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Abstract

Performative prediction is a framework to cap-
ture the endogenous distribution changes result-
ing from the reactions of deployed environments
to the learner’s decision. Existing results re-
quire that the collected data are sampled from the
clean observed distribution. However, this is of-
ten not the case in real-world applications, and
even worse, data collected in open environments
may include corruption due to various undesir-
able factors. In this paper, we study the entangle-
ment of endogenous distribution change and cor-
ruption in open environments, where data are ob-
tained from a corrupted decision-dependent dis-
tribution. The central challenge in this problem
is the entangling effects between changing dis-
tributions and corruptions, which impede the use
of effective gradient-based updates. To overcome
this difficulty, we propose a novel recursive for-
mula that decouples the two sources of effects,
which allows us to further exploit suitable tech-
niques for handling two decoupled effects and
obtaining favorable guarantees. Theoretically,
we prove that our proposed algorithm converges
to the desired solution under corrupted observa-
tions, and simultaneously it can retain a compet-
itive rate in the uncorrupted case. Experimental
results also support our theoretical findings.

1 INTRODUCTION

Distribution change is one of the fundamental challenges
in modern machine learning, which has drawn increas-
ing attention in recent years from both empirical and the-
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oretical aspects [Sugiyama and Kawanabe, 2012, Bengio
et al., 2021], and is one of the key requirements towards
open-environment machine learning [Zhou, 2022]. A vari-
ety of factors can affect the data distribution. On the one
hand, data distribution exogenously evolves due to the non-
stationarity exhibited in the data collected environments.
On the other hand, the data-generating distribution may
also evolve endogenously due to the interactions between
the learner and the environments. Besides, it is also partic-
ularly often the case in real-world applications that the col-
lected data can be corrupted due to unexpected accidents.
Take traffic prediction as a real-world example: In a travel,
tourists may decide the route they take referring to the re-
sults of traffic prediction models. On the one hand, the es-
timated time of arrival may change as a result of exogenous
environment change such as weather change. On the other
hand, the observed data distribution may also change due
to endogenous reasons caused by the decision system itself:
if a route is predicted to have a good traffic, more people
may decide to take the route, then the mostly-selected route
will actually appear to be congested. Besides, the GPS sig-
nal sometimes gets lost by accident, leading to extremely
erroneous predictions.

Despite numerous progresses have been achieved in deal-
ing with exogenous distribution change via the non-
stationary online learning framework [Hazan and Se-
shadhri, 2009, Daniely et al., 2015, Besbes et al., 2015,
Zhang et al., 2018, Zhao et al., 2020, 2021, 2022], the
endogenous distribution change is generally less explored.
A considerable recent advance called performative pre-
diction (or sometimes called decision-dependent learning)
was proposed by Perdomo et al. [2020], with the endoge-
nous distribution change modeled as a decision-dependent
mapping D(x) from model parameters to data distribu-
tions. Those studies offer a simple abstraction for decision-
theoretic learning, with a natural assumption which states
that the endogenous distribution change is mild with re-
spect to the update of model parameters [Perdomo et al.,
2020, Mendler-Dünner et al., 2020]. By such, the formula-
tion shares many benign properties with the problems hav-
ing unchanged data distributions, so it is possible to adapt
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the algorithms designed for stationary problems to solve
those decision-dependent optimizations [Mendler-Dünner
et al., 2020, Drusvyatskiy and Xiao, 2022].

However, performative prediction is far from satisfaction
in real-world open environments due to the extensively ex-
istence of other sources that affect the data distributions,
especially the entanglement of corruptions. Dealing with
corruptions is challenging from a theoretical view [Tukey,
1960, Diakonikolas et al., 2021], as corruptions are signif-
icantly different from the clean data such that even a tiny
fraction of corruptions sharply affect the true data distribu-
tion. Furthermore, corruptions can be even more challeng-
ing to handle when it is entangled with endogenous dis-
tribution change, since the pernicious composition of both
factors severely ruins the nice properties of the problem and
leads to failure of existed methods. To this end, it is defi-
nitely important to design robust open-environment learn-
ing methods to deal with endogenous distribution change
with presence of corruptions.

In this paper, we study the problem described above,
which is formulated as a time-varying stochastic optimiza-
tion over a distribution consisting of a decision-dependent
data distribution and a small fraction of unknown corrup-
tions. The central challenge comes from the entanglement
between endogenous distribution change and corruptions,
which obstructs the attempts of using effective gradient-
based updates. To overcome this difficulty, we present a
novel recursive formula that disentangles the two sources
of effects. In light of that, we can further use robust esti-
mation as a means of resolving the problem of corruptions,
and then derive a novel gradient-based algorithm with ro-
bust estimation as a sub-routine such that the algorithm up-
dates by the robustly-estimated gradients rather than the
observed stochastic gradients. We thus achieve the first
provably convergent algorithm to deal with endogenous
distribution change with presence of corruptions. More-
over, when there is no corruption (which the learner is un-
aware of), it gracefully achieve the same convergence rate
compared to algorithms specifically designed for uncor-
rupted decision-dependent learning scenarios, up to loga-
rithmic factors in the number of iterations. We also conduct
numerical experiments to support our theoretical findings.

We finally highlight our technical innovation. Due to the
entanglement of endogenous distribution change and cor-
ruptions as well as the fact that their effects on the dynam-
ics of gradient-based methods are completely different, ex-
isting frameworks of performative prediction fail to handle
them simultaneously. We break this obstruction by present-
ing a novel recursive formula for the analysis, showing that
the effects of endogenous distribution change and corrup-
tions can be disentangled. Based on this observation, we
are able to adopt recent advances of robust estimation to
construct a gradient estimator provably robust to arbitrary
corruptions, and then design gradient-based algorithm with

convergence guarantees. Our result also enables the usage
of other robust estimators and gradient-based optimization
techniques, which indicates the generality of our approach.

The rest of the paper is organized as follows. We discuss
related work in Section 2, and formulate the problem in
Section 3. Our main results are presented in Section 4, with
discussions in Section 5. Section 6 reports the empirical
results. We finally conclude the paper in Section 7. Due to
the page limits, we defer all the proofs to the appendices.

2 RELATED WORK

Our work fits in the broader literature of open-environment
machine learning (open ML) [Zhou, 2022], in which devel-
oping algorithms robust to distribution changes is one of
the key requirements. As our paper focuses on the entan-
gling effects of endogenous distribution changes and cor-
ruptions, in the following, we briefly discuss the closely
related topics, including performative prediction and learn-
ing in the presence of corruptions.

Performative prediction. The performative prediction
framework introduced by Perdomo et al. [2020] mod-
els an endogenous reason of distribution change, where
the data distribution may depend on the current predic-
tive model. They also propose algorithms that converge
to stable points, which exhibits the equilibrium for per-
formative prediction and thus becomes crucial and desir-
able. Mendler-Dünner et al. [2020] first prove the con-
vergence of stochastic gradient methods, and Drusvyatskiy
and Xiao [2022] subsequently show that a variety of popu-
lar gradient-based algorithms in the performative predic-
tion setting can be viewed as solving a stochastic opti-
mization problem with a biased gradient oracle. The re-
lationship between stable points and the optimal solution is
studied by Perdomo et al. [2020], and some works explore
the conditions under which we can compute such optimal
points directly [Miller et al., 2021, Izzo et al., 2021]. There
are also explorations on the phenomenon of performativity
in different scenarios such as multi-player games [Narang
et al., 2022], bandits [Jagadeesan et al., 2022] and state-
dependent learning [Brown et al., 2022, Li and Wai, 2022a,
Izzo et al., 2022, Mandal et al., 2022]. These works on
performative prediction set up an idealized abstraction to
study a single source of distribution change, while our cur-
rent work takes a step beyond and achieves a novel method
to handle an instance of entangled factors of distribution
change in open environment.

