1
- 2 =~ 2
— — | ||Xt+1 — Xe||o + || Xt — X
;27%0! irs = xR + I = R01B)

(negative term)
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Proof

Proof. For term 1,

T T
Zntnvft(xt) - Mt”% < Zm |V fie(xt) — Vft—l(Xt—1)Hg + G?
t=1

t=2

T T
<2 IV filxe) = VSelxemn)lls +2 ) e IV Felxe-1) = Vi1 (xe—1) 5 + G
t=2

t=2

T T 2
V/ii(xXi—1) = Vfi—1(X¢—
< QZmL2HXt —Xt—ng—l—QDZ | t{j( —1) fir (el - + G*
= =2 1+ DT [V fulxan) = Vo (xom1)I
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Proof

Proof. For term (a),

T T
Zntnvft(xt) — M5 < Zﬁt IV fi(x) = V feo1(xe-1) |5 + G?
=1 t=2

T T
<2 IV filxe) = VSelxemn)lls +2 ) e IV Felxe-1) = Vi1 (xe—1) 5 + G

t=2

T T 2
Z Z V/i(xt-1) — VSi—1(X¢-1
=2 1+ D8 IV fu(xa1) = Vo1 (xom1)II
Lemma 2. Let a1, aq, ..., ar be non-negative real numbers. Then
d a
t
<
\/ — 4 1+Zat+£r€1%z<at
t=14/14+)>  _ias
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Proof

T T
Proof. term (a) <2) nL?|x¢ — xy_1l3 + 4D, | 1+ ) ||V fi(xe—1) = Vfic1(xe—1)|l5 + (4D + 1)G?
t=2 t=2

T
<2) L’ |[|xe — x¢-1ll5 + 4D\/1 + Vp + (4D + 1)G”
t=2

This term depends on our algorithm,
how to deal with it?
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Proof

Proof. For the term (c), we have

term (c)

1V |
E

1V

1

oo (s = el + s = el

1

[y
I

E
l\D‘)_k

~

I

\)
=

(1% =303 + 1% — 3
t

HXt - Xt—l”%

]~
»-lk‘H

Tt

~
I
(\V]

Does this term look familiar?
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Proof

Proof. We then analysis term (b),

term (b) =

IA

I

1
> 5 (= Rl = -~ %)

t=1
i L D V-2t —fu-=i
— — — X —lu—Xx
5 \21Mt  2Mp-1 2o :
T
1 1 1
z(__ )p2+_p2
5 \21Mt  2Mi-1 2m
D2
oy

1
5 max{4LD, D~/1+ Vr}
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Proof

Proof. Finally, putting three terms together yields

T
term (a) <2) L |l +4D/1+ Vi + (4D 4+ 1)G?
t=2

1
term (b) < 5 max{4LD, D~/1+ Vr}

2 .
—1”2 (1t me{41p /—15‘7 1})
t_

> Regret, = term (a) 4+ term (b) — term (c)

<5D\1+ Vi + (4D + 1)G?> +2LD = O(v/1+ V7).
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A Summary of Problem-dependent Bounds

: 1 ~
x; = arg minn (M;, x) + §HX Al
xEX 1 Different priors are imposed by designing
X1 = arg minn (V fi(x¢), X) + 5 1x — X¢ |5 suitable  for specific environments.
xeX
: Setting of - £ Problem-dependent
Assumption(s) Optimism Setting ot 1, Regret Bound
Small-loss L-Smooth + o ~ D P
Bound Non-negative My =0 VI+G O ( L+ FT)
Variance .~ ~ D ~
Bound — My =y 1+ Var;_; @, (\/1 + VarT)
Variation _ ~/ D
Bound L-Smooth M = Vft—l(Xt—l) m O (\/ 1+ VT)
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Gradient-Variation Algorithm: Implications
By using algorithm for gradient-variation Bound (OMD with M; = Vf;1(x;1)):

