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In conventional supervised learning, a training dataset is given with ground-truth labels from 
a known label set, and the learned model will classify unseen instances to known labels. 
This paper studies a new problem setting in which there are unknown classes in the training 
data misperceived as other labels, and thus their existence appears unknown from the given 
supervision. We attribute the unknown unknowns to the fact that the training dataset is badly 
advised by the incompletely perceived label space due to the insufficient feature information. To 
this end, we propose the exploratory machine learning, which examines and investigates training 
data by actively augmenting the feature space to discover potentially hidden classes. Our method 
consists of three ingredients including rejection model, feature exploration, and model cascade. 
We provide theoretical analysis to justify its superiority, and validate the effectiveness on both 
synthetic and real datasets.

1. Introduction

In this paper, we study the task in which there are unknown labels hidden in the training dataset, namely some training instances 
belonging to a certain class are wrongly perceived as others, and thus appear unknown to the learned model. This is always the 
case when the label space is misspecified due to the insufficient feature information. Consider the task of medical diagnosis, where 
we need to train a machine learning model for the community healthcare centers based on their patient records, to help diagnose 
the cause of a patient with cough and dyspnea. As shown in Fig. 1, there are actually three causes: two common ones (asthma and 
pneumonia), as well as an unusual one (lung cancer). Note that the diagnosis of lung cancer crucially relies on the computerized 
tomography (CT) scan device, yet is too expensive to purchase. Thus, the community healthcare centers are not likely to diagnose 
patients with dyspepsia as cancer, resulting in that the class of “lung cancer” becomes invisible and hidden in the collected training 
dataset. As a result, the learned model will be unaware of this unobserved class, hence facing the unknown unknowns.

Similar phenomena occur in many other applications. For instance, the trace of a new-type aircraft was mislabeled as old-type 
aircrafts until performance of the aircraft detector is found poor (i.e., the capability of collected signals is inadequate), and the 
officer suspects that there are new-type aircrafts unknown previously. When the feature information is insufficient, there is a high 
risk to misperceive some classes of training data as others, leading to the existence of hidden unknown classes. More importantly, 
the hidden classes are sometimes of more interest, like in the above two examples. It is therefore crucial for the learned model to 
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Fig. 1. Unknown unknowns in the task of medical diagnosis. Patients with lung cancer are misdiagnosed as asthma or pneumonia due to the lack of CT scan devices, 
and thus appear as unknown to the learned model.

discover hidden classes and classify known classes well simultaneously, and this is also one of the key requirements of robust and 
open-world/open environment artificial intelligence [1–3].

The conventional supervised learning (SL), where a predictive model is trained on a given labeled dataset and then deployed 
to classify unseen instances into known labels, crucially relies on a high-quality training dataset. Thus, when the aforementioned 
unknown unknowns emerged in the training data, the conventional supervised learning cannot obtain a satisfied learned model. Open 
category learning (also known as learning with new classes), which focuses on handling unknown classes appearing only in the testing 
phase [4–8], assumes that the unknown classes only appear in the testing stage, while in above examples there exist unknown classes 
in training data (see Section 5 for more details). Neither of the learning frameworks could deal with the raised scenarios. As a result, 
it is necessary to develop new learning framework to handle such unknown unknowns that might emerge in the training data.

2. ExML: a new learning framework

The problem we are concerned with is essentially a class of unknown unknowns. In fact, how to deal with unknown unknowns is the 
fundamental question of robust artificial intelligence [2] and open-environment machine learning [3,9], and many studies have been 
devoted to addressing various aspects including changing distributions [10–12], evolvable features [13–15], open categories [4,16,8], 
etc. Different from them, we study a new problem setting ignored previously, that is, the training dataset is badly advised by the 
incompletely perceived label space due to the insufficient feature information. This problem turns out to be quite challenging, since 
feature space and label space are entangled and both of them are unreliable.

Notably, it is infeasible to merely pick out instances with low predictive confidence as hidden classes, because we can hardly 
distinguish: (i) instances from hidden classes that suffer from low-confidence predictions owing to the incomplete label space; (ii) 
instances from known classes that suffer from low-confidence predictions because of insufficient feature information. This character-

istic reflects intrinsic hardness of learning with unknown unknowns due to feature deficiency, and it is therefore necessary to ask for 
external feature information.

There are lines of works sharing similar spirits, that is, asking for external feature information to enhance model performance, 
such as detecting high-confidence false predictions [17–19], avoiding negative side effects [20,21] and active learning [22]. However, our 
setting and developed methodologies are significantly different from theirs; see Section 5 for more details. In fact, these studies as 
well as our work both align with the human-in-the-loop learning principle, which leverages human knowledge to advance machine 
learning [23,24]. We believe there is potential for mutual benefit between ExML and other human-in-the-loop learning techniques, 
such as large language models (LLM) trained through reinforcement learning from human feedback (RLHF) [25].

2.1. Exploratory machine learning

To handle unknown unknowns caused by the feature deficiency, we resort to the human in the learning loop to interact with 
environments for enhancing the data collection, more specifically, actively augmenting the feature space. The idea is that when a 
learned model remains performing poorly even fed with much more data, the learner will suspect existence of hidden classes and 
subsequently seek several candidate features to augment. Fig. 2 shows a straightforward example that the learner receives a dataset 
and observes that there are two classes with poor separability, resulting in a noticeable low-confidence region. After a proper feature 
augmentation, the learner will then realize that there exists an additional class hidden in the training data previously due to the 
feature deficiency.

Enlightened by the above example, we introduce a new learning framework called exploratory machine learning (ExML), which 
explores more feature information to deal with unknown unknowns caused by feature deficiency. The terminology of exploratory 
learning is originally raised in the area of education, defined as an approach to teaching and learning that encourages learners to 
examine and investigate new material with the purpose of discovering relationships between existing background knowledge and 
unfamiliar content and concepts [26,27]. In the context of machine learning, our proposed framework encourages learners to examine 
and investigate the training dataset via exploring new feature information, with the purpose of classifying known classes and discovering 
potentially hidden classes. Our proposed framework is also inspired by recent advances in cognitive science. For instance, when facing 
uncertain and constantly changing environments, the prefrontal cortex continuously constructs new strategies through exploration 
and evaluates their reliability [28,29]. Fig. 3 compares the proposed ExML to conventional supervised learning (SL). Conventional 
2

SL views the training dataset as an observable representation of environments and exploits it to train a model to predict the label. 
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Fig. 2. An example illustrates that an informative feature can substantially improve separability of low-confidence samples and make the hidden class distinguishable. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Comparison of two learning frameworks. Conventional supervised learning exploits the observable dataset for prediction. Exploratory machine learning 
explores more features based on the operational dataset for both prediction and discovery of the hidden classes.

By contrast, ExML considers the training dataset is operational, where learners can examine and investigate the dataset by exploring

more feature information, and thereby discover unknown unknowns due to feature deficiency. Note that we do not assume that the 
new class necessary exists. When there is no unknown classes, our approach still offers a powerful tool to present feature exploration 
to help refine the performance of conventional supervised learning.

We further develop an approach to implement the principle of ExML, consisting of three important ingredients: rejection model, 
feature exploration, and model cascade. The rejection model identifies suspicious instances that potentially belong to the hidden 
classes. Feature exploration guides which feature should be explored among the candidates, and then retrains the model on the 
augmented feature space. Model cascade allows a layer-by-layer processing to refine the selection of suspicious instances. Theoretical 
analysis is provided to justify the superiority of our proposed framework. Besides, we present empirical evaluations on synthetic data 
to illustrate the idea and further validate the effectiveness on real datasets.

2.2. Problem formulation

Training dataset The learner receives a training dataset �̂�𝑡𝑟 = {(�̂�𝑖, ̂𝐲𝑖)}𝑚𝑖=1, where the feature ̂𝐱𝑖 ∈ ̂ ⊆ℝ𝑑 is from the observed feature 
space and the label �̂�𝑖 ∈ ̂ is from the incomplete label space with 𝑁 known classes. Throughout the paper, we focus on the binary 
case for simplicity. We remind that in our concerned unknown unknowns setting there exist training samples that are actually from 
hidden classes yet wrongly labeled as known classes due to feature deficiency.

Candidate features and cost budget Besides the training dataset, the learner can access a set of candidate features  = {𝑎1, … , 𝑎𝐾}, 
whose values are unknown before acquisition. Moreover, a certain cost 𝑐𝑖 will be incurred to acquire an observation on the candidate 
feature 𝑎𝑖 for any sample. The learner aims to identify top 𝑘 informative features from the pool under the given budget 𝐵 > 0 such 
that she will then augment the dataset on those top informative features in the testing stage. For convenience, we focus on the case 
that the learner desires to find the best feature, i.e., 𝑘 = 1.

We expand the two examples in the introduction to demonstrate the rationality of our formulation. In the first example, suppose a 
patient’s physical examination results suggest that he might have pneumonia, but the diagnosis is at a low confidence. At this point, 
3

the doctor may recommend the patient to do further examinations (i.e., the pulmonary histopathology examination, the CT scans, 



Artificial Intelligence 327 (2024) 104059P. Zhao, J.-W. Shan, Y.-J. Zhang et al.

etc.) which can be regarded as candidate features in our setting. The cost of doing these examinations varies, and the assistance 
they may provide for a more accurate diagnosis also differs. In the second example, when the performance of the aircraft is found 
poor, the detector may ask for more sources of signals (i.e., optical sensors, aviation sonar, etc.). The signals generated by the new 
equipment can be regarded as candidate features in our setting. The cost of deploying these devices varies, and the effectiveness of 
the signals also differs.

Testing stage Suppose the learner identifies the best feature as 𝑎𝑖, she will then augment the testing sample with this particular 
feature in the feature space, leading to an augmented feature space denoted by 𝑖 = (̂ ∪ 𝑖) ⊆ℝ𝑑+1 where  𝑖 is the feature space 
of 𝑎𝑖 and recall that ̂ ∈ℝ𝑑 is the original feature space. The learned model requires predicting the label of the augmented testing 
sample, either classified to one of known classes or discovered as hidden classes (abbrev. hc).

Remark 1 (Possible relaxations of some assumptions). We have made several modeling assumptions are introduced in the above 
problem formulation for simplicity, with the aim of avoiding distractions of an over-complicated setting and better understanding 
the essence of this new problem setup. Indeed, our proposed principle can still work when relaxing these assumptions by borrowing 
more advanced techniques. For example, we can leverage multi-class rejection techniques [30,31] to generalize our framework into 
multi-class problems, and use top-𝑘 best arm identification [32,33] to select multiple augmented features. We leave those potential 
extensions as future works. ¶

Remark 2 (Training-time and test-time feature cost). Our problem formulation captures the training-time feature cost, which means 
the learner is required to pay for acquiring new features for the training samples. Note that in the testing stage, augmenting the 
testing sample with candidate features may also incur a certain cost. Our paper focuses on the training-time feature cost and designs 
budget allocation strategies for feature exploration, while it is also possible to extend our framework to further accommodate test-

time feature cost by modifying the goal of feature exploration, for example, to encourage the algorithm to identify the feature with 
highest quality-cost ratio [34]. We leave the extension to test-time feature cost as future work. ¶

3. A practical approach

Due to the feature deficiency, the learner might be even unaware of the existence of hidden classes based on the observed training 
data. It is thus necessary to introduce the assumption that instances with high predictive confidence are safe, i.e., they will be correctly 
predicted as one of the known classes. The learner will suspect the existence of hidden classes (which are the unknown unknowns to 
the learner at the beginning) when the learned model performs badly.

We justify the necessity of the assumption. Actually, there are some previous works studying the problem of high-confidence 
false predictions without considering the issue of feature deficiency [17,18], in which there exist some instances that are wrongly 
predicted with high confidence. Since the model’s performance is highly unreliable, to rectify that, they assume the existence of an 
oracle providing ground-truth labels for the given queries. However, in the presence of the feature deficiency as in our scenario, 
the problem would not be tractable unless there is an oracle able to provide ground-truth labels based on the insufficient feature 
representation, which turns out to be an even stronger assumption that does not hold in reality generally. So this paper focuses 
on the aforementioned case to trust the high-confidence predictions and we leave high-confidence unknown unknowns due to the 
insufficient feature as the future work to explore.

We further clarify and emphasize that the introduced assumption does not trivialize the problem setup, because notice that the 
low-predictive instances are not necessarily from hidden classes (as explained at the beginning of Section 2), which necessitates more 
efforts in discovering and identifying unknown unknowns. Following the methodology of ExML (examining the training dataset via 
exploring new feature information), we design a novel approach, which consists of three components: rejection model, feature explo-

ration, and model cascade. Fig. 4 illustrates the main procedures, and we will describe the details of each component subsequently.

3.1. Rejection model

As shown in Fig. 4(a), at the beginning, the learner requires to train an initial model on the original dataset, with capability of 
identifying low-confidence instances. As emphasized previously (cf. the beginning of Section 2), these low-confidence instances could 
come from both known and hidden classes, so they are only detected as suspicious and will be refined in the further procedures.

