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Abstract

This paper investigates the problem of non-
stationary linear bandits, where the un-
known regression parameter is evolving over
time. Previous studies have adopted sophis-
ticated mechanisms, such as sliding window
or weighted penalty to achieve near-optimal
dynamic regret. In this paper, we demon-
strate that a simple restarted strategy is suf-
ficient to attain the same regret guarantee.
Specifically, we design an UCB-type algorithm
to balance exploitation and exploration, and
restart it periodically to handle the drift of
unknown parameters. Let T' be the time hori-
zon, d be the dimension, and Pr be the path-
length that measures the fluctuation of the
evolving unknown parameter, our approach
enjoys an O(d*3(1 + Pr)Y/*T?/3) dynamic
regret, which is nearly optimal, matching the
Q(d?/3(1+ Pr)Y/3T?/3) minimax lower bound
up to logarithmic factors. Empirical studies
also validate the efficacy of our approach.

1 Introduction

Multi-Armed Bandits (MAB) [Robbins, 1952] models
the sequential decision-making with partial information,
where the player requires to choose one of the K slot
machines at each iteration in order to maximize the
cumulative reward. MAB is a paradigmatic instance
of the exploration versus exploitation trade-offs, which
is fundamental in many areas of artificial intelligence,
such as reinforcement learning [Sutton and Barto, 2018]
and evolutionary algorithms [Crepinsek et al., 2013].

In many real-world decision-making problems, each
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arm is usually associated with certain side information.
Therefore, researchers start to formulate structured
bandits in which the reward distributions of each arm
are connected by a common but unknown parameter.
Particularly, stochastic linear bandits (SLB) has re-
ceived much attention [Auer, 2002, Dani et al., 2007,
Chu et al., 2011, Abbasi-Yadkori et al., 2011, Li et al.,
2019]. In SLB, at iteration ¢, the player makes a deci-
sion X, from a feasible set X C R, and then observes
the reward r; satisfying

E[r:| X,] = X[16., (1)

where 6, is an unknown regression parameter. The
goal of the player is to minimize the (pseudo) regret,

T
Regret, = Tma;(chG* - Z xre.. (2)
x€E
t=1

The stochastic linear bandits problem is well-studied in
literatures. By exploiting the tool of upper confidence
bounds, various approaches demonstrate an O(d\/T )
regret [Dani et al., 2007, Abbasi-Yadkori et al., 2011],!
which matches the Q(dv/T) lower bound established
by Dani et al. [2007], up to log T factors.

However, the observation model (1) assumes that the
regression parameter 6, is fixed, which is unfortunately
hard to satisfy in real-life applications, because data are
usually collected in non-stationary environments. For
instance, in recommender systems the regression pa-
rameter models customers’ interests, which could vary
over time when customers look through product pages.
Therefore, it is crucial to facilitate stochastic linear
bandits with capability of handling non-stationarity.

To address above issue, Cheung et al. [2019a] proposed
the non-stationary linear bandits model, which assumes
the reward r; satisfies

E[’I"t|Xt] = X;Tet,

We adopt the notation of O to suppress logarithmic
factors in the time horizon T'.
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where 6; is the unknown regression parameter at itera-
tion t. Different from the standard SLB setting in (1),
non-stationary linear bandits allow the unknown pa-
rameter to vary over time, whose evolution is often
called path-length defined as Pr = ZtT=2||0t,1 — 0|2,
which naturally measures the non-stationarity of envi-
ronments. The player’s goal is to minimize the following
(pseudo) dynamic regret,

T T
D-R: = 7o, — L
egret, Z max x ¢ Z X, 0:, (3)
t=1 t=1
namely, the cumulative regret against the optimal strat-
egy that has full information of unknown parameters.

Recently, Cheung et al. [2019a] proposed an algorithm
for non-stationary linear bandits by using the slid-
ing window least square estimator to track the evolv-
ing parameters; while Russac et al. [2019] adopted
the weighted least square estimator. They both
achieve 6(6[2/ 3P%/ 312/ 3) dynamic regret, matching the
Q(d* SP%/ T2/3) Jower bound established by Cheung
et al. [2019a], up to log T factors. Although these two
strategies attain nearly rate-optimal guarantees, their
algorithms and analyses are fairly complicated. In-
stead, we discover that a quite simple algorithm based
on the restarted strategy (simply running an UCB-style
algorithm and restarting it periodically), surprisingly,
achieves the same dynamic regret guarantee and is
more efficient.

Our proposed algorithm enjoys the following three ad-
vantages compared with previous studies.

e The proposed algorithm is very simple and thus
easy to analyze, only exploiting the standard self-
normalized concentration inequality for classical
stochastic linear bandits. Our algorithm and anal-
ysis can be further extended to the non-stationary
generalized linear bandits.

e Compared with WindowUCB, the sliding window
least square based approach [Cheung et al., 2019a],
our approach supports online update and enjoys a
one-pass manner without storing historical data.
Meanwhile, WindowUCB demands an O(w) mem-
ory where w is the window length; by contrast,
our approach only requires a constant memory.

e Compared with WeightUCB, the weighted least
square based approach [Russac et al., 2019], our
approach and analysis are much simpler, without
involving other complicated deviation results. Ad-
ditionally, WeightUCB maintains and manipulates
the covariance matrix and its variant, and thus
takes a longer running time.

