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Abstract

In conventional supervised learning, a training dataset is given
with ground-truth labels from a known label set, and the
learned model will classify unseen instances to known labels.
In real situations, when the learned models do not work well,
learners generally attribute the model failure to the inadequate
selection of learning algorithms or the lack of enough labeled
training samples. In this paper, we point out that there is an
important category of failure, which owes to the fact that there
are unknown classes in the training data misperceived as other
labels, and thus their existence is unknown from the given
supervision. Such problems of unknown unknown classes can
hardly be addressed by common re-selection of algorithms or
accumulation of training samples. For this purpose, we pro-
pose the exploratory machine learning, where in this paradigm
once learner encounters unsatisfactory learning performance,
she can examine the possibility and, if unknown unknowns
really exist, deploy the optimal strategy of feature space aug-
mentation to make unknown classes observable and be enabled
for learning. Theoretical analysis and empirical study on both
synthetic and real datasets validate the efficacy of our proposal.

1 Introduction
Machine learning has achieved great success in many real-
world applications. The success heavily relies on the suitable
learning algorithm and sufficient supervised training data.
Therefore, facing model failure, the learner would always
doubt the inadequate selection of algorithms and the lack
of data. A common practice is to try other algorithms or
accumulate more data, and such an approach could work
effectively when there are no other factors leading to the
failure. In this paper, however, we point out that there is
an important cause of model failure always ignored before:
unknown unknowns hidden in the training dataset.

Specifically, we attribute the unknown unknowns to the
fact that some training instances of certain unknown classes
are wrongly perceived as others, and thus appear unknown to
the learned model with the given supervision. This is always
the case when the label space is misspecified due to the in-
sufficient feature information. Consider the task of medical
diagnosis, where we need to train a model for community
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Figure 1: Unknown unknowns in medical diagnosis tasks. Patients
with lung cancer are misdiagnosed as asthma or pneumonia due to
the lack of CT scan devices, and thus appear as unknown to learned
model. So “lung cancer” class becomes invisible in training data.

healthcare centers based on their patient records, to help di-
agnose the cause of a patient with cough and dyspnea. As
shown in Figure 1, there are actually three causes: two com-
mon ones (asthma and pneumonia), as well as an unusual
one (lung cancer) whose diagnosis crucially relies on the
computerized tomography (CT) scan device, yet too expen-
sive to purchase. Thus, the community healthcare centers
are not likely to diagnose patients with dyspnea as cancer,
resulting in that the class of “lung cancer” becomes invisible
and hidden in the collected training dataset. As a result, the
learned model will be unaware of this unobserved class.

Similar phenomena occur in many other applications. For
instance, the trace of a new-type aircraft was mislabeled as
old-type ones until performance of aircraft detectors is found
poor (i.e., capability of collected signals is inadequate), and
the officer suspects that there are new-type aircrafts unknown
previously. When feature information is insufficient, there
is a high risk to misperceive some classes of training data
as others, leading to existence of hidden classes. Especially,
hidden classes are sometimes of more interest, like in above
two cases. Thus, it is crucial to discover hidden unknown
classes and classify known classes well simultaneously.

Conventional supervised learning (SL) cannot obtain a
satisfied model when such unknown unknowns emerge in the
training dataset, even if we could accumulate more data and
re-select algorithms exhaustively. The reason lies in that the
unknown factors are beyond the expressivity of training data.
We thus require new ideas to tackle such unknown unknowns.

2 ExML: A New Learning Framework
The problem we are concerned with is essentially a class
of unknown unknowns. In fact, how to deal with unknown
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Figure 2: An example illustrates that an informative feature
can substantially improve separability of low-confidence sam-
ples and make the hidden class distinguishable.

unknowns is the fundamental question of robust artificial
intelligence (Dietterich 2017), and many studies have been
devoted to addressing various aspects including changing dis-
tributions (Pan and Yang 2010; Gama et al. 2014), evolvable
features (Hou, Zhang, and Zhou 2017; Hou and Zhou 2018),
open categories (Scheirer et al. 2013; Geng, Huang, and Chen
2018), etc. Different from them, we study a new problem set-
ting ignored previously, that is, the training dataset is badly
advised by the incompletely perceived label space due to the
insufficient feature information. This problem turns out to
be quite challenging, since feature space and label space are
entangled and both of them are unreliable.

The first challenge is that when the learning performance
is undesired we do not know whether the issue is caused by
the hidden unknown classes or not. To tackle that, we may
accumulate more training data and re-select the learning al-
gorithms. If the model failure persists, we would suspect the
existence of unknowns. The second challenge is how to recog-
nize the hidden unknown classes. Notably, it is infeasible to
merely pick out instances with low predictive confidence as
hidden classes, since we can hardly distinguish (i) instances
from hidden classes that suffer from low-confidence predic-
tions owing to the incomplete label space; (ii) instances from
known classes that suffer from low-confidence predictions
because of insufficient feature information. This character-
istic reflects intrinsic hardness of learning with unknown
unknowns due to feature deficiency, and thus it is necessary
to ask for external feature information.

2.1 Exploratory Machine Learning
To handle unknown unknowns caused by feature deficiency,
we resort to the human in the learning loop to interact with
environments for enhancing the data collection, more specif-
ically, actively augmenting the feature space. The idea is
that when a learned model remains performing poorly even
fed with much more data, learner will suspect existence of
hidden classes and subsequently seek several candidate fea-
tures to augment. Figure 2 shows a straightforward example
that learner receives a dataset and observes that there are
two classes with poor separability, resulting in a noticeable
low-confidence region. After a proper feature augmentation,
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Figure 3: Comparison of two frameworks. SL exploits ob-
servable dataset for prediction. ExML explores more features
based on operational dataset for discovery of hidden classes.

learner will then realize that there exists an additional class
hidden in training data previously due to feature deficiency.