Learning in the presence of corruptions. Learning in
the presence of corruptions is a ubiquitous challenging
problem in machine learning. The central step in dealing
with the problem is to obtain a robust estimation, which
has been systematically studied since the pioneering work
of Tukey [Tukey, 1960]. While many popular robust es-
timators has been proposed [Tukey, 1975, Fischler and
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Bolles, 1981, Huber, 1981, Hampel et al., 1986, Breunig
et al., 2000, Owen, 2007], they either need intractable com-
putation time or can tolerate a very limited fraction of
noise in high-dimensional datasets due to their exponen-
tial dependency on data dimension. Two celebrated re-
cent advances in this topic independently propose different
polynomial-time algorithms for the problem of robust es-
timation in high dimension [Diakonikolas et al., 2016, Lai
et al., 2016], and many follow-up works employ the frame-
works to tackle the problem of robust estimation in specific
scenarios [Yin et al., 2018, Lykouris et al., 2018, Cheng
et al., 2018, Liu et al., 2021, Bakshi et al., 2022].

Among the various applications of the recently proposed
frameworks, the ones that mostly related to our work is in
a line of research that leverage robust statistics to develop
optimization methods which is robust to arbitrary corrup-
tions. Diakonikolas et al. [2019] propose a meta algorithm
for stochastic optimization that can convert a black-box
stochastic optimization algorithm into a robust algorithm
by alternatively invoking the black-box algorithm and ap-
plying the robust estimation method to detect and filter the
corrupted fraction of data. Prasad et al. [2020] propose a
robust gradient descent for the problem of offline optimiza-
tion, which evenly allocates the samples in hand to each it-
eration, and uses a blackbox estimator to calculate gradient
estimations of each round that are robust to corruptions.
Although sharing several ideas with Prasad et al. [2020],
our work is significantly different from theirs for the rea-
son that they propose a passive algorithm which is robust
to corruptions for offline static optimization problems, and
in this paper we design a robust algorithm that interactively
runs in a more realistic open-environment setting.

3 PROBLEM FORMULATION

In this section, we present our problem formulation for
open-environment learning with presence of corruptions.

Environment model. Denote Z as the sample space and
X ⊆ Rd a convex set of model parameters. We formulate
the problem open-environment learning with presence of
corruptions as a T -round interactive protocol. Before the
interactions, the learner specifies a loss function ℓ(z;x) to
evaluate the performance of the deployed model x when
working on data point z. At interaction round t ∈ [T ], the
learner first collects some data Zt = {zt,1, . . . , zt,nt

} i.i.d.
sampled from current data distribution Pt, then uses the
information observed so far to obtain a new model xt+1,
and deploys the model into the environment.

The key ingredient to model the pattern of distribution
change of our problem is a sequence of data distributions
{Pt}Tt=1. We assume that the distributions have the form

Pt = (1− ϵ)D(xt) + ϵQ,

in which ϵ denotes the proportion of corruptions, D(·) is
a decision-dependent mapping from model parameters to
data distributions that characterizes the strength of the en-
dogeneity of the environment, and Q is an arbitrary distri-
bution served as corruptions on observed data distribution.

Performative risk. When a model x is deployed to the en-
vironment, the data distribution evolves as a reaction to the
deployment. Therefore, the performance of the deployed
model x should be evaluated on the uncorrupted distribu-
tion D(x) induced by the deployed model itself, resulting
in the following notion called performative risk:

PR(x)
def
= Ez∼D(x) [ℓ(z;x)] .

However, the performative risk proposed above is gener-
ally hard to optimize since it is generally non-convex, un-
less making strong assumptions on the distribution map-
ping [Miller et al., 2021, Izzo et al., 2021].

Remark 1. Note that the risk focuses on D(x) and rules
out the corruptions Q, since we shouldn’t blame the algo-
rithm when faults essentially come from the environment.
Again take the task of traffic prediction introduced in Sec-
tion 1 as an example, we would not expect our algorithm to
perform well when the GPS signal accidentally lost. There-
fore, the proposed risk is natural in real-world applications.

Algorithmic measure. As the minimizer of the perfor-
mative risk is generally hard to find, we seek to obtain an
alternative solution. An appealing solution in the decision-
dependent setting is the one that achieves minimal risk on
the distribution induced by itself, which leads to the fol-
lowing definition of performatively stable point [Perdomo
et al., 2020, Mendler-Dünner et al., 2020]:

Definition 1 (Performatively stable point). A point x̄ is
said to be a performatively stable point if

x̄ ∈ argmin
x∈X

Ez∼D(x̄) [ℓ(z;x)] .

It is natural to aim at finding performatively stable points:
Once a stable point is deployed, we have no reason to up-
date the model any more, since the collected data already
indicates the optimality of current model. Performatively
stable point is sure to be uniquely exist under fairly weak
assumptions [Perdomo et al., 2020], and the goal of the
learner is to find such stable point rather than achieving per-
formatively optimal ones. Prevalent performance metrics
in the decision-dependent optimization literature includes
optimizer distance ∥xT − x̄∥ and function-value distance
PR(xT ) − PR(x̄), and we focus on the optimizer distance
∥xT − x̄∥2 equipped with the Euclidean norm.

Remark 2. The formulation subsumes the problem for-
mulation of statistical risk minimization and the performa-
tive prediction. Specifically, we can recover the performa-
tive prediction problem by setting the level of corruptions
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ϵ = 0, and can further recover statistical risk minimization
problem by letting D(·) to be the constant mapping.

We finally introduce a couple of assumptions on the loss
function and the distribution mapping:

Assumption 1 (Smoothness). The loss ℓ(z;x) is L-smooth
in x for all z ∈ Z , and the map z 7→ ∇xℓ(z;x) is β-
Lipschitz continuous for all x ∈ X .

Assumption 2 (Strong convexity). The loss ℓ(z;x) is α-
strongly convex in x for all z ∈ Z .

Remark 3. Assumptions 1 and 2 are common in the con-
text of decision-dependent optimization and its applica-
tions [Perdomo et al., 2020, Drusvyatskiy and Xiao, 2022,
Miller et al., 2021, Narang et al., 2022, Li and Wai, 2022b],
and the assumptions hold for most of the commonly-used
loss functions including the quadratic loss, the regularized
logistic loss, and many other losses with bounded values.

Assumption 3 (Lipschitz distribution). There exists γ > 0
such that ∀ x, y ∈ X ,

W1(D(x),D(y)) ≤ γ · ∥x− y∥2 ,

where

W1(P,P ′) = sup
g∈Lip1

{Ez∼P [g(z)]− Ez′∼P′ [g(z′)]}

is the Wasserstein-1 distance.

Remark 4. Assumption 3 is critical yet natural. On the
one hand, it is obvious that one cannot obtain any guaran-
tee on the convergence of any algorithm without making
regularity assumptions on distribution mapping D(·). On
the other hand, it is reasonable to quantify the regularity of
distribution mapping by assuming Lipschitz continuity in
the decision-dependent setting, due to the intuition that de-
ploying similar models results in similar observations [Per-
domo et al., 2020, Mendler-Dünner et al., 2020].

4 ALGORITHM AND CONVERGENCE
GUARANTEES

In this section, we first give an in-depth analysis on the cen-
tral challenge of the problem, then present our algorithm
for the formulated problem with its theoretical guarantees.

4.1 Challenge and Disentangled Recursive Formula

In the rest of the paper, let fy(x) = Ez∼D(y) [ℓ(z;x)] de-
note the expected performance of model x evaluated on
the distribution induced by an alternative model y. We
always use the notion ∇ℓ(z;x) to denote taking gradi-
ent with respect to the model parameters x, then we have
∇fy(x) = Ez∼D(y) [∇ℓ(z;x)], and specifically, ∇fx(x) is
the gradient of function x 7→ fx(w) evaluated at w = x.
Note that fy(x) is smooth and strongly convex on x as im-
mediate consequences of Assumptions 1 and 2.