In order to obtain such models, we leverage the techniques of learning with rejection [35], where the learned model will abstain 
from predicting instances whose maximum conditional probabilities are lower than a given threshold. More precisely, we learn a 
function pair 𝑓 = (ℎ, 𝑔), where ℎ ∶ ̂ ↦ℝ is the predictive function for the known classes and 𝑔 ∶ ̂ ↦ℝ is the gate function to reject
the hidden class. The sample �̂� is classified to the hidden class if 𝑔(�̂�) < 0, and otherwise to the class of 𝚜𝚒𝚐𝚗(ℎ(�̂�)). Such rejection 
models can be trained via optimizing the following objective:

min𝑓 𝔼(�̂�,�̂�)∼̂[𝓁0∕1(𝑓, �̂�, �̂�;𝜃)], (1)

where
4

𝓁0∕1(𝑓, �̂�, �̂�;𝜃) = 1�̂�⋅ℎ(�̂�)<0 ⋅ 1𝑔(�̂�)>0 + 𝜃 ⋅ 1𝑔(�̂�)≤0
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Fig. 4. The left figure shows the overall procedure of ExML. Our approach begins with an initial model (blue part), followed by exploring the best candidate feature 
among the candidates (green part). Afterwards, a learned model is retrained based on the augmented dataset, and finally is cascaded with the initial model to discover 
the hidden class (red part). The right figure describes the procedure of the feature exploration in ExML.

is the 0-1 loss of the rejection model 𝑓 parameterized by the threshold 𝜃 ∈ (0, 1) and ̂ is the data distribution over ̂ × ̂ . To tackle 
the difficulty of non-convex optimization arising from the indicator function, Cortes et al. [35] introduce the following surrogate loss 
function

𝓁𝑠𝑢𝑟𝑟(𝑓, �̂�, �̂�;𝜃) = max
{
1 + 1

2
(
𝑔(�̂�) − �̂� ⋅ ℎ(�̂�)

)
, 𝜃 ⋅

(
1 − 𝑔(�̂�)

1 − 2𝜃

)
,0
}

(2)

to approximate the original 𝓁0∕1 loss. Since the distribution is unknown and we cannot directly measure the risk, we choose the 
model that minimizes the empirical risk:

min
𝑓∈ℍ×ℍ

1
𝑚

𝑚∑
𝑖=1

𝓁𝑠𝑢𝑟𝑟(𝑓, �̂�𝑖, �̂�𝑖;𝜃) +𝐶ℎ‖ℎ‖2ℍ +𝐶𝑔‖𝑔‖2ℍ, (3)

where 𝐶ℎ and 𝐶𝑔 are regularization parameters, and ℍ is the RKHS induced by the kernel 𝐾 ∶ ̂ × ̂ ↦ ℝ. By the representer 
theorem [36], the optimizer of (3) is in the form of ℎ(�̂�) =∑𝑚

𝑖=1 𝑢𝑖𝐾(�̂�, ̂𝐱𝑖) and 𝑔(�̂�) =∑𝑚
𝑖=1𝑤𝑖𝐾(�̂�, ̂𝐱𝑖), where 𝑢𝑖 and 𝑤𝑖 are coefficients 

to learn. So (3) can be reformulated as quadratic programming and solved efficiently.

Remark 3 (Reliability of the initial model). The reliability of the initial model is crucial to make ExML effective. Fortunately, we have 
many methods to enhance the reliability of the initial model. Since the training of the initial model goes as a standard process of 
conventional supervised learning, we can make use of any standard supervised learning techniques (e.g., data enhancement, feature 
engineering) to make the initial model more reliable. Besides, we can also adjust the rejection model (e.g., reduce the rejection cost 
𝜃) to make it easier to meet the assumption we made at the beginning of Section 3 (instances with high predictive confidence are 
safe), at a cost of rejecting more samples and passing them to the subsequent models. ¶

3.2. Feature exploration

If the initial model is unqualified (for instance, it rejects too many samples for achieving the desired accuracy), the learner will 
suspect the existence of hidden classes and explore new features to augment. In our setting, the learner requires to select the best 
feature from 𝐾 candidates and retrain a model based on the augmented data, as shown in Fig. 4(b).

We emphasize that conventional feature selection is not feasible here, because it requires to know the values of candidate features, 
while these values are unknown before acquisitions. To address the challenge, we propose a novel procedure—feature exploration—to 
adaptively identify the most informative feature under the cost budget, without requiring feature values in advance. To address the 
issue, there are two fundamental questions to answer:

∙ how to measure the quality of candidate features?

∙ how to allocate the budget to identify the best feature?
5

In the following, we will answer these two questions and then describe our strategy for the feature exploration in ExML.
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Algorithm 1 Median Elimination for Feature Exploration.

Input: Feature exploration budget 𝐵, original dataset �̂�𝑡𝑟 = {(�̂�𝑖 , ̂𝐲𝑖)}𝑚𝑖=1 , candidate feature pool  = {𝑎1 , … , 𝑎𝐾}, threshold 𝜃 ∈ (0, 1).
Output: Selected feature 𝑐𝑖𝑠 ∈ and corresponding augmented model 𝑓𝑖𝑠

.

1: Initialize: dataset 𝐷𝑖 =∅ for each feature 𝑎𝑖 ∈, set of active features 1 =, 𝑇 = ⌈log2 𝐾⌉.

2: for 𝑡 = 1, … , 𝑇 do

3: Randomly select 𝑛𝑡 = ⌊𝐵∕(𝑇 |𝑡|)⌋ samples from �̂�𝑡𝑟 and query active features 𝑎𝑖 ∈𝑡 ;

4: Update 𝐷𝑖 with selected samples and train a model 𝑓𝑡,𝑖 on 𝐷𝑖 by ERM (3), for all 𝑎𝑖 ∈𝑡 ;

5: Compute 𝑅𝑠𝑢𝑟𝑟
𝑡,𝑖 according to (5), for all 𝑎𝑖 ∈𝑡 ;

6: Update 𝑡+1 as half of features in 𝑡 with lower 𝑅𝑠𝑢𝑟𝑟
𝑡,𝑖 ;

7: end for

Feature quality measure. Denote by 𝑖 the data distribution over 𝑖 × ̂ , where 𝑖 is the augmented feature space of the 𝑖-th 
candidate feature. Recall that the augmented feature space is defined as 𝑖 = (̂ ∪  𝑖) ⊆ ℝ𝑑+1 where  𝑖 is the feature space of 𝑎𝑖, 
see more notation details in Section 2.2. Then, we use the Bayes risk on 𝑖 as the feature quality measure, defined as

𝑅∗
𝑖 =𝑅𝑖(𝑓 ∗

𝑖 ) = min𝑓 𝔼(𝐱,�̂�)∼𝑖

[
𝓁0∕1(𝑓,𝐱, �̂�;𝜃)

]
, (4)

where 𝑅𝑖(𝑓 ) is the expected 0∕1 risk of function 𝑓 over 𝑖, and 𝑓 ∗
𝑖 minimizes 𝑅𝑖(𝑓 ) over all measurable functions. The Bayes risk 

essentially reflects the minimal error of any rejection model that can attain on the augmented data distribution. The value will be 
smaller when the selected augmented feature improves the separability more significantly, and thus the associated feature is believed 
more informative.

Due to the inaccessibility of the underlying distribution 𝑖, we approximate the Bayes risk by its empirical version evaluated on 
surrogate loss over the augmented data 𝐷𝑖 = {(𝐱𝑗 , ̂𝐲𝑗 )}

𝑛𝑖
𝑗=1,

𝑅𝑠𝑢𝑟𝑟
𝑖 (𝑓𝑖) =

1
𝑛𝑖

𝑛𝑖∑
𝑗=1

𝓁𝑠𝑢𝑟𝑟(𝑓𝑖,𝐱𝑗 , �̂�𝑗 ;𝜃), (5)

where 𝐱𝑗 ∈ 𝑖, ̂𝐲𝑗 ∈ ̂ , and 𝑓𝑖 is the rejection model learned by ERM over the surrogate loss (3) on augmented dataset 𝐷𝑖. We prove 
that the approximation by surrogate loss almost does no harm to the theoretical guarantees on the performance of the proposed 
algorithm (in Section 4), and even better, we verify in experiments that the empirical surrogate loss is easy to be well-optimized to 
obtain an augmented feature with high quality (in Section 6).

Based on the feature quality measure (4) and its empirical version (5), we now introduce the budget allocation strategy to identify 
the best candidate feature.

Budget allocation strategy. The goal of the feature exploration is to identify the best feature within the limited budget, and 
meanwhile the model retrained on augmented data should have good generalization ability. Note that the feature quality is definitely 
unknown to the learner.

We first consider the simplified case of uniform cost, namely, 𝑐1 = 𝑐2 = ⋯ = 𝑐𝐾 = 1. For this setting, we propose two feature 
exploration strategies: uniform allocation and median elimination. Below, we describe the details.

Uniform Allocation. We have the uniform allocation strategy as follows, under the guidance of criterion (4). For each candidate 
feature 𝑎𝑖, 𝑖 ∈ [𝐾], learner allocates ⌊𝐵∕𝐾⌋ budget and obtains an augmented dataset 𝐷𝑖. We can thus compute the empirical feature 
measure by (5), and select the feature with the smallest risk. The above strategy is simple yet effective. We prove that ExML equipped 
with uniform allocation as the feature exploration strategy can achieve a low excess risk with high probability, as demonstrated in 
Theorem 1 of Section 4.

Median Elimination. We further propose another variant inspired by the bandit theory [37] to improve the budget allocation 
efficiency. Specifically, we adopt the technique of median elimination (ME) [38], which removes one half of poor candidate features 
after every iteration and only the best one remains in the end, and proposed Algorithm 1 which can avoid allocating too many 
budgets on poor features. More specifically, the elimination proceeds in 𝑇 = ⌈log2𝐾⌉ episodes, in each episode, ⌊𝐵∕𝑇 ⌋ budget is 
allocated uniformly to all remaining candidate features, and the learner could query their values for updating the corresponding 
augmented datasets 𝐷𝑖. Then, the score 𝑅𝑠𝑢𝑟𝑟

𝑖 is calculated on the current augmented datasets 𝐷𝑖 and the half features with high 
𝑅𝑠𝑢𝑟𝑟

𝑖 are eliminated. In the last, only one candidate feature 𝑎𝑖𝑠 will be left and its augmented dataset 𝐷𝑖𝑠
contains around ⌊𝐵∕ log𝐾⌋

samples, which is the largest among all the candidate features.

As shown in Fig. 4(b), poor features are eliminated earlier, the budget left for the selected feature is thus improved from ⌊𝐵∕𝐾⌋
to ⌊𝐵∕ log𝐾⌋ by Algorithm 1, which ensures better generalization ability of the learned model. The behavior is formally justified 
in Theorem 2. In a nutshell, we find that median elimination shows its advantage in exploring the best candidate feature more 
efficiently than uniform allocation despite its higher probability that fails to identify the best candidate feature than uniform alloca-

tion, since both strategies enjoy an exponentially-decayed failing probability. We finally remark that our paper currently focuses on 
identifying the best feature, and our framework is ready for top 𝑘 features identification (𝑘 > 1) by introducing more sophisticated 
techniques [32,33]. Feature exploration in our approach also shares similar ideas with a recent line of works called feature budget 
learning [39–41] (see Section 5 for more discussions). We believe that further leveraging the techniques from feature budget learning 
could be beneficial to our feature exploration problem.

Non-uniform Query Cost. We have assumed so far that the query of different features shares the same cost (unit-cost setting, i.e., 
6

𝑐1 = 𝑐2 =⋯ = 𝑐𝐾 = 1), and now we relax this assumption by considering the more general non-uniform cost for different candidate 
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features, i.e., 𝑐1, 𝑐2, … , 𝑐𝐾 can be distinct. While our goal remains as identifying the best feature within the limited budget and 
meanwhile obtaining good generalization ability, new consideration appears after the non-uniform cost nature that the feature 
exploration algorithm should balance between querying good but expensive features and querying cheap but low-quality features. 
As a consequence, the feature exploration phase aims to identify the best candidate feature (namely, feature 𝑎1) and meanwhile to 
ensure that there are a large number of queries in this returned feature. To this end, we propose two principles for adapting strategies 
to the non-uniform case.

• Sample Alignment. The first one is the sample alignment principle, where at each time we are allocating budget, the budget allocated 
to each active feature is aligned to ensure that a same number of samples is queried for each active feature. Specifically, when 
a total budget 𝑏 is to be allocated to a set 𝐴 of active features, the learner allocates to each feature 𝑎𝑖 ∈ 𝐴 a total budget of ⌊ 𝑐𝑖𝑏∑

𝑎𝑗∈𝐴 𝑐𝑗

⌋
to ensure that a total number of 

⌊ 𝑏∑
𝑎𝑗∈𝐴 𝑐𝑗

⌋
samples are queried for each active feature.