Enlightened by the above example, we introduce a new
learning framework called exploratory machine learning
(ExML), which explores more feature information to deal
with unknown unknowns caused by feature deficiency. The
terminology of exploratory learning is originally raised in
the area of education, defined as an approach to teaching and
learning that encourages learners to examine and investigate
new material with the purpose of discovering relationships be-
tween existing background knowledge and unfamiliar content
and concepts (Njoo and De Jong 1993; Spector et al. 2014).
In the context of machine learning, our proposed framework
encourages learners to examine and investigate the train-
ing dataset via exploring new feature information, with the
purpose of classifying known classes and discovering poten-
tially hidden classes. Figure 3 compares the proposed ExML
to conventional supervised learning (SL). Conventional SL
views the training dataset as an observable representation of
environments and exploits it to train a model to predict the
label. By contrast, ExML considers the training dataset is
operational, where learners can examine and investigate the
dataset by exploring more feature information, and thereby
discover unknown unknowns due to feature deficiency.

We develop an approach to implement ExML, consisting
of three ingredients: rejection model, feature exploration,
and model cascade. The rejection model identifies suspicious
instances that potentially belong to hidden classes. Feature ex-
ploration guides which feature should be explored, and then
retrains the model on the augmented feature space. Model
cascade allows a layer-by-layer processing to refine the selec-
tion of suspicious instances. Theoretical analysis is provided
to justify the superiority of the proposed framework. We
present empirical evaluations on synthetic data to illustrate
the idea and further validate the effectiveness on real datasets.

2.2 Problem Formulation

Training Dataset. The learner receives a training dataset
D̂tr = {(x̂i, ŷi)}mi=1, where x̂i ∈ X̂ ⊆ Rd is from the
observed feature space, and ŷi ∈ Ŷ is from the incomplete
label space with N known classes. We consider the binary



case for simplicity. Note that there exist training samples
that are actually from hidden classes yet wrongly labeled as
known classes due to feature deficiency.

Candidate Features and Cost Budget. Besides the training
dataset, the learner can access a set of candidate features
C = {c1, . . . , cK}, whose values are unknown before acqui-
sition. For the example of medical diagnosis (Figure 1), a
feature refers to signals returned from CT scan devices, only
available after patients have taken the examination. More-
over, a certain cost will be incurred to acquire any candidate
feature for any sample. The learner aims to identify top k in-
formative features from the pool under a given budget B. For
convenience, the cost of each acquisition is set as 1 uniformly
and the learner desires to find the best feature, i.e., k = 1.

Testing Stage. Suppose the learner identifies the best fea-
ture as ci, he/she will then augment the testing sample
with this feature, leading to the augmented feature space
Xi = (X̂ ∪ X i) ⊆ Rd+1 where X i is the feature space of
ci. The learned model requires to predict the label of the
augmented testing sample, either classified to one of known
classes or discovered as the hidden classes (abbrev. hc).

We finally note that several assumptions are introduced for
simplicity, with the aim of avoiding distractions of an over-
complicated setting and better understanding the essence of
the new problem. Actually, our proposal still works when
relaxing these assumptions by borrowing well-known tech-
niques such as multi-class rejection (Zhang, Wang, and Qiao
2018), learning with non-uniform cost (Seldin et al. 2014).
We emphasize that above aspects are not the current focus.
These extensions will be considered as future works.

3 A Practical Approach
Due to the feature deficiency, the learner might be even un-
aware of the existence of hidden classes based on the ob-
served training data. It is thus necessary to introduce the
assumption that instances with high predictive confidence are
safe, i.e., they will be correctly predicted as one of known
classes. Learner will suspect the existence of hidden classes
when the learned model performs badly.

We justify the necessity of above assumption. Actually,
there are some previous works studying the problem of high-
confidence false predictions without considering the issue of
feature deficiency (Attenberg, Ipeirotis, and Provost 2015;
Lakkaraju et al. 2017), in which there exist some instances
wrongly predicted with high confidence. Since the model’s
performance is highly unreliable, to rectify that, they assume
the existence of an oracle providing ground-truth labels for
the given query. However, in present of feature deficiency as
in our scenario, the problem would not be tractable unless
there is an oracle able to provide ground-truth labels based
on the insufficient feature information, which turns out to
be an even stronger assumption that does not hold in reality
generally. We leave high-confidence unknown unknowns due
to the insufficient feature as future work to explore.

On the other hand, we emphasize that the introduced
assumption does not trivialize the problem because low-
predictive instances are not necessarily from hidden classes
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Figure 4: Overall procedure of ExML. Our approach begins with
an initial model (blue part), followed by exploring the best candidate
feature (green part). Afterwards, a model is retrained based on the
augmented dataset, and finally cascaded with the initial model to
discover the hidden class (red part).

(as explained at the beginning of Section 2), which neces-
sities more efforts. Following the methodology of ExML
(examining the training dataset via exploring new feature
information), we design a novel approach, which consists of
three components: rejection model, feature exploration, and
model cascade. Figure 4 illustrates main procedures, and we
will describe details of each component subsequently.

3.1 Rejection Model
As shown in Figure 4, the learner starts from training an initial
model on the original dataset, with capability of identifying
low-confidence instances. As emphasized previously (cf. the
beginning of Section 2), these low-confidence instances could
come from either known or hidden classes, so they are only
detected as suspicious and will be further refined.