Overall, our approach is more friendly to the resource-
constrained learning scenarios due to its simplicity.

2 Related Work

Online learning in non-stationary environments has
drawn considerable attention recently, in both full-
information and bandits settings. We focus on related
work in the bandits setting.

Non-stationary multi-armed bandits problem with
abrupt changes was first studied by Auer [2002]. De-
noted by K the number of arms and by L the number
of distribution changes, Auer [2002] proposed EXP3.S,
a variant of EXP3, which achieves an O(vEKLT) regret
bound when L is known. The rate is minimax opti-
mal up to logT factors. Later studies demonstrated
that O(V K LT) regret is attainable by sliding window
and weighted penalty strategies [Garivier and Moulines,
2011], as well as the restarted strategy [Allesiardo et al.,
2017]. All these algorithms require the number of
changes L as the input parameter, which is undesired
in practice. Recently, Auer et al. [2019] achieved a
near-optimal rate 6(\/ KLT) without knowing prior
knowledge of L. On the other hand, Besbes et al. [2019]
studied the non-stationary MAB with slowly changing
distributions, and proved an O((K log K)1/3VT1/3T2/3)
dynamic regret, where Vp = ZtTZQHHt — pt—1]|oo is the
total variation of changes in reward distributions.

Non-stationary linear bandits problem was first stud-
ied by Cheung et al. [2019a]. The authors established
an Q(d?/3P;/*T?/3) minimax lower bound, and then
proposed the WindowUCB algorithm based on the slid-
ing window least square, achieving an O(d%/ 3P%/ 312/3)
near-optimal dynamic regret. Nevertheless, to imple-
ment the sliding window least square, WindowUCB
needs to store historical data in a buffer. A natural re-
placement is the weighted least square, which supports
online update and enjoys both nice empirical perfor-
mance and sound theoretical guarantee [Guo et al.,
1993, Zhao et al., 2019]. Based on the idea, Russac
et al. [2019] proposed the WeightUCB algorithm and
proved that the approach attains the same dynamic re-
gret. Nevertheless, both algorithmic design and regret
analysis of WeightUCB are fairly complicated. Besides,
WeightUCB needs to maintain and manipulate covari-
ance matrix and its variant (in the same scale), which
leads to an evidently longer running time. Finally, both
WindowUCB and WeightUCB require the unknown
quantity Pr as an input. To avoid the limitation, Che-
ung et al. [2019a] developed the bandits-over-bandits
mechanism as a meta algorithm and finally obtained an
O(d?/3T?%/3(max{Pr,d="/?T"/*})1/3) parameter-free
regret guarantee.

In this work, we propose a simple algorithm based on

the restarted strategy for non-stationary linear bandits,
and achieve near-optimal dynamic regret. We note that
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using the restarted strategy for non-stationary environ-
ments is not new, which has been applied in various
scenarios, including non-stationary online convex op-
timization [Besbes et al., 2015], MAB with abrupt
changes [Allesiardo et al., 2017], and MAB with grad-
ual changes [Besbes et al., 2019]. However, to the best
of our knowledge, our work is the first time to apply
the restarted strategy to non-stationary linear bandits
and generalized linear bandits.

3 Owur Approach

In this section, we describe the proposed algorithm
and present the main theoretical result, a mnear-
optimal O(d?/3(1 + Pr)'/3T?/3) dynamic regret for
non-stationary linear bandits.

3.1 Setting and Assumptions

Setting. In non-stationary (infinite-armed) linear
bandits, at each iteration ¢, let x, € X C R be the
contextual information and r; be the reward, and the
model is assumed to be linearly parameterized, i.e.,

Ty = XtTOt + 1, (4)

where 0; € R? is the unknown parameter and 7, is the
noise satisfying certain tail condition specified below.

Assumptions. We assume the noise 7; be condition-
ally R-sub-Gaussian with a fixed constant R > 0. That
i57 ]E[nt ‘ Xl:ta 771:1‘,—1] = 07 and for any A€ Rv

Elexp(Ane) | X4, m1:0—1] < exp (A2R2/2) ,

The feasible set and unknown parameters are assumed
to be bounded, i.e., Vx € X, ||x|l2 < L, and ||6;]|2 < S
holds for all ¢ € [T]. For convenience, we further assume
(x,0:) <1, but we will keep the dependence in L and
S for better comprehension of the results.

3.2 RestartUCB Algorithm

RestartUCB algorithm has two key ingredients: up-
per confidence bounds for the exploration—exploitation
trade-off, and the restarted strategy for handling the
non-stationarity of environments.

Specifically, our proposed RestartUCB algorithm pro-
ceeds in epochs. At each iteration, we first estimate
the unknown regression parameter from historical data
within the epoch, and then construct upper confidence
bounds of the expected reward for selecting the arm.
Finally, we periodically restart the algorithm to be
resilient to the drift of underlying parameter 6;.

In the following, we first specify the estimator used in
the RestartUCB algorithm, then investigate its esti-

mate error to construct upper confidence bounds, and
finally describe the restarted strategy.

