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Beyond the Worst-Case Analysis
• All above regret guarantees hold against the worst case

• Matching the minimax optimality
• The environment is fully adversarial

interview

adaptive adversaryoblivious adversary

examination

We are after some more problem-dependent guarantees.

• However, in practice:
• We are not always interested in the worst-case scenario
• Environments can exhibit specific patterns: gradual change, periodicity…
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Beyond the Worst-Case Analysis
• Beyond the worst-case analysis, achieving more adaptive results.

(1) adaptivity: achieving better guarantees in easy problem instances;

(2) robustness: maintaining the same worst-case guarantee.

[Slides from Dylan Foster, Adaptive Online Learning @NIPS’15 workshop]

https://event.cwi.nl/easydata2015/slides/dylan.pdf
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Small-Loss Bounds for PEA
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Small-Loss Bounds for PEA
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Key Analysis in Self-confident Tuning

Proof. From the potential-based proof, we already know that

How to bound this term?

This is actually a common structure to handle.
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Small-Loss Bound for PEA: Proof

Proof.  From previous potential-based proof, we already known that
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Small-Loss Bounds for OCO

One essential property for small-loss bound for OCO: self-bounding property.
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Achieving Small-Loss Bound
• We show that under the self-bounding condition, OGD can 

yield the desired small-loss regret bound.
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Proof
Proof.  
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Several Remarks
• Remark 1: about the non-negative assumption

When the online functions are non-negative, it is possible to redefine the 
small-loss quantity by incorporating each-round minimal function value.
 

• Remark 2: about the smoothness assumption
Smoothness is necessary to obtain small-loss regret bound by the first-order 
method (can be proved by the online-to-batch conversion and existing lower 
bounds for deterministic optimization).

• Remark 3: take care of the way dealing with variance term 
In OGD here we use Lemma 1, while in PEA Hedge for PEA we use Lemma 2.
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Towards a Unified Framework
• Previous small-loss bounds seem to be ad-hoc designed.

• Is there a unified framework to get problem-dependent bounds?

• A reflection: Adaptive to the niceness of the environment. What 
does a “nice” environment actually mean?

The environment is “predictable”.
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Outline
• Optimistic Online Mirror Descent

• A Unified Framework

• Small-Loss bound

• Gradient-Variance bound

• Gradient-Variation bound
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• Intuition: what if the environment is “predictable” ?

Optimistic Online Learning

We can to some extent “guess” the next move.

?
Fri.Mon. Tues. Wed. Thurs.

Guess: It still seems to rain
 on Friday?

If it is within the same season 
and no extreme weather
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Our Previous Efforts 
• Review OMD update:

OMD updates:

• This framework provides a unified framework for the algorithmic 
design and regret analysis for the worst-case scenarios.

• We aim to encode “predictable” information in the update such that 
the overall algorithm can adapt to the niceness of environments. 
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Optimistic Online Mirror Descent

available predictable information of future gradients.

Optimistic Online Mirror Descent

essentially two-step mirror-descent updates
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Understand Optimistic OMD

……
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Optimistic OMD: Regret Analysis

The proof still relies on the stability lemma and the Bregman proximal inequality, 
but now it requires taking the two-step updates (with optimism) into account. 

(negative term)

(telescoping term)

(quality of guess)



Lecture 9. Optimistic Online Mirror DescentAdvanced Optimization (Fall 2023) 19

Proof
• The key is to have a proper regret decomposition.

• Due to the two-step updates, we need to incorporate optimism 
and intermediate decision in regret analysis.

(convexity)
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Proof
Proof.  

For term (a), we use the stability lemma.
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Proof
Proof.  

For term (b), we adopt the Bregman Proximal inequality.
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Proof
Proof.  

For term (c), we also adopt the Bregman Proximal inequality.
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Proof
Proof.  

Put the three terms together, we can finish the proof.
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Example: Optimistic OGD

(negative term)

(telescoping term)

(quality of guess)
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Example: Optimistic OGD

(negative term)(quality of guess)

 which is not available)

 self-confident tuning
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Optimistic OMD: Regret Analysis

• For problem-independent bounds, negative terms of OMD is usually dropped;
• For problem-dependent bounds, the negative term of optimistic OMD can be 

sometimes extremely crucial.

(negative term)

(telescoping term)

(quality of guess)
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Optimistic OMD: Applications
• Small-Loss Bound

• Gradient-Variance Bound

• Gradient-Variation Bound
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Optimistic OMD: Applications
• Small-Loss Bound

• Gradient-Variance Bound

• Gradient-Variation Bound
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Small-Loss Bound
• Recall the guarantee of optimistic OGD:
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Small-Loss Bound
• Employing the self-bounding property of smooth and non-negative functions.