• Budget Alignment. We further have another variant to improve the budget allocation efficiency, which is called the budget align-

ment principle. Specifically, when a total budget 𝑏 is to be allocated to a set 𝐴 of active features, the learner equally allocates to 
each feature a total budget of ⌊𝑏∕|𝐴|⌋, and thus ⌊𝑏∕(|𝐴|𝑐𝑖)⌋ samples are queried for any active feature 𝑎𝑖 ∈𝐴. Intuitively, we can 
have more training samples augmented with cheaper candidate feature, which possibly leads to a better generalization ability if 
the candidate feature has a relatively high quality. Therefore, the budget alignment principle may provide a better performance, 
since cheap features with relatively high quality are more sufficiently explored.

3.3. Model cascade

After the feature exploration, the learner will retrain a model on the augmented data. Considering that the augmented model 
might not always be better than the initial model, particularly when the budget is not enough or candidate features are not quite 
informative, we employ the ensemble method by proposing the model cascade mechanism to cascade the augmented model with the 
initial one. Concretely, high-confidence predictions are accepted in the initial model, the rest suspicious are passed to the next layer 
for feature exploration, those augmented samples with high confidence will be accepted by the augmented model, and the remaining 
suspicious continue to the next layer for further refinements. At the final layer, those samples with multiple refinements but are still 
suspicious will be classified into the unknown new class.

Essentially, our approach can be regarded as a layer-by-layer processing for identifying instances of hidden classes, and the procedures 
can be stopped until human discovers remaining suspicious are indeed with certain hidden structures. For simplicity, we only 
implement a two-layer architecture, that is, the suspicious samples in the second layer will be classified into the unknown new class.

Our proposed multi-layer model cascade provides a way of hierarchical refinements, but at a cost of error composition or overfit-

ting during the learning process. Note that our model cascade strategy can be regarded as a sequential cascaded ensemble, thus, the 
aforementioned issues can be potentially alleviated by the techniques from ensemble learning [42]. Several interesting observations 
can be made from the view of ensemble learning. For example, since diversity is crucial for the success of ensemble learning [42,43], 
our proposed ExML framework may further benefit from diversity encouragement among multiple base learners (i.e., different mod-

els in the multi-layer cascade structure), such as bagging [44] and selective ensemble [45], etc. Moreover, it would be also useful to 
introduce diversity in the feature exploration, which is left as an interesting future work.

4. Theoretical analysis

In this section, we present theoretical analysis for our proposed exploratory machine learning (ExML) framework. Specifically, 
we first investigate the attainable excess risk of supervised learning, supposing that the best feature were known in advance. Next, 
we analyze the excess risk of ExML, demonstrating its effectiveness in terms of both the selection criterion and budget allocation 
strategies. In the following, we first present the theoretical result for supervised learning with known best feature (Section 4.1), and 
then provide the guarantee for ExML with unknown best feature (Section 4.2). The proofs are deferred to Appendix A.

Throughout the section, for each candidate feature 𝑎𝑖, we denote the corresponding hypothesis space as 𝑖, 𝑖 = {𝐱↦ ⟨𝐰, Φ𝑖(𝐱)⟩ ∣‖𝐰‖ℍ𝑖
≤ Λ𝑖}, where Φ𝑖 and ℍ𝑖 are induced feature mapping and RKHS of kernel 𝐾𝑖 in the augmented feature space, and we also 

define 𝜅2
𝑖 = sup𝐱∈𝑖

𝐾𝑖(𝐱, 𝐱). For simplicity and without loss of generality, we assume that the feature indices are sorted in ascending 
order based on their associated feature quality, i.e., 𝑅∗

1 ≤⋯ ≤𝑅∗
𝐾

.

4.1. Supervised learning with known best feature

Suppose the best feature were known in advance. Given a budget 𝐵 and the unit uniform cost of different features, evidently 
we could obtain 𝐵 samples augmented with this particular (best) feature 𝑎1. Let 𝑓SL be the model learned by supervised learning 
via minimizing the objective (3). According to the standard learning theory literature [35,46], we know that for any 𝛿 > 0, with 
probability at least 1 − 𝛿, the excess risk is bounded by

∗
(√

(𝜅1Λ1)2
√

log(1∕𝛿)
)

7

𝑅1(𝑓SL) −𝑅1 ≤
𝐵

+
2𝐵

+𝑅𝑎𝑝, (6)
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where 𝑅𝑎𝑝 = inf𝑓∈1×1 𝑅
𝑠𝑢𝑟𝑟
1 (𝑓 ) − inf𝑓 𝑅1(𝑓 ) is the approximation error. Note that the definition of 𝑅𝑎𝑝 here is slightly more than 

the classical definition of approximation error that measures how well hypothesis spaces 1, 1 approach the target in terms of 
the expected risk 𝑅1(𝑓 ) = 𝔼(𝐱,�̂�)∼1

[𝓁0∕1(𝑓, 𝐱, ̂𝐲; 𝜃)] in the statistical learning literature [47], since our definition additionally counts 
the approximation error owing to optimizing the surrogate loss 𝓁𝑠𝑢𝑟𝑟(𝑓 ) during the learning process instead of 𝓁0∕1(𝑓 ) due to the 
hardness of its non-convexity. Thus, if the best feature were known in advance, the excess risk of supervised learning would converge 
to the inevitable approximate error in the rate of (1∕

√
𝐵), with a given budget 𝐵.

4.2. Exploratory learning with unknown best feature

In reality, however, the best feature is unfortunately unknown ahead of time. More importantly, since the values of 𝐾 candidate 
features are unavailable, it is infeasible to perform the feature selection. We show that by means of ExML (feature exploration), the 
excess risk also converges in a favorable rate, yet without requiring to know the best feature in advance. Below, we first introduce 
a key decomposition of excess risk in generic ExML (Section 4.2.1), then present the theoretical result of ExML equipped with the 
uniform allocation (Section 4.2.2) and ExML with median elimination (Section 4.2.3), respectively.

4.2.1. Key decomposition and exploratory regret

We first introduce the notations and an assumption used throughout the theoretical analysis in ExML, then present the key 
decomposition which demonstrates the different challenges in ExML comparing with conventional SL.

Notations and assumption We use �̂�𝑡𝑟,𝑖 to denote the entire training dataset augmented with feature 𝑎𝑖 and use 𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,𝑖 (𝑓 ) to denote the 

averaged surrogate risk on �̂�𝑡𝑟,𝑖. Let 𝑓 ∗
𝑖 ∈𝑖 × 𝑖 be the minimizer of 𝑅𝑠𝑢𝑟𝑟

𝑡𝑟,𝑖 (𝑓 ), namely, 𝑓 ∗
𝑖 ∈ argmin𝑓∈𝑖×𝑖 𝑅

𝑠𝑢𝑟𝑟
𝑡𝑟,𝑖 (𝑓 ). To facilitate 

the theoretical analysis, we introduce the assumption that the most informative feature leads to the smallest loss on the entire augmented 
training dataset, more specifically, 𝑅𝑠𝑢𝑟𝑟

𝑡𝑟,1 (𝑓
∗
1 ) = min𝑖∈[𝐾]𝑅

𝑠𝑢𝑟𝑟
𝑡𝑟,𝑖 (𝑓

∗
𝑖 ), noting that as mentioned earlier the features are supposed to be 

sorted according to the quality, 𝑅∗
1 ≤⋯ ≤𝑅∗

𝐾
, without loss of generality.

The assumption is natural in the sense that when deploying ExML framework to tackle unknown unknowns, one should already 
have tried collecting a relatively large training dataset (but without feature augmentation), so evaluating on the empirical data 
should be able to reflect the underlying feature quality. Moreover, the assumption is also necessary to the best of our understanding, 
because suppose otherwise, the most informative feature cannot be identified through the empirical data even with an unlimited 
feature budget, then obviously any algorithm can hardly approach a desired excess risk.

Remark 4 (Most informative feature assumption over 0/1 loss). One can notice that the assumption is made on the surrogate loss, while 
the feature quality is measured via the 0/1 loss. In fact, the assumption is to guarantee the performance of feature exploration, which 
includes feature quality evaluations on surrogate loss by ERM. Therefore, the loss function in the assumption should be aligned with 
the loss function used in the feature exploration algorithm. However, due to the difficulty of non-convex optimization, it is generally 
hard to proceed ERM on the 0/1 loss, thus it remains unclear whether we can obtain the same guarantees when making such an 
assumption over 0/1 loss, which is an interesting future issue to explore. ¶

We measure the performance of ExML by the excess risk 𝑅𝑖𝑠
(𝑓𝑖𝑠 ) −𝑅∗

1 , which is the difference between the expected risk of the 
hypothesis 𝑓𝑖𝑠 returned by ExML evaluated over the augmented feature space 𝑖𝑠

and the Bayes risk 𝑅∗
1 over the best augmented 

feature space 1. To proceed the theoretical analysis, we introduce an important quantity used in analyzing the behavior of ExML 
algorithms, defined as

Δ𝑖 =𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,𝑖 (𝑓

∗
𝑖 ) −𝑅𝑠𝑢𝑟𝑟

𝑡𝑟,1 (𝑓
∗
1 ), (7)

which qualifies the empirical difference of feature quality between feature 𝑖 and that of the best feature. Let Δ =min𝑖∈[𝐾],Δ𝑖>0 Δ𝑖 be 
the smallest one in the candidate features, which we call as optimality gap measuring the hardness of feature exploration in ExML.

The key step in the analysis of generic ExML which demonstrates the different challenges comparing to SL is to decompose the 
excess risk of the learned model 𝑓𝑖𝑠 into five parts,

𝑅𝑖𝑠
(𝑓𝑖𝑠 ) −𝑅∗

1 =𝑅𝑖𝑠
(𝑓𝑖𝑠 ) −𝑅𝑠𝑢𝑟𝑟

𝑡𝑟,𝑖𝑠
(𝑓𝑖𝑠 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝚝𝚎𝚛𝚖 (𝚊)

+𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,𝑖𝑠

(𝑓𝑖𝑠 ) −𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,1 (𝑓

∗
1 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝚝𝚎𝚛𝚖 (𝚋)

+𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,1 (𝑓

∗
1 ) −𝑅𝑠𝑢𝑟𝑟

𝑡𝑟,1 (𝑓
∗
1 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝚝𝚎𝚛𝚖 (𝚌)

+𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,1 (𝑓

∗
1 ) −𝑅𝑠𝑢𝑟𝑟

1 (𝑓 ∗
1 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝚝𝚎𝚛𝚖 (𝚍)

+ 𝑅𝑎𝑝
⏟⏟⏟
𝚝𝚎𝚛𝚖 (𝚎)

. (8)

The decomposition categorizes the error according to the sources they are incurred: 𝚝𝚎𝚛𝚖 (𝚊) and 𝚝𝚎𝚛𝚖 (𝚍) are the generalization 
error due to the inaccessibility of the true data distribution, and 𝚝𝚎𝚛𝚖 (𝚋) is the exploratory regret, which not only includes the 
generalization error due to the limited budget to query the candidate features of the entire training dataset, but also includes 
the optimization error due to the unknown best candidate feature in advance. The 𝚝𝚎𝚛𝚖 (𝚋) of exploratory regret thus reflects the 
main difference between ExML and supervised learning. Besides, 𝚝𝚎𝚛𝚖 (𝚌) is a negative term, and 𝚝𝚎𝚛𝚖 (𝚎) is the unavoidable 
approximation error. This key decomposition shows that ExML not only requires to control the generalization error as SL does, but 
also needs to have a low exploratory regret, which has not been considered in previous study. In the remaining of this section, we 
will show the power of our feature exploration algorithms in lemmas, and verify the effectiveness of our proposed ExML approach 
8

in theorems.
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4.2.2. Exploratory learning with uniform allocation

According to the assumption on most informative feature which is introduced at the beginning of Section 4.2, we succeed in 
identifying the best feature 𝑎1 as long as we succeed to identify 𝑎1 as the best feature in the entire training dataset. For ExML with 
feature exploration by uniform allocation (see details in Section 3.2), we have the following lemma that bounds the exploratory 
regret as shown in 𝚝𝚎𝚛𝚖 (𝚋) of Eq. (8),

Lemma 1 (Exploratory regret of uniform allocation). Let 𝑎𝑖𝑠 be the feature identified by uniform allocation, then uniform allocation identifies 
the best feature (i.e., 𝑖𝑠 = 1) with probability at least 1 − 𝛿fail, where

𝛿fail = 4(𝐾 − 1) exp
⎛⎜⎜⎜⎝−

2
9
⌊𝐵∕𝐾⌋ ⎛⎜⎜⎝Δ2 − 2 − 2𝜃

1 − 2𝜃

√
(𝜅Λ)2⌊𝐵∕𝐾⌋ ⎞⎟⎟⎠

2⎞⎟⎟⎟⎠ , (9)

providing that the identification condition ⌊𝐵∕𝐾⌋ > 16((1−𝜃)𝜅Λ)2
((1−2𝜃)Δ)2 holds, with 𝜃 the threshold of rejection model defined in (2), Δ =

min𝑖∈[𝐾],Δ𝑖>0 Δ𝑖 is the optimality gap defined in (7), Λ = sup𝑖∈[𝐾] Λ𝑖 and 𝜅 = sup𝑖∈[𝐾] 𝜅𝑖.
Further more, for any 𝛿 > 0, with probability at least 1 − 𝛿 − 𝛿fail, we have

𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,𝑖𝑠

(𝑓𝑖𝑠 ) −𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,1 (𝑓

∗
1 ) ≤

4 − 4𝜃
1 − 2𝜃

√
(𝜅Λ)2⌊𝐵∕𝐾⌋ + 2

√
log(2∕𝛿)
2⌊𝐵∕𝐾⌋ .