We realize this goal by the learning with rejection tech-
nique (Cortes, DeSalvo, and Mohri 2016b), where the learned
model will abstain from predicting instances whose maxi-
mum conditional probability lower than a given value 1− θ.
More precisely, we learn a function pair f = (h, g), where
h : X̂ 7→ R is the predictive function for known classes and
g : X̂ 7→ R is the gate function to reject the hidden class. The
sample x̂ is identified to the hidden class if g(x̂) < 0, and
otherwise to the class of sign(h(x̂)). Such rejection models
can be trained via optimizing the following objective:

minf E(x̂,ŷ)∼D̂[`0/1(f, x̂, ŷ; θ)], (1)

where `0/1(f, x̂, ŷ; θ) = 1ŷ·h(x̂)<0 · 1g(x̂)>0 + θ · 1g(x̂)≤0
is the 0-1 loss of the rejection model f parameterized by
the threshold θ ∈ (0, 0.5) and D̂ is the data distribution
over X̂ × Ŷ . A smaller θ will lead to more rejections but
a higher predictive accuracy on known classes. To tackle
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Figure 5: Feature Exploration

the difficulty of non-convex optimization arising from the
indicator function, Cortes, DeSalvo, and Mohri (2016b)
introduce the following calibrated surrogate loss function
`surr := `surr(f, x̂, ŷ; θ) defined as

`surr = max
{

1 +
1

2

(
g(x̂)− ŷ · h(x̂)

)
, θ
(
1− g(x̂)

1− 2θ

)
, 0
}

to approximate the original `0/1 loss. Since the distribution
is unknown we cannot directly measure the risk, we choose
the model that minimizes the empirical risk:

min
f∈H×H

1

m

m∑
i=1

`surr(f, x̂i, ŷi; θ)+Ch‖h‖2H+Cg‖g‖2H, (2)

where Ch and Cg are regularization parameters, and H is the
RKHS induced by kernelK : X̂×X̂ 7→ R. By the representer
theorem (Schölkopf and Smola 2002), the optimizer of (2)
is in the form of h(x̂) =

∑m
i=1 uiK(x̂, x̂i) and g(x̂) =∑m

i=1 wiK(x̂, x̂i), where ui and wi are coefficients to learn.
So (2) can be reformulated as quadratic programming and
solved efficiently. For more details we refer the reader to the
seminal work of Cortes, DeSalvo, and Mohri (2016b).

3.2 Feature Exploration
If the initial model is unqualified (for instance, it rejects too
many samples for achieving desired accuracy), the learner
will suspect the existence of hidden classes and explore new
features to augment. In our setting, the learner requires to
select the best feature from K candidates and retrain a model
based on the augmented data, as shown in Figure 5.

We emphasize that the conventional feature selection is not
feasible here, because it requires to know values of candidate
features, while these values are unknown before acquisitions.
To address the challenge, we propose a novel procedure—
feature exploration—to adaptively identify the most informa-
tive feature under the cost budget, without requiring feature
values in advance. To address the issue, there are two funda-
mental questions to answer:
(1) how to measure the quality of candidate features?
(2) how to allocate the budget to identify the best feature?

We answer the above two questions in the following.
Feature quality measure. Denote byDi the data distribution
over Xi × Ŷ , where Xi is the augmented feature space of the

i-th candidate feature. We use the Bayes risk on Di as feature
quality measure:

R∗i = Ri(f
∗
i ) = minf E(x,ŷ)∼Di

[
`0/1(f,x, ŷ; θ)

]
, (3)

where Ri(f) is the expected 0/1 risk of function f over
Di, and f∗i minimizes Ri(f) over all measurable functions.
The Bayes risk essentially reflects the minimal error that any
rejection model can attain on the augmented data distribution,
whose value will be smaller when the selected augmented
feature improves the separability more significantly (and is
believed more informative).

Due to the inaccessibility of the underlying distribution
Di, we approximate the Bayes risk by its empirical version
over the augmented data Di = {(xj , ŷj)}ni

j=1 ∼ Di,

R̂Di
= R̂i(f̂i) =

∑ni

j=1
`0/1(f̂i,xj , ŷj ; θ), (4)

where xj ∈ Xi, ŷj ∈ Ŷ , and f̂i is the rejection model learned
by empirical risk minimization over surrogate loss (2) on aug-
mented dataset Di. Based on the feature quality measure (3)
and its empirical version (4), we now introduce the budget
allocation strategy to identify the best candidate feature.
Budget allocation strategy. Without loss of generality, sup-
pose features are sorted according to their quality, i.e., R∗1 ≤
· · · ≤ R∗K . Our goal is to identify the best feature within
the limited budget, and meanwhile the model retrained on
augmented data should have good generalization ability.

We first propose the uniform allocation strategy as follows,
under the guidance of criterion (3).

Uniform Allocation For each candidate feature ci, i ∈
[K], learner allocates bB/Kc budget and obtains an aug-
mented dataset Di. So we can compute the empirical feature
measure by (4), and select the feature with the smallest risk.
The above strategy is simple yet effective, which can provably
identify the best feature with high probability (Theorem 1).

Median Elimination We further propose another variant
inspired by the bandit theory to improve the budget allocation
efficiency. Specifically, we adopt the technique of median
elimination (ME) (Even-Dar, Mannor, and Mansour 2006),
which removes one half of poor candidate features after every
iteration and only the best one remains in the end. As a
result, the algorithm can avoid allocating too many budgets
on poor features. More specifically, the elimination proceeds
in T = dlog2Ke episodes, in each episode, bB/T c budget
is allocated uniformly to all remaining candidate features,
and the learner could query their values for updating the
corresponding augmented datasetsDi. Then, the score R̂Di

is
calculated on the current augmented datasets Di and the half
features with high R̂Di

are eliminated. In the last, only one
candidate feature is will be left and its augmented datasetDis
contains around bB/ logKc samples, which is the largest
one among all the candidate features. Algorithm details are
presented in Appendix B.