3.2.1 Estimator

At iteration ¢, we adopt the regularized least square
estimator by only exploiting data in the current epoch,
R t—1
6, = arg min \||0||3 + Z(XE@—TS)2, (5)
0 s=tg
where to is the starting point of the current epoch,
and A > 0 is the regularization coefficient. Clearly, 6,
admits a closed-form solution as

t—1
Ht = Vt:ll (Z TsXs> s (6)

s=to

where V,_1 = M\ + ZZ;; X XT. We remark that the
estimator (6) (essentially, both the terms of V;_; and
Ei;o rsXs) can be updated online without storing
historical data in the memory owing to the restarted
strategy. Furthermore, it is known that (5) can be
ezxactly solved by the recursive least square algorithm,
whose solution is provably equivalent to the closed-form
expression (6). This feature can further accelerate our
approach in that it saves the computation of the inverse
of covariance matrix V;_1, which is arguably the most
time-consuming step at each iteration.

By contrast, Cheung et al. [2019a] adopted the following
sliding window least square estimator,

t—1
;" = f_wl)1< >

s=1V(t—w)

TSXS> ; (7)

where V% = >\I+ZZ;11\/(t—w) X,X7T is the covariance
matrix formed by historical data in the sliding window
and w > 0 is the window length. For online update,
WindowUCB will remove the oldest data item in the
window and then add the new item. So it requires
to store the nearest w data items in the memory for
future update, resulting in an O(w) space complexity
which cannot be regarded as a constant because the
setting of w depends on the time horizon T'.

3.2.2 Upper Confidence Bounds

Based on the estimator 6 in (6), we further construct
upper confidence bounds for the expected reward. To
this end, it is required to investigate the estimate error.
Inspired by the analysis of WindowUCB [Cheung et al.,
2019a], we have the following result.

Lemma 1. For any t € [T] and ¢ € (0,1), with proba-
bility at least 1 — 3, the following holds for all x € X,

t—1
X0, ~ 01 < L 310y~ Opiallz + Billxlly 1. (8)

p=to
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where By is the radius of confidence region,

By = \55-1—]*2\/2105;(1S + dlog (1 + (t—/\t((i))LQ) 9)

The estimate error (8) essentially suggests an upper
confidence bound of the expected reward xT6,. Hence,
we adopt the principle of optimism in the face of uncer-
tainty [Auer, 2002] and choose the arm that maximizes
its upper confidence bound,

X; =arg max {XT@; + ub(x)}
- (10)

= arg max {XTé\t + Bellxlly-1 },
REX t—1

where ub(x) = th_l 16p = Opy1ll2 + ’BtHXHVQll'

p=to

So at iteration ¢, the algorithm first solves the estimator
based on (6), then obtains the confidence radius f;
by (9), and finally pulls the arm X; according to the
selection criteria (10).

3.2.3 Restarted Strategy

To handle the changes of unknown regression param-
eters, RestartUCB algorithm proceeds in epochs and
restarts the procedure every H iterations, as illustrated
in Figure 1. In each epoch, RestartUCB performs the
UCB-style algorithm as described in the last subsection.
We summarize overall procedures in Algorithm 1.

UucB O UCB O O UCB
L 1 I L 1
epoch 1 epoch 2 epoch K

Figure 1: Illustration of RestartUCB algorithm.

Note that although the length of each epoch can be
varied, we find that a fixed length is sufficient to achieve
near-optimal theoretical guarantees.

3.3 Theoretical Guarantees

We show that RestartUCB algorithm enjoys a nearly
optimal dynamic regret notwithstanding its simplicity.

First, we analyze the regret within each epoch (The-
orem 1). Then, we sum over epochs to obtain the
guarantee of the whole time horizon (Theorem 2).

Theorem 1. For each epoch £ whose size is H and
any 6 € (0,1), with probability at least 1 — 2§, the
dynamic regret within the epoch is upper bounded by

L?H
A )’

D-Regret(€) < 2LH77(5)+26H\/2CZH log (1 +

Algorithm 1 RESTARTUCB
Input: time horizon T, epoch size H, confidence §
1: Set epoch counter j =1
2: while j < [T/H| do
: Sett=(—-1)H
Initialize X, € X
Ve= Ay
fort=7+1,....,7+ H—-1do
Compute 6; by (6) and §; by (9)
Select X; = arg maxxeX{ngt + 5t||x||vf—11}

Receive the reward r;

10: Update V; = V1 + X, X;F
11:  end for

12:  Setj=j+1

13: end while

where B = VS + R\/Qlog% + dlog (1 + HA—If), and
P(E) denotes the path-length within epoch &, i.e.,
P(€) = Ztef”etfl — 042

By summing regret over epochs, we obtain dynamic
regret over of the whole time horizon.

Theorem 2. Algorithm 1 RESTARTUCB enjoys the
following dynamic regret guarantee,

D-Regrety < O(HPr +dT/VH). (11)

By setting the epoch size H = H* = |(dT/Pr)?*/?], we
achieve an 5(d2/3P%/3T2/3) dynamic regret.

Remark 1. Cheung et al. [2019a] established an
Q(d* 3P%/ 2/ 3) minimax lower bound for the non-
stationary linear bandits. Hence, the O(d2/3 P}/ *T2/3)
dynamic regret exhibited in Theorem 2 is minimax
optimal in all parameters up to logT" factors.

