
Proceedings of Machine Learning Research vol 178:1–50, 2022 35th Annual Conference on Learning Theory

Corralling a Larger Band of Bandits:
A Case Study on Switching Regret for Linear Bandits

Haipeng Luo* HAIPENGL@USC.EDU
University of Southern California

Mengxiao Zhang* ZHAN147@USC.EDU
University of Southern California

Peng Zhao* ZHAOP@LAMDA.NJU.EDU.CN
National Key Laboratory for Novel Software Technology, Nanjing University

Zhi-Hua Zhou* ZHOUZH @LAMDA.NJU.EDU.CN

National Key Laboratory for Novel Software Technology, Nanjing University

Editors: Po-Ling Loh and Maxim Raginsky

Abstract
We consider the problem of combining and learning over a set of adversarial bandit algorithms
with the goal of adaptively tracking the best one on the fly. The CORRAL algorithm of Agarwal
et al. (2017) and its variants (Foster et al., 2020a) achieve this goal with a regret overhead of order
Õ(
√
MT ) where M is the number of base algorithms and T is the time horizon. The polynomial

dependence on M , however, prevents one from applying these algorithms to many applications
where M is poly(T ) or even larger. Motivated by this issue, we propose a new recipe to corral a
larger band of bandit algorithms whose regret overhead has only logarithmic dependence on M as
long as some conditions are satisfied. As the main example, we apply our recipe to the problem
of adversarial linear bandits over a d-dimensional ℓp unit-ball for p ∈ (1, 2]. By corralling a large
set of T base algorithms, each starting at a different time step, our final algorithm achieves the first
optimal switching regret Õ(

√
dST ) when competing against a sequence of comparators with S

switches (for some known S). We further extend our results to linear bandits over a smooth and
strongly convex domain as well as unconstrained linear bandits.

1. Introduction

We consider the problem of combining a set of bandit algorithms to learn the best one on the fly,
which has many applications in dealing with uncertainty from the environment. Indeed, by com-
bining a set of base algorithms, each dedicated for a certain type of environments, the final meta
algorithm can then automatically adapt to and perform well in every problem instance encountered,
as long as the price of such meta-level learning is small enough. While such ideas have a long
history in online learning, doing so with partial information (that is, bandit feedback) is particularly
challenging, and only recently have we seen success in various settings (Agarwal et al., 2017; Pac-
chiano et al., 2020; Foster et al., 2020a; Lee et al., 2020; Krishnamurthy et al., 2021; Wei and Luo,
2021; Zhao et al., 2021a; Wei et al., 2022).

We focus on an adversarial setting where the data are generated in an arbitrary and potentially
malicious manner. The closest work is (Agarwal et al., 2017), where a generic algorithm called
CORRAL is developed to learn over a set ofM base algorithms with extra regret overhead Õ(

√
MT )
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after T rounds. In order to maintain Õ(
√
T ) overall regret, which is often the optimal bound and

the goal when designing bandit algorithms, CORRAL can thus at most tolerate M = poly(log T )
base algorithms. However, there are many applications where M needs to be much larger to cover
all possible scenarios of interest (we will soon provide an example where M needs to be of order
T ). Therefore, a natural question arises: can we corral an even larger band of bandit algorithms,
ideally with only logarithmic dependence on M in the regret?

As an attempt to answer this question, we focus on the adversarial linear bandit problem and
develop a new recipe to combine base algorithms, which reduces the problem to designing good
unbiased loss estimators for the base algorithms and good optimistic loss estimators for the meta
algorithm. As long as these estimators ensure certain properties, the resulting algorithm enjoys
logarithmic dependence on M in the regret. We discuss this recipe in detail along with a warm-up
example on the classic multi-armed bandit problem in Section 3.

Then, as a main example, in Section 4 we apply this recipe to develop the first optimal switch-
ing regret bound for adversarial linear bandits over a d-dimensional ℓp unit ball with p ∈ (1, 2].1

Switching regret measures the learner’s performance against a sequence of changing comparators
with S switches, and a standard technique to achieve so in the full-information setting is by combin-
ing T base algorithms, each of which starts at a different time step and is guaranteed to perform well
against a fixed comparator starting from this step (that is, a standard static regret guarantee); see for
example (Hazan and Seshadhri, 2007; Daniely et al., 2015; Luo and Schapire, 2015). Applying
the same idea to bandit problems was not possible before because as mentioned, previous methods
such as CORRAL cannot afford T base algorithms.2 However, this is exactly where our approach
shines. Indeed, by using our recipe to combine T instances of the algorithm of (Bubeck et al., 2018)
together with carefully designed loss estimators, we manage to achieve logarithmic dependence on
the number of base algorithms, resulting in the optimal (up to logarithmic factors) switching regret
Õ(
√
dST ) for this problem for any fixed S. As another example, in Appendix C we also generalize

our results from ℓp balls to smooth and strongly convex sets.
Finally, in Section 5 we further generalize our results to the unconstrained linear bandit problem

and obtain the first comparator-adaptive switching regret of order Õ
(
maxk∈[S] ∥ůk∥2 ·

√
dST

)
where ůk is the k-th (arbitrary) comparator. The algorithm requires two components, one of which
is exactly our new algorithm developed for ℓp balls, the other being a new parameter-free algorithm
for unconstrained Online Convex Optimization with the first comparator-adaptive switching regret.
We note that this latter algorithm/result might be of independent interest.

High-level ideas. For such as a meta learning framework, it is standard to decompose the overall
regret as META-REGRET, which measures the regret of the meta algorithm to the best base algo-
rithm, and BASE-REGRET, which measures the best base algorithm to the best elementary action.
The main difficulty for bandit problems is that, it is hard to control BASE-REGRET in such a frame-
work due to possible starvation of feedback for the base algorithm. The CORRAL algorithm of Agar-
wal et al. (2017) addresses this via a new meta algorithm based on Online Mirror Descent (OMD)
with the log-barrier regularizer and an increasing learning rate schedule, which together provides a
negative term in META-REGRET large enough to (approximately) cancel BASE-REGRET. However,
the log-barrier regularizer unavoidably introduces poly(M) dependence in META-REGRET.

1. Switching regret is also known as tracking regret or shifting regret in many previous works (e.g., (Herbster and
Warmuth, 1998; Cesa-Bianchi et al., 2012; György and Szepesvári, 2016)).

2. One can compromise and corral o(T ) base algorithms instead, which leads to suboptimal switching regret; see such
an attempt in (Luo et al., 2018, Appendix G).
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Our ideas to address this issue are two-fold. First, to make sure META-REGRET enjoys loga-
rithmic dependence on M , we borrow the idea of the EXP4 algorithm (Auer et al., 2002), which
combines M static experts (instead of learning algorithms) without paying polynomial dependence
on M . This is achieved by OMD with the negative entropy regularizer, plus a better loss estimator
with lower variance for each expert. In our case, this requires coming up with similar low-variance
loss estimator for each base algorithm as well as updating each base algorithm no matter whether it
is selected by the meta algorithm or not (in contrast, CORRAL only updates the selected base algo-
rithm). Without the log-barrier regularizer, however, we now cannot use the same increasing learn-
ing rate schedule as CORRAL to generate a large enough negative term to cancel BASE-REGRET.
To address this, our second main idea is to inject negative bias to the loss estimators (making term
optimistic underestimators), with the goal of generating a reasonably small positive bias in the re-
gret and at the same time a large enough negative bias to cancel BASE-REGRET. This idea is similar
to that of Foster et al. (2020a), but they did not push it far enough and only improved CORRAL on
logarithmic factors.

Related work. Since the work of Agarwal et al. (2017), there have been several follow-ups in
the same direction, either for adversarial environments (Foster et al., 2020a) or stochastic environ-
ments (Pacchiano et al., 2020; Cutkosky et al., 2021; Arora et al., 2021; Krishnamurthy et al., 2021).
The problem is also highly related to model selection in online learning with bandit feedback (Foster
et al., 2019, 2020b; Marinov and Zimmert, 2021).