As shown in Figure 5, poor features are eliminated earlier,
budget left for the selected feature is thus improved from
bB/Kc to bB/ logKc by ME, which ensures better general-
ization ability of the learned model. Meanwhile, median elim-
ination can explore the best candidate feature more efficiently



than uniform allocation, as shown in the bandit theory (Even-
Dar, Mannor, and Mansour 2006). We finally remark that our
paper currently focuses on the best feature, and the frame-
work is ready for identifying the top k features (k > 1) by
introducing more sophisticated techniques (Kalyanakrishnan
et al. 2012; Chen, Li, and Qiao 2017).

3.3 Model Cascade
After feature exploration, learner will retrain a model on aug-
mented data. Considering that the augmented model might
not always be better than the initial model, particularly when
the budget is not enough or candidate features are not quite
informative, we propose the model cascade mechanism to
cascade the augmented model with the initial one. Concretely,
high-confidence predictions are accepted in the initial model,
the rest suspicious are passed to the next layer for feature
exploration, those augmented samples with high confidence
will be accepted by the augmented model, and the remaining
suspicious continue to the next layer for further refinements.

Essentially, our approach can be regarded as a layer-by-
layer processing for identifying instances of hidden classes,
and the procedures can be stopped until human discovers re-
maining suspicious are indeed with certain hidden structures.
For simplicity, we only implement a two-layer architecture.

4 Theoretical Analysis
This section presents theoretical results. We first investigate
the attainable excess risk of supervised learning, supposing
that the best feature were known in advance. Then, we provide
the result of ExML to demonstrate the effectiveness of our
proposed criterion and budget allocation strategies.

For each candidate feature ci, we denote the corresponding
hypothesis space asHi,Gi = {x 7→ 〈w,Φi(x)〉 | ‖w‖Hi ≤
Λi}, where Φi and Hi are induced feature mapping and
RKHS of kernel Ki in the augmented feature space.
Supervised learning with known best feature. Suppose the
best feature were known in advance, we could obtain B
samples augmented with this particular feature. Let fSL be
the model learned by supervised learning via minimizing (2).
From learning theory literatures (Bousquet, Boucheron, and
Lugosi 2003; Cortes, DeSalvo, and Mohri 2016b), for any
δ > 0, with probability at least 1− δ, we have

R1(fSL)−R∗1 ≤ O
(√

(κ1Λ1)2

B
+

√
log(1/δ)

2B

)
+Rap,

(5)
where Rap = Cθ (inff∈H1×G1 R

surr
1 (f)− inff R

surr
1 (f))

is the approximation error measuring how well hypothesis
spacesH1, G1 approach the target, in terms of the expected
surrogate risk Rsurr1 (f) = E(x,ŷ)∼D1

[`surr(f,x, ŷ; θ)]. The
constant factor is Cθ = 1/((1− θ) · (1− 2θ)).

The above result theoretically reveals that if the best feature
were known in advance, the excess risk of supervised learning
would converge to the inevitable approximate error in the rate
of O(1/

√
B), with a given feature budget B.

Exploratory learning with unknown best feature. In our
setting, the best feature is unfortunately unknown ahead of
time. More importantly, since values of K candidate features

are unavailable, it is infeasible to perform the feature selec-
tion. We show that by means of ExML (feature exploration),
the excess risk also converges, in the rate of O(

√
K/B), yet

without requiring to know the best feature.

Theorem 1. Let cis be the identified feature and f̂is be the
augmented model returned by EXML with uniform alloca-
tion. Then, with probability at least 1− δ, we have

Ris(f̂is)−R∗1 ≤ O
(√

(κΛ)2

bB/Kc
+

√
log(3/δ)

2bB/Kc

)
+Rap,

(6)
where Λ = maxi∈[K] Λi, κ = maxi∈[K] supx∈Xi

Ki(x,x).
Remark. Comparing the excess risk bounds of (5) and (6),
we can observe that ExML exhibits a similar convergence
tendency to SL with known best feature, yet without requir-
ing to know the best feature. An extra

√
K times factor is

paid for exploration of the best feature. We note that under
certain mild technical assumptions, the dependence can be
further reduced to

√
logK by median elimination (Even-Dar,

Mannor, and Mansour 2006), as poor candidate features have
been removed in the earlier episodes.

5 Experiments
In this section, we conduct experiments to examine empirical
performance of the proposed exploratory machine learning
(ExML). Specifically, we provide evaluations on synthetic
data for visualizing the superiority of ExML to conventional
supervised learning in handling unknown unknowns. Then,
we report results on real-world datasets to demonstrate the
effectiveness of the overall method, as well as the usefulness
of feature exploration and model cascade modules. In all
experiments, we denote byB = b·mk the feature exploration
budget, where m is number of training samples, K is number
of candidate features, b ∈ [0, 1] is the budget ratio.

5.1 Synthetic Data for Illustration
We first illustrate the advantage of exploratory machine learn-
ing over conventional supervised learning in discovering the
hidden classes on the synthetic data.
Setting. Following the illustrative example in Figure 1, we
generate a 3-dim dataset containing 3 classes, whose ground-
truth distribution is shown as Figure 6(a). However, as shown
in Figures 6(b), only the first two dimensions are observable
in the training stage, resulting in a hidden class (hc) located
in the intersection area of known classes (kc1 and kc2).