Remark 2. As shown in Theorem 2, the setting of
optimal epoch size H* requires prior information of Pr,
which is generally unavailable. We will discuss how to
remove the undesired dependence in the next section.

4 Extensions

In this section, we first apply the restarted strategy
to non-stationary generalized linear bandits, and then
discuss how to adapt to the unknown path-length Pr.

4.1 Generalized Linear Bandits

Setting. Generalized linear bandits (GLB) assumes
a link function p: R — R such that r; = u(x}6;) + n,
where 6, € R? is the unknown parameter and can
change over time. Evidently, linear and logistic models
are two of special cases of the generalized linear model,
with p(z) = z and p(z) = 1/(1 + e~ %), respectively.
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For non-stationary GLB, dynamic regret is used as the
performance measure, defined as

T
D-Regrety = Z max w(xT0) — u(Xr0,).  (12)
t=1

Assumptions. We make the same assumptions with
those of linear bandits as stated in Section 3.1, including
tail conditions of noise, boundedness of feasible set, and
boundedness of unknown regression parameters. In ad-
dition, following previous studies of GLB [Filippi et al.,
2010, Li et al., 2017], we make two additional standard
assumptions on the link function. Concretely, the link
function is assumed to be k,-Lipschitz, and continu-
ously differentiable with ¢, = inffy xcxy p "(0Tx) > 0.
For simplicity, we do not impose the constraint on the
parameter 6;, which can be otherwise compensated by
introducing additional projection step as done in the
pioneering work of Filippi et al. [2010].

Estimator. The maximum quasi-likelihood estima-
tor is typically adopted in GLB [Filippi et al., 2010,
Li et al., 2017], where é\t is set as the solution of
Ei;o (rs — n(XJF0)) X; = 0. Nevertheless, the es-
timator requires Zi 10 X, XT to be invertible for all
iterations in the regret analysis, which is a rather strong
assumption. To address the issue, we solve the estima-
tor 6; by the following regularized estimation equation

Acuf + Z

s=tg

(XJ0) —ry) Xy =0, (13)

where A > 0 is the regularization coefficient. We have
the following guarantee on the estimate error.

Lemma 2. For any t € [T] and § € (0,1), with proba-
bility at least 1 — 9, the following holds for all x € X,

IM(XT@) —~ M(XTGt)I

(k LZH&

p=to

Opt1ll2 + Bt”X”‘/t_—ll) )

where By is the radius of confidence region,

= 1 t—tg)L?
ﬂt:cH\F/\S+R\/2log§+dlog <1+()\dO)>'

(14)

Based on Lemma 2, we can now specify the action
selection criteria at iteration ¢ as,

k-
X, = arg max {8 + 2Bl b 05)
xeX Cu t

The algorithm for non-stationary generalized linear
bandits (RESTARTGLB) is similar to that for linear

bandits. At iteration ¢, RestartGLB algorithm first
solves the estimator by (13), and then obtains the
confidence radius 3; based on (14), and finally pulls
the arm X; according to (15).

Note that similar to the existing algorithm (based on
the sliding window) for non-stationary GLB [Cheung
et al., 2019b], our algorithm also requires to store the
whole learning history to solve the estimation equa-
tion (13) at each iteration and thus is inefficient. Al-
though there exist efficient algorithms for stationary
GLB [Zhang et al., 2016, Jun et al., 2017], it remains
open for non-stationary generalized linear bandits.

We have the following guarantee for RestartGLB.

Theorem 3. The RESTARTGLB algorithm enjoys the
dynamic regret of

D-Regrety < O(HPr + dT/VH). (16)

By setting the epoch size H = H* = |(dT/Pr)?/®], we
achieve an O(d2/3p%/3T2/3) dynamic regret.

The above dynamic regret is also minimax optimal for
GLB up to logarithmic factors [Cheung et al., 2019a].

4.2 Adapting to Unknown Non-stationarity

Notice that in Theorem 2 and Theorem 3, the configu-
ration of the optimal epoch size H* requires knowledge
of path-length Pr, which is generally unavailable. We
compensate the lack of this information via the meta-
expert framework studied in previous non-stationary
bandits literatures [Agarwal et al., 2017, Cheung et al.,
2019a, Zhao et al., 2020]. Specifically, we run the EXP3
algorithm [Auer et al., 2002] as a meta algorithm to
adaptively choose the optimal epoch size. The method
is referred to as Bandits-over-Bandits (BOB) [Cheung
et al., 2019a], and we defer details to Appendix B.

RestartUCB algorithm together with BOB mechanism
leads to the following dynamic regret without requiring
the prior knowledge of the path-length Pr.

Theorem 4. RESTARTUCB together with Bandits-
over-Bandits mechanism enjoys the dynamic regret of

D-Regret; < 5(d%T§ (maX{PT,d_%T%})%)» (17)

without requiring the path-length Pr ahead of time.

Remark 3. When the path-length Pr is sufficiently
large (Pp > d=2T1), the attained dynamic regret
n (17) becomes O(d?/3 P;/*T?/3), demonstrating that
in this case the approach achieves the minimax opti-
mal dynamic regret guarantee without requiring prior
knowledge of Pr. However, it remains open on how to
obtain rate-optimal and parameter-free dynamic regret
when the path-length Pr is small.
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5 Analysis

In this section, we provide proofs of theoretical results
presented in the previous two sections.