At round t, the learner first collects a sample Zt = {zit}
nt
i=1

from current data distribution Pt = (1 − ϵ)D(xt) + ϵQ,
then compute the gradients St = {∇ℓ(zit;xt)}nt

i=1. Denote
g̃t as the gradient estimation according to St, we focus on
the learner’s update rules that have the form

xt+1 = argmin
x∈X

⟨g̃t, x⟩+
1

2ηt
∥x− xt∥22 , (⋆)

where ηt is the step size. The goal of the learner is to output
a model xT+1 after a sequence of interactions, which min-
imizes the distance between xT+1 and the performatively
stable model x̄ in the sense of the Euclidean norm.

The central challenge in designing algorithms with conver-
gence guarantee is to deal with the entanglement of endoge-
nous distribution change and corruptions, which creates ex-
tra obstacles beyond the respective difficulties of handling
endogenous distribution change and corruptions: On the
one hand, it is generally hard to handle endogenous distri-
bution change under corruptions since even a tiny propor-
tion of corruptions sharply exaggerate the intensity of en-
dogenous distribution change. On the other hand, it is also
difficult to deal with corruptions in the decision-dependent
setting, as the persistent deviation of observed distribu-
tions due to endogenous distribution change flaws the usage
of robust estimation which requires unbiased observations
on uncorrupted distributions. Therefore, it is necessary to
work out the true pattern of the entanglement of two effects
at the first step.

Moreover, it is technically non-trivial to derive controllable
quantities for both effects simultaneously, due to their sig-
nificantly different characterizations: The endogenous dis-
tribution change is characterized intuitively by the included
angle between the observed gradient at current distribution
and the gradient at the distribution induced by stable point,
and is controlled by a small multiplicative factor related to
step size [Mendler-Dünner et al., 2020, Drusvyatskiy and
Xiao, 2022]. The effect of corruptions is usually quantified
via the level of corruptions, and can be partially dissolved
by algorithmic efforts which result in a concentration to
the uncorrupted mean with high probability [Diakonikolas
et al., 2016, Lai et al., 2016]. Therefore, the technical dif-
ficulty in our problem is to seek for quantities that (1) are
sufficient to characterize the disparate effects of endoge-
nous distribution change and corruptions, and (2) are able
to be controlled within theoretical and algorithmic efforts.

Fortunately, we prove a novel recursive formula that meets
both requirements identified above, and even better, our key
lemma disentangles the two sources of effects to some ex-
tent, thus alleviate subsequent algorithmic demands to ob-
tain convergent results. The result is summarized in the
following lemma, whose proof is deferred in Appendix B.

Lemma 1 (Disentangled recursive formula). Suppose As-
sumptions 1,2 and 3 hold, the updates (⋆) are applied with
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gradient sequence {g̃t}, and the step-size sequence {ηt}
satisfies ηt < 1/(2L). Then for any λt > 0, the iterates
{xt} generated by the updates (⋆) satisfy

(1 + αηt) ∥xt+1 − x̄∥22

≤
(
1 +

ηt
λt

− αηt(1− 2ρ)

)
∥xt − x̄∥22 (a)

+

(
ηtλt +

2η2t
1− ηtL

)
∥g̃t −∇fxt

(xt)∥22 (b)

+
2η2t

1− ηtL
∥∇fxt

(xt)−∇fx̄(xt)∥22 , (c)

where ρ = βγ
α quantifies the strength of endogenous distri-

bution change to some extent.

Generally speaking, Lemma 1 tells that the deviation of it-
erate xt+1 can be recursively bounded by three terms:

(a) the deviation of the latest iterate xt multiplies some
coefficients related to the strength of endogenous dis-
tribution change,

(b) the bias of gradient estimation due to stochastic noise
and the existence of corruptions, and

(c) the bias of the observed gradient comparing to the true
gradient due to endogenous distribution change.

We can see that the effect of endogenous distribution
change and corruptions are now disentangled in our
Lemma 1, except for an implicit variable λt that can be
adaptively adjusted in further analysis and the step size ηt
that can be carefully tuned. In light of the presented lemma,
in order to obtain a convergent algorithm, it suffices to con-
trol the bias of gradient estimation in the presence of cor-
ruptions in term (b), and then properly set the step-size
sequence to balance the effect of endogenous distribution
change and unresolved corruptions.

However, the upper bound of gradient estimation is impos-
sible to obtain without extra algorithmic efforts: Due to
the arbitrariness of corruptions, the gradient-based method
probably diverges if the observations include corruptions at
any iteration. Since the level of corruption is ϵ, the proba-
bility that no corruption is observed during an optimization
process with T iterations is only (1 − ϵ)

∑T
t=1 nt , exponen-

tially decaying with respect to the number of observations,
which is far from satisfaction. Therefore, we seek for an
estimation g̃t from a set of corrupted observations

St = {∇ℓ(z1t ;xt),∇ℓ(z2t ;xt), · · · ,∇ℓ(znt
t ;xt)}

where zit ∼ Pt = (1 − ϵ)D(xt) + ϵQ, which is robust to
arbitrary kinds of corruptions Q.

4.2 Robust Gradient Estimator

The desired gradient estimator in our solution should have
three properties: First, it should be robust against arbitrary

corruptions due to the random nature of corruptions in re-
ality. Second, it should be computationally efficient in high
dimension due to the practical demand in machine learning
literature. Third, it is better to make as relaxed assumptions
on uncorrupted distributions as possible, due to a natural
expectation of the algorithm to solve as wide a range of
problems as possible. We investigate a broad range of ro-
bust estimators to seek for the one that is the most suitable
to meet our demands.

While extensive studies have shown that median-based ro-
bust estimators are effective and efficient in low dimension,
they either suffer a high failure probability or are com-
putationally intractable in high-dimensional tasks [Tukey,
1975, Rousseeuw, 1985, Diakonikolas et al., 2021]. Re-
cent advances have design computationally efficient algo-
rithms for mean estimation under the Huber’s contamina-
tion model [Diakonikolas et al., 2016, Lai et al., 2016],
with further elaborations into the scenario of stochastic op-
timization, which is more relevant to our work [Diakoniko-
las et al., 2019, Prasad et al., 2020].

Indeed, both works of Prasad et al. [2020] and Diakoniko-
las et al. [2019] enjoy favorable theoretical guarantees, but
the work of Prasad et al. [2020] brings us more inspira-
tion. In decision-dependent literature, the gradient in cur-
rent round is available only after deployment. The work
of Prasad et al. [2020] can serve as a plug-in robust esti-
mator at every round, while the one of Diakonikolas et al.
[2019] requires the data to be collected in advance, which
does not meet this particular requirement. As a result, we
propose Algorithm 1 for gradient estimation task by adopt-
ing the robust estimation techniques of Prasad et al. [2020].

The proposed algorithm builds upon the fact that one-
dimensional robust estimation is relatively easy, and the in-
sight of Prasad et al. [2020] showing that the main effect of
the corruptions are actually low-dimensional, and is exactly
lying in the subspace attached with the largest singular val-
ues of the covariance matrix. Based on such observations,
the algorithm firstly removes the gross corrupted examples
with exceptionally large norms, then apply singular value
decomposition to identify the directions in which the cor-
ruptions take large effect, and recursively invoke the same
process to the subspaces that span by the top directions,
while using a simple mean estimator in the orthogonal sub-
spaces that span by the remaining directions. Before pre-
senting the theoretical results of Algorithm 1, we introduce
the following moment assumptions on the uncorrupted dis-
tributions D(x):
Assumption 4 (Bounded variance). The random variable
G = ∇ℓ(z;x) where z ∼ D(x) have uniformly bounded
second moments. In other words, there exists a constant σ2

such that for all x ∈ X ,

Ez∼D(x) ∥∇ℓ(z;x)−∇fx(x)∥22 ≤ σ2 .