Specifically, we generate instances of each class from
Gaussian distributions. Means and variances are [−a, 0,−z]
and σ ·I3×3 for the first known class, [a, 0, z] and σ ·I3×3 for
the second known class as well as [0, 0, 0] and σ/2 · I3×3 for
the hidden class, where I3×3 is a 3× 3 identity matrix. We
set σ = 3a and z = 5a. In the training stage, the third-dim is
unobservable and the hidden class (hc) is randomly labeled
as another two. Each class contains 100 instances in the train-
ing data. Besides, we generate 9 candidate features in various
qualities, whose angle to the horizon varies from 10◦ to 90◦,
the larger the better. Figure 6(c) plots the augmented feature
space via t-SNE. The budget ratio is b = 20%. In the testing
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Figure 6: Visualization of synthetic data: (a) ground-truth distribu-
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Figure 7: Visualization of results: (a) SL; b) ExML; (c) budget
allocation of ExML with median elimination.

stage, the learner requires to predict on the 3-dim data, where
the third dimension is the selected candidate features.
Contenders. We compare ExML to SL (with rejection
model). For all rejection models, we employ the Gaussian
kernel K(xi,xj) = exp(−‖xi − xj‖22/γ) with bandwidth
γ = medianxi,xj∈D(‖xi − xj‖22) and set Ch, Cg to 1.
• SL trains the rejection model (Cortes, DeSalvo, and Mohri

2016b) with the given dataset on the original feature space,
following the paradigm of conventional supervised learn-
ing. The threshold θ is choose as one achieving best accu-
racy on the testing data from the pool [0.1, 0.2, 0.3, 0.4].

• ExML is our proposal with cascade models and using
median elimination for feature exploration. The threshold
for the initial rejection model is selected by cross validation
to ensure 95% accuracy on high-confidence samples. The
threshold θ for the augmented rejection model is choose
as one achieving best accuracy on the testing data from the
pool [0.1, 0.2, 0.3, 0.4]. The budget ratio is 20%.

Results. We first conduct SL to train a rejection model based
on the 2-dim training data, and then perform EXML to ac-
tively augment the feature within the budget to discover
unknown unknowns. Figures 7(a) and 7(b) plot the results,
demonstrating a substantial advantage of EXML over SL in
discovering the hidden class and predicting known classes.
Furthermore, Figure 7(c) reports budget allocation of each
candidate feature over 50 times repetition. We can see that
the allocation clearly concentrates to more informative fea-
tures (with larger angles), which validates the effectiveness
of median elimination for the best feature exploration.

5.2 Benchmark Data for Evaluation

Dataset and Setting. We further evaluate on a UCI bench-
mark dataset Mfeat (van Breukelen et al. 1998), which is a

multi-view dataset1 containing 2000 samples and 6 views
of features extracted by various methods. Their semantic
information and statistics are:
• Fac: profile correlations, 216-dim;
• Pix: pixel averages in 2× 3 windows, 240-dim;
• Kar: Karhunen-Love coefficients, 64-dim;
• Zer: Zernike moments, 47-dim;
• Fou: Fourier coefficients of the character shapes, 76-dim;
• Zer: morphological features, 6-dim.
The domain knowledge sorts the features by their quality as:
Fac > Pix > Kar > Zer > Fou > Mor, in a descending order.

In the training stage, we randomly sample 600 instances
to form the labeled training data. This procedure repeats 10
times to generate different configurations. Since Mfeat is a
multi-class dataset, we randomly sample 5 configurations
to convert it into the binary classification task, where each
known class and hidden class contain three original classes,
and the instances from the hidden class are randomly misla-
beled as one of known classes. There are in total 50 random
configurations for training. As for the candidate features,
each one of six views (features) is taken as original feature
and the rest are prepared in the candidate set. Before training,
we normalize all the features to the range [0, 1]. We evaluate
all contenders on the testing data containing 1400 instances.
Contenders. Apart from SL, we include two ExML variants:
EXMLUA

csd and EXMLME
aug for ablation studies. Here aug/csd

denotes the final model is only the augmented or cascaded
with the initial model; UA/ME refers to feature exploration
by uniform allocation or median elimination.
• EXMLUA

csd is our proposal with cascade model and using
uniform allocation for feature exploration.

• EXMLME
aug is our proposal without cascade model and us-

ing median elimination for feature exploration.
All ExML-type methods use the same parameters. SL and
ExML are configured by the same setting as those in synthetic
experiments. The budget ratio b varies from 10% to 30%.
Measure. We measure the performance of all the methods
by the classification. Additionally, we introduce the recall to
measure the effectiveness of feature exploration, defined as
the ratio of the number of cases when identified feature is
one of its top 2 features to the total number.
• Accuracy: the mean and standard deviation of the predic-

tive accuracy on testing dataset over 50 configurations,
where the true label of hidden classes are observable.

• Recall: the ratio of the number of cases when identified
feature is one of top 2 features to the total number, where
features quality is measured by the accuracy of augmented
model trained on whole data with this particular feature.

Results. Table 1 reports mean and std of the predictive accu-
racy, and all features are sorted in descending order by their
quality. We first compare SL to (variants of) ExML. When
the original features are in high quality (Kar, Pix, Fac), SL
could achieve favorable performance and there is no need to
explore new features. However, in the case where uninforma-
tive original features are provided, which is of more interest
for ExML, SL degenerates severely and EXMLME

aug (the single

1http://archive.ics.uci.edu/ml/datasets/Multiple+Features

http://archive.ics.uci.edu/ml/datasets/Multiple+Features


Table 1: Evaluation on Mfeat dataset. Features are sorted by de-
scending qualities. Bold font indicates algorithms significantly out-
performs than others (paired t-test at 95% significance level).