Remark 5 (Launch budget in feature exploration). Lemma 1 bounds the exploratory regret induced by uniform allocation with high 
probability. We would notice that the identification condition introduces a “launch budget” for uniform allocation to be theoretically 
effective, and there is an extra probability 𝛿fail that uniform allocation would fail. These come from the statistical limit to differentiate 
features of different qualities with finite samples, and this statistical limit finally results in the difference between the excess risk 
bounds of ExML and supervised learning. ¶

Lemma 1 directly yields a bound on 𝚝𝚎𝚛𝚖 (𝚋) of Eq. (8), thus we can achieve the following theorem that validates the effectiveness 
of ExML equipped with uniform allocation:

Theorem 1 (Excess risk of ExML with uniform allocation). Let 𝑎𝑖𝑠 be the identified feature and 𝑓𝑖𝑠 be the augmented model returned by

EXML with uniform allocation. Then, for any 𝛿 > 0, with probability at least 1 − 𝛿 − 𝛿fail, we have the following excess risk bound:

𝑅𝑖𝑠
(𝑓𝑖𝑠 ) −𝑅∗

1 ≤

⎛⎜⎜⎝
√

(𝜅Λ)2⌊𝐵∕𝐾⌋ +

√
log(6∕𝛿)
2⌊𝐵∕𝐾⌋ ⎞⎟⎟⎠+𝑅𝑎𝑝, (10)

with the failure probability 𝛿fail = (exp (−⌊𝐵∕𝐾⌋)) that decays exponentially with respect to the total budget 𝐵 (the formal definition can 

be found in (9) of Lemma 1), providing that the identification condition ⌊𝐵∕𝐾⌋ > 64((1−𝜃)𝜅Λ)2
((1−2𝜃)Δ)2 holds, where 𝜃 is the threshold of rejection 

model defined in (2), Λ = sup𝑖∈[𝐾] Λ𝑖, 𝜅 = sup𝑖∈[𝐾] 𝜅𝑖, and 𝑅𝑎𝑝 is the approximation error introduced in (6).

Remark 6 (Comparison between excess risk of SL and ExML). We have the following comparison between the theoretical results of SL 
and ExML. Comparing the excess risk bounds of (6) and (10), we can observe that ExML exhibits a similar convergence tendency to 
SL with known best feature yet without requiring to know the best feature in advance, which is realized at the expense of an extra √
𝐾 times factor for the best feature exploration as well as an extra failure probability 𝛿fail . ¶

4.2.3. Exploratory learning with median elimination

For ExML with feature exploration by median elimination (Algorithm 1 in Section 3.2), we have the following lemma that bounds 
the exploratory regret as shown in 𝚝𝚎𝚛𝚖 (𝚋) of Eq. (8),

Lemma 2 (Exploratory regret of median elimination). Let 𝑎𝑖𝑠 be the feature identified by median elimination, then median elimination 
identifies the best feature (i.e., 𝑖𝑠 = 1) with probability at least 1 − 𝛿fail, where

𝛿fail =

8exp

(
−2

9⌊𝐵∕(𝐾 log2𝐾)⌋(Δ
2 − 2−2𝜃

1−2𝜃

√
(𝜅Λ)2⌊𝐵∕(𝐾 log2𝐾)⌋

)2)

1 − exp

(
−2

9⌊𝐵∕(𝐾 log2𝐾)⌋(Δ
2 − 2−2𝜃

1−2𝜃

√
(𝜅Λ)2⌊𝐵∕(𝐾 log2𝐾)⌋

)2) , (11)

providing that the identification condition ⌊𝐵∕(𝐾 log2𝐾)⌋ > 16((1−𝜃)𝜅Λ)2
((1−2𝜃)Δ)2 holds, with 𝜃 the threshold of rejection model defined in (2), 
9

Δ =min𝑖∈[𝐾],Δ𝑖>0 Δ𝑖 is the optimality gap defined in (7), Λ = sup𝑖∈[𝐾] Λ𝑖 and 𝜅 = sup𝑖∈[𝐾] 𝜅𝑖.
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Further more, with probability at least 1 − 𝛿 − 𝛿fail, we have

𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,𝑖𝑠

(𝑓𝑖𝑠 ) −𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,1 (𝑓

∗
1 ) ≤

4 − 4𝜃
1 − 2𝜃

√
(𝜅Λ)2⌊𝐵∕ log2𝐾⌋ + 2

√
log(2∕𝛿)

2⌊𝐵∕ log2𝐾⌋ .

Lemma 2 directly yields a bound on 𝚝𝚎𝚛𝚖 (𝚋) of Eq. (8), thus we can achieve the following theorem that validates the effectiveness 
of ExML equipped with median elimination (Algorithm 1):

Theorem 2 (Excess risk of ExML with median elimination). Let 𝑎𝑖𝑠 be the identified feature and 𝑓𝑖𝑠 be the augmented model returned by

EXML with median elimination. Then, for any 𝛿 > 0, with probability at least 1 − 𝛿 − 𝛿fail, we have the following excess risk bound:

𝑅𝑖𝑠
(𝑓𝑖𝑠 ) −𝑅∗

1 ≤

⎛⎜⎜⎝
√

(𝜅Λ)2⌊𝐵∕(log2𝐾)⌋ +

√
log(6∕𝛿)

2⌊𝐵∕(log2𝐾)⌋ ⎞⎟⎟⎠+𝑅𝑎𝑝, (12)

with the failure probability 𝛿fail =  
(
exp

(
−⌊𝐵∕(𝐾 log2𝐾)⌋)) which decays exponentially with respect to the total budget 𝐵 (the formal 

definition can be found in (11) in Lemma 2), providing that the identification condition ⌊𝐵∕(𝐾 log2𝐾)⌋ > 64((1−𝜃)𝜅Λ)2
((1−2𝜃)Δ)2 holds, where 𝜃 is the 

threshold of rejection model defined in (2), Λ = sup𝑖∈[𝐾] Λ𝑖, 𝜅 = sup𝑖∈[𝐾] 𝜅𝑖, and 𝑅𝑎𝑝 is the approximation error in (6).

The proof of Theorem 2 mostly parallels with that of Theorem 1, which includes a decomposition of excess risk as shown in 
Section 4.2.1 and a key lemma that bounds the exploratory regret induced by median elimination as shown in Lemma 2.

Remark 7 (Comparison between uniform allocation and median elimination). Comparing Theorem 1 and Theorem 2, we can see that 
median elimination improves the 

√
𝐾 times factor paid for the feature exploration by uniform allocation to 

√
log2𝐾 in the excess 

risk bound, as poor candidate features have been removed in the earlier episodes. By contrast, median elimination requires a larger 
“launch budget” in the identification condition compared to uniform allocation, and have a higher failure probability 𝛿𝑓𝑎𝑖𝑙 , because 
only a partial budget is used in early stages and so the best feature has a larger probability to be mistakenly discarded in the earlier 
episodes. Nevertheless, the failure probability in both results decays exponentially with respect to the total budget, which is thus 
low-order term and can be ignored in many situations. ¶

5. Related work

In this section, we briefly discuss some topics related to our proposed ExML framework.

Open category learning Open category learning is also named as learning with new classes, which focuses on handling unknown 
classes appearing only in the testing phase [4–8], see the recent survey [16] for a thorough overview of literature. Although these 
studies also care about the unknown classes detection, they differ from us significantly and thus cannot apply to our more challenging 
scenario: on one hand, they do not consider the issue of feature deficiency in the training data, which leads to great challenge in 
our problem; on the other hand, there exist unknown classes in the training data in our setting, while for open category learning the 
unknown classes only appear in the testing stage.

Learning with unknown unknowns How to deal with unknown unknowns is a fundamental problem of robust artificial intelligence [2]

and open-environment machine learning [3,9]. A line of works deals with high-confidence false predictions appear due to model’s 
unawareness of such kind of mistake, which are also referred to as a kind of “unknown unknowns” [17–19]. Existing studies typically 
ask for external human expert to help identifying high-confidence false predictions and then retrain the model with the guidance. 
Although these works also consider unknown unknowns and resort to external human knowledge, their setting and methodology 
differ from ours: our unknown unknowns are caused due to feature deficiency, so the learner requires to augment features rather 
than querying labels. Another kind of related works considers to avoid negative side effects, which means that the reward functions in 
the prediction/decision process may be misleading due to the incomplete knowledge of the environments. There are emerging works 
that aim to detect and avoid the problem of negative side effects [48–51]. These works and ours both aim to enhance the robustness 
of AI systems in the face of unknown unknowns, while the specific problem modeling and developed methodologies are significantly 
different.

Active learning Active learning aims to achieve greater accuracy with fewer labels by asking queries of unlabeled data to be labeled 
by the human expert [22]. Active learning bares certain similarities with our exploratory learning in the spirit — instead of learning 
in a purely passive way, we both resort to some additional information sources to help the learning process. Interestingly, there are 
also some works querying features [52–54] to improve learning with missing features via as few as possible queries of entry values 
(feature of an instance). However, unlike their setting, we augment new features to help the identification of the unknown classes 
10

rather than querying missing values of the given feature to improve the performance of known classes classification.
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Learning with rejection Learning with rejection gives the classifier an option to reject an instance instead of providing a low-

confidence prediction [55]. Plenty of works are proposed to design effective algorithms [56–60] and establish theoretical foun-

dations [30,31,35,61–63]. As aforementioned, methods of learning with rejection cannot be directly applied in exploratory machine 
learning since it will result in inaccurate rejections of instances from known classes, and meanwhile, it cannot exploit new features.

Feature budget learning Feature budget learning considers a variant of supervised learning where an access of each feature on each 
sample is attached a cost, and the goal is to minimize the error within a given budget. This subject is initiated in [39]. Hazan 
and Koren [40] pioneered the study of this area in linear regression considering uniform costs, and Kukliansky and Shamir [41]

generalizes the results into the cases with non-uniform cost. The feature exploration module in our proposed approach is related to 
the setting in feature budget learning, while their results are restricted to specific choices of loss functions in order to get strong 
theoretical guarantees. Nevertheless, we believe it is possible to integrate the techniques of feature budget learning to develop more 
adaptive mechanisms in identifying top-𝑘 features.

6. Experiments

In this section, we conduct experiments to examine empirical performance of the proposed exploratory machine learning (ExML). 
Specifically, we provide evaluations on synthetic data for visualizing the superiority of ExML to conventional supervised learning in 
handling unknown unknowns. Then, we report results on real-world datasets to demonstrate the effectiveness of the overall method, 
as well as the usefulness of feature exploration and model cascade modules.

The rejection models are learned with Gaussian kernel 𝐾(𝐱𝑖, 𝐱𝑗 ) = exp(−‖𝐱𝑖 − 𝐱𝑗‖22∕𝛾), where the bandwidth 𝛾 is set as 𝛾 =
median𝐱𝑖 ,𝐱𝑗∈𝐷(‖𝐱𝑖 − 𝐱𝑗‖22). Besides, parameters 𝐶ℎ, 𝐶𝑔 are set as 1. We select the best rejection threshold 𝜃 of augmented model 
from the pool [0.1, 0.2, 0.3, 0.4] for each algorithm, and threshold of the initial model is selected by cross validation to ensure 95% 
accuracy on high-confidence predictions. Feature exploration budget is set as 𝐵 = 𝑏 ⋅𝑚𝐾 , where 𝑚 is number of training samples, 𝐾
is number of candidate features, 𝑏 ∈ [0, 1] is the budget ratio.

Remark 8 (Automatic parameter tuning). We repeated the experiments by running ExML with each parameter settings in the pool, 
and the reported performance of each algorithm is the performance under their individual optimal parameters in hindsight. In fact, 
we can also perform automatic parameter tuning on the augmented model. For example, we can firstly use the best parameters of 
initial model to spend a proportion of budget on feature exploration to build a validation dataset, then select the best parameters by 
cross-validation on this dataset. ¶

6.1. Synthetic data for illustration

We first illustrate the advantage of exploratory machine learning over the conventional supervised learning in discovery of the 
hidden classes on the synthetic data.