Assumption 5 (Bounded fourth moment). The random
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Algorithm 1: GRADIENTESTIMATOR

Input : gradient sample S = {∇ℓ(zi;x)}ni=1,
level of corruption ϵ, dimension d,
confidence δ

for i = 1 to d do
Let Si be the samples with only the i-th

coordinates;
Let ci be the median of Si;

end
Let B be the smallest ball centered at (ci)di=1 that
contains (1− ϵ)2 fraction of S;

Let S̃ = S ∩B;
if d = 1 then

return MEAN(S̃)
end
Let Σ be the covariance matrix of S̃;
Let V be the span of the top d/2 principal
components of Σ and W be its complement;

Let SV be the projection of S̃ onto V ;
Let SW be the projection of S̃ onto W ;
Let µ̂V = GRADIENTESTIMATOR(SV , ϵ, d/2, δ);
Let µ̂W = MEAN(SW );
return µ̂ = (µ̂V , µ̂W )

variable G = ∇ℓ(z;x) where z ∼ D(x) have uniformly
bounded fourth moments. In other words, there exists a
constant C4 such that the following condition

Ez∼D(x)

[
⟨∇ℓ(z;x)−∇fx(x), v⟩4

]
≤

C4 Ez∼D(x)

[
⟨∇ℓ(z;x)−∇fx(x), v⟩2

]2
holds uniformly for all unit vector v and x ∈ X .
Remark 5. The assumptions on the uncorrupted distribu-
tions D(x) are reasonable. Specifically, Assumption 4 is
common in the context of stochastic optimization, and As-
sumption 4 and 5 are in fact weaker assumptions compar-
ing to other common assumptions in this literature [Cutler
et al., 2021]. For example, the family of sub-Gaussian dis-
tributions all satisfy our moment assumptions.

The following restatement of an important result in Prasad
et al. [2020] shows that with appropriate hyperparameters,
the output of Algorithm 1 is close to the true gradient mean
in the sense of Euclidean norm with high probability.
Lemma 2 (Lemma 1 of Prasad et al. [2020]). Suppose As-
sumption 4 and 5 hold for D(x), then there exists a posi-
tive constant C > 0, such that given S = {∇ℓ(zi;x)}ni=1

where {zi}ni=1 are i.i.d. sampled from distribution P =
(1− ϵ)D(x) + ϵQ, Algorithm 1 returns an estimate g̃ such
that with probability at least 1− δ,∥∥g̃ − Ez∼D(x)[∇ℓ(z;x)]

∥∥
2
≤

C
(√

ϵ+ γ(n, d, δ, ϵ)
)
σ
√
log d ,

where

γ(n, d, δ, ϵ) =

(
d log d log(n/(dδ))

n

)3/8

+

ϵd2 log d log
(

d log d
δ

)
n

1/4

.

The full proof of Lemma 2 is in [Prasad et al., 2020,
Lemma 1] with different notations, and we provide a
sketch in Appendix C. Generally speaking, with the help
of Lemma 2, we can bound the error of gradient estimation
in the sense of Euclidean norm given enough samples.

Moreover, Algorithm 1 is robust to misspecification, i.e., it
remains effective even if we only know an upper bound of
the true corruption ratio ϵ′ ≥ ϵ. Indeed, we can convert the
underlying problem (1−ϵ)D(x)+ϵQ to (1−ϵ′)D(x)+ϵ′Q′

with a new corrupted component Q′ ≜ (1− (ϵ/ϵ′))D(x)+
(ϵ/ϵ′)Q. It is easy to verify that Algorithm 1 retains conver-
gence when working against Q′ given ϵ′, at an expense of
higher sample complexity (by replacing ϵ by ϵ′ in the theo-
retical results) due to misspecification. We further conduct
experiments to verify our claim in Section F.

Inspired by Lemma 1 and Lemma 2, we can first collect a
batch of examples, then invoke Algorithm 1 to get an esti-
mation with small deviation as in term (b) of Lemma 1.

4.3 Overall Algorithm

Now we are ready to propose the overall algorithm RPGD
for open-environment learning with presence of corrup-
tions. At each round t, our Algorithm 2 first collects a sam-
ple of size nt from current distribution Pt = (1−ϵ)D(xt)+
ϵQ, then applies Algorithm 1 as a sub-routine to compute
g̃t as an estimation of current gradient mean, after that con-
ducts gradient descent using the estimated gradient, and fi-
nally deploies the updated model xt+1 to the environment.

Algorithm 2 enjoys the following convergence guarantee,
whose proof is in Appendix D. We will present in-depth
discussions on the theorem in next section.
Theorem 3. Suppose Assumptions 1, 2, 3, 4 and 5 hold,
also suppose the level of corruption ϵ < 1/(C2 log d)
where C is the same constant as in Lemma 2, and we are
in the regime ρ = βγ/α < 1. Define α̂ = α − βγ, set
ηt = η ≤ 1/

(
4β2γ2/α̂+ 2L

)
and set

nt = n =
16d2 log d

A4
log

(
dT log d

A8/3δ

)
where A = 1

2

(
1/(C

√
log d)−

√
ϵ
)
. Then we have with

probability at least 1− δ,

∥xT+1 − x̄∥22 ≤
(
1− α̂η

3

)T

∥x1 − x̄∥22 +
2 + 8η

α̂
σ2 .
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Algorithm 2: RPGD
Input : number of iterations T , step size sequence

{ηt}Tt=1, sample size sequence {nt}Tt=1,
contaminated level ϵ, dimension d,
confidence δ

Initialize x1 and deploy x1 to the environment;
for t = 1 to T do

Collect Zt = {zit}
nt
i=1 from current Pt;

Let St =
{
∇ℓ(zit;xt)

}nt

i=1
;

Let g̃t = GRADIENTESTIMATOR(St, ϵ, d, δ);
Let
xt+1 = argminx∈X ⟨g̃t, x⟩+ 1

2ηt
∥x− xt∥22;

Deploy xt+1 to the environment;
end
return xT+1

5 DISCUSSIONS

In this section, we discuss our theoretical results at length.
In detail, we analyze the dependency of different important
quantities that affect the performance of our algorithm, and
compare the result to gradient-based algorithms designed
for uncorrupted settings. Throughout the section, we use
the notation Õ(·) to ignore the lower order dependency of
variables that appears inside the notation, and specifically,
Õ(log T ) implies that the dependency on the number of
deployments T is no more than O(polylog(T )).

Convergence rate. We first analyze the convergence rate
of the algorithm with respect to the number of deployments
T . The following corollary is a direct consequence with
suitable step-size tuning on Theorem 3, whose proof can
be found in Appendix E.

Corollary 4. There exists step size η such that the follow-
ing holds with probability at least 1− δ:

∥xT+1 − x̄∥22 ≤ 2σ2

α̂
+O

(
log T

T

)
.

Corollary 4 tells that the deviation of the last iterate xT+1

converges to some unavoidable constant 2σ2/α̂ in the
sense of Euclidean norm at rate O(log T/T ). The unavoid-
able constant comes from the malignant property of cor-
ruptions which leads to a biased gradient estimation, thus
cannot be removed by decaying step size nor similar opti-
mization techniques. Since the sample size at each round
in Theorem 3 is set to be O(log T ), we deduce that our al-
gorithm achieves Õ(1/N) convergence rate provided that a
total number of N samples has been collected, up to some
logarithmic factors.

Comparison to uncorrupted setting. Stochastic gradi-
ent methods have been extensively explored in the context
of performative prediction [Mendler-Dünner et al., 2020,

Drusvyatskiy and Xiao, 2022], and the main finding is that
the iterates converge to the stable point at a rate of O(1/T )
in expectation. We give the following delicate comparison
between their results and the one proposed in our work.