Feature Budget SL EXMLME
aug EXMLUA

csd EXML Recall

Fac
10% 93.39 ± 1.66 71.80 ± 9.55 92.39 ± 2.79 92.40 ± 2.78 48%
20% 93.39 ± 1.66 82.26 ± 7.52 91.95 ± 3.32 92.00 ± 3.27 46%
30% 93.39 ± 1.66 89.29 ± 4.72 92.20 ± 3.33 92.50 ± 2.86 44%

Pix
10% 92.19 ± 2.47 70.53 ± 8.27 90.54 ± 6.27 90.55 ± 6.31 58%
20% 92.19 ± 2.47 81.70 ± 7.16 90.84 ± 6.17 90.87 ± 6.09 54%
30% 92.19 ± 2.47 88.67 ± 4.14 90.45 ± 5.74 91.82 ± 4.26 68%

Kar
10% 86.87 ± 3.43 70.25 ± 10.2 85.55 ± 4.94 85.90 ± 4.85 56%
20% 86.87 ± 3.43 81.46 ± 6.88 85.21 ± 5.46 86.49 ± 4.81 54%
30% 86.87 ± 3.43 86.01 ± 5.41 86.52 ± 4.71 88.18 ± 3.57 56%

Zer
10% 73.82 ± 8.82 69.61 ± 10.7 72.96 ± 10.4 76.17 ± 8.52 82%
20% 73.82 ± 8.82 80.86 ± 8.02 77.31 ± 7.89 81.72 ± 7.33 82%
30% 73.82 ± 8.82 86.07 ± 5.51 81.11 ± 6.79 86.33 ± 5.04 86%

Fou
10% 68.73 ± 9.07 69.42 ± 9.68 68.88 ± 11.8 75.92 ± 8.81 82%
20% 68.73 ± 9.07 82.11 ± 6.48 77.93 ± 8.27 85.03 ± 4.39 88%
30% 68.73 ± 9.07 89.90 ± 3.69 82.45 ± 5.20 89.35 ± 3.89 92%

Mor
10% 57.47 ± 15.3 69.09 ± 11.3 66.58 ± 13.5 71.07 ± 11.1 80%
20% 57.47 ± 15.3 79.60 ± 10.1 73.61 ± 8.86 79.74 ± 9.92 84%
30% 57.47 ± 15.2 87.44 ± 7.34 78.31 ± 9.00 86.98 ± 7.07 90%

ExML model without model cascade) achieves better per-
formance even with the limited budget. Besides, from the
last column, we can see that informative candidates (top 2)
are selected to strengthen the poor original features, which
validates the effectiveness of the proposed budget allocation
strategy (namely, the median elimination mechanism).

Since the EXMLME
aug is not guaranteed to outperform SL,

particularly with the limited budget on poor candidate fea-
tures, we propose the cascade structure. Actually, ExML ap-
proach (aka, EXMLME

csd ) achieves roughly best-of-two-worlds
performance, in the sense that it is basically no worse or even
better than the best of SL and EXMLME

aug . It turns out that even
EXMLUA

csd could behave better than EXMLME
aug . These results

validate the effectiveness of the model cascade component.

5.3 Real Data of Activities Recognition
We additionally examine the effectiveness on a real-world
dataset called RealDisp2, which is an activities recognition
task (Baños et al. 2012). There are 9 on-body sensors used to
capture various actions of participants. Each sensor is placed
on different parts of the body and provides 13-dimensional
features including 3-dim from acceleration, 3-dim from gyro,
3-dim from magnetic field orientation and another 4-dim
from quaternions. Hence, we have 117 features in total.

Dataset. Three types of actions (walking, running, and jog-
ging) are included to form the dataset containing 2000 in-
stances, where 30% of them are used for training and the
remaining 70% for testing. In the training data, one sensor is
deployed and the class of jogging is randomly misperceived
as walking or running. The learner would explore the rest
eight candidate features to discover the unknown unknowns.
Thus, there are 9 partitions, and each is repeated for 10 times
by sampling the training instances randomly.

Results. Figure 8 shows the mean and std of accuracy, our
approach EXML (aka, EXMLME

csd ) outperforms others, vali-

2http://archive.ics.uci.edu/ml/datasets/REALDISP+Activity+
Recognition+Dataset
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Figure 9: Budget alloca-
tion (median elimination).

dating the efficacy of our proposal. In addition, Figure 9 illus-
trates the budget allocation when the budget ratio b = 30%.
The i-th row denotes the scenario when the i-th sensor is the
original feature, and patches with colors indicate the fraction
of budget allocated to each candidate feature. The number
above a patch means the attainable accuracy of the model
trained on the whole training dataset with the particular fea-
ture. We highlight the top two candidate features of each row
in white, and use blue color to indicate selected feature is not
in top two. The results show that EXML with median elimi-
nation can select the top two informative features to augment
for all the original sensors. The only exception is the 9-th
sensor, but quality of the selected feature (91.8%) does not
deviate too much from the best one (93.6%). These results
reflect the effectiveness of our feature exploration strategy.

6 Conclusion
In this paper, we identify that aside from the inadequate se-
lection of learning algorithms or the lack of enough labeled
training samples, unknown unknowns could also lead to the
model failure. In particular, we are concerned with the sce-
nario where some instances in the training dataset belong
to an unknown hidden class but are wrongly perceived as
known classes, due to the insufficient feature information.
To address this issue, we propose the exploratory machine
learning (ExML) to encourage the learner to examine and
investigate the training dataset by exploring more features to
discover potentially hidden classes. Following this idea, we
design an approach consisting of three procedures: rejection
model, feature exploration, and model cascade. By leverag-
ing techniques from bandit theory, we prove the rationale and
efficacy of the feature exploration procedure. Experiments
validate the effectiveness of our approach.

There remain many directions for future investigations.
For instance, as mentioned in Section 2.2, we can borrow
more advanced techniques to further relax some model as-
sumptions introduced in the current work (such as binary
known classes, uniform cost, best feature exploration, etc).
In particular, it is interesting to consider a personalized cost
for each candidate feature, since we usually need to pay a
higher price to obtain more informative features in real-world
applications. Moreover, in addition to the feature exploration
proposed in this paper, we argue that there are many other
possibilities for ExML to deal with unknown unknowns, by
means of adaptive interactions with environments.

http://archive.ics.uci.edu/ml/datasets/REALDISP+Activity+Recognition+Dataset
http://archive.ics.uci.edu/ml/datasets/REALDISP+Activity+Recognition+Dataset
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Appendix A Related Work
In this section, we discuss some related topics of the ex-
ploratory machine learning.