T
ZHVft xt) — V fr—1(Xt-1 Hz <3ZHVft Xt) Ht”%
+ BZ IV femr(xe—1) — 1 |15
=1

T
+ ?’Z [y — H’t—l”%

t=1

> Optimistic OMD with last-round gradient as optimism (enjoying Vr-bound)
can also attain gradient-variance bound (scaling with Varr)
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Gradient-Variation Algorithm: Implications

By using algorithm for gradient-variation Bound (OMD with M; = V f; 1 (x;1)):

IIM%

\Vft xt) — V fr—1(X¢—1 H2<22\|Vft X4 \|2+2Z\|Vft 1(x-1)]13
< 4Lth(Xt) + 4Lth—1(Xt—1)
t=1 t=2

< 8LF;
further use converting trick to attain Fr bound

> Optimistic OMD with last-round gradient as optimism (enjoying Vy-bound)
can also attain small-loss bound (scaling with Fr)
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Gradient-Variation Bound Reflection

Definition 3 (Gradient Variation). Let T be the time horizon and X C R be
the feasible domain. For the function sequence fi, ..., fr with f; : X — R for
t € [T, its gradient variation is defined as
T
Vp =Y sup |[Vfi(x) = Vimi(x)]5
o XEX

 This gradient-variation notion tightly connects the offline optimization and
online optimization.

* The gradient variation reveals the importance of smoothness for the first-
order methods, as well as the crucial role of the negative term in analysis.
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Offline Scenario

* Online algorithm with gradient-variation regret bound:

T
Regret, = Z fe(x¢) mm Z fe(x (\/ 1+ VT) .
t=1

* For an offline optimization problem minyecx f(x)

When the function is convex and smooth, we can use this gradient-variation
algorithm to obtain an averaged model with error bound as

VI+Ve(fooo o )\ 1
4o (1) mm=o ) o)
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Offline Scenario

* Online algorithm with problem-independent bound:

T
RegretT = Z ft (Xt HllIl Z ft ~ )
t=1

* For an offline optimization problem minyecx f(x)

When the function is convex and Lipschitz, we can use this problem-independent
algorithm to obtain an averaged model with error bound as

(i) () -o(f)
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ariation-type Bounds: History Bits

Extracting Certainty from Uncertainty:
Regret Bounded by Variation in Costs

Elad Hazan
IBM Almaden
650 Harry Rd. San Jose. CA 95120
hazan@us. ibm.com

Abstract

Prediction from expert advice is a fundamental prob-
lem in machine learning. A major pillar of the field
is the existence of learning algorithms whose ave
age loss approaches that of the best expertin hind-
sight (in other words, whose average regret ap-
proaches zero). Traditionally the regret of online
algorithms was bounded in térms of the number of
prediction rounds

Cesa-Bianchi, Mansour and Stoltz [4] posed the
question whether it is be possible to bound the re-
aret of an online algorithm by the variarion of the
observed costs. In this paper we resolve this ques-
tion, and prove such bounds in the fully adversar-
ial setting, in two important online learning sce-
narios: prediction from expert advice, and online
linear optimization.

1 Introduction

A cornerstone of modern machine learning are algorithms
for prediction from expert advice. The seminal work of Lit-
tlestone and Warmuth [12], Vovk [13] and Freund and Schapire
[6] gave algorithms which, under fully adversarial cost se-
quences, attain average cost approaching that of the best ex-
pert in hindsight.

To be more precise, consider a prediction setting in which
an online learner has access to n experts. lteratively, the
learner may chose the advice of any expert deterministically
or randomly. After choosing a course of action, an adversary
reveals the cost of following the advice of the different ex-
perts, from which the expected cost of the online learner is
derived. The classic results mentioned above give algorithms
which sequentially produce randomized decisions. such that
the difference between the (expected) cost of the algorithm
and the best expert in hindsight grows like O(v/T Togn).
where T is the number of prediction iterations. This extra
additive cost is known as the regret of the online learning
algorithm.