On the one hand, the two bounds are not directly compa-
rable because they lie in different setting and rely on dif-
ferent assumptions. Besides, our method exhibit a differ-
ent type of convergence: we show in Corollary 4 that the
iterates of our method concentrates into a small neighbour-
hood of stable point with high probability, while Corollary
7.4 of Drusvyatskiy and Xiao [2022] tells that the iterates
of stochastic gradient method converges to stable point in
expectation. On the other hand, the main advantage of
our method is that it still works well in uncorrupted set-
ting even if we are unaware of the absence of corruptions,
while stochastic gradient methods fails in corrupted prob-
lems, which will be empirically verified in next section.

Dependency on d and ϵ. Now we discuss the depen-
dency of sample complexity nt on the dimension d of
the model parameters, and the level of corruptions ϵ.
Our Theorem 3 requires nt = Õ(d2A−4) where A =
1
2

(
1/(C

√
log d)−

√
ϵ
)

is the gap between the level of cor-
ruptions and the maximal tolerance of corruptions of the
algorithm. We remark that the sample complexity of our
algorithm have a low dependency on parameters d and ϵ.

Efficiency. We finally analyze the time complexity of our
algorithm with respect to data dimension d and the num-
ber of deployments T . Since the algorithm contains a same
estimation process (Algorithm 1) applying on nt = n =
Õ(d2) samples and a step of gradient descent that can be ef-
ficiently conducted at each round, we only analyze the time
complexity of the gradient estimator, and the time com-
plexity of the overall algorithm multiplies by the number
of deployments T . The gradient estimation process is re-
cursively executed on the feature spaces with sequentially
halving dimensions, and each execution consists of two
sub-routines: filtration and eigenvalue decomposition. The
filtering operation can be implemented via sortings in each
dimension, yielding an O(nt log nt) = Õ(d2 log T ) time
complexity, and the cost of the eigenvalue decomposition
of a d×d matrix is well-known to be O(d3). Therefore, the
time complexity of each call of Algorithm 1 is Õ(d3 log T ),
which proves that our Algorithm 2 is efficient with respect
to data dimension d and the number of deployments T .

6 EXPERIMENTS

We examine the effectiveness of our proposed algorithm
and complement our theoretical findings by empirical eval-
uations. Specifically, we conduct empirical studied on syn-
thetic data to verify that our method: (1) has a competi-
tive performance in absence of corruptions, and (2) con-
centrates to a neighborhood of stable point while classi-
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Figure 1: Error versus number of deployments for our algorithm and two benchmark algorithms BGD and SGD on synthetic
problems. Specifically, (a) and (b) are the results of mean estimation with µ = 1d/

√
d and Σ = 0.1Id, and (c) is the result

of regularized logistic regression problem with µ = 1d/
√
d and Σ = 25Id, where 1d and Id respectively denote all one’s

vector and identity matrix. Each experiment is repeated 20 times and we display 95% bootstrap confidence intervals.

cal gradient-based methods do not. For simplicity, we fo-
cus on the unconstrained problems, in which our gradient-
based update formula is identical to a step of gradient de-
scent using g̃t. We compare our algorithm and two pop-
ular gradient-based algorithms in performative prediction,
whose update formulas are listed below:

• RPGD (ours):

xt+1 = xt − ηtg̃t;

• Stochastic gradient descent (SGD):

xt+1 = xt − ηtgt;

• Batched gradient descent (BGD):

xt+1 = xt −
ηt
nt

nt∑
i=1

git.

Specifically, g̃t = GRADIENTESTIMATOR(St, ϵ, d, δ) as is
declared in Algorithm 2, git = ∇(zit;xt) ∈ St and gt is a
randomly drawed stochastic gradient in St.

The experiments are conducted on two different problems
with various levels of corruptions ϵ. The step size se-
quences of all methods are identically set to be ηt =
1/(γt + 8/γ) according to [Mendler-Dünner et al., 2020,
Theorem 3.2], which also satisfies the condition in our The-
orem 3. We set the sample size collected by our method
at each round according to Lemma 2 to ensure deviation of
gradient estimation at each round at most σ with probability
at least 1−δ/T , and we choose δ = 0.8 in our method. We
only present some of the experimental results due to space
limit. More results can be found in Appendix F for sim-
ilar phenomenon observed in more severe environments,
including larger levels of corruptions, heavy-tailed corrup-
tions and the existence of misspecification.

6.1 Mean Estimation

Mean estimation on a decision-dependent Gaussian distri-
bution is a commonly-used benchmark problem in the per-
formative prediction literature, with adaptations in differ-
ent applications [Mendler-Dünner et al., 2020, Li and Wai,
2022b]. Consider the problem of mean estimation on a cor-
rupted d-dimension Gaussian distribution that evolves with
respect to the change of the learner’s estimation, and the
aim of the learner is to minimize the expected square loss
ℓ(z;x) = 1

2 (z − x)2 where z ∼ D(x) = N (µ + γx,Σ).
It is easy to verify that the strongly-convexity and smooth-
ness coefficients are α = β = 1 in this problem. Simple
calculation shows that a unique performatively stable point
exists as x̄ = µ

1−γ when γ < 1. We fix γ = 0.2 in exper-
iment to ensure the existence of a unique stable point. We
set Q = N (0d, d

2Σ) to simulate the corruptions, where
d is the dimension of Gaussian distribution and 0d and Id
denote the all zero’s vector and the identity matrix. We
choose d = 20 in our experiment.

We repeatedly run each algorithm for 20 times with iden-
tical initial conditions (and independent samples in each
trial), and compute the error that measures the distance be-
tween iterations xt of the algorithm and the performatively
stable point x̄. Figure 1a (for uncorrupted case) and Fig-
ure 1b (for corrupted case) demonstrate the average error
among repetitions. The results show that our method suc-
cessfully filter the proportion of corruptions and is conver-
gent when ϵ > 0, and it still retains a competitive perfor-
mance in the uncorrupted case (ϵ = 0). By contrast, SGD
and BGD fail to converge to stable point when ϵ > 0.

We also complement the experimental results on the task of
mean estimation by conducting on more levels of corrup-
tions, as well as introducing more severe environments in-
corporating heavy-tailed corruptions and misspecification,
i.e., the input is an upper bound of the true ratio of corrup-
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tions ϵ′ ≥ ϵ, and the results are reported in appendix (see
Figure 2 and 4a respectively in Appendix F).

6.2 Strategic Classification

We further examine the performance of our algorithm in a
strategic classification problem in which endogenous distri-
bution change naturally takes place [Mendler-Dünner et al.,
2020]. We first construct base distribution (zfeat, zlabel) ∼
D where the feature zfeat is sampled from some normal
distribution N (µ,Σ) and zlabel = sign(⟨θ, zfeat⟩). Then
the distribution mapping D(x) is construct as first get a
sample from base distribution, then shift the feature by
z′feat = zfeat − γx. In other words, we get z = (z′feat, zlabel)
every time when we sample from D(x). It is easy to prove
that the constructed distribution mapping satisfies our As-
sumption 3 [Perdomo et al., 2020]. We set γ = 0.1 in our
experiment. We choose the regularized logistic loss

ℓ(z;x) = log(1+exp(⟨x, z′feat⟩))−zlabel ⟨x, z′feat⟩+
M

2
∥x∥22 ,

where M is the strength of regularization to ensure strong
convexity, which is set to be 1.0. The performatively stable
point is hard to be algebraically computed in this problem,
so we approximately yield the stable point by running a
long iteration of SGD on the uncorrupted problem.

We simulate the corruptions in this problem by firstly defin-
ing a feature distribution N (µ, d2Σ) with identical mean
and increasing variance comparing to the uncorrupted dis-
tributions, and then set all the labels to be 1. Such asym-
metric corruptions was introduced by Prasad et al. [2020].