Open Category Learning. Open category learning is also
named as learning with new classes, which focuses on
handling unknown classes appearing only in the testing
phase (Scheirer et al. 2013; Scheirer, Jain, and Boult 2014;
Da, Yu, and Zhou 2014; Mu, Ting, and Zhou 2017; Mu et al.
2017; Liu et al. 2018; Cai et al. 2019; Zhang et al. 2020).
Although these studies also care about the unknown classes
detection, they differ from us significantly and are not able to
apply to our situations. Specifically, first, they do not consider
deficiency of the feature quality; second, there exist unknown
classes in training data in our setting, while in theirs unknown
classes only appear in the testing stage.

High-Confidence False Predictions. High-confidence
false predictions appear due to model’s unawareness of such
kind of mistakes. Such instances and predictions are also
referred to as a kind of “unknown unknowns” (Attenberg,
Ipeirotis, and Provost 2015; Lakkaraju et al. 2017; Bansal and
Weld 2018). As the model gives high-confidence for the false
predictions, it is almost not possible to rectify the model‘s
performance. As a result, existing studies typically ask for
external human expert to help identifying high-confidence
false predictions and then retrain the model with the guidance.
Although these works also consider unknown unknowns and
resort to external human knowledge, their setting and method-
ology differ from ours: our unknown unknowns are caused
due to feature deficiency, so the learner requires to augment
features rather than querying labels.

Active Learning. Active learning aims to achieve greater
accuracy with fewer labels by asking queries of unlabeled
data to be labeled by the human expert (Settles 2012). Be-
sides, there are some works querying features (Melville,
Provost, and Mooney 2005; Dhurandhar and Sankara-
narayanan 2015; Huang et al. 2018), which tries to improve
learning with missing features via as fewer as possible queries
of entry values (the feature of an instance). Unlike their set-
tings, in our work we augment new features to help the identi-
fication of the unknown classes rather than querying missing
values of the given feature to improve the performance of
known classes classification.

Learning with Rejection. Learning with rejection gives
the classifier an option to reject an instance instead of pro-
viding a low-confidence prediction (Chow 1970). Plenty of
works are proposed to design effective algorithms (Yuan and
Wegkamp 2010; Cortes, DeSalvo, and Mohri 2016a; Wang
and Qiao 2018; Shim, Hwang, and Yang 2018) and establish
theoretical foundations (Herbei and Wegkamp 2006; Bartlett
and Wegkamp 2008; Cortes, DeSalvo, and Mohri 2016b;
Bousquet and Zhivotovskiy 2019). As aforementioned, meth-
ods of rejection cannot be directly applied in exploratory ma-
chine learning, because it will result in inaccurate rejections

of instances from known classes, and meanwhile, it cannot
exploit new features like exploratory machine learning.

Appendix B More Algorithm Details
This section presents more details for the feature exploration
algorithm shown in Section 3.2, which attempts to identify
the best feature from theK candidates withB budget. For bet-
ter exploiting the budget, our algorithm essentially employ-
ing the idea of median elimination (Even-Dar, Mannor, and
Mansour 2006). The algorithm proceeds in T = dlog2Ke
episodes, where half of the poor features are removed every
episode and only the best one remains in the last.

In each episode, in total bB/T c budget is allocated uni-
formly to all remaining candidate features, and the learner
could query their values for updating the corresponding aug-
mented datasets Di. Then, the score R̂Di

is calculated on
the current augmented datasets Di and the half features with
high R̂Di

are eliminated. In the last, only one candidate fea-
ture is will be left and its augmented dataset Dis contains
around bB/ logKc samples, which is the largest among all
candidate features.

Algorithm 1 Median Elimination for Feature Exploration

Input: Feature exploration budget B, original dataset
D̂tr = {(x̂i, ŷi)}mi=1, candidate feature pool
C{c1, . . . , cK}, threshold θ ∈ (0, 1).

Output: Selected feature cis ∈ C and corresponding aug-
mented model f̂is .

1: Initialize: dataset Di = ∅ for each feature ci ∈ C, set of
active features C1 = C, T = dlog2Ke.

2: for t = 1, . . . , T do
3: Randomly select nt = bB/(T |Ct|)c samples from

D̂tr and query active features ci ∈ Ct;
4: Update Di with selected samples and train a model f̂i

on Di by ERM (2), for all ci ∈ Ct;
5: Compute R̂Di

according to (4), for all ci ∈ Ct;
6: Update Ct+1 as half of features in Ct with lower R̂Di

;
7: end for

Appendix C Proof of Theorem 1
Proof of Theorem 1. The excess risk of the learned model
f̂is can be decomposed into three parts,

Ris(f̂is)−R∗1
= Ris(f̂is)− R̂is(f̂is)︸ ︷︷ ︸

term (a)

+ R̂is(f̂is)− R̂1(f̂1)︸ ︷︷ ︸
term (b)

+ R̂1(f̂1)−R∗1︸ ︷︷ ︸
term (c)

,

where term (a) is the generalization error of the learned
model f̂is and term (b) is the difference between empirical
criterion of the selected feature and that of the best feature,
where f̂1 refers to the model trained on the best feature with
a bB/Kc budget. Besides, term (c) captures the excess risk
of f̂1 relative to the Bayes risk. Notice that term (b) < 0
since the empirical criterion of the selected feature is the



lowest among all candidates. Thus, to prove the theorem, it
is sufficient to bound term (a) and term (c).

We bound term (a) based on the following lemma on the
generalization error of the rejection model, which can be
regarded as a two-side counterpart of (Cortes, DeSalvo, and
Mohri 2016b, Theorem 1).