The optimal regret for adversarial linear bandits over a general d-dimensional set is Õ(d
√
T )

(Dani et al., 2008; Bubeck et al., 2012), but it becomes Õ(
√
dT ) for the special case of ℓp balls

with p ∈ [1, 2] (Bubeck et al., 2018). To the best of our knowledge, switching regret has not been
studied for adversarial linear bandits, except for its special case of multi-armed bandits (Auer et al.,
2002; Audibert and Bubeck, 2010). We discuss several natural attempts in Appendix A to extend
existing methods to linear bandits, but the best we can get is Õ(d

√
ST ) via combining the EXP2

algorithm (Bubeck et al., 2012) and the idea of uniform mixing (Herbster and Warmuth, 1998; Auer
et al., 2002). On the other hand, our proposed approach achieves the optimal Õ(

√
dST ) regret. In

fact, our algorithm is also more computationally efficient as EXP2 requires log-concave sampling.

We assume a known and fixed S in most places. Achieving the same result for all S simultane-
ously is known to be impossible for adaptive adversaries (Marinov and Zimmert, 2021), and remains
open for oblivious adversaries (our setting) even for the classic multi-armed bandit problem, so this
is beyond the scope of this work. We mention that, however, without knowing S we can still achieve
Õ(S
√
dT ) regret via a slightly different parameter tuning of our algorithm, or Õ(

√
dST + T 3/4)

regret via wrapping our algorithm with the generic Bandits-over-Bandits strategy of Cheung et al.
(2019). On the other hand, for the easier piecewise stochastic environments, adapting to unknown S
without price has been shown possible for different problems including multi-armed bandits (Auer
et al., 2019), contextual bandits (Chen et al., 2019), and many more (Wei and Luo, 2021).

Regarding our extension to the unconstrained setting, while unconstrained online learning has
been extensively studied in the full-information setting with gradient feedback since the work
of Mcmahan and Streeter (2012) (see e.g., (Orabona, 2013; McMahan and Orabona, 2014; Foster
et al., 2015; Cutkosky and Boahen, 2017; Cutkosky and Orabona, 2018)), as far as we know (van der
Hoeven et al., 2020) is the only existing work considering the same with bandit feedback. They
consider static regret and propose a black-box reduction approach, taking inspiration from a similar
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Protocol 1 Combining M base algorithms in adversarial linear bandits
for t = 1, . . . , T do

Each base algorithm Bi submits an action ã(i)t ∈ X to the meta algorithm, for all i ∈ [M ].
Meta algorithm selects xt such that Et[xt] =

∑
i∈[M ] pt,iã

(i)
t for some distribution pt ∈ ∆M .

Play xt and receive feedback ℓ⊤t xt.
Construct base loss estimator ℓ̂t ∈ Rd and meta loss estimator ĉt ∈ RM .
Base algorithms {Bi}Mi=1 update themselves based on the base loss estimator ℓ̂t.
Meta algorithm updates the weight pt+1 based on pt and the meta loss estimator ĉt.

end

reduction from the full-information setting (Cutkosky and Orabona, 2018). We consider the more
general switching regret, and our algorithm is also built on a similar reduction.

2. Problem Setup and Notations

Problem setup. While our idea is applicable to more general setting, for ease of discussions we
focus on the adversarial linear bandit problem throughout the paper. Specifically, at the beginning
of a T -round game, an adversary (knowing the learner’s algorithm) secretly chooses a sequence of
linear loss functions parametrized by ℓ1, . . . , ℓT ∈ Rd. Then, at each round t ∈ [T ], the learner
makes a decision by picking a point (also called action) xt from a known feasible domain X ⊆ Rd,
and subsequently suffers and observes the loss ℓ⊤t xt. Note that ℓ⊤t xt is the only feedback on ℓt
revealed to the learner. We measure the learner’s performance via the switching regret, defined as

REG(u1, . . . , uT ) ≜
T∑
t=1

ℓ⊤t xt −
T∑
t=1

ℓ⊤t ut =
S∑
k=1

∑
t∈Ik

ℓ⊤t (xt − ůk), (1)

where u1, . . . , uT ∈ X is a sequence of arbitrary comparators with S − 1 switches for some known
S (that is,

∑T
t=2 1{ut−1 ̸= ut} = S − 1) and I1, . . . , IS denotes a partition of [T ] such that for

each k, ut remains the same (denoted by ůk) for all t ∈ Ik. Except for comparator-adaptive bounds
discussed in Section 5, our results have no explicit dependence on ů1, . . . , ůS other than the number
S, so we often use REGS as a shorthand for REG(u1, . . . , uT ). The classic static regret is simply
REG1 (that is, competing with a fixed comparator throughout), which we also simply write as REG.

Notations. For any integer n, we denote by [n] the set {1, 2, . . . , n}, and ∆n the simplex {p ∈
Rn≥0 |

∑n
i=1 pi = 1}. We use ei to denote the standard basis vector (of appropriate dimension) with

the i-th coordinate being 1 and others being 0. Given a vector x ∈ Rd, its ℓp norm is defined by
∥x∥p = (

∑d
n=1 |xn|p)1/p. Et[·] denotes the conditional expectation given the history before round

t. The Õ(·) notation omits the logarithmic dependence on the time horizon T and the dimension
d. For a differential convex function ψ : Rd 7→ R, the induced Bregman divergence is defined by
Dψ(x, y) = ψ(x)− ψ(y)− ⟨∇ψ(y), x− y⟩.

3. Corralling a Larger Band of Bandits: A Recipe

In this section, we describe our general recipe to corral a large set of bandit algorithms. We start
by showing a general and natural protocol of such a meta-base framework in Protocol 1. Specif-
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ically, suppose we maintain M base algorithms {Bi}Mi=1. At the beginning of each round, each
base algorithm Bi submits its own action ã(i)t ∈ X to the meta algorithm, which then decides the
final action xt with expectation

∑
i∈[M ] pt,iã

(i)
t for some distribution pt ∈ ∆M specifying the im-

portance/quality of each base algorithm. After playing xt and receiving the feedback ℓ⊤t xt, we
construct base loss estimator ℓ̂t ∈ Rd and meta loss estimator ĉt ∈ RM . As their name suggests,
base loss estimator estimates ℓt and is used to update each base algorithm, while meta loss estima-
tor estimates A⊤

t ℓt, where the i-th column of At ∈ Rd×M is ã(i)t , and is used to update the meta
algorithm to obtain the next distribution pt+1 ∈ ∆M .

In the following, we formalize the high-level idea discussed in Section 1. For simplicity, we
focus on the static regret REG in this discussion (that is, S = 1) and let u be the fixed comparator.
The first step is to decompose the regret into two parts as mentioned in Section 1: as long as ℓ̂t and
ĉt are unbiased estimators (that is, Et[ℓ̂t] = ℓt and Et[ĉt] = A⊤

t ℓt), one can show:

∀j ∈ [M ], E[REG] = E

[
T∑
t=1

⟨pt − ej , ĉt⟩

]
︸ ︷︷ ︸

META-REGRET

+E

[
T∑
t=1

〈
ã
(j)
t − u, ℓ̂t

〉]
︸ ︷︷ ︸

BASE-REGRET

. (2)

Controlling BASE-REGRET is the key challenge. Indeed, even if the base algorithm enjoys a good
regret guarantee when running on its own, it might not ensure the same guarantee any more in this
meta-base framework because it cannot fully control the final action and observe the feedback it
needs. At a technical level, this is reflected in a larger variance of ℓ̂t due to the randomness from the
meta algorithm, which then ruins the base algorithm’s original regret guarantee.

As mentioned, the way CORRAL (Agarwal et al., 2017) addresses this issue is by using OMD
with the log-barrier regularizer and increasing learning rates as the meta algorithm, which ensures
that META-REGRET is at most Õ(

√
MT ) plus some negative term large enough to cancel the pro-

hibitively large part of BASE-REGRET. The poly(M) dependence in their approach is unavoidable
because they treat the problem that the meta algorithm is facing as a classic multi-armed bandit
problem and ignores the fact that information can be shared among different base algorithms. The
recent follow-up (Foster et al., 2020a) shares the same issue.