Setting Following the illustrative example in Fig. 1, we generate data with 3-dim feature and 3 classes, each class has 100 samples. 
Fig. 5(a) presents the ground-truth distribution. However, as shown in Fig. 5(b), the third-dim feature is unobservable in training 
data, resulting in a hidden class (hc) located in the intersection area of known classes (kc1 and kc2). Samples from hc are mislabeled 
as kc1 or kc2 randomly. In detail, instances from each class are generated from a 3-dim Gaussian distributions. The means and 
variances are [−𝑎, 0, −𝑧] and 𝜎 ⋅ 𝐈3×3 for class 1, [𝑎, 0, 𝑧] and 𝜎 ⋅ 𝐈3×3 for class 2 as well as [0, 0, 0] and 𝜎∕2 ⋅ 𝐈3×3 for class 3, where 
𝐈3×3 is a 3 × 3 identity matrix. We fix 𝜎 = 3𝑎 and set 𝑧 = 5𝑎. In the training stage, the third-dim is unobservable and the third class is 
randomly labeled as another two. There are 100 instances for each class in the training data.

Besides, we generate 9 candidate features in various qualities, whose angle to the horizon varies from 10◦ to 90◦, the larger the 
better. Fig. 5(c) plots the augmented feature space via 𝑡-SNE. The budget ratio is 𝑏 = 20%. In the testing stage, the learner requires 
to predict on the 3-dim data, where the third dimension is the selected candidate features.

Contenders There are two contenders for the synthetic experiments, namely SL and ExML. For all the rejection model used in the 
experiments, we employ the Gaussian kernel with the bandwidth 𝛾 = median𝐱𝑖 ,𝐱𝑗∈𝐷(‖𝐱𝑖 − 𝐱𝑗‖22), and parameters 𝐶ℎ, 𝐶𝑔 are set to 1.

∙ SL: the rejection model [35] trained on the 2-dim labeled training data, following the paradigm of conventional supervised 
learning. The threshold 𝜃 is chosen as one achieving best accuracy on the testing data from the pool [0.1, 0.2, 0.3, 0.4].

∙ ExML: our proposal with cascade models and using median elimination for feature exploration. The threshold for the initial 
rejection model is selected by cross validation to ensure 95% accuracy on high-confidence samples. The threshold for the augmented 
rejection model is chosen as one achieving best accuracy on the testing data from the pool [0.1, 0.2, 0.3, 0.4]. The budget ratio is 20%.

Results We first conduct SL to train a rejection model based on the 2-dim training data, and then perform EXML to actively augment 
the feature within the budget to discover unknown unknowns. Figs. 6(a) and 6(b) plot the results, demonstrating a substantial 
advantage of EXML over SL in discovering the hidden class and predicting known classes. Furthermore, Fig. 6(c) reports budget 
allocation of each candidate feature over 50 times repetition. We can see that the allocation clearly concentrates to more informative 
11

features (with larger angles), which validates the effectiveness of median elimination for the best feature exploration.
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Fig. 5. Visualization of synthetic data. (a): ground-truth distribution; (b): training data (only first two dims are observable); (c): 𝑡-SNE of candidate features with 
various qualities (larger angles imply better features).

Fig. 6. Visualization of results. (a)/(b): SL/ExML; (c): budget allocation of ExML with median elimination.

6.2. Benchmark data for evaluation

We further evaluate on a UCI benchmark dataset Mfeat [64].

Dataset Mfeat is a multi-view dataset1 containing 2000 samples and 6 views of features extracted by various methods, whose brief 
semantic and statistical information are listed as follows.

∙ Fac: profile correlations, 216-dim;

∙ Pix: pixel averages in 2 × 3 windows, 240-dim;

∙ Kar: Karhunen-Love coefficients, 64-dim;

∙ Zer: Zernike moments, 47-dim;

∙ Fou: Fourier coefficients of the character shapes, 76-dim;

∙ Mor: morphological features, 6-dim.

According to the domain knowledge, we can sort the six features by their feature quality as: Fac > Pix > Kar > Zer > Fou > Mor, in 
a descending order.

Since Mfeat is a multi-class dataset, we randomly sample 5 configurations to convert it into the binary classification task, where 
each known class and hidden class contain three original classes (and so each configuration includes an amount of 1800 samples), 
and the instances from the hidden class are randomly mislabeled as one of known classes. There are in total 50 random configurations 
for training. As for the candidate features, we take one as original and the rest are prepared in the candidate set. Before training, we 
normalize all the features to the range [0, 1]. In the training stage, 600 instances are randomly samples from the whole dataset for 
10 times to form the labeled training data. In the testing stage, the rest 1200 instances are used for measuring the performance of 
compared algorithms.

Setting We randomly sample 600 instances as the training data for 10 times, and the rest are used for testing. As for the candidate 
features, each one of six views (features) is taken as original feature and the rest are prepared as candidate features. The budget ratio 
varies from 10% to 30%.

Contenders Apart from SL, we include two ExML variants: EXMLUA
csd

and EXMLME
aug

for ablation studies. Here aug/csd denotes the 
final model is only the augmented or cascaded with the initial model; UA/ME refers to feature exploration by uniform allocation or 
median elimination.
12

1 The dataset can be downloaded from http://archive .ics .uci .edu /ml /datasets /Multiple +Features.

http://archive.ics.uci.edu/ml/datasets/Multiple+Features
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Table 1

Evaluation on Mfeat dataset. Features are sorted by descending feature qualities. Bold font indicates algorithms that significantly outperform others 
(paired 𝑡-test at 95% significance level).

Feature Description Budget SL EXMLME
aug

EXMLUA
csd

EXML (= EXMLME
csd

) Recall

Fac Profile correlations 10% 93.39 ± 1.66 71.80 ± 9.55 92.39 ± 2.79 92.40 ± 2.78 48%

20% 93.39 ± 1.66 82.26 ± 7.52 91.95 ± 3.32 92.00 ± 3.27 46%

30% 93.39 ± 1.66 89.29 ± 4.72 92.20 ± 3.33 92.50 ± 2.86 44%

Pix Pixel averages in 2 × 3 windows 10% 92.19 ± 2.47 70.53 ± 8.27 90.54 ± 6.27 90.55 ± 6.31 58%

20% 92.19 ± 2.47 81.70 ± 7.16 90.84 ± 6.17 90.87 ± 6.09 54%

30% 92.19 ± 2.47 88.67 ± 4.14 90.45 ± 5.74 91.82 ± 4.26 68%

Kar Karhunen-Love coefficients 10% 86.87 ± 3.43 70.25 ± 10.2 85.55 ± 4.94 85.90 ± 4.85 56%

20% 86.87 ± 3.43 81.46 ± 6.88 85.21 ± 5.46 86.49 ± 4.81 54%

30% 86.87 ± 3.43 86.01 ± 5.41 86.52 ± 4.71 88.18 ± 3.57 56%

Zer Zernike moments 10% 73.82 ± 8.82 69.61 ± 10.7 72.96 ± 10.4 76.17 ± 8.52 82%

20% 73.82 ± 8.82 80.86 ± 8.02 77.31 ± 7.89 81.72 ± 7.33 82%

30% 73.82 ± 8.82 86.07 ± 5.51 81.11 ± 6.79 86.33 ± 5.04 86%

Fou Fourier coefficients 10% 68.73 ± 9.07 69.42 ± 9.68 68.88 ± 11.8 75.92 ± 8.81 82%

20% 68.73 ± 9.07 82.11 ± 6.48 77.93 ± 8.27 85.03 ± 4.39 88%

30% 68.73 ± 9.07 89.90 ± 3.69 82.45 ± 5.20 89.35 ± 3.89 92%

Mor Morphological features 10% 57.47 ± 15.3 69.09 ± 11.3 66.58 ± 13.5 71.07 ± 11.1 80%

20% 57.47 ± 15.3 79.60 ± 10.1 73.61 ± 8.86 79.74 ± 9.92 84%

30% 57.47 ± 15.2 87.44 ± 7.34 78.31 ± 9.00 86.98 ± 7.07 90%

∙ EXMLUA
csd

: our proposal with cascade model and using uniform allocation for feature exploration, sharing the same parameters 
setting as ExML.

∙ EXMLME
aug

: our proposal without cascade model and using median elimination for feature exploration, sharing the same parame-

ters setting as ExML.

For all ExML methods, the budget ratio 𝑏 varies from 10% to 30%. The parameter settings of SL and ExML are the same as those in 
the synthetic experiments (Section 6.1).

Measure We measure the performance of all the methods by the classification. Additionally, we introduce the recall to measure the 
effectiveness of feature exploration, defined as the ratio of the number of cases when identified feature is one of its top 2 features to 
the total number.

∙ Accuracy: the mean and standard deviation of the predictive accuracy on testing dataset over 50 configurations, where the true 
label of hidden classes is observable.

∙ Recall: the ratio of the number of cases when identified feature is one of its top 2 features to the total number, where the quality 
of features is measured by the attainable accuracy of the augmented model trained on the whole dataset with this particular feature.

Results Table 1 reports mean and std of the predictive accuracy, and all features are sorted in descending order by their quality. 
We first compare the conventional supervised learning (SL) to (variants of) ExML. When the original features are in high quality 
(Kar, Pix, Fac), SL could achieve favorable performance and there is no need to explore new features. However, in the case where 
uninformative original features are provided, which is of more interest for ExML, SL degenerates severely and EXMLME

aug
(the single 

ExML model without model cascade) achieves better performance even with the limited budget. Besides, from the last column, we 
can see that informative candidates (top 2) are selected to strengthen the poor original features, which validates the efficacy of the 
proposed budget allocation strategy.

Since the EXMLME
aug

is not guaranteed to outperform SL, particularly with the limited budget on poor candidate features, we 
propose the cascade structure. Actually, ExML approach (aka, EXMLME

csd
) achieves roughly best-of-two-worlds performance, in the 

sense that it is basically no worse or even better than the best of SL and EXMLME
aug

. It turns out that even EXMLUA
csd

could behave better 
than EXMLME

aug
. These results validate the effectiveness of the model cascade component.

Notice that there are also some cases that the augmented model (EXMLME
aug

) outperforms the cascade model (EXMLME
aug

). Indeed, 
since the rejection model at the first layer is trained on the original dataset, the performance of the cascaded model will be affected 
by the rejection model to some extent. When feature exploration is of high quality, the performance of the second layer itself already 
becomes good enough, the model cascade may slightly affect the overall performance. Nevertheless, the cascading structure can still 
13

prevent the impact of low-quality feature exploration on the overall performance, enhancing the robustness of our method.
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Fig. 7. Performance comparisons of all the contenders.

Fig. 8. Illustration of budget allocation with median elimination.

6.3. Real data of activities recognition

We additionally examine the effectiveness of our proposed algorithm on a real-world dataset called RealDisp,2 which is an 
activities recognition task [65]. Specifically, there are 9 on-body sensors used to capture various actions of participants. Each sensor 
is placed on different parts of the body and provides 13-dimensional features including 3-dim from acceleration, 3-dim from gyro, 
3-dim from magnetic field orientation and another 4-dim from quaternions. Hence, in this dataset we have 117 features in total.

Dataset In our experiments, three types of actions (walking, running, and jogging) of the first subject under the ideal-placement are 
included to form the dataset containing 2000 instances, where 30% of them are used for training and 70% for testing. In the training 
data, one sensor is deployed and the class of jogging is misperceived as walking or running randomly. The learner would explore the 
rest eight candidate features to discover the unknown unknowns. Thus, there are 9 partitions, and each is repeated for 10 times by 
sampling the training instances randomly.

Results Fig. 7 shows the mean and std of accuracy, our approach EXML (aka, EXMLME
csd

) outperforms others, validating the efficacy 
of our proposal. In addition, Fig. 8 illustrates the budget allocation when the budget ratio 𝑏 = 30%. The 𝑖-th row denotes the scenario 
when the 𝑖-th sensor is the original feature, and patches with colors indicate the fraction of budget allocated to each candidate 
feature. The number above a patch means the attainable accuracy of the model trained on the whole training dataset with the 
particular feature. We highlight the top two candidate features of each row in white, and use blue color to indicate selected feature 
is not in top two. The results show that EXML with median elimination can select the top two informative features to augment for 
all the original sensors. The only exception is the 9-th sensor, but quality of the selected feature (91.8%) does not deviate too much 
from the best one (93.6%). These results reflect the effectiveness of our feature exploration strategy.
14

2 http://archive .ics .uci .edu /ml /datasets /REALDISP +Activity +Recognition +Dataset.

http://archive.ics.uci.edu/ml/datasets/REALDISP+Activity+Recognition+Dataset
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Fig. 9. Sample allocation with different original features. The 𝑥-axis denotes the candidate features sorted by descending qualities and the values in brackets are 
their costs. The 𝑦-axis denotes the number of queries on each feature. The values over the bars are the ratios of the number of cases that the algorithm identifies the 
corresponding candidate as the best feature, with the reds indicating the most frequent ones.

6.4. Non-uniform cost

We finally examine the effectiveness of our proposed principle for non-uniform cost on the previous Mfeat dataset with each 
group of features attached with a different cost.

Dataset Mfeat is a multi-view dataset containing 2000 samples and 6 views of features extracted by various methods, whose brief 
semantic and statistical information are listed as follows. Additionally, we attach each feature a cost which are shown in the brackets 
below, in order to simulate the non-uniform cost scenario.