Figure 1c demonstrates the mean of the error among 20
repetitions of experiment with various levels of corruptions
ϵ. As is shown in Figure 1c, all methods converge to the
stable point when ϵ = 0.0, and our algorithm has almost the
same convergence rate with BGD. By contrast, BGD and
SGD fails to converge even in the presence of corruptions,
while our proposed method retain convergence when the
level of corruptions increases.

We also complement the experimental results on the task
of strategic classification by conducting on more levels of
corruptions, as well as introducing more severe environ-
ments incorporating heavy-tailed corruptions and misspec-
ification, and the results are reported in appendix (see Fig-
ure 3 and Figure 4b respectively in Appendix F).

7 CONCLUSION

In this paper, we formulated the problem of open-
environment learning with presence of corruptions. To re-
solve the entanglement of endogenous distribution change
and corruptions, we proposed a novel decomposition of the
recursive formula for the gradient-based method, based on
which we developed RPGD algorithm to find the perfor-

matively stable points via suitable robust gradient estima-
tors. We prove the convergence of our proposed method,
showing that the effect of corruptions can be almost en-
tirely dissolved given a small number of observations per
round. Empirical results also validate our proposal.

There are a number of interesting directions for future
work. First, it is worth investigating the convergent prop-
erty of gradient-based algorithms under other performance
metrics such as the function-value distance, and we also left
open the possibility of developing algorithms with a con-
vergence rate exactly matching the best rate in performa-
tive prediction literature by removing additional logarith-
mic factors in our result. Second, endogenous distribution
change and corruptions are two key factors to handle on the
way to robust learning in open environments, and evidently,
more factors, such as the exogenous distribution change,
should also be considered. Third, it is also important and
much more challenging to incorporate the evolution of dif-
ferent factors in learning process on the way towards robust
machine learning methods in open environments.
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A Useful Lemmas

Lemma 5. Under Assumptions 1 and 3, the following holds for all x ∈ X ,

∥∇fx(x)−∇fx̄(x)∥2 ≤ γβ · ∥x− x̄∥2 ,

where x̄ = argminx∈X fx̄(x) is the performatively stable point defined in Section 3.

Proof. Fix a unit vector v ∈ Rd, and define the function g(z) = ⟨∇ℓ(z;x), v⟩. By Assumption 1, g(z) is β-Lipschitz
continuous, so we have for any x ∈ X :

⟨∇fx(x)−∇fx̄(x), v⟩ =
〈
Ez∼D(x) [∇ℓ(z;x)]− Ez∼D(x̄) [∇ℓ(z;x)] , v

〉
= Ez∼D(x) [g(z)]− Ez∼D(x̄) [g(z)]

≤ β ·W1(D(x),D(x̄))

≤ βγ · ∥x− x̄∥2 ,

where the first inequality holds by definition of Wasserstein-1 distance, and the second inequality is because of Assump-
tion 3. Since the above holds for any unit vector v, it also holds for v = ∇fx(x)−∇fx̄(x)

∥∇fx(x)−∇fx̄(x)∥2
, so we have

∥∇fx(x)−∇fx̄(x)∥2 =

〈
∇fx(x)−∇fx̄(x),

∇fx(x)−∇fx̄(x)

∥∇fx(x)−∇fx̄(x)∥2

〉
≤ βγ · ∥x− x̄∥2 ,

and this ends the proof.

Lemma 6. Under Assumptions 1, 2 and 3, the following holds for all x ∈ X ,

fx̄(x̄) ≥ fx̄(x) + ⟨∇fx(x), x̄− x⟩+ α(1− 2ρ)

2
∥x̄− x∥22 ,

where ρ = βγ/α, and x̄ = argminx∈X fx̄(x) is the performatively stable point defined in Section 3.

Proof. We first prove that fy(x) is strongly convex for all y ∈ X . Fix y ∈ X , by Assumption 2 we have for any x, x′ ∈ X ,

fy(x) = Ez∼D(y) [ℓ(z;x)]

≥ Ez∼D(y)

[
ℓ(z;x′) + ⟨∇ℓ(z;x′), x− x′⟩+ α

2
∥x− x′∥22

]
= fy(x) + ⟨∇fy(x

′), x− x′⟩+ α

2
∥x− x′∥22 .

Therefore, fx̄(x) is also strongly convex in x, so we have

fx̄(x̄) ≥ fx̄(x) + ⟨∇fx̄(x), x̄− x⟩+ α

2
∥x̄− x∥22

= f(x) + ⟨∇fx(x), x̄− x⟩+ ⟨∇fx̄(x)−∇fx(x), x̄− x⟩+ α

2
∥x̄− x∥22 .

By Cauchy-Schwarz inequality and according to Lemma 5 we have

⟨∇fx̄(x)−∇fx(x), x− x̄⟩ ≤ ∥∇fx̄(x)−∇fx(x)∥2 · ∥x− x̄∥2 ≤ βγ · ∥x− x̄∥22 .

Therefore, ⟨∇fx̄(x)−∇fx(x), x̄− x⟩ ≥ −βγ · ∥x− x̄∥22, so

fx̄(x̄) ≥ f(x) + ⟨∇fx(x), x̄− x⟩+
(α
2
− βγ

)
∥x̄− x∥22

= fx̄(x) + ⟨∇fx(x), x̄− x⟩+ α(1− 2ρ)

2
∥x̄− x∥22 ,

and the proof is finished.
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B Proof of Lemma 1

Proof. Throughout the proof, we slightly abuse the notations by using f(x) to denote fx̄(x), the expected performance of
model x evaluated on the distribution induced by the performatively stable point x̄.

For any estimated gradient g̃t at round t, by Assumption 1 we have

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥22

= f(xt) + ⟨∇f(xt)− g̃t, xt+1 − xt⟩+ ⟨g̃t, xt+1 − xt⟩+
L

2
∥xt+1 − xt∥22 .

(1)

We first convert the drifting terms containing xt+1 − xt. On the one hand, by Young’s inequality, for any δt > 0 we have

⟨∇f(xt)− g̃t, xt+1 − xt⟩ ≤
δt
2
∥∇f(xt)− g̃t∥22 +

δ−1
t

2
∥xt+1 − xt∥22 . (2)

On the other hand, define Gt(x) = ⟨g̃t, x− xt⟩+ 1
2ηt

∥x− xt∥22 which is a 1
ηt

-strongly convex function, so we have

Gt(x̄) ≥ Gt(xt+1) + ⟨∇Gt(xt+1), x̄− xt+1⟩+
1

2ηt
∥x̄− xt+1∥22 .

Further more, according to the update rule (⋆), xt+1 is the minimizer of Gt(·), so ∇Gt(xt+1) = 0, and therefore,

⟨g̃t, x̄− xt⟩+
1

2ηt
∥x̄− xt∥22 ≥ ⟨g̃t, xt+1 − xt⟩+

1

2ηt
∥xt+1 − xt∥22 +

1

2ηt
∥x̄− xt+1∥22 .

By re-arranging terms we have

⟨g̃t, xt+1 − xt⟩ ≤ ⟨g̃t, x̄− xt⟩+
1

2ηt
∥x̄− xt∥22 −

1

2ηt
∥x̄− xt+1∥22 −

1

2ηt
∥xt+1 − xt∥22 . (3)

Substitute the above two inequalities (2) and (3) into inequality (1) yields

f(xt+1) ≤ f(xt) +
δt
2
∥∇f(xt)− g̃t∥22 +

δ−1
t

2
∥xt+1 − xt∥22 +

L

2
∥xt+1 − xt∥22

+ ⟨g̃t, x̄− xt⟩+
1

2ηt
∥x̄− xt∥22 −

1

2ηt
∥x̄− xt+1∥22 −

1

2ηt
∥xt+1 − xt∥22

= f(xt) + ⟨g̃t, x̄− xt⟩+
1

2ηt
∥x̄− xt∥22 −

1

2ηt
∥x̄− xt+1∥22

+
δt
2
∥∇f(xt)− g̃t∥22 +

δ−1
t − η−1

t + L

2
∥xt+1 − xt∥22 .