5.1 Analysis of Linear Bandits

We provide proofs of Lemma 1 and Theorems 1, 2.

Proof of Lemma 1. From the model assumption (4)
and the estimator (6), we can verify that the estimate
error can be decomposed as,

t—1 t—1
0, —0, =V} ( > X XT(0.-00)+ > nX, —A&) :

s=tg s=to

Therefore, by Cauchy-Schwartz inequality, we know
that for any x € X,

X" (0 = 00)] < [x]l> - Ar + 1%[ly-1 - B, (18)

where

A =

)

2

t—1
v (X0, xxTe. o))

t—1
B = stzto nsXs - Aet

—1
Vi

These two terms can be bounded separately, summa-
rized in the following lemma for a better presentation.
We present the proof of Lemma 3 in Appendix A.

Lemma 3. A; and By can be upper bounded as follows.

t—1
o Ay <> i N0 — Opialla;

o B; < B, where B; is the confidence radius (9).

Based on the inequality (18), Lemma 3, and the bound-
edness of the feasible set, we have

t
(x,0; — 0;) < LZHHP — 9p+1||2 + ﬁtHXHV;ll’

p=1

which competes the proof. O

Proof of Theorem 1. Due to Lemma 1 and the fact
that X7, Xy € X, each of the following holds with
probability at least 1 — ¢,

t—1

(X700 < (X700 + L 116y = Oppalla + Bell X Iy,
p=to
= t—1

(Xe,00) > (X0,00) + LY [10p — Opall2 + Bel| Xelly 1

p=to

By the union bound, the following holds with probabil-
ity at least 1 — 26,

(X[, 0:) — (X4, 04)
~ R t—1
<(X},0:) — (X4, 6;) +2L Z [10p — Op+all2
p=to
+ ﬂt(HX:”Vt:ll + HXtHthll)
t—1

<2L Z ||9p - 6’17-&-1”2 + 2ﬁt||Xt||V;117

p=to

where the last step comes from the following implication
of the arm selection criteria (10),

(X700 + B XT Ny, < (X0 00) + Bell Xelly -1
Hence, dynamic regret within epoch £ is bounded by,
t—1
D-Regret(€) < > 2L Y (|0, — Oprallz + 26: [ Xelly 1

tef p=to
L?H
A )’

where the last inequality holds due to the standard
elliptical potential lemma (Lemma 4), whose statement
and proof are presented in Appendix C. O

<2LHP(E)+ QBH\/2dHlog (1 +

Proof of Theorem 2. By taking the union bound over
the dynamic regret of all [T/H epochs, we know that
the following holds with probability at least 1 — 2/T,

[T/H]
D-Regrety = Z D-Regret(&s)
s=1
~ 2d L2H
<2LHP 2T —1 1

where By = VAS+Ry/210g(T[ %) + dlog (1 + 45°).
Ignoring logarithmic factors, we finally obtain that

D-Regret; < O(HPr +dT/VH).
By setting H = H* = |(dT/Pr)?/3|, we achieve an
O(d?/ 3P%/ T2/3) near-optimal dynamic regret. O
5.2 Analysis of Generalized Linear Bandits

We provide proofs of Lemma 2 and Theorem 3.

Proof of Lemma 2. Define the function

t—1

9:(0) = Aeu0 + > p(XT0)X,,

S:to

(19)
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then by the mean value theorem, we know that
gt(at) —9:(0) = Gt(é\t —0;)

where G} = fol Vi (s + (1 — 8)@) ds. Notice that for
any 6, the gradient of g; is

(20)

t—1
Vg (0) = Aepd + > p (XTOXXT = e,Via,
s=to
which clearly implies G; = ¢, V;—1. From the func-
tion (19) and the estimation equation (13), we conclude

that gt(@) — g1(0:) equals to

t—1
_ Z (1(XT0:) = p(XT0)) X+ > naXs = Aepby.
s=tp s=to

Due to the Lipschitz continuity of the link function,

|M(XT@)—M<XT91§)| < ku|<x,67t—9t>|. Meanwhile, from
previous derivations, we have
X0~ 6] E TG (0 B) — u(60))]
t—1
< L||G;! (Z ((X0,) —M(X;r@s))Xs>
s=tg 2
term (a)
T -1 =1 T 1
+ |x Gy (Zs_ton Xs)‘—i— |x G, ()\cuet)|
vorm (5) term (c)

First, term (a) can be bounded as

Lk
—+ Z ”9 - 9p+1||27

Hpto

term

whose proof is basically same as that of Lemma 3 and
can be found in Appendix H of Cheung et al. [2019b].

Then, term (b) can be upper bounded by the self-
normalized concentration inequality [Abbasi-Yadkori
et al., 2011, Theorem 1],

1 t —ty) L2
term (b) < R\/Qlog 5 +dlog (1 + (/\dO)) HxHVtill.