∙ Fac (5.0): profile correlations, 216-dim;

∙ Pix (1.2): pixel averages in 2 × 3 windows, 240-dim;

∙ Kar (1.0): Karhunen-Love coefficients, 64-dim;

∙ Zer (0.95): Zernike moments, 47-dim;

∙ Fou (1.5): Fourier coefficients of the character shapes, 76-dim;

∙ Mor (0.9): morphological features, 6-dim.

According to the domain knowledge, we can sort the six features by their feature quality as: Fac > Pix > Kar > Zer > Fou > Mor, in 
a descending order.

We remark that our cost attachment is rational, as it includes a feature with highest quality but is expensive (Fac), features with 
relatively high quality and are cheap (Pix, Kar), features that are cheap but with low quality (Zer, Mor), and a feature with low 
quality and is expensive (Fou). Intuitively, the expected behavior of the algorithm is to query more samples on the relatively good 
and cheap features (Pix, Kar), rather than to spend a lot on expensive features which leads to poor generalization ability, nor to 
query a lot on inherently poor features.

Setting Same as the experimental setup in Section 6.2, we randomly sample 600 instances as the training data for 10 times, and the 
rest are used for testing. As for the candidate features, each one of six views (features) is taken as original feature and the rest are 
prepared as candidate features. The budget ratio varies from 10% to 30%.

Contenders We include four ExML variants: EXMLUA
SA

, EXMLUA
BA

, EXMLME
SA

and EXMLME
BA

for ablation studies. Here SA/BA denotes 
the principle of non-uniform cost adaptation, where SA means sample alignment and BA means budget alignment; UA/ME refers to 
feature exploration by uniform allocation or median elimination. For all ExML methods, the parameter settings are the same as those 
in the synthetic experiments (Section 6.1).

Results Table 2 reports mean and std of the predictive accuracy, and all features are sorted in descending order by their quality. 
As verified in previous experiments, when the original features are in high quality (Pix, Fac), all contenders mostly rely on the 
prediction of the first layer, which lead to similar performance. However, in the case where uninformative original features are 
15

provided, EXML achieves better performance with limited budget since features with better quality are explored, and within the four 



Artificial Intelligence 327 (2024) 104059P. Zhao, J.-W. Shan, Y.-J. Zhang et al.

Table 2

Evaluation on Mfeat dataset attached with non-uniform costs. Features are sorted by descending feature qualities. Bold font 
indicates algorithms that significantly outperform others (paired 𝑡-test at 95% significance level).

Feature Description Budget EXMLUA
SA

EXMLUA
BA

EXMLME
SA

EXMLME
BA

Fac Profile correlations 10% 91.81 ± 3.10 91.81 ± 3.10 91.58 ± 5.74 91.58 ± 5.74

20% 92.30 ± 2.45 92.31 ± 2.44 91.74 ± 3.32 91.73 ± 3.25

30% 92.13 ± 3.32 92.14 ± 3.32 92.33 ± 2.82 92.26 ± 2.83

Pix Pixel averages in 2 × 3 windows 10% 90.90 ± 3.77 90.90 ± 3.77 91.22 ± 3.61 91.22 ± 3.62

20% 90.33 ± 6.14 90.42 ± 5.27 90.65 ± 4.52 90.86 ± 4.28

30% 90.96 ± 4.11 90.78 ± 4.23 91.57 ± 3.06 92.72 ± 2.51

Kar Karhunen-Love coefficients 10% 84.27 ± 5.84 84.14 ± 6.09 84.11 ± 5.80 84.95 ± 6.02

20% 84.64 ± 5.85 84.78 ± 6.55 84.67 ± 5.62 88.84 ± 3.74

30% 84.95 ± 5.36 86.35 ± 4.96 87.27 ± 4.09 90.65 ± 3.08

Zer Zernike moments 10% 70.99 ± 9.77 70.72 ± 8.76 74.16 ± 9.54 79.42 ± 6.20

20% 76.02 ± 8.19 76.92 ± 7.78 81.33 ± 7.98 86.32 ± 6.77

30% 80.60 ± 6.88 81.10 ± 6.60 85.93 ± 6.24 90.59 ± 3.83

Fou Fourier coefficients 10% 69.67 ± 9.52 69.02 ± 10.3 74.45 ± 7.72 76.93 ± 7.65

20% 77.43 ± 6.96 75.26 ± 7.22 81.39 ± 7.48 88.04 ± 3.12

30% 84.08 ± 4.30 83.21 ± 5.13 87.57 ± 3.86 90.17 ± 3.21

Mor Morphological features 10% 63.61 ± 13.9 65.59 ± 10.4 68.95 ± 10.7 74.31 ± 7.44

20% 73.04 ± 8.46 72.85 ± 11.2 77.41 ± 9.90 86.14 ± 6.72

30% 79.61 ± 8.84 82.38 ± 7.44 85.32 ± 7.74 90.28 ± 5.90

contenders, EXMLME
BA

outperforms the other three algorithms because EXMLME
BA

allocates more budget to relatively good but much 
cheaper features (Pix, Kar).

Moreover, Fig. 9 shows the sample allocation of each candidate feature over 50 random configurations with the budget ratio 
𝑏 = 20%. The colors of the bars indicate the basic budget allocation strategy, i.e., blue for uniform allocation and green for median 
elimination, and the shades in the bars indicate the non-uniform adaptation principles, i.e., the empty shade for sample allocation 
and the dot for budget allocation. Besides, the values over the bars are the ratios of the number of cases that the algorithm identifies 
the corresponding candidate as the best feature, with the red texts are the most frequent ones. We can see that the budget alignment 
principle (‘ba-’) avoids allocating too much budget to query expensive feature (Fac) comparing to the sample alignment principle 
(‘sa-’ with the empty shade). Besides, median elimination (‘ME’) shows a clearer concentration on relatively good but much cheaper 
features (Pix, Kar) comparing to uniform allocation (‘UA’), which results in a better generalization ability. This verifies our inter-

pretation of Table 2, and validates the effectiveness of our median elimination strategy as well as the budget alignment principle 
proposed in Section 3.2.

7. Conclusion

This paper studies the task of learning with unknown unknowns, where there exist some instances in training datasets belonging 
to an unknown hidden class but are wrongly perceived as known classes, due to the insufficient feature information. To address this 
issue, we propose the exploratory machine learning (ExML) to encourage the learner to examine and investigate the training dataset 
by exploring more features to discover potentially hidden classes. Following this principle, we design an approach consisting of three 
procedures: rejection model, feature exploration, and model cascade. By leveraging techniques from bandit theory, we prove the 
rationale and efficacy of the feature exploration procedure. Experiments validate the effectiveness of our approach.

There remain many interesting directions to further push forward the study of exploratory machine learning. First, as mentioned, 
one may borrow more advanced techniques to relax some current modeling assumptions such as binary known classes, best feature 
exploration, etc. Second, the method proposed in this paper is merely one implementation of the ExML framework, and exploring 
other effective mechanisms of feature exploration and hierarchical processing is also left as an interesting future work. Third, since 
in the environments with unknown unknowns, it would be difficult to expect passive learning can do well and the algorithm should 
explore necessary additional information from the environments, we believe the methodology behind our proposed ExML framework 
can serve as a principled way to handle unknown unknowns even beyond the scope of our concerned one due to feature deficiency.

Furthermore, unknown unknowns not only appear in the tasks of prediction, but also in the field of decision making. There 
are paradigms that models the sequential decision-making processes, such as reinforcement learning and rehearsal learning. In 
reinforcement learning, an agent learns to make decisions by performing actions in an environment to achieve maximum cumulative 
reward [66]. As for rehearsal learning, the learner tries to act proactively to prevent undesirable outcomes, which is a promising 
domain for further exploration [67]. Evidently, the unknown unknowns issue becomes even more severe in decision-making tasks 
compared to the prediction tasks, because the effect of unknown unknowns at current decision stage may entangle with the effect 
of unknown unknowns in the past stages. We believe that the methodology behind our proposed ExML framework, especially the 
16

principle of interactively exploring more information from environments, can be extended to decision-making scenarios.
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Appendix A. Omitted proofs

In this section, we present the proofs of the main results introduced in Section 4. We first introduce some useful lemmas in A.1, 
then prove the excess risk bounds given by Theorem 1 and Theorem 2 in A.2 and A.3. After that, we prove the exploratory regret 
bounds given by Lemma 1 and Lemma 2 in A.4 and A.5, and finally we give the proof of one of the useful lemmas originally proposed 
in this paper in A.6.

A.1. Useful lemmas

We introduce two useful lemmas before the proof of main results.

We first have the following lemma on the generalization error of the rejection model, which can be regarded as a counterpart 
of [35, Theorem 5].

Lemma 3. Let  and  be the kernel-based hypotheses ,  = {𝐱↦ ⟨𝐰, Φ(𝐱)⟩ ∣ ‖𝐰‖ℍ ≤Λ}. Then for any 𝛿 > 0, with probability of 1 − 𝛿
over the draw of a sample 𝐷 of size 𝑚 from , the following holds for all 𝑓 ∈ × :

𝑅(𝑓 ) −𝑅𝑠𝑢𝑟𝑟
𝐷 (𝑓 ) ≤ 2 − 2𝜃

1 − 2𝜃

√
(𝜅Λ)2
𝑚

+
√

log(1∕𝛿)
2𝑚

, (A.1)

where 𝜅2 = sup𝐱∈ 𝐾(𝐱, 𝐱) and 𝐾 ∶ × ↦ℝ is the kernel function associated with ℍ.

We then have the following lemma, which bounds the probability that a sub-optimal candidate feature is considered better than 
the optimal feature in a single empirical evaluation, which is the basic step in analyzing the effectiveness of feature exploration. The 
proof of Lemma 4 can be found in Appendix A.6.

Lemma 4. For any 𝑖 ∈ [𝐾] with Δ𝑖 > 0, if 𝑓𝑖 is trained by ERM 𝑅𝑠𝑢𝑟𝑟
𝑖 (𝑓 ) on 𝑛 samples i.i.d. chosen in �̂�𝑡𝑟,𝑖, and 𝑓1 is trained by ERM 

𝑅𝑠𝑢𝑟𝑟
1 (𝑓 ) on 𝑛 samples i.i.d. chosen in �̂�𝑡𝑟,1, then

Pr
[
𝑅𝑠𝑢𝑟𝑟

𝑖 (𝑓𝑖) <𝑅𝑠𝑢𝑟𝑟
1 (𝑓1)

]
≤ 4exp

⎛⎜⎜⎝−2
9
𝑛

(
Δ𝑖

2
− 2 − 2𝜃

1 − 2𝜃

√
(𝜅Λ)2
𝑛

)2⎞⎟⎟⎠ ,
providing that the identification condition 𝑛 > 16((1−𝜃)𝜅Λ)2

((1−2𝜃)Δ)2 holds, where Λ = sup𝑖∈[𝐾] Λ𝑖 and 𝜅 = sup𝑖∈[𝐾] sup𝐱∈𝑖
𝐾𝑖(𝐱, 𝐱).

A.2. Proof of Theorem 1

Proof. According to Eq. (8), the excess risk of learned model 𝑓𝑖𝑠 can be decomposed into five parts,

𝑅𝑖𝑠
(𝑓𝑖𝑠 ) −𝑅∗

1 =𝑅𝑖𝑠
(𝑓𝑖𝑠 ) −𝑅𝑠𝑢𝑟𝑟

𝑡𝑟,𝑖𝑠
(𝑓𝑖𝑠 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝚝𝚎𝚛𝚖 (𝚊)

+𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,𝑖𝑠

(𝑓𝑖𝑠 ) −𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,1 (𝑓

∗
1 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝚝𝚎𝚛𝚖 (𝚋)

+𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,1 (𝑓

∗
1 ) −𝑅𝑠𝑢𝑟𝑟

𝑡𝑟,1 (𝑓
∗
1 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝚝𝚎𝚛𝚖 (𝚌)

+𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,1 (𝑓

∗
1 ) −𝑅𝑠𝑢𝑟𝑟

1 (𝑓 ∗
1 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝚝𝚎𝚛𝚖 (𝚍)

+ 𝑅𝑎𝑝
⏟⏟⏟
𝚝𝚎𝚛𝚖 (𝚎)

,

where 𝚝𝚎𝚛𝚖 (𝚊) is the gap between the expected risk of the learned model 𝑓𝑖𝑠 evaluated by 0∕1 loss and the empirical risk evaluated 
by surrogate loss, and 𝚝𝚎𝚛𝚖 (𝚋) is the difference between empirical criterion of the selected feature and that of the best feature, 
where 𝑓 ∗

1 refers to the best empirical model on the full training dataset augmented with best feature. Besides, 𝚝𝚎𝚛𝚖 (𝚌) captures the 
difference between the empirical risk of 𝑓 ∗

1 and that of the best hypothesis evaluated by surrogate loss 𝑓∗
1 = argmin𝑓∈1×1 𝑅

𝑠𝑢𝑟𝑟
1 (𝑓 ), 
17

𝚝𝚎𝚛𝚖 (𝚍) is the generalization error of 𝑓∗
1 evaluated by surrogate loss, and 𝚝𝚎𝚛𝚖 (𝚎) is the unavoidable approximation error. Notice 
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that 𝚝𝚎𝚛𝚖 (𝚌) ≤ 0 by the definition of 𝑓 ∗
1 . Thus, to prove the theorem, it is sufficient to bound 𝚝𝚎𝚛𝚖 (𝚊), 𝚝𝚎𝚛𝚖 (𝚋) and 𝚝𝚎𝚛𝚖 (𝚍)

respectively.