Choose δt = ηt/(1− ηtL) to eliminate the term ∥xt+1 − xt∥22 and thus we obtain

f(xt+1) ≤ f(xt) + ⟨g̃t, x̄− xt⟩+
1

2ηt
∥x̄− xt∥22

− 1

2ηt
∥x̄− xt+1∥22 +

ηt
2(1− ηtL)

∥∇f(xt)− g̃t∥22 .

Then we seek to control the remaining inner product term. By Lemma 6 we have

f(xt+1) ≤ f(xt) + ⟨∇fxt
(xt), x̄− xt⟩+ ⟨g̃t −∇fxt

(xt), x̄− xt⟩+
1

2ηt
∥x̄− xt∥22

− 1

2ηt
∥x̄− xt+1∥22 +

ηt
2(1− ηtL)

∥∇f(xt)− g̃t∥22

≤ f(x̄) +
η−1
t − α(1− 2ρ)

2
∥x̄− xt∥22 + ⟨g̃t −∇fxt(xt), x̄− xt⟩

− 1

2ηt
∥x̄− xt+1∥22 +

ηt
2(1− ηtL)

∥∇f(xt)− g̃t∥22 .

(4)
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Again by Young’s inequality we have for any λt > 0,

⟨g̃t −∇fxt(xt), x̄− xt⟩ ≤
λt

2
∥g̃t −∇fxt(xt)∥22 +

1

2λt
∥x̄− xt∥22 . (5)

Subtituting (5) into (4) yields

f(xt+1) ≤ f(x̄) +
η−1
t − α(1− 2ρ)

2
∥x̄− xt∥22 +

λt

2
∥g̃t −∇fxt

(xt)∥22 +
1

2λt
∥x̄− xt∥22

− 1

2ηt
∥x̄− xt+1∥22 +

ηt
2(1− ηtL)

∥∇f(xt)− g̃t∥22

≤ f(x̄) +
η−1
t − α(1− 2ρ) + λ−1

t

2
∥x̄− xt∥22 +

λt

2
∥g̃t −∇fxt

(xt)∥22

− 1

2ηt
∥x̄− xt+1∥22 +

ηt
2(1− ηtL)

∥∇f(xt)− g̃t∥22 .

Finally, we convert remaining terms into algorithmically-controllable quantities. By simple calculation we have

∥∇f(xt)− g̃t∥22 ≤ 2 ∥∇f(xt)−∇fxt
(xt)∥22 + 2 ∥∇fxt

(xt)− g̃t∥22 .

Therefore,

f(xt+1) ≤ f(x̄) +
η−1
t − α(1− 2ρ) + λ−1

t

2
∥x̄− xt∥22 −

1

2ηt
∥x̄− xt+1∥22

+

(
λt

2
+

ηt
1− ηtL

)
∥g̃t −∇fxt

(xt)∥22 +
ηt

1− ηtL
∥∇f(xt)−∇fxt

(xt)∥22 .

(6)

By definition, we have that x̄ is the minimizer of the α-strongly convex function f(x), so f(xt+1) ≥ f(x̄)+α
2 ∥x̄− xt+1∥22,

substitute it into inequality (6) yields

α

2
∥x̄− xt+1∥22 ≤ η−1

t − α(1− 2ρ) + λ−1
t

2
∥x̄− xt∥22 −

1

2ηt
∥x̄− xt+1∥22

+

(
λt

2
+

ηt
1− ηtL

)
∥g̃t −∇fxt

(xt)∥22 +
ηt

1− ηtL
∥∇f(xt)−∇fxt

(xt)∥22 .

Multiply both sides by 2ηt and re-arranging terms finish the proof.

C Proof of Lemma 2

Lemma 2 provides an upper bound on the error of the output g̃t of Algorithm 1 for robust gradient estimation, whose full
proof can be found in [Prasad et al., 2020, Appendix K]. In this part, we summarize the main ideas. To this end, we first
analyze the simple one-dimension case, and then turn to the general case when d > 1.

One-dimension case. The first part of the proof analyzes Algorithm 1 in one-dimensional case. The main idea in this
part is to firstly identify two events that occurs with high probability, then condition on the events and decompose the total
error into separate terms in order to deal with them separately. The two events are the following:

(a) The event of a low-corruption regime. A direct use of Hoeffding’s inequality shows that with probability at least

1− δ/3, the fraction of corrupted samples is less than ϵ′ = ϵ+
√

log(3/δ)
2n .

(b) The event of a concentrated interval. Let I1−ϵ′ be the interval around the mean of the uncorrupted distribution
containing 1 − ϵ′ mass of the uncorrupted distribution. On the one hand, the length of I1−ϵ′ is bounded according
to Assumption 5 and Chebyshev’s inequality. On the other hand, by classical VC theory we can show that a large
fraction of samples lie in this interval with probability at least 1− δ/3.

Conditioned on events (a) and (b), it suffices to bound the total error in the task of mean estimation. The sources of error
can be divided into three parts and then separately be controlled:
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• The error caused by corruptions. As the fraction of corruptions is small and that we are conditioned in I1−ϵ′ whose
length is already controlled, the maximum error in this source can be at most ϵ′ · length(I1−ϵ′);

• The deviation of empirical mean estimation on uncorrupted fraction of samples to the conditional mean. It is easy to
control this term of error with concentration inequalities.

• The deviation between conditional mean and the unconditional mean. These two quantities are intuitively close
because of the fact that the probability of the events being conditioned on is large. The formal description of the
intuition is in [Lai et al., 2016, Lemma 3.11].

Having obtain the bounds for all sources of error, we can finally achieve the bound of overall error in one-dimension case
by a simple summation of bounds on three sources of error and the union bound inequality.

Extension to general case. Algorithm 1 takes a corruption removal step similar to the one-dimension case as a sub-
routine, and include two new operations: (1) project onto a subspace with reduced dimensions, and (2) recursively apply
corruption removal step and projection step until the dimension d = 1. We highlight key steps to analyze those operations.

(1) There are two key steps in analyzing the effect of projection operation: (a) Control the deviation between empirical
covariance and the covariance of uncorrupted distribution before projection; (b) Control the deviation of empirical
mean after projection. Step (a) is obtained by firstly decompose the error into three terms and then separately control
them, which is similar to the one-dimension case, and step (b) is finished by firstly decomposing the covariance
matrix into the covariance only induced by uncorrupted samples and the rest induced by corruptions, then control the
covariance of uncorrupted samples by spectral norm and the corrupted part of covariance by efforts in step (a).

(2) The recursion of Algorithm 1 is unrolled by an observation that the error of running one step of the algorithm on
reduced dimensions can be bounded by the error of running one step of the algorithm on initial dimensions with a
reduced set of samples. Based on the observations and the achievements in step (1) we finish the proof of Lemma 2.

D Proof of Theorem 3

Proof. Without loss of generality, we assume α̂ = α−βγ ≥ 1 throughout the proof, since we can achieve this condition by
simply multiplying the loss function by a constant that is large enough, which retains the effectiveness of the conclusion.

First we have for all t ∈ [T ] according to Lemma 1:

(1 + αηt) ∥xt+1 − x̄∥22 ≤
(
1 +

ηt
λt

− αηt(1− 2ρ)

)
∥xt − x̄∥22 +

(
ηtλt +

2η2t
1− ηtL

)
∥g̃t −∇fxt

(xt)∥22

+
2η2t

1− ηtL
∥∇fxt

(xt)−∇fx̄(xt)∥22 .