Instead, we propose the following idea. We use OMD with entropy regularizer (a.k.a. mul-
tiplicative weights update) as the meta algorithm to update pt+1, usually in the form pt+1,i ∝
pt,ie

−εĉt,i where ε > 0 is some learning rate. This first ensures that the so-called regularization
penalty term in META-REGRET is of order logM

ε instead of M
ε as in CORRAL. To control the other

so-called stability term in META-REGRET, the estimator ĉt has to be constructed in a way with
low variance, but we defer the discussion and first look at how to control BASE-REGRET in this
case. Since we are no longer using the log-barrier regularizer of CORRAL, a different way to gen-
erate a large negative term in META-REGRET to cancel BASE-REGRET is needed. To this end, we
propose to inject a (negative) bias bt ∈ RM+ to the meta loss estimator ĉt, making it an optimistic
underestimator. More specifically, introduce another notation ct for some unbiased estimator of
A⊤
t ℓt. Then the adjusted meta loss estimator is defined as ĉt = ct − bt. Since ĉt is biased now, the

decomposition (2) needs to be updated accordingly as

E[REG] = E

[
T∑
t=1

⟨pt − ej , ĉt⟩

]
︸ ︷︷ ︸

META-REGRET

+E

[
T∑
t=1

〈
ã
(j)
t − u, ℓ̂t

〉]
︸ ︷︷ ︸

BASE-REGRET

+E

[
T∑
t=1

⟨pt, bt⟩

]
︸ ︷︷ ︸

POS-BIAS

−E

[
T∑
t=1

⟨ej , bt⟩

]
︸ ︷︷ ︸

NEG-BIAS

.
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Based on this decomposition, our goal boils down to designing good base and meta loss estimators
such that the following three terms are all well controlled:

BASE-REGRET − NEG-BIAS ≤ TARGET, (3)

POS-BIAS ≤ TARGET, (4)

META-REGRET ≤ TARGET. (5)

Here, TARGET represents the final targeted regret bound with logarithmic dependence on M and
usually

√
T -dependence on T (such as Õ(

√
dST logM) for our main application of switching

regret discussed in Section 4).3

A recipe. We are now ready to summarize our recipe in the following three steps.

• Step 1. Start from designing ℓ̂t, which often follows similar ideas of the original base algorithm.

• Step 2. Then, by analyzing BASE-REGRET with such a base loss estimator, figure out what bt
needs to be in order to ensure Eq. (3) and Eq. (4) simultaneously.

• Step 3. Finally, design ct to ensure Eq. (5). As mentioned in Section 1, this is a problem similar
to combining static experts as in the EXP4 algorithm (Auer et al., 2002), and the key is to ensure
that ct allows information sharing among base algorithms and enjoys low variance. A natural
choice is ct,i = ⟨ã(i)t , ℓ̂t⟩, which is exactly what EXP4 does and works in the toy example we
show below, but sometimes one needs to replace ℓ̂t with yet another better unbiased estimator of
ℓt, which turns out to be indeed the case for our main example in Section 4.

A toy example. Now, we provide a warm-up example to show how to successfully apply our
three-step recipe to the multi-armed bandit problem. We note that this example does not really lead
to meaningful applications, as in the end we are simply combining different copies of the exact
same algorithm. Nevertheless, this serves as a simple and illustrating exercise to execute our recipe,
paving the way for the more complicated scenario to be discussed in the next section.

Specifically, in multi-armed bandit, we have X = ∆d and ℓt ∈ [0, 1]d for all t ∈ [T ], and
we set the target to be TARGET = Õ(

√
dT logM) (optimal up to logarithmic factors). The

meta algorithm is as specified before (multiplicative weights update). For the base algorithm,
we choose a slight variant of the classic EXP3 algorithm (Auer et al., 2002), so that ã(i)t+1 =

argmina∈∆d∩[η,1]d
{
⟨a, ℓ̂t⟩+ 1

ηDψ(a, a
(i)
t )
}

, where η > 0 is a clipping threshold (and also a learn-

ing rate) and ψ(a) =
∑d

n=1 an log an is the negative entropy. Given qt =
∑M

i=1 pt,iã
(i)
t ∈ ∆d, the

meta algorithm naturally samples an arm nt ∈ [d] according to qt, meaning xt = ent .

Step 1. With the feedback ℓ⊤t xt = ℓt,nt , following EXP3 we let the base loss estimator be the
standard importance-weighted estimator: ℓ̂t =

ℓt,nt
qt,nt

xt, which is clearly unbiased with Et[ℓ̂t] = ℓt.

3. We present our recipe with a targeted regret bound just because this is indeed the case for our main application (of
getting switching regret bounds), but this is not necessary for our approach, and we can for example also achieve some
of the applications discussed in (Agarwal et al., 2017) where the meta algorithm achieves different regret bounds (that
is, not a single target) in different environments.
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Step 2. By standard analysis (e.g., (Bubeck and Cesa-Bianchi, 2012, Theorem 3.1)), BASE-REGRET

is at most ηdT + log d
η + ηE

[∑T
t=1

∑d
n=1 ã

(j)
t,nℓ̂

2
t,n

]
. Since Et[ℓ̂2t,n] =

ℓ2t,n
qt,n

, the last term is fur-

ther bounded by ηE
[∑T

t=1

∑d
n=1

ã
(j)
t,n/qt,n

]
. This is exactly the problematic stability term that

can be prohibitively large. We thus directly define the bias term bt,j as η
∑d

n=1
ã
(j)
t,n/qt,n, so that

BASE-REGRET − NEG-BIAS is simply bounded by ηdT + log d
η . Picking the optimal η ensures

Eq. (3). On the other hand, POS-BIAS happens to be small as well: POS-BIAS = E
[∑T

t=1⟨pt, bt⟩
]
=

ηE
[∑T

t=1

∑M
i=1 pt,i

∑d
n=1

ã
(i)
t,n/qt,n

]
= ηE

[∑T
t=1

∑d
n=1

qt,n/qt,n
]
= ηdT , ensuring Eq. (4).

Step 3. Finally, we use the natural meta loss estimator ct,i = ⟨ã(i)t , ℓ̂t⟩. Since qt,n ≥ η due
to the clipping threshold and thus 0 ≤ bt,i ≤ 1 and ĉt,i ≥ −1 (that is, not too negative), stan-
dard analysis shows META-REGRET ≤ logM

ε + εE
[∑T

t=1

∑M
i=1 pt,iĉ

2
t,i

]
, with the last term further

bounded by 2εE
[∑T

t=1

∑M
i=1(pt,ic

2
t,i + pt,ib

2
t,i)
]
≤ 4εdT . Picking the optimal ε in the final bound

META-REGRET ≤ logM
ε + 4εdT then ensures Eq. (5).

This concludes our example and shows that our recipe indeed enjoys logarithmic dependence
on M in this case, which CORRAL fails to achieve. At a high level, our method avoids the poly(M)
dependence by information sharing among different base algorithms: we update every base algo-
rithm no matter whether it is selected by the meta algorithm or not, while in contrast, CORRAL only
updates the selected base algorithm, which makes the poly(M) dependence unavoidable.

4. Optimal Switching Regret for Linear Bandits over ℓp Balls

As the main application in this work, we now discuss how to apply our recipe to achieve the optimal
switching regret for adversarial linear bandits over ℓp balls. In this problem, the feasible domain is
an ℓp unit ball for some p ∈ (1, 2], namely, X = {x ∈ Rd | ∥x∥p ≤ 1}, and each ℓt is assumed to be
from the dual ℓq unit ball with q = p/(p−1), such that |ℓ⊤t x| ≤ 1 for all x ∈ X and t ∈ [T ]. Bubeck
et al. (2018) show that the optimal regret in this case is Θ(

√
dT ), which is better than the general

linear bandit problem by a factor of
√
d. This implies that the optimal switching regret for this

problem is Ω(
√
dST ) — indeed, simply consider the case where I1, . . . , IS is an even partition of

[T ] and the adversary forces the learner to suffer Ω(
√
d|Ik|) = Ω(

√
dT/S) regret on each interval

Ik by generating a new worst case instance regarding the static regret. Therefore, our target regret
bound here is set to TARGET = Õ(

√
dST ). We remind the reader that this problem has not been

studied before and that in Appendix A, we discuss other potential approaches and why none of them
is able to achieve this goal.

The pseudocode of our final algorithm is shown in Algorithm 2. At a high-level, it is simply
following the standard idea in the literature on obtaining switching regret, that is, maintain a set of
M = T base algorithms with static regret guarantees, the t-th of which Bt starts learning from time
step t (before time t, one pretends that Bt picks the same action as the meta algorithm). If the meta
algorithm itself enjoys a switching regret guarantee,4 then by competing with Bjk on interval Ik
where jk is the first time step of Ik so that Bjk enjoys a (static) regret guarantee on Ik, the overall
algorithm enjoys a switching regret for the original problem. While this is a standard and simple

4. We point out that in the full-information setting, even a certain static regret guarantee from the meta algorithm is
enough, but a switching regret guarantee is needed in the bandit setting for technical reasons.
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idea, applying it to the bandit setting was not possible before our work due to the large number of
base algorithms (T ) needed to be combined. Our approach, however, is able to overcome this with
logarithmic dependence on M , making it the first successful execution of this long-standing idea in
bandit problems.