Lemma 1. Let H and G be the kernel-based hypotheses
H, G = {x 7→ 〈w,Φ(x)〉 | ‖w‖H ≤ Λ}. Then for any
δ > 0, with probability of 1− δ over the draw of a sample D
of size n from D, the following holds for all f ∈ H × G:

|R(f)− R̂(f)| ≤ (2 + θ)

√
(κΛ)2

n
+

√
log(2/δ)

2n
, (7)

where κ2 = supx∈X K(x,x) and K : X × X 7→ R is the
kernel function associated with H.

Therefore, the generalization error of the f̂is can be directly
bounded by,

term (a) ≤ (2 + θ)

√
(κsΛs)2

bB/Kc
+

√
log(2/δ′)

2bB/Kc
, (8)

with probability at least 1− δ′.
Then we process to analyze the excess risk of f̂1 trained

on the best feature with surrogate loss `surr, where term (c)
can be decomposed into two parts as

term (c) = R̂1(f̂1)−R∗1
= R̂1(f̂1)−R1(f̂1)︸ ︷︷ ︸

term (c-1)

+R1(f̂1)−R∗1︸ ︷︷ ︸
term (c-2)

.

Based on Lemma 1, term (c-1) is bounded by

term (c-1) ≤ (2 + θ)

√
(κ1Λ1)2

bB/Kc
+

√
log(2/δ′)

2bB/Kc
, (9)

which holds with probability at least 1− δ′.
Before presenting the analysis on term (c-2), we intro-

duce the results on consistency and the generalization error
of the surrogate loss function. First, we show that the excess
risk with respect to 0/1 loss for any function f is bound by
the excess risk with respect to the surrogate loss `surr.

Lemma 2 (Theorem 3 of Cortes, DeSalvo, and Mohri
(2016b)). Let Rsurr(f) = E(x,y)∼D[`surr(f,x, y; θ)] de-
note the expected risk in terms of the surrogate loss of a pair
f = (h, g). Then, the excess error of f is upper bounded by
its surrogate excess error as follows,

R(f)−R∗ ≤ Cθ
(
Rsurr(f)− inf

f
Rsurr(f)

)
,

where Cθ = 1
(1−θ)(1−2θ) and R∗ = inff R(f).

Besides, the generalization error over the surrogate loss is
bounded in the following lemma.

Lemma 3. Let H and G be the kernel-based hypotheses,
defined as H, G = {x 7→ 〈w,Φ(x)〉 | ‖w‖H ≤ Λ}. Then
for any δ > 0, with probability of 1 − δ over the draw of
a sample D of size n from D, the following holds for all
f ∈ H × G:

|Rsurr(f)−R̂surr(f)| ≤ 2− 2θ

1− 2θ

√
(κΛ)2

n
+B

√
log(2/δ)

2n
,

where K : X × X 7→ R is the kernel function as-
sociated with H and κ2 = supx∈X K(x,x). Moreover,
B = supf∈H×G sup(x,y)∈X×Y `surr(f,x, y; θ) ≤ 1 +

max {1, θ/(1− 2θ)} · κΛ.

Lemma 3 can be obtained by the standard analysis of
generalization error based on the Rademacher complexity.
One may refer to Chapter 3 of the seminal textbook (Mohri,
Rostamizadeh, and Talwalkar 2018). Then, based on the con-
sistency property of the surrogate loss function demonstrated
in Lemma 2, we have

term (c-2)

≤ Cθ
(
Rsurr1 (f̂1)− inff R

surr
1 (f)

)
= Cθ

(
Rsurr1 (f̂1)− inf

f∈H1×G1
Rsurr1 (f)

+ inf
f∈H1×G1

Rsurr1 (f)− inf
f
Rsurr1 (f)

)
= Cθ

(
Rsurr1 (f̂1)− inf

f∈H1×G1
Rsurr1 (f)

)
+Rap.

Denote f∗1 = inff∈H1×G1 R
surr
1 (f). The first term of (10)

can be further bounded by the generalization error bound of
the the surrogate loss function and the optimality of f̂1 for
the ERM problem (2) in hypothesesH1 × G1 as,

Rsurr1 (f̂1)−Rsurr1 (f∗1 )

= Rsurr1 (f̂1)− R̂surr1 (f̂1) + R̂surr1 (f̂1)−Rsurr1 (f∗1 )

≤ Rsurr1 (f̂1)− R̂surr1 (f̂1) + R̂surr1 (f∗1 )−Rsurr1 (f∗1 )

≤ 2 sup
f∈H1×G1

|Rsurr1 (f)− R̂surr1 (f)|

≤ 4− 4θ

1− 2θ

√
(κ1Λ1)2

bB/Kc
+ 2B

√
log(2/δ′)

2bB/Kc
.

Here, for simplicity, we analyze the version of ERM problem
in terms of the constraint on the RKHS norm instead of in
terms of its Lagrange multiplier as (2), as they have identical
regularization paths. Thus, term (c-2) is bounded by

term (c-2)

≤ Cθ

(
4− 4θ

1− 2θ

√
(κ1Λ1)2

bB/Kc
+ 2B

√
log(2/δ′)

2bB/Kc

)
+Rap

(10)

with probability at least 1− δ′.
Combining (8), (9) and (10), and setting κ = supi∈[K] κi,

Λ = supi∈[K] Λi and δ′ = δ/3, we have

Ris(ĥis , ĝis)−R∗1



≤ (4 + 2θ)

√
(κΛ)2

bB/Kc
+ 2

√
log(6/δ)

2bB/Kc

+ Cθ

(
4− 4θ

1− 2θ

√
(κΛ)2

bB/Kc
+ 2B

√
log(6/δ)

2bB/Kc

)
+Rap

=

(
4 + 2θ +

4

(1− 2θ)2

)√
(κΛ)2

bB/Kc

+ 2(1 + CθB)

√
log(6/δ)

2bB/Kc
+Rap,

which holds with probability at least 1 − δ. This ends the
proof of Theorem 1.
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