(self-bounding property)
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Small-Loss Bound
• Since we are using optimistic OMD with a fixed step size, the algorithm 

requires  
• This is can be rectified by the self-confident tuning. We can use the 

optimistic OMD with time-varying step sizes.  
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Small-Loss Bound
Proof.  

For term (a), 

(self-confident tuning lemma)

(self-bounding property)
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Small-Loss Bound
Proof.  
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Optimistic OMD: Applications
• Small-Loss Bound

• Gradient-Variance Bound

• Gradient-Variation Bound
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Gradient-Variance Bound

e.g. SGD (sampled from a set of data)
e.g. Classification (sampled from training set)



Lecture 9. Optimistic Online Mirror DescentAdvanced Optimization (Fall 2023) 36

Optimistic Online Mirror Descent

Gradient-Variance Bound

How to choose Mt?
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Optimistic Online Mirror Descent

Gradient-Variance Bound

self-confident estimate
of gradient mean:
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Gradient-Variance Bound

Proof.  

(negative term)
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Gradient-Variance Bound
Proof.  For term (a), 
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Gradient-Variance Bound
Proof.  
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Gradient-Variance Bound
Proof.  
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Gradient-Variance Bound
Proof.  
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Gradient-Variance Bound
Proof.  
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Gradient-Variance Bound
Proof.  
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Gradient-Variance Bound
Proof.  We then analyze term (b) in the same way as before:
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Gradient-Variance Bound
Proof.  Finally, putting three terms together achieves
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Optimistic OMD: Applications
• Small-Loss Bound

• Gradient-Variance Bound

• Gradient-Variation Bound
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• Adaptivity: it can be small in slowly changing environments.
• Robustness: 

Gradient-Variation Bound

Gradient variation characterizes online functions’ shifting intensity.
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Gradient-Variation Bound

e.g., age forecasting by portraits

Implicit assumption:
Gradient (online function) shifts slowly
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Optimistic OMD for Gradient-Variation Bound

Question: How to choose ��?

Optimistic Online Mirror Descent

Imposing a prior on the change of the online functions

setting �� as the last-round gradient
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Optimistic OMD for Gradient-Variation Bound
Optimistic Online Mirror Descent

Optimistic OMD for Gradient-Variation Bound
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Gradient-Variation Bound

Proof.  

(negative term)
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Proof
Proof.  For term 1, 
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Proof
Proof.  For term (a), 
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Proof
Proof.  

This term depends on our algorithm,
how to deal with it?
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Proof
Proof.  For the term (c), we have

Does this term look familiar?
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Proof
Proof.  We then analysis term (b),
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Proof
Proof.  Finally, putting three terms together yields



Lecture 9. Optimistic Online Mirror DescentAdvanced Optimization (Fall 2023) 59

A Summary of Problem-dependent Bounds 

Assumption(s) Setting of 
Optimism

Problem-dependent 
Regret Bound

Small-loss 
Bound

L-Smooth +
 Non-negative

Variance 
Bound —

Variation 
Bound L-Smooth

Different priors are imposed by designing 
suitable �� for specific environments.
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Gradient-Variation Algorithm: Implications

By using algorithm for gradient-variation Bound (OMD with        ):
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Gradient-Variation Algorithm: Implications

(self-bounding property)

By using algorithm for gradient-variation Bound (OMD with        ):
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Gradient-Variation Bound Reflection

• This gradient-variation notion tightly connects the offline optimization and 
online optimization.

• The gradient variation reveals the importance of smoothness for the first-
order methods, as well as the crucial role of the negative term in analysis.
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Offline Scenario
• Online algorithm with gradient-variation regret bound:

• For an offline optimization problem 
When the function is convex and smooth, we can use this gradient-variation 
algorithm to obtain an averaged model with error bound as  
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Offline Scenario
• Online algorithm with problem-independent bound:

• For an offline optimization problem 
When the function is convex and Lipschitz, we can use this problem-independent 
algorithm to obtain an averaged model with error bound as  
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Variation-type Bounds: History Bits

Extracting Certainty from Uncertainty: Regret 
Bounded by Variation in Costs. COLT 2008.

Online Optimization with Gradual 
Variations. COLT 2012.

COLT 2012
 best student paper award
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Summary

Q & A
Thanks!