Base algorithm overview. Our base algorithm is naturally the one proposed in (Bubeck et al.,
2018) that achieves Õ(

√
dT ) static regret.5 Specifically, let X ′ = {x | ∥x∥p ≤ 1 − γ} for some

clipping parameter γ be a slightly smaller ball. At each round t, each base algorithm Bi (for i ≤ t)
has a vector a(i)t ∈ X ′ at hand. Then, it generates a Bernoulli random variable ξ(i)t with mean
∥a(i)t ∥p. If ξ(i)t = 0, then its final decision ã(i)t is uniformly sampled from {±en}dn=1; otherwise,
ã
(i)
t = a

(i)
t /∥a

(i)
t ∥p. Next, Bi submits (ã(i)t , a

(i)
t , ξ

(i)
t ) to the meta algorithm. After receiving the base

loss estimator ℓ̂t (to be specified later), Bi updates a(i)t+1 using OMD with the regularizer R(a) =

− log(1−∥a∥pp), that is, a(i)t+1 = argmina∈X ′
{
⟨a, ℓ̂t⟩+ 1

ηDR(a, a
(i)
t )
}

for some learning rate η > 0.
We defer the pseudocode Algorithm 5 to Appendix B.1.

Meta algorithm overview. The meta algorithm maintains the distribution pt ∈ ∆T again via
multiplicative weights update, but since a switching regret guarantee is required as mentioned, a
slight variant studied in (Auer et al., 2002) is needed which mixes the multiplicative weights update
with a uniform distribution: pt+1,i = (1 − µ)

pt,i exp(−εĉt,i)∑T
j=1 pt,j exp(−εĉt,j)

+ µ
T for some mixing rate µ,

learning rate ε, and meta loss estimator ĉt (to be specified later). As mentioned, at time t, all base
algorithm Bi with i > t should be thought of as making the same decision as the meta algorithm,
so in a sense we are looking for an action x̃t such that x̃t =

∑t
i=1 pt,iã

(i)
t +

∑T
i=t+1 pt,ix̃t, or

equivalently x̃t =
∑t

i=1 p̂t,iã
(i)
t with a distribution p̂t ∈ ∆t satisfying p̂t,i ∝ pt,i. Combining this

with some extra exploration for technical reasons, the final decision xt of our algorithm is decided
as follows: sample a Bernoulli random variable ρt with mean β (a small parameter); if ρt = 1, then
xt is uniformly sampled from {±en}dn=1, otherwise xt is sampled from ã

(1)
t , . . . , ã

(t)
t according to

the distribution p̂t. See Line 3, Line 4, and Line 9. We are now ready to follow the three steps of
our recipe to design the loss estimators.

Step 1. The design of the base loss estimator ℓ̂t mostly follows (Bubeck et al., 2018), except for
the extra consideration due to the sampling scheme of the meta algorithm (Line 4). The final form
is shown in Eq. (6), and a direct calculation verifies its unbiasedness Et[ℓ̂t] = ℓt (see Lemma 5).

Step 2. With ℓ̂t fixed, for an interval Ik, we analyze the static regret of Bjk on this interval (recall
that jk is the first time step of Ik), mostly following the analysis of Bubeck et al. (2018). This
corresponds to BASE-REGRET (since we have moved from static regret to switching regret). More
concretely, in Lemma 7 we show for some universal constant C1 > 0:

E

[∑
t∈Ik

〈
ã
(jk)
t − ůk, ℓ̂t

〉]
≤ log(1/γ)

η
+ ηC1

∑
t∈Ik

1− ∥a(jk)t ∥p
1−

∑t
j=1 p̂t,j∥a

(j)
t ∥p

.

Again, the second term above is the prohibitively large term, and we thus define bt,i in the same
form; see Eq. (8). As long as the parameters are chosen such that ηC1 ≤ 1

λT (1−β) , BASE-REGRET−

5. To be more accurate, the version we present here is a slightly simpler variant with the same guarantee.

8
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Algorithm 2 Algorithm for adversarial linear bandits over ℓp balls with optimal switching regret
Input: clipping parameter γ, base learning rate η, meta learning rate ε, mixing rate µ, exploration
parameter β, bias coefficient λ, initial uniform distribution p1 ∈ ∆T .
for t = 1, . . . , T do

1 Start a new base algorithm Bt, which is an instance of Algorithm 5 with learning rate η, clipping
parameter γ, and initial round t.

2 Receive local decision (ã
(i)
t , a

(i)
t , ξ

(i)
t ) from base algorithm Bi for each i ≤ t.

3 Compute the renormalized distribution p̂t ∈ ∆t such that p̂t,i ∝ pt,i for i ∈ [t].
4 Sample a Bernoulli random variable ρt with mean β. If ρt = 1, uniformly sample xt from

{±en}dn=1; otherwise, sample it ∈ [t] according to p̂t, and set xt = ã
(it)
t and ξt = ξ

(it)
t .

5 Make the final decision xt and receive feedback ℓ⊤t xt.
6 Construct the base loss estimator ℓ̂t ∈ Rd as follows and send it to all base algorithms {Bi}ti=1:

ℓ̂t =
1{ρt = 0}1{ξt = 0}

1− β
· d(ℓ⊤t xt)

1−
∑t

i=1 p̂t,i∥a
(i)
t ∥p

· xt. (6)

7 Construct another loss estimator ℓ̄t ∈ Rd as

ℓ̄t = M̃−1
t xtx

⊤
t ℓt, (7)

where M̃t =
β
d

∑d
n=1 ene

⊤
n + (1− β)

∑t
i=1 p̂t,iã

(i)
t ã

(i)⊤

t .
8 Construct the meta loss estimator ĉt ∈ RT as:

ĉt,i =

{
⟨ã(i)t , ℓ̄t⟩ − bt,i, i ≤ t,∑t

j=1 p̂t,j ĉt,j , i > t,
where bt,i =

1

λT (1− β)
1− ∥a(i)t ∥p

1−
∑t

j=1 p̂t,j∥a
(j)
t ∥p

. (8)

9 Meta algorithm updates the weight pt+1 ∈ ∆T according to

pt+1,i = (1− µ) pt,i exp(−εĉt,i)∑T
j=1 pt,j exp(−εĉt,j)

+
µ

T
, ∀i ∈ [T ]. (9)

end

NEG-BIAS is simply bounded by log(1/γ)
η , and Eq. (3) can be ensured. Direct calculation shows that

with such a bias term bt,i, POS-BIAS is also small enough to ensure Eq. (4); see Appendix B.4.

Step 3. Finally, it remains to design unbiased loss estimator ct,i and finalize the meta loss estimator
ĉt,i. As mentioned, a natural choice would be ct,i = ⟨ã(i)t , ℓ̂t⟩. However, despite its unbiasedness,
it turns out to suffer a large variance in this case and cannot lead to a favorable guarantee for
META-REGRET. To address this issue, we introduce yet another unbiased loss estimator ℓ̄t for ℓt,
defined in Eq. (7), which follows standard idea from the general linear bandit literature (see for
example the EXP2 algorithm of Bubeck et al. (2012)). With that, ct,i is defined as ⟨ã(i)t , ℓ̄t⟩ instead,
which now has a small enough variance. We find it intriguing that using different unbiased loss

9
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estimators (ℓ̂t for base algorithms and ℓ̄t for the meta algorithm) for the same quantity ℓt appears to
be necessary for this problem. As the final piece of the puzzle, we set ĉt,i = ct,i − bt,i for i ≤ t as
our recipe describes, and for i > t, recall that these base algorithms are thought of as making the
same prediction of the meta algorithm, thus we set ĉt,i =

∑t
j=1 p̂t,j ĉt,j ; see Eq. (8). This ensures

an important property ⟨pt, ĉt⟩ =
∑

i≤t p̂t,iĉt,i, which we use to finally prove that META-REGRET is
small enough to ensure Eq. (5) (see Lemma 10).

This concludes the description of our entire algorithm. Algorithm 2 summarizes the main up-
date procedures. We briefly discuss the computational and space complexity. Note that each base
algorithm performs a simple OMD update with a barrier regularizer, and it suffices to obtain an
approximate solution with 1

T precision, which takes O(poly(d)) space and O(poly(d log T )) time
via for example the Interior Point Method. On the other hand, the computational/space complexity
of the meta algorithm is clearly O(T poly(d)) per round.