According to Lemma 3, for any 𝛿1 > 0, 𝚝𝚎𝚛𝚖 (𝚊) can be directly bounded by

𝚝𝚎𝚛𝚖 (𝚊) ≤ 2 − 2𝜃
1 − 2𝜃

√
(𝜅Λ)2
𝑚

+
√

log(1∕𝛿1)
2𝑚

, (A.2)

with probability at least 1 − 𝛿1.

By classical derivation of generalization bound based on Rademacher complexity, for any 𝛿2 > 0, we have the following bound of 
𝚝𝚎𝚛𝚖 (𝚍) with probability at least 1 − 𝛿2,

𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,1 (𝑓

∗
1 ) −𝑅𝑠𝑢𝑟𝑟

1 (𝑓 ∗
1 ) ≤ 2ℜ𝑚(̃1) +

√
log(1∕𝛿2)

2𝑚
,

where ̃1 = {𝓁𝑠𝑢𝑟𝑟◦𝑓 | 𝑓 ∈1 × 1}. According to [35, Theorem 5] we further have

ℜ𝑚(̃1) ≤
1 − 𝜃
1 − 2𝜃

√
(𝜅Λ)2
𝑚

,

thus for any 𝛿2 > 0 we obtain with probability at least 1 − 𝛿2,

𝚝𝚎𝚛𝚖 (𝚍) ≤ 2 − 2𝜃
1 − 2𝜃

√
(𝜅Λ)2
𝑚

+
√

log(1∕𝛿2)
2𝑚

. (A.3)

We then bound 𝚝𝚎𝚛𝚖 (𝚋). By Lemma 1, for any 𝛿3 > 0, we directly obtain with probability at least 1 − 𝛿3 − 𝛿fail,

𝚝𝚎𝚛𝚖 (𝚋) ≤ 4 − 4𝜃
1 − 2𝜃

√
(𝜅Λ)2⌊𝐵∕𝐾⌋ + 2

√
log(2∕𝛿3)
2⌊𝐵∕𝐾⌋ .

For any 𝛿 > 0, let 𝛿1 = 𝛿2 = 𝛿3 = 𝛿∕3 and apply the union bound inequality, we have with probability at least 1 − 𝛿 − 𝛿fail,

𝑅𝑖𝑠
(𝑓𝑖𝑠 ) −𝑅∗

1 ≤
4 − 4𝜃
1 − 2𝜃

√
(𝜅Λ)2
𝑚

+ 4 − 4𝜃
1 − 2𝜃

√
(𝜅Λ)2⌊𝐵∕𝐾⌋ + 2

√
log(3∕𝛿)

2𝑚
+ 2

√
log(6∕𝛿)
2⌊𝐵∕𝐾⌋ +𝑅𝑎𝑝

=

⎛⎜⎜⎝
√

(𝜅Λ)2⌊𝐵∕𝐾⌋ +

√
log(6∕𝛿)
2⌊𝐵∕𝐾⌋ ⎞⎟⎟⎠+𝑅𝑎𝑝.

Finally, since ⌊𝐵∕𝐾⌋ > 64((1−𝜃)𝜅Λ)2
((1−2𝜃)Δ)2 , we have Δ2 − 2−2𝜃

1−2𝜃

√
(𝜅Λ)2⌊𝐵∕𝐾⌋ ≥

Δ
4 , which is strictly greater than an absolute constant, so we can 

obtain an upper bound on fail probability as

𝛿fail = 4(𝐾 − 1) exp
⎛⎜⎜⎜⎝−

2
9
⌊𝐵∕𝐾⌋ ⎛⎜⎜⎝Δ2 − 4 − 4𝜃

1 − 2𝜃

√
(𝜅Λ)2⌊𝐵∕𝐾⌋ ⎞⎟⎟⎠

2⎞⎟⎟⎟⎠
≤ 4 (𝐾 − 1) exp

(
−2
9
⌊𝐵∕𝐾⌋Δ2

16

)
= 4 (𝐾 − 1) exp

(
−Δ2

72
⌊𝐵∕𝐾⌋)

= (exp (−⌊𝐵∕𝐾⌋)) ,
and the proof is finished. □

A.3. Proof of Theorem 2

Proof. We first apply the same excess risk decomposition as shown in Eq. (8),

𝑅𝑖𝑠
(𝑓𝑖𝑠 ) −𝑅∗

1 =𝑅𝑖𝑠
(𝑓𝑖𝑠 ) −𝑅𝑠𝑢𝑟𝑟

𝑡𝑟,𝑖𝑠
(𝑓𝑖𝑠 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝚝𝚎𝚛𝚖 (𝚊)

+𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,𝑖𝑠

(𝑓𝑖𝑠 ) −𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,1 (𝑓

∗
1 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝚝𝚎𝚛𝚖 (𝚋)

+𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,1 (𝑓

∗
1 ) −𝑅𝑠𝑢𝑟𝑟

𝑡𝑟,1 (𝑓
∗
1 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝚝𝚎𝚛𝚖 (𝚌)

+𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,1 (𝑓

∗
1 ) −𝑅𝑠𝑢𝑟𝑟

1 (𝑓 ∗
1 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝚝𝚎𝚛𝚖 (𝚍)

+ 𝑅𝑎𝑝
⏟⏟⏟
𝚝𝚎𝚛𝚖 (𝚎)

,

and 𝚝𝚎𝚛𝚖 (𝚊), 𝚝𝚎𝚛𝚖 (𝚌) and 𝚝𝚎𝚛𝚖 (𝚍) can be bounded following the same derivation as in Theorem 1. According to Lemma 2, we also 
18

have an upper bound of 𝚝𝚎𝚛𝚖 (𝚋) with probability at least 1 − 𝛿3 − 𝛿fail,
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𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,𝑖𝑠

(𝑓𝑖𝑠 ) −𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,1 (𝑓

∗
1 ) ≤

4 − 4𝜃
1 − 2𝜃

√
(𝜅Λ)2⌊𝐵∕ log2𝐾⌋ + 2

√
log(2∕𝛿3)

2⌊𝐵∕ log2𝐾⌋ ,
where

𝛿fail =

8exp

(
−2

9⌊𝐵∕(𝐾 log2𝐾)⌋(Δ
2 − 2−2𝜃

1−2𝜃

√
(𝜅Λ)2⌊𝐵∕(𝐾 log2𝐾)⌋

)2)

1 − exp

(
−2

9⌊𝐵∕(𝐾 log2𝐾)⌋(Δ
2 − 2−2𝜃

1−2𝜃

√
(𝜅Λ)2⌊𝐵∕(𝐾 log2𝐾)⌋

)2) .

We then proceed to estimate the order of 𝛿fail . Since ⌊𝐵∕(𝐾 log2𝐾)⌋ > 64((1−𝜃)𝜅Λ)2
((1−2𝜃)Δ)2 we have Δ2 − 2−2𝜃

1−2𝜃

√
(𝜅Λ)2⌊𝐵∕𝐾⌋ ≥ Δ

4 , and so

exp
⎛⎜⎜⎜⎝−

2
9
⌊𝐵∕(𝐾 log2𝐾)⌋ ⎛⎜⎜⎝Δ2 − 2 − 2𝜃

1 − 2𝜃

√
(𝜅Λ)2⌊𝐵∕(𝐾 log2𝐾)⌋ ⎞⎟⎟⎠

2⎞⎟⎟⎟⎠
≤ exp

(
−2
9
⌊𝐵∕(𝐾 log2𝐾)⌋Δ2

16

)
= exp

(
−Δ2

72
⌊𝐵∕(𝐾 log2𝐾)⌋) ,

which upper-bounds the numerator of 𝛿fail. Further let 𝐶 = 64((1−𝜃)𝜅Λ)2
((1−2𝜃)Δ)2 for simplicity as it appears to be a constant independent of 𝐵

and 𝐾 . We conclude that

1 − exp
⎛⎜⎜⎜⎝−

2
9
⌊𝐵∕(𝐾 log2𝐾)⌋ ⎛⎜⎜⎝Δ2 − 2 − 2𝜃

1 − 2𝜃

√
(𝜅Λ)2⌊𝐵∕(𝐾 log2𝐾)⌋ ⎞⎟⎟⎠

2⎞⎟⎟⎟⎠
≥ 1 − exp

(
−Δ2

72
⌊𝐵∕(𝐾 log2𝐾)⌋)

≥ 1 − exp
(
−Δ2𝐶

72

)
,

which shows that the denominator of 𝛿fail is greater than an absolute constant independent of 𝐵, and so we have 𝛿fail =
(exp

(
−⌊𝐵∕(𝐾 log2𝐾)⌋)). Again follow the derivation in the proof of Theorem 1, combine the results and set 𝛿1 = 𝛿2 = 𝛿3 = 𝛿∕3

finishes the proof. □

A.4. Proof of Lemma 1

Proof. If uniform allocation does not return the empirically best feature, then there must exists 𝑖 ∈ [𝐾] s.t. 𝑎𝑖 is not the best feature, 
while its estimated risk is lower than the estimated risk of the best feature, i.e. 𝑅𝑠𝑢𝑟𝑟

𝑖 (𝑓𝑖) <𝑅𝑠𝑢𝑟𝑟
1 (𝑓1). Therefore, the algorithm returns 

the best feature with probability at least 1 − 𝛿fail, where

𝛿fail = Pr
[
∃ 𝑖 ∈ [𝐾], 𝑖 ≠ 1 ∧𝑅𝑠𝑢𝑟𝑟

𝑖 (𝑓𝑖) <𝑅𝑠𝑢𝑟𝑟
1 (𝑓1)

]
≤

∑
𝑖∈[𝐾],𝑖≠1

Pr
[
𝑅𝑠𝑢𝑟𝑟

𝑖 (𝑓𝑖) <𝑅𝑠𝑢𝑟𝑟
1 (𝑓1)

]

≤ 4
∑

𝑖∈[𝐾],𝑖≠1
exp

⎛⎜⎜⎜⎝−
2
9
⌊𝐵∕𝐾⌋ ⎛⎜⎜⎝

Δ𝑖

2
− 2 − 2𝜃

1 − 2𝜃

√
(𝜅Λ)2⌊𝐵∕𝐾⌋ ⎞⎟⎟⎠

2⎞⎟⎟⎟⎠
≤ 4(𝐾 − 1) exp

⎛⎜⎜⎜⎝−
2
9
⌊𝐵∕𝐾⌋ ⎛⎜⎜⎝Δ2 − 2 − 2𝜃

1 − 2𝜃

√
(𝜅Λ)2⌊𝐵∕𝐾⌋ ⎞⎟⎟⎠

2⎞⎟⎟⎟⎠ ,
which proves the first part of the lemma. Specifically, the first inequality is because the union bound inequality, and the second 
inequality is according to Lemma 4.

To prove the second part, we firstly condition on the event that the algorithm has already identified an empirically best feature 
19

𝑎1. Define distribution  to be the uniform distribution on �̂�𝑡𝑟,1, we have
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𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,𝑖𝑠

(𝑓𝑖𝑠 ) −𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,1 (𝑓

∗
1 ) =𝑅𝑠𝑢𝑟𝑟

𝑡𝑟,1 (𝑓1) −𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,1 (𝑓

∗
1 ) =𝑅𝑠𝑢𝑟𝑟

𝑡𝑟,1 (𝑓1) −𝑅𝑠𝑢𝑟𝑟
1 (𝑓1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝚝𝚎𝚛𝚖 (𝚊)

+𝑅𝑠𝑢𝑟𝑟
1 (𝑓1) −𝑅𝑠𝑢𝑟𝑟

1 (𝑓 ∗
1 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝚝𝚎𝚛𝚖 (𝚋)

+𝑅𝑠𝑢𝑟𝑟
1 (𝑓 ∗

1 ) −𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,1 (𝑓

∗
1 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝚝𝚎𝚛𝚖 (𝚌)

where 𝚝𝚎𝚛𝚖 (𝚊) is the generalization error of 𝑓1 on  , 𝚝𝚎𝚛𝚖 (𝚋) is the difference between the empirical error of the empirically best 
hypothesis 𝑓1 and the best hypothesis 𝑓 ∗

1 on  , and 𝚝𝚎𝚛𝚖 (𝚌) is the generalization error of 𝑓 ∗
1 on  . Notice that 𝚝𝚎𝚛𝚖 (𝚋) ≤ 0 since 

𝑓1 minimizes 𝑅𝑠𝑢𝑟𝑟
1 by the ERM criterion. Thus, to prove the second part, it suffices to bound 𝚝𝚎𝚛𝚖 (𝚊) and 𝚝𝚎𝚛𝚖 (𝚌). By the standard 

analysis of generalization error based on the Rademacher complexity [47], with probability at least 1 − 𝛿∕2, we have

𝚝𝚎𝚛𝚖 (𝚊) ≤ 2 − 2𝜃
1 − 2𝜃

√
(𝜅Λ)2⌊𝐵∕𝐾⌋ +

√
log(2∕𝛿)
2⌊𝐵∕𝐾⌋ ,

and

𝚝𝚎𝚛𝚖 (𝚌) ≤ 2 − 2𝜃
1 − 2𝜃

√
(𝜅Λ)2⌊𝐵∕𝐾⌋ +

√
log(2∕𝛿)
2⌊𝐵∕𝐾⌋ .