Next, by noticing G; = ¢, V;—1, we obtain that
serm () < Alxlly 1 164l < VASIIx]y -

We compete the proof by combining upper bounds of
all these three terms. O

Proof of Theorem 3. Similar to the proof of Theorem 1,
we know that with probability at least 1 — 2§, dynamic
regret within the epoch & (i.e., D-Regret(€)) is at most

2k2 _ 2
e EapE) + 2k“ﬂH\/Marlog (1 + L H),

Cu Cu Ad

where Bg is defined in (14).

By taking the union bound over all the epochs, we
conclude that dynamic regret is bounded by

2k, 2 I2H
LHPr + Ty | “2log (1
c (k T+ 6H\/H °g< t N ))

which is of order 6(HPT + dT/\/ﬁ). O

6 Empirical Studies

Despite the focus of this paper is on the theoretical
aspect, we present empirical studies to further evaluate
the proposed approach.

Contenders. We study two kinds of non-stationary
environments: the underlying parameter is abruptly
changing or gradually changing. Besides, We compare
RestartUCB to (a) WindowUCB, based on the slid-
ing window least square [Cheung et al., 2019a]; (b)
WeightUCB, based on the weighted least square [Rus-
sac et al., 2019]; (c) StaticUCB, the algorithm designed
for stationary linear bandits [Abbasi-Yadkori et al.,
2011]. In the scenario of abrupt change, we addition-
ally compare with OracleRestartUCB, which knows
the exact information of change points and restarts the
algorithm when reaching a change point.

Settings. In abruptly-changing environments, the
unknown regression parameter 6, is periodically set as
[1,0], [-1,0], [0,1], [0, —1] in the first half of iterations,
and [1,0] for the remaining iterations. In gradually-
changing environments, 6; is moved from [1, 0] to [—1, 0]
on the unit circle continuously. In both scenarios, we
set T = 50,000 and number of arms n = 20. The
feature is sampled from normal distribution N(0,1)
and rescaled such that L = 1. The random noise is
generated according to N'(0,0.1). Since the path-length
Pr is available in the synthetic datasets, as suggested
by the theory, we set the weight v = 1 — (dT'/Pr)~2/3
for WeightUCB, the window size w = | (dT/Pr)?/3] for
WindowUCB, and the epoch size H = | (dT/Pr)?/?] for
RestartUCB. The simulation is repeated for 50 times,
and we report the average and standard deviation.

Results. Figure 2 shows performance comparisons
of different approaches, measured by the (pseudo-)
dynamic regret, in logarithmic scale. In the abruptly-
changing environments, OracleRestartUCB is definitely
the best since it knows exact information of change
points, and StaticUCB ranks the last as it does not
take the non-stationarity into consideration. Restar-
tUCB and WindowUCB have comparable performance,
better than WeightUCB. In the gradually-changing en-
vironments, WeightUCB ranks the first, followed by



A Simple Approach for Non-stationary Linear Bandits

10*
©
)
Q
x
Q
£
]
c
2 ol -
o 10 Static
] Weight
101 —&— Window| |
—e— Restart
—>— Oracle
1072\ L L L L L L | ! !
0 05 1 15 2 25 3 35 4 45 5
Iteration x10*

(a) abrupt change

Dynamic Regret

10*

10%F E

Static
10 Weight | |
—&— Window

—6— Restart

102 ; ! ! ' ! ' ! ! !
0 05 1 15 2 25 3 35 4 45 5
Iteration x10*

(b) gradual change

Figure 2: Comparisons of different approaches in terms of dynamic regret, in logarithmic scale.

WindowUCB and RestartUCB. Nevertheless, as will
be shown later, WeightUCB takes a significantly longer
running time than our approach.

Figure 3 reports the running time. We can see that time
costs of RestartUCB, WindowUCB, and StaticUCB
are basically the same, whereas WeightUCB requires
a significantly longer running time, almost twice the
cost of other contenders. The reason lies in the fact
that WeightUCB algorithm involves the computation
of the inverse of covariance matrix V; € R%? and its
variant V; € R?*?_ while other three methods maintain
and manipulate only one covariance matrix.

From empirical studies, we conclude that RestartUCB
algorithm is more favored in abruptly-changing environ-
ments empirically, highly comparable to WindowUCB.
We note that RestartUCB has an additional advantage
over WindowUCB, RestartUCB supports the one-pass
update without storing historical data, whereas Win-
dowUCB has to maintain a buffer and thus needs to
scan data multiple times owing to the sliding window
strategy. On the other hand, compared with Weigh-
tUCB, our approach only maintains one covariance
matrix and is thus simpler and faster. It is noteworthy
that our approach can be further accelerated by the
recursive least square, which will save the computa-
tion of the inverse of covariance matrix and can be
particularly desired in high-dimensional problems.

7 Conclusion

In this paper, we study the problem of non-stationary
linear bandits, where the unknown regression param-
eter #; is changing over time. We propose a sim-
ple algorithm based on the restarted strategy, which
enjoys strong theoretical guarantees notwithstanding
its simplicity. Concretely, our algorithm enjoys an

Static

[
2.1 29.25 P77 ] weight |

7

Window

[ Restart ||

15.84 15.30 15.46 15.75 15.17 15.21

Time (seconds)

Abrupt Change Slow Change

Figure 3: Comparisons in terms of running time.