We formally prove in Appendix B that our algorithm enjoys the following switching regret.

Theorem 1 Define C =
√
p− 1 · 2−

2
p−1 . With parameters γ = 4C

√
dS
T , η = C

√
S
dT , ε =

min
{√

S
dT ,

1
16d ,

C2

2

}
, µ = 1

T , β = 8dε, and λ = C√
dST

, Algorithm 2 guarantees

E[REGS ] = E

[
T∑
t=1

ℓ⊤t xt −
T∑
t=1

ℓ⊤t ut

]
= Õ

(√
dST

)
,

where u1, . . . , uT ∈ X are arbitrary comparators such that
∑T

t=2 1{ut−1 ̸= ut} ≤ S − 1.

We point out again that this is the first optimal switching regret guarantee for linear bandits over
ℓp balls with p ∈ (1, 2], demonstrating the importance of our new corralling method.

Extensions to smooth and strongly convex domain. Our ideas and results can be generalized to
adversarial linear bandits over any smooth and strongly convex set, a setting studied in (Kerdreux
et al., 2021). Specifically, for a smooth and strongly convex set containing the ℓp unit ball and
contained by the dual ℓq unit ball (for some p ∈ (1, 2]), our algorithm achieves Õ

(
d1/p
√
ST
)

switching regret. We defer all details to Appendix C.

5. Extension to Unconstrained Linear Bandits

In this section, we further extend our results on linear bandits to the unconstrained setting, that is,
X = Rd, which means both the learner’s decisions {xt}Tt=1 and the comparators {ut}Tt=1 can be
chosen arbitrarily in Rd. The loss vectors are assumed to have bounded ℓ2 norm: ∥ℓt∥2 ≤ 1 for
all t ∈ [T ]. As mentioned, (van der Hoeven et al., 2020) is the only existing work considering
the same setting. They study static regret and achieve a comparator-adaptive bound E[REG] =
Õ(∥u∥2

√
dT ) simultaneously for all u (the fixed comparator).6 Building on our results in Section 4,

we generalize their static regret bound to switching regret and achieve a similar comparator-adaptive
bound E[REG(u1, . . . , uT )] = Õ

(
maxk∈[S] ∥ůk∥2 ·

√
dST

)
simultaneously for all u1, . . . , uT with

S − 1 switches.

6. The actual bound stated in (van der Hoeven et al., 2020) is actually Õ(∥u∥2d
√
T ), but it is straightforward to see that

it can be improved to Õ(∥u∥2
√
dT ) by picking the optimal linear bandit algorithm over ℓ2 balls in their reduction.

10
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Algorithm 3 Comparator-adaptive algorithm for unconstrained linear bandits
Input: subroutine AV (unconstrained OCO algorithm), subroutine AZ (constrained linear bandits
algorithm), Z = {z | ∥z∥2 ≤ 1}.
for t = 1 to T do

Receive the direction zt ∈ Z from subroutine AZ .
Receive the magnitude vt ∈ R from subroutine AV .
Submit xt = zt · vt and receive and observe the loss ℓ⊤t xt.
Send ℓ⊤t zt = ℓ⊤t xt/vt as the feedback for subroutine AZ .
Construct linear function ft(v) ≜ v · ℓ⊤t zt as the feedback for subroutine AV .

end

Instead of using our recipe and starting from scratch to solve this problem, we directly make
use of the reduction of van der Hoeven et al. (2020) that reduces the unconstrained problem to the
constrained counterpart (already solved by our Algorithm 2) plus another one-dimensional uncon-
strained problem; see Section 5.1. To solve the latter problem, in Section 5.2 we design a new
unconstrained algorithm for general Online Convex Optimization (OCO) that enjoys a comparator-
adaptive switching regret guarantee and might be of independent interest. Finally, we summarize
the overall algorithm and provide the formal guarantees in Section 5.3.

5.1. Black-box reduction for switching regret of unconstrained linear bandits

The reduction of van der Hoeven et al. (2020) takes heavy inspiration from (Cutkosky and Orabona,
2018). Specifically, suppose that we have two subroutines denoted by AZ and AV : AZ is a con-
strained linear bandit algorithm over the ℓ2 ball Z = {z ∈ Rd | ∥z∥2 ≤ 1} and AV is an uncon-
strained and one-dimensional online linear optimization algorithm with full-information feedback
(in fact, in the one-dimensional linear case, there is no difference between full-information and
bandit feedback). Then, one can solve an unconstrained linear bandit problem as follows: at each
round t ∈ [T ], the learner makes the decision xt = vt · zt, where zt ∈ Z is the direction returned
by the constrained bandit algorithm AZ , and vt ∈ R is the scalar returned by the one-dimensional
algorithm AV . After observing the loss ℓ⊤t xt, the learner then feeds ℓ⊤t zt =

ℓ⊤t xt
vt

to both AZ and
AV so they can update themselves. See Algorithm 3 for the pseudocode.

van der Hoeven et al. (2020) show that the static regret of such a reduction can be expressed
using the regret of the two subroutines. This can be directly generalized to switching regret, formally
described below (see Appendix D.1 for the proof).

Lemma 2 For an interval I ⊆ [T ], let REGV
I (v) =

∑
t∈I(vt − v) ⟨zt, ℓt⟩ be the regret of the

unconstrained one-dimensional algorithm AV against a comparator v ∈ R on this interval, and
similarly REGZ

I (z) =
∑

t∈I⟨zt − z, ℓt⟩ be the regret of the constrained linear bandits algorithm
AZ against a comparator z ∈ Z = {z ∈ Rd | ∥z∥2 ≤ 1} on this interval. Then Algorithm 3 (with
decision xt = zt · vt) satisfies

REG(u1, . . . , uT ) =

S∑
k=1

REGV
Ik(∥ůk∥2) +

S∑
k=1

∥ůk∥2 · REGZ
Ik

(
ůk
∥ůk∥2

)
, (10)

where we recall that I1, . . . , IS denotes a partition of [T ] such that for each k, ut remains the same
(denoted by ůk) for all t ∈ Ik.
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One can see that the first term in Eq. (10) is clearly the switching regret ofAV , while the second
term, after upper bounded by maxk∈[S]∥ůk∥2

∑S
k=1 REGZ

Ik

(
ůk

∥ůk∥2

)
, is the switching regret of AZ

scaled by the maximum comparator norm. Therefore, to control the second term, we simply apply
our Algorithm 2 as the subroutineAZ , making it at most Õ

(
maxk∈[S] ∥ůk∥2 ·

√
dST

)
. On the other

hand, to the best of our knowledge, there are no existing unconstrained algorithms with switching
regret guarantees. To this end, we design one such algorithm in the next section. In fact, for
full generality, we do so for the more general unconstrained OCO problem of arbitrary dimension
without the knowledge of S, which might be of independent interest.

5.2. Subroutine: switching regret of unconstrained online convex optimization

As a slight detour, in this section we consider a general unconstrained OCO problem: at round
t ∈ [T ], the learner makes a decision vt ∈ Rd and simultaneously the adversary chooses a loss
function ft : Rd 7→ R, then the algorithm suffers loss ft(vt) and observes the gradient ∇ft(vt) as
feedback. Notably, the feasible domain is Rd (that is, no constraints). The goal of the learner is to
minimize the switching regret

REG(u1, . . . , uT ) =

T∑
t=1

ft(vt)−
T∑
t=1

ft(ut) =

S∑
k=1

∑
t∈Ik

(
ft(vt)− ft(̊uk)

)
, (11)

where the notations I1, . . . , IS and ů1, . . . , ůS ∈ Rd are defined similarly as in Section 2. Without
loss of generality, it is assumed that maxx ∥∇ft(x)∥2 ≤ 1 for all t. Note that this setup is a strict
generalization of what we need for the one-dimensional subroutine AV discussed in Section 5.1.

Our idea is once again via a meta-base framework, which is in fact easier than our earlier discus-
sions because now we have gradient feedback. There are two quantities that we aim to adapt to: the
number of switches S and the comparator norm ∥ůk∥2 (although the latter can be unbounded, it suf-
fices to consider a maximum norm of 2T as (Chen et al., 2021, Appendix D.5) shows). Therefore,
we create an exponential grid for these two quantities, and maintain one base algorithm for each
possible configuration. These base algorithms only need to satisfy some mild conditions specified
in Requirement 1 of Appendix D.2, and many existing algorithms such as (Daniely et al., 2015; Jun
et al., 2017; Zhang et al., 2019; Cutkosky, 2020) indeed meet the requirements.