However, a priori it is not clear why online learning algo-
rithms should have high regret (growing with the number of
iterations) in an unchanging environment. As an extreme ex-
ample, consider a setting in which there are only two experts.
Suppose that the first expert always incurs cost 1, whereas

Satyen Kale
Microsoft Research
1 Microsoft Way. Redmond. WA 9805
sakale@microsoft.com

the second expert always incurs cost 1. One would expect to
“figure out” this pattern quickly, and focus on the second ex-
pert, thus incurring a total cost that is at most  plus at most
a constant extra cost (irrespective of the number of rounds
T). thus having only constant regret. However. any straight-
forward application of previously known analyses of expert
learning algorithms only gives a regret bound of ©(v/T) in
this simple case (or very simple variations of it).

More generally. the natural bound on the regret of a “good™

learning algorithm should depend on variation in the sequence
of costs, rather than purely on the number of iterations. If the

cost sequence has low variation, we expect our algorithm to

be able to perform better

This intuition has a direct analog in the stochastic setting:
here, the sequence of experts” costs are independently sam-
pled from a distribution. In this situation, a natural bound on
the rate of convergence to the optimal expert is controlled by
the variance of the distribution (low variance should imply
faster convergence). This was formalized by Cesa-Bianchi,
Mansour and Stoliz [4], who assert that “proving such a rare
in the fully adversarial setting would be a fundamental re-

e

In this paper we prove the first such regret bounds on
online learning algorithms in two important scenarios: pre-
diction from expert advice, and the more general framework
of online linear optimization. Our algorithms have regret
bounded by the variation of the cost sequence, in a man-
ner that is made precise in the following sections. Thus, our
bounds are tighter than all previous bounds. and hence yield
better bounds on the applications of previous bounds (sce,
for example. the applications in [4]),

1.1 Online linear optimization

Online linear optimization [10] is a general framework for
online learning which has received much attention recently
In this framework the decision set is an arbitrary bounded
closed. convex set in Euclidean space K C R” rather than a
fixed set of experts. and the costs are determined by adver-

ially constructed vectors, fi, fa,... € R", such that the
cost of point z € K is given by f; - . The online learner it-
eratively chooses a point in the convex set K. and then
the cost vector f; is revealed and the cost f; - z is occurred.
The performance of online learning algorithms is measured
by the regret, which is defined as the difference in the total
cost of the sequence of points chosen by the algorithm, viz.

JMLR: Workshop and Conference Proceedings vol 23 (2012) 6.1-6.20

25th Annual Conference on Learning Theory
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Abstract

We study the online convex optimization problem, in which an online algorithm has to
make repeated decisions with convex loss functions and hopes to achieve a small regret.
We consider a natural restriction of this problem in which the loss functions have a small
deviation, measured by the sum of the distances between every two consecutive loss func-

tions, according to some distance metri

‘We show that for the linear and general smooth

convex loss functions, an online algorithm modified from the gradient descend algorithm
can achieve a regret which only scales as the square root of the deviation. For the closely
related problem of prediction with expert advice, we show that an online algorithm mod-
ified from the multiplicative update algorithm can also achieve a similar regret bound for
a different measure of deviation. Finally, for loss functions which are strictly convex, we
show that an online algorithm modified from the online Newton step algorithm can achieve

a regret which is only

logarithmic in terms of the deviation, and as an application, we can

also have such a logarithmic regret for the portfolio management problem
Keywords: Online Learning, Regret, Convex Optimization, Deviation

1. Introduction

We study the online convex optimization problem in which a player has to make decisions

iteratively for a number of roun

in the following way. In round ¢, the player has to

choose a point a from some convex feasible set X C RV and after that the player receives

a convex loss function f; and suffers the corresponding loss fi(w:) € [0,1]. The player

would like to have an online algorithm that can minimize its regret, which is the difference
between the total loss it suffers and that of the best fixed point in hindsight. Tt is known

© 2012 C-K. Chiang, T. Yang, C.-J. Lee, M. Mahdavi, C.-J. Lu, R. Jin & S. Zhu.
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Summary

Algorithmic framework

. OPTIMISTIC OMD Regret analysis

ADAPTIVE ONLINE

CONVEX OPTIMIZATION

Small-loss bound
Gradient-variance bound

APPLICATIONS |

Gradient-variation bound

Q&A
Thanks!
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