O(d*/3(1 4 Pp)Y/3T2/3) dynamic regret, and the rate
is near-optimal, matching the minimax lower bound
up to log T factors. The restarted strategy can be ex-
tended to the non-stationary generalized linear bandits
and also achieves a near-optimal regret. Empirical
studies validate the efficacy of the proposed approach,
particularly in the abruptly-changing environments.

In the future, we would like to study how to design al-
gorithms for non-stationary linear bandits that achieve
rate-optimal dynamic regret without prior information.
Moreover, as mentioned earlier, existing algorithms for
non-stationary generalized linear bandits are inefficient
in the sense that they require to store historical data in
memory to compute the estimator, and we will explore
more efficient algorithms for non-stationary GLB.
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A  Proof of Lemma 3

Proof of Lemma 3. We first prove the upper bound of
A;. The essential proof is actually due to Cheung et al.
[2019a] in analyzing sliding window based approach.
For self-containedness, we restate here in the notations
of our proposed restarted strategy.

t—1
Vil (Z X X7 (0, - 9»)

s=to 2
t—1 t—1
o (z XX (30, —epm))
s=to p=s 2
t—1 P
= Vt:ll <Z ( Z XsXsT(ap - 9p+1))> (21)
p=to s=to 2
t—1 p
< Z Vt:ll( Z XSX;F) (0p — Opt1) (22)
p=tg s=to 2
t—1 p
< Z >\max (Vvtll< Z XSX’SI‘)> ng - 0p+1||2 (23)
=to s=tp
s
< S 16, — Oy ll2, (24)
p=to

where (21) holds by rearranging over the index pair
of (s,p), (22) holds due to the triangle inequality, (23)
and (24) can be obtained by the same argument in
Appendix B of Cheung et al. [2019b]. We thus obtain
the upper bound of A;.

We proceed to prove the upper bound of B;. From
the self-normalized concentration inequality [Abbasi-
Yadkori et al., 2011, Theorem 1], restated in Theorem 5
of Appendix C, we know that

t—1
> nsXs

s=to

—1
t—1

(32) 1/2 —1/2
2 \/21%210g (det(m_l) 6det(/\1) )

_ 2
SR\/Qlogi—l-dlog <1+(t;0)L>,

where the last inequality is obtained from the analysis
of the determinant, as shown in the proof of Lemma 4.

Meanwhile, since V;_1 = A, we know that
1
H)\gtH%/;ll < 1/ Amin(Vi-1)[|A0:][3 < XH)\etHE < \SZ

Therefore, the upper bound of B; can be immediately
obtained by combining the above inequalities. 0

B Bandit-over-Bandits Mechanism
and Proof of Theorem 4

The RestartUCB algorithm requires prior informa-
tion of the path-length Pr, which is generally un-
known. Such a limitation can be avoided by utilizing
the Bandits-over-bandits (BOB) mechanism, proposed
by Cheung et al. [2019a] in designing parameter-free
algorithm for non-stationary linear bandits based on
sliding window least square estimator.

In the following, we first describe how to apply the
BOB mechanism to eliminate the requirement of the
unknown path-length in RestartUCB. Then, we present
the proof of Theorem 4.

B.1 RestartUCB with BOB Mechanism

We name the RestartUCB algorithm with Bandit-over-
Bandits mechanism as “RestartUCB-BOB”, whose
main idea is illustrated in Figure 4.

EXP3 selects H adaptively

A
r N\
RestartUCB(#,)  RestartUCB(H,) . RestartUCB(H, 7.4,)
r A N A Al f—%
L 1 1 1 J
H, 2H, (I7/H)) - 1)H, T

Figure 4: Ilustration of Bandit-over-Bandits mecha-
nism with application to RestartUCB algorithm.

From a high-level view, although the exact value of the
optimal epoch size (or equivalently, the path-length
Pr) is not clear, we can make some random guesses
of its possible value, since the Pr is always bounded.
Then, we can use a certain meta-algorithm to adap-
tively track the best epoch size, based on the returned
reward returned. Specifically, The RestartUCB-BOB
algorithm first sets an update period Hy, and then
runs the RestartUCB with a particular epoch size in
each period, and the epoch size will be adaptively ad-
justed by employing EXP3 [Auer et al., 2002] as the
meta-algorithm. We refer the reader to Section 7.3
of Cheung et al. [2019b] for more descriptions of design
motivations and algorithmic details.

In the configuration of RestartUCB-BOB, we set Hy =
[dv/T] and the pool of epoch sizes J as

J={H; = |(d/(28))** - 27| [i=1,2,--- N},

where N = [In(d'/3T"/2(25)%/3)] + 1.

Denoted by Hpin (Hmax) the minimal (maximal) epoch
size in the pool J, we know that

Hyin = 1(d/(29)%3], Hpax = |dVT| < Ho.  (25)
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B.2 Proof of Theorem 4

Proof of Theorem 4. We begin with the following de-
composition of the dynamic regret.