The design of the meta algorithm requires some care to ensure the desirable adaptive guarantees,
and we achieve so by building upon the recent progress in the classic expert problem (Chen et al.,
2021). In short, our meta algorithm is OMD with a multi-scale entropy regularizer and certain
important correction terms. We defer the details to Appendix D.2 and only present the pseudocode
of the full algorithm in Algorithm 4. Below we present the main comparator-adaptive switching
regret guarantee of this algorithm.

Theorem 3 Algorithm 4 with a base algorithm satisfying Requirement 1 guarantees that for any
S, any partition I1, . . . , IS of [T ], and any comparator sequence ů1, . . . , ůS ∈ Rd, we have

S∑
k=1

∑
t∈Ik

ft(vt)−
∑
t∈Ik

ft(̊uk)

 ≤ Õ( S∑
k=1

∥ůk∥2
√
|Ik|

)
≤ Õ

(
max
k∈[S]
∥ůk∥2 ·

√
ST

)
.

We emphasize again that in contrast to our other results on bandit problems, the guarantee above
is achieved for all S simultaneously (in other words, the algorithm does not need the knowledge

12



CORRALLING A LARGER BAND OF BANDITS

Algorithm 4 Comparator-adaptive algorithm for unconstrained OCO
Input: base algorithm B.
Define: H = ⌈log2 T ⌉+ T + 1 and R = ⌈log2 T ⌉.
Define: clipped domain Ω = {w | w ∈ ∆N and wt,(i,r) ≥ 1

T 2·22i , ∀i ∈ [H], r ∈ [R]}.
Define: weighted entropy regularizerψ(w) ≜

∑
(i,r)∈[H]×[R]

ci
ηr
w(i,r) logw(i,r) with ci = T−1·2i−1

for i ∈ [H] and ηr = 1
32·2r for r ∈ [R].

Initialization: for (i, r) ∈ [H]× [R], initiate base algorithm Bi,r ← B(Xi) with Xi = {x | ∥x∥2 ≤
Di}, which is an instance of B, and prior distribution w1,(i,r) ∝ η2r/c2i .
for t = 1 to T do

Each base learner B(i,r) returns the local decision vt,(i,r) for each i ∈ [H] and r ∈ [R].
Make the final decision vt =

∑
(i,r)∈[H]×[R]wt,(i,r)vt,(i,r) and receive feedback∇ft(vt).

Construct feedback loss ℓt ∈ RN and correction term at ∈ RN for meta algorithm : ℓt,j ≜
⟨∇ft(vt), vt,j⟩, at,j ≜ 32ηrci ℓ

2
t,j , ∀j = (i, r) ∈ [H]× [R].

Meta algorithm updates the weight by wt+1 = argminw∈Ω ⟨w, ℓt + at⟩+Dψ(w,wt).
end

of S). It also adapts to the norm of the comparator ∥ůk∥2 on each interval Ik, instead of only the
maximum norm maxk∈[S]∥ůk∥2. As another remark, if the base algorithms further guarantee a data-
dependent regret (this is satisfied by for example the algorithm of Zhang et al. (2019)), the switching
regret can be further improved to Õ

(∑S
k=1∥ůk∥2

√∑
t∈Ik∥∇ft(vt)∥

2
2

)
≤ Õ

(
maxk∈[S]∥ůk∥2 ·√

S
∑T

t=1∥∇ft(vt)∥22
)

, replacing the dependence on T by the cumulative gradient norm square.
This results holds even if the algorithm is required to make decisions from a bounded domain, thus

strictly improving the Õ
(
Dmax

√
S
∑T

t=1∥∇ft(vt)∥22
)

result of prior works (Cutkosky, 2020; Zhao
et al., 2020, 2021b) where Dmax is the diameter of the domain. See Appendix D.4 for details.

5.3. Summary: comparator-adaptive switching regret for unconstrained linear bandits

Combining all previous discussions, we now present the final result on unconstrained linear bandits.

Theorem 4 Using Algorithm 2 (with p = 2) as the subroutine AZ and Algorithm 4 as the sub-
routine AV in the black-box reduction Algorithm 3, the overall algorithm enjoys the following
comparator-adaptive switching regret against any partition I1, . . . , IS of [T ] and any correspond-
ing comparators ů1, . . . , ůS ∈ Rd:

E[REGS ] ≤ Õ

(
S∑
k=1

∥ůk∥2

(√
dT

S
+

√
dS

T
|Ik|

))
≤ Õ

(
max
k∈[S]

∥ůk∥2 ·
√
dST

)
.

The proof can be found in Appendix D.5. Again, this is the first switching regret for uncon-
strained linear bandits, and it strictly generalizes the static regret results of van der Hoeven et al.
(2020). Although we are not directly using our new corralling recipe to achieve this result, it clearly
serves as an indispensable component for this result due to the usage of Algorithm 2.
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6. Conclusion and Discussions

In this paper, we propose a new mechanism for combining a collection of bandit algorithms with
regret overhead only logarithmically depending on the number of base algorithms. As a case study,
we provide a set of new results on switching regret for adversarial linear bandits using this recipe.
One future direction is to extend our switching regret results to linear bandits with general domains
or even to general convex bandits, which appears to require additional new ideas to execute our
recipe. Another interesting direction is to find more applications for our corralling mechanism
beyond obtaining switching regret, as we know that logarithmic dependence on the number of base
algorithms is possible.
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Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multi-
armed bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002.

Peter Auer, Pratik Gajane, and Ronald Ortner. Adaptively tracking the best bandit arm with an
unknown number of distribution changes. In Proceedings of the 32nd Conference on Learning
Theory (COLT), pages 138–158, 2019.
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Appendix A. Potential Approaches for Switching Regret of Linear Bandits

As mentioned in the main paper, to the best of our knowledge, we are not aware of any paper with
switching regret for adversarial linear bandits. In this section, we present two potential approaches
to achieve switching regret for adversarial linear bandits with ℓp-ball feasible domain, however, the
regret bounds are suboptimal.

Method 1. Periodical Restart. The first generic method for tackling the switching regret of
linear bandits is by running a classic linear bandits algorithm with a periodical restart. Specifically,
suppose we employ an algorithm A as the base algorithm and restart it for every ∆ > 0 rounds.
Then, the switching regret of the overall algorithm satisfies:

E[REGS ] ≤ S ·∆+

(
T

∆
− S

)
· REG(A; ∆) ≤ Õ

(
S∆+

T√
∆

)
= Õ

(
S

1
3T

2
3

)
, (12)
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where the first inequality holds because there are at most S periods that contains a shift of compara-
tors and we bound the regret in those periods trivially by S∆, and for the other periods the regret
is controlled by the base algorithm A. The second inequality is by chosen base algorithm A such
that the regret is of order Õ(

√
∆), which can be satisfied by for example SCRIBLE (Abernethy

et al., 2008). The last equality is by set the period optimally as ∆ = ⌈(T/S)
1
3 ⌉. To summarize, the

restarting algorithm applies to general adversarial linear bandits and attains a suboptimal switching
regret of order Õ(S

1
3T

2
3 ), given the knowledge of S.

Method 2. EXP2 with Fixed-share Update. The second method is by using the EXP2 algo-
rithm (Dani et al., 2008) with a uniform mixing update (Herbster and Warmuth, 1998; Auer et al.,
2002), which can give an Õ(d

√
ST ) switching regret for adversarial linear bandits with a general

convex and compact domain. Note that the method is based on continuous exponential weights and
thus requires log-concave sampling (Lovász and Vempala, 2007), which is theoretically efficient but
usually time-consuming in practice. More importantly, the dimensional dependence is linear and
hence not optimal when the feasible domain is an ℓp ball, p ∈ (1, 2].

Beyond the above two methods, one may wonder whether we can simply use FTRL/OMD with
some barrier regularizer (such as SCRIBLE (Abernethy et al., 2008)) along with either a uniform
mixing update (Herbster and Warmuth, 1998; Auer et al., 2002) or a clipped domain (Herbster and
Warmuth, 2001) to achieve switching regret for linear bandits. However, the attempt fails to work
as the regularization term in the regret bound will become too large to control due to the property of
barrier regularizer. Indeed, this method cannot even achieve switching regret guarantees for MAB
due to the same reason.