Therefore, conditioning on the event that the algorithm returns a best feature, then with probability at least 1 − 𝛿, the uniform 
allocation algorithm satisfies

𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,𝑖𝑠

(𝑓𝑖𝑠 ) −𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,1 (𝑓

∗
1 ) ≤

4 − 4𝜃
1 − 2𝜃

√
(𝜅Λ)2⌊𝐵∕𝐾⌋ + 2

√
log(2∕𝛿)
2⌊𝐵∕𝐾⌋ .

Since the event occurs with probability at least 1 − 𝛿fail, we conclude the second part of the proof by the union bound inequality. □

A.5. Proof of Lemma 2

Proof. Without loss of generality, assume throughout the proof that 𝐾 = 2𝑐 for some positive integer 𝑐, and that 𝐵 is a multiplier of 
𝐾 log2𝐾 . Let 𝑛𝑡 be the number of samples collected at round 𝑡, and 𝑅𝑠𝑢𝑟𝑟

𝑡,𝑖 (𝑓 ) be the empirical surrogate risk on the samples collected 
at round 𝑡. Suppose 𝑎1 ∈𝑡, and consider the probability 𝛿(𝑡)

fail
that 𝑎1 is discarded at round 𝑡. For any 𝑎𝑖 ∈𝑡 s.t. Δ𝑖 > 0, let 𝑝(𝑡)𝑖 be 

the probability that 𝑅𝑠𝑢𝑟𝑟
𝑡,𝑖 (𝑓𝑡,𝑖) <𝑅𝑠𝑢𝑟𝑟

𝑡,1 (𝑓𝑡,1) with 𝑓𝑡,𝑗 the models trained at round 𝑡. By Lemma 4 we have

𝑝(𝑡)𝑖 ≤ 4exp
⎛⎜⎜⎜⎝−

2
9
𝑛𝑡

⎛⎜⎜⎝
Δ𝑖

2
− 2 − 2𝜃

1 − 2𝜃

√
(𝜅Λ)2
𝑛𝑡

⎞⎟⎟⎠
2⎞⎟⎟⎟⎠

≤ 4exp
⎛⎜⎜⎜⎝−

2
9
𝑛𝑡

⎛⎜⎜⎝Δ2 − 2 − 2𝜃
1 − 2𝜃

√
(𝜅Λ)2
𝑛1

⎞⎟⎟⎠
2⎞⎟⎟⎟⎠ .

If 𝑎1 is discarded at round 𝑡, then there must be at least |𝑡|
2 features 𝑎𝑖 such that 𝑎𝑖 is not the best feature but 𝑓𝑡,𝑖 has lower empirical 

risk on 𝐷𝑖 than that of 𝑓𝑡,1 on 𝐷1. Let 𝑋 be the random variable indicating the number of features satisfying the above property, it 
is easy to verify that

𝔼 [𝑋] =
∑

𝑎𝑖∈𝑡

𝑝(𝑡)𝑖 ≤ 4|𝑡| exp ⎛⎜⎜⎜⎝−
2
9
𝑛𝑡

⎛⎜⎜⎝Δ2 − 2 − 2𝜃
1 − 2𝜃

√
(𝜅Λ)2
𝑛1

⎞⎟⎟⎠
2⎞⎟⎟⎟⎠ .

By Markov’s inequality we have

𝛿(𝑡)
fail

= Pr
[
𝑋 ≥

|𝑡|
2

]
≤

𝔼 [𝑋]|𝑡|∕2 ≤ 8exp
⎛⎜⎜⎜⎝−

2
9
𝑛𝑡

⎛⎜⎜⎝Δ2 − 2 − 2𝜃
1 − 2𝜃

√
(𝜅Λ)2
𝑛1

⎞⎟⎟⎠
2⎞⎟⎟⎟⎠ .

So we can conclude that

𝛿fail =
𝑇∑
𝑡=1

𝛿(𝑡)
fail

≤ 8
𝑇∑
𝑡=1

exp
⎛⎜⎜⎜⎝−

2
9
𝑛𝑡

⎛⎜⎜⎝Δ2 − 2 − 2𝜃
1 − 2𝜃

√
(𝜅Λ)2
𝑛1

⎞⎟⎟⎠
2⎞⎟⎟⎟⎠ .
20

Since |𝑡+1| = |𝑡|
2 , we have 𝑛𝑡+1 = 2𝑛𝑡 =⋯ = 2𝑡𝑛1. Therefore,
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𝛿fail ≤ 8
𝑇∑
𝑡=1

exp
⎛⎜⎜⎜⎝−

2
9
𝑛𝑡

⎛⎜⎜⎝Δ2 − 2 − 2𝜃
1 − 2𝜃

√
(𝜅Λ)2
𝑛1

⎞⎟⎟⎠
2⎞⎟⎟⎟⎠

≤ 8
𝑇∑
𝑡=1

exp
⎛⎜⎜⎜⎝−

2
9
𝑡𝑛1

⎛⎜⎜⎝Δ2 − 2 − 2𝜃
1 − 2𝜃

√
(𝜅Λ)2
𝑛1

⎞⎟⎟⎠
2⎞⎟⎟⎟⎠

≤ 8
∞∑
𝑡=1

exp
⎛⎜⎜⎜⎝−

2
9
𝑡𝑛1

⎛⎜⎜⎝Δ2 − 2 − 2𝜃
1 − 2𝜃

√
(𝜅Λ)2
𝑛1

⎞⎟⎟⎠
2⎞⎟⎟⎟⎠

=

8exp

(
−2

9𝑛1

(
Δ
2 − 2−2𝜃

1−2𝜃

√
(𝜅Λ)2
𝑛1

)2)

1 − exp

(
−2

9𝑛1

(
Δ
2 − 2−2𝜃

1−2𝜃

√
(𝜅Λ)2
𝑛1

)2) ,

which proves the first part of the lemma.

The second part shares the same derivation as that of Lemma 1, by which we have for any 𝛿 > 0, with probability at least 
1 − 𝛿 − 𝛿fail,

𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,𝑖𝑠

(𝑓𝑖𝑠 ) −𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,1 (𝑓

∗
1 ) ≤

4 − 4𝜃
1 − 2𝜃

√
(𝜅Λ)2∑𝑇
𝑡=1 𝑛𝑡

+ 2
√

log(2∕𝛿)
2
∑𝑇

𝑡=1 𝑛𝑡
.

Finally, notice the fact that

𝑇∑
𝑡=1

𝑛𝑡 = 𝑛1

𝑇∑
𝑡=1

2𝑡 = (2⌈log2𝐾⌉+1 − 1)
⌊

𝐵
𝐾 log2𝐾

⌋
≥𝐾

⌊
𝐵

𝐾 log2𝐾

⌋
=

(⌊
𝐵

log2𝐾

⌋)
,

which finishes the proof. □

A.6. Proof of Lemma 4

Proof of Lemma 4. If 𝑅𝑠𝑢𝑟𝑟
𝑖 (𝑓𝑖) <𝑅𝑠𝑢𝑟𝑟

1 (𝑓1), then it must be the case that either the estimation 𝑅𝑠𝑢𝑟𝑟
𝑖 (𝑓𝑖) is over-optimistically, or the 

estimation 𝑅𝑠𝑢𝑟𝑟
1 (𝑓1) is over-pessimistically. Let 𝑝𝑖 be the probability that 𝑅𝑠𝑢𝑟𝑟

𝑖 (𝑓𝑖) <𝑅𝑠𝑢𝑟𝑟
1 (𝑓1), then 𝑝𝑖 can be bounded by

𝑝𝑖 ≤ Pr
[(

𝑅𝑠𝑢𝑟𝑟
𝑖 (𝑓𝑖) <𝑅𝑠𝑢𝑟𝑟

𝑡𝑟,𝑖 (𝑓
∗
𝑖 ) −

Δ𝑖

2

)
∨
(
𝑅𝑠𝑢𝑟𝑟
1 (𝑓1) >𝑅𝑠𝑢𝑟𝑟

𝑡𝑟,1 (𝑓
∗
1 ) +

Δ𝑖

2

)]
≤ Pr

[
𝑅𝑠𝑢𝑟𝑟

𝑖 (𝑓𝑖) <𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,𝑖 (𝑓

∗
𝑖 ) −

Δ𝑖

2

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝚝𝚎𝚛𝚖 (𝚊)

+Pr
[
𝑅𝑠𝑢𝑟𝑟
1 (𝑓1) >𝑅𝑠𝑢𝑟𝑟

𝑡𝑟,1 (𝑓
∗
1 ) +

Δ𝑖

2

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝚝𝚎𝚛𝚖 (𝚋)

,

where Δ𝑖 =𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,𝑖 (𝑓

∗
𝑖 ) −min𝑗∈[𝐾]𝑅

𝑠𝑢𝑟𝑟
𝑡𝑟,𝑗 (𝑓

∗
𝑗 ) is defined in (7). We next explain how to upper bound 𝚝𝚎𝚛𝚖 (𝚊), and the bound on 𝚝𝚎𝚛𝚖 (𝚋)

follows a similar derivation. First notice that

𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,𝑖 (𝑓

∗
𝑖 ) −𝑅𝑠𝑢𝑟𝑟

𝑖 (𝑓𝑖) =
(
𝑅𝑠𝑢𝑟𝑟

𝑡𝑟,𝑖 (𝑓
∗
𝑖 ) −𝑅𝑠𝑢𝑟𝑟

𝑡𝑟,𝑖 (𝑓𝑖)
)
+
(
𝑅𝑠𝑢𝑟𝑟

𝑡𝑟,𝑖 (𝑓𝑖) −𝑅𝑠𝑢𝑟𝑟
𝑖 (𝑓𝑖)

)
≤𝑅𝑠𝑢𝑟𝑟

𝑡𝑟,𝑖 (𝑓𝑖) −𝑅𝑠𝑢𝑟𝑟
𝑖 (𝑓𝑖),

which is exactly a margin-based generalization bound. Define ̃𝑖 =
{
𝓁𝑠𝑢𝑟𝑟◦𝑓 | 𝑓 ∈𝑖 × 𝑖

}
, standard generalization bound based on 

Rademacher complexity shows that for any 𝛿 > 0, with probability at least 1 − 𝛿,

𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,𝑖 (𝑓𝑖) −𝑅𝑠𝑢𝑟𝑟

𝑖 (𝑓𝑖) ≤ 2ℜ𝑚(̃ ) +
√

log(1∕𝛿)
2𝑛

≤
2 − 2𝜃
1 − 2𝜃

√
(𝜅Λ)2
𝑛

+
√

log(1∕𝛿)
2𝑛

,

where the second inequality is due to [35, Theorem 5]. Since 𝑛 > 16((1−𝜃)𝜅Λ)2
((1−2𝜃)Δ)2 , we have Δ𝑖

2 ≥
Δ
2 > 2−2𝜃

1−2𝜃

√
(𝜅Λ)2

𝑛
, so the generalization 
21

error bound above can be translated as
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Pr
[
𝑅𝑠𝑢𝑟𝑟

𝑡𝑟,𝑖 (𝑓𝑖) −𝑅𝑠𝑢𝑟𝑟
𝑖 (𝑓𝑖) >

Δ𝑖

2

]
≤ 2exp

⎛⎜⎜⎝−2
9
𝑛

(
Δ𝑖

2
− 2 − 2𝜃

1 − 2𝜃

√
(𝜅Λ)2
𝑛

)2⎞⎟⎟⎠ .
Since 𝑅𝑠𝑢𝑟𝑟

𝑡𝑟,𝑖 (𝑓
∗
𝑖 ) −𝑅𝑠𝑢𝑟𝑟

𝑖 (𝑓𝑖) ≤𝑅𝑠𝑢𝑟𝑟
𝑡𝑟,𝑖 (𝑓𝑖) −𝑅𝑠𝑢𝑟𝑟

𝑖 (𝑓𝑖), we conclude that

𝚝𝚎𝚛𝚖 (𝚊) ≤ 2exp
⎛⎜⎜⎝−2

9
𝑛

(
Δ𝑖

2
− 2 − 2𝜃

1 − 2𝜃

√
(𝜅Λ)2
𝑛

)2⎞⎟⎟⎠ .

Similarly, we have

𝚝𝚎𝚛𝚖 (𝚋) ≤ 2exp
⎛⎜⎜⎝−2

9
𝑛

(
Δ𝑖

2
− 2 − 2𝜃

1 − 2𝜃

√
(𝜅Λ)2
𝑛

)2⎞⎟⎟⎠ ,
and the proof is finished. □
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