] =

(X{,0:) — (Xy,04)
t=1
T [T/Ho]l iHo

= Y (X[.6) — Z ST (Xi(HY),00)
t=1 =(i—1)Ho+1
term (i)

[T/Hol iHp
+ Y > (G(HY),6) — Xu(H), 60,),

i=1 t=(i—1)Ho+1

term (ii)

where HT is the best epoch size to approximate the
optimal epoch size H* in the pool J, and H* =
|(dT/(1 + Pr))?/3|. Hence, it suffices to bound terms
(i) and (ii). In the following, we consider two cases,
either (14 Pr) > d='/2T* or (1 4 Pr) < d~'/2T1/4,

Case 1. when (1+ Pp) > d~/2T%/4,

In this case, it is easy to verify that H* < Hp.x and
we thus conclude that H* lies in the the range of
[Hmmin, Hmax|. Furthermore, from the configuration of
the pool J, we confirm that there exists an epoch size
HT € J such that Ht < H* < 2HT. So term (i) can be
upper bounded by

[T/Hol
term (i) <

dT

5( it AT
O(H Pr+ \/ﬁ) (27)
dT )

V2H*
= O(d*PP*T?/3),

O(H Pr+

where (26) is due to Theorem 2 and P; denotes the
path-length in the i-th update period. (27) follows by
summing over all update periods, and the last inequality
holds since the optimal epoch size H* is provably in the
range of [Hpin, Huax] and satisfies HT < H* < 20T,

Next, we bound the term (ii),

term (ii) < O(v/HoNT)
O(d/?T3/%) (28)
< O(d**T*3(1 + Pp)'/?),

\ /\

where the first inequality follows by the same argument
as in the sliding window based approach [Cheung et al.,
2019b, Proposition 1], building upon the regret analysis

of EXP3. In addition, the last inequality holds due to
the fact that (1 + Pr) > d~'/2T"/* implies

dY2T3/4 = g2/3T2/3-1/371/6 < d2/3T2/3(1+PT)1/3.

Hence, by combining the upper bounds of term (i)
and term (ii), we know that the dynamic regret
of RestartUCB-BOB is bounded by O(d2/3T2/3(1 +
Pr)'/3) under the condition of (1 + Pr) > d~ Y274,

Case 2. when (1 + Pr) < d~Y/2TV4,

In this case, we cannot guarantee that the optimal
epoch size H* lies in the range of [Hmin, Hmax], SO we
set H as Hy,

O(dVTPr +d'/2T%/1)
< O(d1/2T3/4)

where the last inequality holds by exploiting the condi-
tion of (14+Pr) < d~Y2T'/*. The result in conjunction
with the upper bound of term (ii) in (28) gives the
5(d1/ 273/4) dynamic regret under this condition.

Finally, note that the dynamic regret of above two
cases can be rewritten in the following unified form,

2

tern (i)+tern (i1) < O(d3T %(max{PT,d*%T%})%).

Hence, we complete the proof of Theorem 4. O

C Technical Lemmas

In this section, we provide several technical lemmas
that frequently used in the proofs.

Theorem 5 (Self-Normalized Bound for Vector-Valued
Martingales [Abbasi-Yadkori et al., 2011, Theorem 1]).
Let {Fi}2, be a filtration. Let {n:}32, be a real-valued
stochastic process such that ny is Fy-measurable and
conditionally R-sub-Gaussian for some R > 0, namely,

A2 R?
VA eR, Elexp(An:)|Fi—1] < exp < 5 ) . (29)

Let {X;}22, be an R¥-valued stochastic process such
that X; is Fy_1-measurable. Assume that'V is a d x d
positive definite matriz. For any t > 0, define

t
Se =Y nXr. (30)
T=1

t
Vi=V+Y X.XT,
T=1
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Then, for any § > 0, with probability at least 1 — &, for
all t >0,

det 7 1/2d t —-1/2
EA e s2R210g< el detl) ) (31)

Lemma 4 (Elliptical Potential Lemma). Suppose Uy =
AI, Ut = Ut—l —|—XtX;T, and ||Xt||2 S L, then

T

1 LT
ZHUt—%XtHz < \/2dTlog (1 + )\d) (32)
t=1

Proof. First, we have the following decomposition,

T 1 _1 T _1 1
U= Uit + X X[ = U2, (I + U 3X X UZDUE .
Taking the determinant on both sides, we get
det(U;) = det(Uy_y ) det(I + U2 X, XTU2),
which in conjunction with Lemma 5 yields
det(Uz) = det(Up—1)(1 + U3 XeI3)
_1
> det(Up—1) exp(|U, 3 X:13/2).

Note that in the first inequality, we utilize the fact that
1+ 2 > exp(x/2) holds for any x € [0,1]. By taking
advantage of the telescope structure, we have

T

_1 det(UT) L2T
2 X% < 2log ——= < 2dlog 1+ =—
10l < 2108 Gty < 2o (1 57).

where the last inequality follows from the fact that
Tr(Ur) < Tr(Up) + L*T = M + L?T, and thus
det(Ur) < (A + L2T/d)4.

Therefore, Cauchy-Schwartz inequality gives,

T T
DU X2 < | T YN0 X3
t=1

t=1

LT
< — .
_\/2dTlog <1+ d >

Lemma 5.

det(I +vvh) =1+ |v|3. (33)
Proof. Notice that

(i) (I +vvh)v = (1 + ||v||3)v, therefore, v is its
eigenvector with (1 + ||v||3) as the eigenvalue;
(i) (I +vvT)vt =vt, therefore, v L v is its eigen-

vector with 1 as the eigenvalue.

Consequently, det(I + vvT) =1+ |v|2. O
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