Appendix B. Omitted Details for Section 4

In this section, we provide the omitted details for Section 4, including the pseudocode of the base
algorithm (in Appendix B.1) and the proof of Theorem 1 (in Appendix B.2 – B.7). To prove The-
orem 1, we first prove the unbiasedness of loss estimators in Appendix B.2, then decompose the
regret in Appendix B.3, and subsequently upper bound each term in Appendix B.4, Appendix B.5,
and Appendix B.6. We finally put everything together and present the proof in Appendix B.7.

B.1. Pseudocode of Base Algorithm

Algorithm 5 shows the pseudocode of the base algorithm for linear bandits with ℓp unit-ball feasible
domain, which is the same as the one proposed in (Bubeck et al., 2018).

B.2. Unbiasedness of Loss Estimators

The following lemma shows the unbiasedness of the constructed loss estimators for both meta and
base algorithms.

Lemma 5 The meta loss estimator ℓ̄t defined in Eq. (7) and the base loss estimator ℓ̂t defined
in Eq. (6) satisfy that Et[ℓ̄t] = ℓt and Et[ℓ̂t] = ℓt for all t ∈ [T ].

Proof We first show the unbiasedness of the meta loss estimator ℓ̄t. According to the definition
in Eq. (7), we have

Et[ℓ̄t] = Et[M̃−1
t xtx

⊤
t ℓt]
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Algorithm 5 Base algorithm for linear bandits on ℓp ball
Input: learning rate η, clipping parameter γ, initial round t0.
Define: clipped feasible domain X ′ = {x | ∥x∥p ≤ 1− γ}.
Initialize: a(t0)t0

= argminx∈X ′ R(x) and ξ(t0)t0
= 0.

Draw ã
(t0)
t0

uniformly randomly from {±en}dn=1.
for t = t0 to T do

Send (ã
(t0)
t , a

(t0)
t , ξ

(t0)
t ) to the meta algorithm.

Receive a loss estimator ℓ̂t.
Update the strategy based on OMD with regularizer R(x) = − log(1− ∥x∥pp):

a
(t0)
t+1 = argmin

a∈X ′

{〈
a, ℓ̂t

〉
+

1

η
DR(a, a

(t0)
t )

}
. (13)

Generate a random variable ξ(t0)t+1 ∼ Ber(∥a(t0)t+1∥p) and set

ã
(t0)
t+1 =

{
a
(t0)
t+1/∥a(t0)t+1∥p if ξ(t0)t+1 = 1,

δen if ξ(t0)t+1 = 0,

where n is uniformly chosen from {1, . . . , d} and δ is a uniform random variable over {−1,+1}.
end

=

(
β

d

d∑
n=1

ene
⊤
n + (1− β)

t∑
i=1

p̂t,iã
(i)
t ã

(i)⊤

t

)−1

· Et[xtx⊤t ]ℓt

=

(
β

d

d∑
n=1

ene
⊤
n + (1− β)

t∑
i=1

p̂t,iã
(i)
t ã

(i)⊤

t

)−1

·

(
β

d

d∑
n=1

ene
⊤
n + (1− β)

t∑
i=1

p̂t,iã
(i)
t ã

(i)⊤

t

)
ℓt

= ℓt. (14)

Next, we show the unbiasedness of the base loss estimator ℓ̂t. According to the definition in Eq. (6),
we have

Et[ℓ̂t] = Et

[
1− ξt
1− β

· d

1−
∑t

i=1 p̂t,i∥a
(i)
t ∥p

· (ℓ⊤t xt) · xt · 1{ρt = 0}

]

= Et

 t∑
j=1

p̂t,j ·
d(1− ξ(j)t )

1−
∑t

i=1 p̂t,i∥a
(i)
t ∥p

· (ℓ⊤t ã
(j)
t ) · ã(j)t


=

t∑
j=1

p̂t,j(1− ∥a(j)t ∥p) ·
d

1−
∑t

i=1 p̂t,i∥a
(i)
t ∥p

· 1
d

d∑
n=1

ene
⊤
n ℓt

= ℓt.

In above derivations, the first step simply substitutes the definition of loss estimator, the second step
holds due to the sampling scheme of Algorithm 2 (see Line 4), and the third step is because of the
sampling mechanism in base algorithm (see Algorithm 5). This finishes the proof.
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B.3. Regret Decomposition

We introduce shifted comparators u′t = (1 − γ)ut and ů′k = (1 − γ)̊uk to ensure that u′t ∈ X ′ for
t ∈ [T ] and ů′k ∈ X ′ for k ∈ [S], where X ′ = {x | ∥x∥p ≤ 1 − γ}. Based on the unbiasedness of
ℓ̂t and ℓ̄t, the expected regret can be decomposed as

E[REGS ]

= E

[
T∑
t=1

⟨xt, ℓt⟩ −
T∑
t=1

⟨ut, ℓt⟩

]

= E

[
T∑
t=1

⟨xt, ℓt⟩

]
− E

[
T∑
t=1

〈
u′t, ℓ̂t

〉]
+ E

[
T∑
t=1

〈
u′t − ut, ℓt

〉]

= (1− β)E

[
T∑
t=1

t∑
i=1

p̂t,i

〈
ã
(i)
t , ℓt

〉]
− E

[
T∑
t=1

〈
u′t, ℓ̂t

〉]
+ E

[
T∑
t=1

〈
u′t − ut, ℓt

〉]

= E

[
T∑
t=1

t∑
i=1

p̂t,i

〈
ã
(i)
t , ℓ̄t

〉]
− E

[
T∑
t=1

〈
u′t, ℓ̂t

〉]
+ E

[
T∑
t=1

〈
u′t − ut, ℓt

〉
− β

T∑
t=1

t∑
i=1

p̂t,i

〈
ã
(i)
t , ℓt

〉]

= E

[
T∑
t=1

t∑
i=1

p̂t,ict,i

]
− E

[
T∑
t=1

〈
u′t, ℓ̂t

〉]
+ E

[
T∑
t=1

〈
u′t − ut, ℓt

〉
− β

T∑
t=1

t∑
i=1

p̂t,i

〈
ã
(i)
t , ℓt

〉]
,

where the third equation holds because of the sampling scheme of xt: with probability β, the action
xt is uniformly sampled from {±en}, n ∈ [d]; with probability 1 − β, the action is sampled from
{(ã(i)t , ξ

(i)
t )}ti=1 according to p̂t. In the last step, we recall that the notation ct ∈ Rt is defined by

ct,i = ⟨ã(i)t , ℓ̄t⟩ for all i ∈ [t].
We further decompose the above regret into several intervals. To this end, we split the horizon

to a partition I1, . . . , IS . Let jk be the start time stamp of Ik. Note again that we use ůk ∈ X to
denote the comparator in Ik for k ∈ [S], which means that ut = ůk for all t ∈ Ik. Then we have

E[REGS ]

≤ E

 S∑
k=1

∑
t∈Ik

(
t∑
i=1

p̂t,ict,i −
〈
ů′k, ℓ̂t

〉)+ E

[
T∑
t=1

〈
u′t − ut, ℓt

〉
− β

T∑
t=1

t∑
i=1

p̂t,i

〈
ã
(i)
t , ℓt

〉]

= E

 S∑
k=1

∑
t∈Ik

⟨p̂t − ejk , ct⟩+
S∑
k=1

∑
t∈Ik

(
⟨ejk , ct⟩ −

〈
ů′k, ℓ̂t

〉)
+ E

[
T∑
t=1

〈
u′t − ut, ℓt

〉
− β

T∑
t=1

t∑
i=1

p̂t,i

〈
ã
(i)
t , ℓt

〉]

= E

 S∑
k=1

∑
t∈Ik

⟨p̂t − ejk , ct − bt⟩+
S∑
k=1

∑
t∈Ik

(
⟨ejk , ct⟩ −

〈
ů′k, ℓ̂t

〉)
+ E

 S∑
k=1

∑
t∈Ik

⟨p̂t − ejk , bt⟩

+ E

[
T∑
t=1

〈
u′t − ut, ℓt

〉
− β

T∑
t=1

t∑
i=1

p̂t,i

〈
ã
(i)
t , ℓt

〉]
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= E

 S∑
k=1

∑
t∈Ik

∑
i∈[t]

p̂t,iĉt,i − ĉt,jk

+

S∑
k=1

∑
t∈Ik

(
⟨ejk , ct⟩ −

〈
ů′k, ℓ̂t

〉)
(ĉt,i = ct,i − bt,i for i ∈ [t])