We subsequently seek controls for the last two terms. On the one hand, according to the assignment on nt in Theorem 3,
we can verify (by a standard but complicated calculation) that(

d log d log(nT/(dδ))

n

)3/8

≤ 1

2C
√
log d

−
√
ϵ

2
, andϵd2 log d log

(
dT log d

δ

)
n

1/4

≤ 1

2C
√
log d

−
√
ϵ

2
.

Therefore, we have
C
(√

ϵ+ γ(nt, d, δ/T, ϵ)
)√

log d ≤ 1,

where γ(·, ·, ·, ·) is defined in Lemma 2, and applying Lemma 2 we have with probability at least 1− δ/T ,

∥g̃t −∇fxt
(xt)∥22 ≤ σ2.

On the other hand, Lemma 5 directly yield an upper bound of the last term:

∥∇fxt
(xt)−∇fx̄(xt)∥22 ≤ γ2β2 · ∥xt − x̄∥22 .
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Substitute ηt = η and λt = 1, by re-arranging terms we obtain that with probability at least 1− δ/T ,

(1 + ηα) ∥xt+1 − x̄∥22 ≤
(
η +

2η2

1− ηL

)
σ2 +

(
1 +

2η2β2γ2

1− ηL
+ η − αη(1− 2ρ)

)
∥xt − x̄∥22 .

Now we simplify the coefficients under condition η ≤ 1/
(
4β2γ2/α̂+ 2L

)
. Since η < 1/(2L), we have 1

1−ηL < 2, so

η + 2η2

1−ηL

1 + ηα
≤ η + 4η2

1 + ηα
.

The second coefficient is more complex to simplify. We start by the conversion

1 + 2η2β2γ2

1−ηL + η − αη(1− 2ρ)

1 + ηα
= 1−

ηα− 2η2β2γ2

1−ηL − η + αη(1− 2ρ)

1 + ηα

= 1−
η(2α− 2αρ− 1)− 2η2β2γ2

1−ηL

1 + ηα

= 1−
η(2α̂− 1)− 2η2β2γ2

1−ηL

1 + ηα

≤ 1−
ηα̂− 2η2β2γ2

1−ηL

1 + ηα
,

where the last two steps are because the definitions ρ = βγ/α and α̂ = α− βγ ≥ 1. Note that 2η2β2γ2

1−ηL ≤ α̂η
2 , so

1 + 2η2β2γ2

1−ηL + η − αη(1− 2ρ)

1 + ηα
≤ 1−

ηα̂− 2η2β2γ2

1−ηL

1 + ηα

≤ 1− ηα̂

2(1 + ηα)
.

Now we arrive the recursive formula for all t ∈ [T ], with probability at least 1− δ/T ,

∥xt+1 − x̄∥22 ≤
(
1− α̂η

2(1 + ηα)

)
︸ ︷︷ ︸

:=q

∥xt − x̄∥22 +
η + 4η2

1 + ηα
σ2︸ ︷︷ ︸

:=C

.

We finally unroll the recursive formula. Further define At = ∥xt − x̄∥22, we have with probability at least 1− δ/T ,

At+1 ≤ q ·At + C .

Unroll the recursion, and use the union bound inequality on probabilities, we have with probability at least 1− δ,

At+1 ≤ qtA1 +
1− qt

1− q
C ≤ qtA1 +

C

1− q
.

Substitute the symbols back and use the estimate ηα ≤ 1
2 , we finally have with probability at least 1− δ,

∥xt+1 − x̄∥22 ≤
(
1− α̂η

2(1 + ηα)

)T

∥x1 − x̄∥22 +
2 + 8η

α̂
σ2

≤
(
1− α̂η

3

)T

∥x1 − x̄∥22 +
2 + 8η

α̂
σ2,

and the proof is completed.
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(a) Mean estimation, ϵ = 0.05
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(b) Mean estimation, ϵ = 0.2
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(c) Mean estimation, ϵ = 0.3
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(d) Mean estimation, ϵ = 0.4

Figure 2: Additional results of mean estimation with µ = 1d/
√
d and Σ = 0.1Id, where 1d and Id respectively denote all

one’s vector and identity matrix. Each experiment is repeated 20 times and we display 95% bootstrap confidence intervals.

E Proof of Corollary 4

Proof. Let η = 3
α̂

[
1−

(
8σ2

α̂T

) 1
T−1

]
. By Theorem 3 we directly have with probability at least 1− δ:

∥xT+1 − x̄∥22 ≤ 8σ2

α̂T
+

2σ2

α̂
+

24σ2

α̂2

[
1−

(
8σ2

α̂T

) 1
T−1

]
.

And the equality can be verified by the second order Taylor expansion at T = ∞.

F Additional Experiments

In this section, we provide more experiment results to further support our findings.

Additional Results of Mean Estimation. Figure 2 demonstrates the additional results of the task of mean estimation,
in which similar phenomenon is observed: as the level of corruptions increases, our Algorithm 2 retains convergent and
suffers little from the corruptions ratio, while BGD and SGD fail to converge even if the level of corruptions is small.

Another interest thing that worth to notice is about the maximum level of corruptions tolerated in our algorithm: In analysis,
the threshold is ϵ ≤ 1/(C2 log d), where the value is about 0.33 by assuming C = 1 when d = 20. Nevertheless, our
algorithm converges even if the level of corruptions is ϵ = 0.4, as is shown in Figure 2d. Therefore, our Algorithm 2
possibly enjoys stronger theoretical guarantees, which may be established by more sophisticated techniques and is left as
another interesting future work.



Beyond Performative Prediction: Open-environment Learning with Presence of Corruptions

0 1000 2000 3000 4000 5000

number of deployments

10−2

10−1

100

101
di

st
an

ce
to
x̄

RPGD,ε = 0.05

RPGD,ε = 0.2

BGD,ε = 0.05

BGD,ε = 0.2

SGD,ε = 0.05

SGD,ε = 0.2

(a) Strategic classification, ϵ = 0.05, 0.2
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Figure 3: Additional results of strategic classification with µ = 1d/
√
d and Σ = 25Id, where 1d and Id denote all one’s

vector and identity matrix. Each experiment is repeated 20 times and we display 95% bootstrap confidence intervals.
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(b) Strategic classification

Figure 4: Error versus number of deployments for our algorithm and two benchmark algorithms BGD and SGD on synthetic
problems with heavy-tailed corruptions and misspecification. The corruptions are the Pareto distribution which is known
as a common heavy-tailed distribution, and we only know an upper bound ϵ′ = ϵ + 0.1 of the true level of corruptions ϵ.
Each experiment is repeated 20 times and we display 95% bootstrap confidence intervals.

Additional Results of Strategic Classification. Figure 3 demonstrates the additional results of the task of strategic
classification, in which extra levels of corruptions are included. The results support that our algorithm outperforms the two
benchmarks BGD and SGD in various levels of corruptions.

Additional Results of Heavy-Tailed Corruptions and Misspecification. We also verify the effectiveness of our algo-
rithm in more severe scenarios. We continue to use mean estimation and strategic classification as basic tasks, while the
corruptions are simulated via Pareto distribution which is known as a common heavy-tailed distribution. Meanwhile, the
true ratio of corruptions ϵ is no longer released to the algorithms, and instead we only know an upper bound ϵ′ = ϵ+ 0.1.

Figure 4 demonstrates the mean of the error among 20 repetitions of experiment with various levels of corruptions ϵ. On the
one hand, we can see that our algorithm is robust to heavy-tailed corruptions, as the results show that our algorithm exhibits
similar convergence properties as the previous results in Figure 1. On the other hand, the effect of misspecification is mild
to our algorithm, since with absence of corruption (i.e., ϵ = 0.0), our algorithm (red line) has almost the same convergence
rate compared to BGD (green line), which support our claim on misspecification below Lemma 2. In conclusion, the results
complement our experimental verification by showing the robustness against malignant corruptions and misspecification.
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