+ E

 S∑
k=1

∑
t∈Ik

t∑
i=1

(p̂t,i − ejk)bt,i

+ E

[
T∑
t=1

〈
u′t − ut, ℓt

〉
− β

T∑
t=1

t∑
i=1

p̂t,i

〈
ã
(i)
t , ℓt

〉]

= E

 S∑
k=1

∑
t∈Ik

∑
i∈[t]

⟨pt − ejk , ĉt⟩+
S∑
k=1

∑
t∈Ik

(〈
ã
(jk)
t , ℓ̄t

〉
−
〈
ů′k, ℓ̂t

〉)
+ E

 S∑
k=1

∑
t∈Ik

t∑
i=1

(p̂t,i − ejk)bt,i

+ E

[
T∑
t=1

〈
u′t − ut, ℓt

〉
− β

T∑
t=1

t∑
i=1

p̂t,i

〈
ã
(i)
t , ℓt

〉]

= E

[
S∑
k=1

∑
t∈Ik

⟨pt − ejk , ĉt⟩︸ ︷︷ ︸
META-REGRET

+
S∑
k=1

∑
t∈Ik

〈
a
(jk)
t − ů′k, ℓ̂t

〉
︸ ︷︷ ︸

BASE-REGRET

+
T∑
t=1

t∑
i=1

p̂t,ibt,i︸ ︷︷ ︸
POS-BIAS

−
S∑
k=1

∑
t∈Ik

bt,jk︸ ︷︷ ︸
NEG-BIAS

+
T∑
t=1

〈
u′t − ut, ℓt

〉
− β

T∑
t=1

t∑
i=1

p̂t,i

〈
ã
(i)
t , ℓt

〉
︸ ︷︷ ︸

DEVIATION

]
, (15)

where the second-last equality is due to the constructions of p̂t and ĉt (see Line 8 in Algorithm 2),

⟨pt, ĉt⟩ =
∑
i∈[t]

pt,iĉt,i +
∑
i>t

pt,iĉt,i =
∑
i∈[t]

p̂t,i

∑
j∈[t]

pt,j

 ĉt,i +
∑
i>t

pt,i
∑
j∈[t]

p̂t,j ĉt,j

=
∑
i∈[t]

p̂t,i

∑
j∈[t]

pt,j +
∑
i>t

pt,i

 ĉt,i =
∑
i∈[t]

p̂t,iĉt,i,

and the last equality is based on the definition of ã(i)t and a(i)t and the following equation:

E
[〈
ã
(i)
t , ℓ̄t

〉
−
〈
u, ℓ̂t

〉]
= E

[〈
ã
(i)
t ,Ep̂t [ℓ̄t]

〉
−
〈
u, ℓ̂t

〉]
= E

[〈
ã
(i)
t , ℓt

〉
−
〈
u, ℓ̂t

〉]
= E

[〈
E
ξ
(i)
t
[ã

(i)
t ], ℓt

〉
−
〈
u, ℓ̂t

〉]
= E

[〈
a
(i)
t ,E[ℓ̂t]

〉
−
〈
u, ℓ̂t

〉]
= E

[〈
a
(i)
t − u, ℓ̂t

〉]
.

As a consequence, we upper bound the expected switching regret by five terms as shown
in Eq. (15), including: META-REGRET, BASE-REGRET, POS-BIAS, NEG-BIAS, and DEVIATION.
In the following, we will bound each term respectively.

B.4. Bounding DEVIATION and POS-BIAS

DEVIATION. DEVIATION can be simply bounded by (β + γ)T as

T∑
t=1

〈
u′t − ut, ℓt

〉
− β

T∑
t=1

t∑
i=1

p̂t,i

〈
ã
(i)
t , ℓt

〉
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≤
T∑
t=1

((1− γ)− 1) ⟨ut, ℓt⟩+ βT

≤
T∑
t=1

(1− (1− γ)) + βT

≤ (β + γ)T. (16)

where the first and second inequalities hold because we have |ℓ⊤t x| ≤ 1 for any x ∈ X and t ∈ [T ].

POS-BIAS. According to the definition of bt,i, we show that POS-BIAS is at most

1

λT (1− β)

T∑
t=1

t∑
i=1

p̂t,i(1− ∥a(i)t ∥p)
1−

∑t
j=1 p̂t,j∥a

(j)
t ∥p

=
1

λ(1− β)
≤ 2

λ
. (17)

Hence, it remains to evaluate BASE-REGRET and META-REGRET, and in the following two
subsections we present their upper bounds, respectively.

B.5. Bounding BASE-REGRET

In order to bound BASE-REGRET, we need to introduce the following lemma proven in (Bubeck
et al., 2018), which shows that the dual local norm with respect to the regularizerR(x) = − log(1−
∥x∥pp) is well bounded. This will later be shown to be crucial in controlling the stability of at updated
by the online mirror descent shown in Algorithm 5.

Lemma 6 (Lemma 2 in (Bubeck et al., 2018)) Let x, ℓ ∈ Rd such that ∥x∥p < 1, ∥ℓ∥0 = 1 and
∥ℓ∥2 ≤ 1. Let y ∈ Rd such that ∇R(y) ∈ [∇R(x),∇R(x) + ℓ], R(x) = − log(1 − ∥x∥pp). Then,
we have for p ∈ (1, 2],

∥ℓ∥2y,∗ ≤
2

3
p−1 (1− ∥x∥pp)
p(p− 1)

d∑
n=1

(
|xn|2−p + |ℓn|

2−p
p−1

)
ℓ2n.

In above, for a vector h ∈ Rd, ∥h∥0 ≜ #{n | hn ̸= 0} denotes the number of non-zero entries,
∥h∥x ≜

√
h⊤∇2R(x)h denotes the local norm induced byR at x, and ∥h∥x,∗ ≜

√
h⊤(∇2R(x))−1h

denotes the dual local norm.

Then we are ready to bound BASE-REGRET for each k ∈ [S]. Note that for each k ∈ [S],
as jk is the start time stamp of interval Ik, and base algorithm Bt starts at round t, we know that∑

t∈Ik⟨a
(jk)
t − ůk, ℓ̂t⟩ is in fact the (estimated) static regret against comparator ůk for Bjk .

Lemma 7 For an arbitrary interval I started at round j, if γ = 4dηj′ for all j′ ∈ [T ], Algorithm 2
ensures that the base regret of Bj with learning rate η for any comparator u ∈ X ′ is at most

E

[∑
t∈I

〈
a
(j)
t − u, ℓ̂t

〉]
≤ log(1/γ)

η
+

2
4

p−1dη

(p− 1)(1− β)
∑
t∈I

1− ∥a(j)t ∥p
1−

∑t
i=1 p̂t,i∥a

(i)
t ∥p

. (18)
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Proof Since the base algorithm Bj performs the online mirror descent over loss ℓ̂t with learning
rate η, see update in Eq. (13), according to the standard analysis of OMD (see Lemma 27) we have

E

[∑
t∈I

〈
a
(j)
t − u, ℓ̂t

〉]
≤
R(u)−R(a(j)j )

η
+

1

η

∑
t∈I

E
[
DR∗

(
∇R(a(j)t )− ηℓ̂t,∇R(a(j)t )

)]
.

Consider the first term. As a(j)j = argminx∈X R(x) and u ∈ X ′ = {x | ∥x∥p ≤ 1− γ}, we have

R(u)−R(a(j)j ) ≤ − log(1− (1− γ)) ≤ − log γ. (19)

For the second term, in the following we will employ Lemma 6 to show that

Et
[
DR∗

(
∇R(a(j)t )− ηℓ̂t,∇R(a(j)t )

)]
≤ η2 · d · 2

4
p−1

(p− 1)(1− β)
· 1− ∥a(j)t ∥p
1−

∑t
i=1 p̂t,i∥a

(i)
t ∥p

. (20)

To this end, we need to verify the condition of Lemma 6. In fact, according to the definition of
the base loss estimator in Eq. (6), ℓ̂t is a non-zero vector only when Algorithm 2 samples from one
of the base algorithm instances and ξt = 0, meaning that xt = ±en for some n ∈ [d] according
to Algorithm 5. Using the fact that a(i)t ∈ X ′ and β ≤ 1

2 , we have ∥a(i)t ∥p ≤ 1− γ and

∥ηℓ̂t∥2 ≤
ηd

(1− β)(1−
∑t

i=1 p̂t,i(1− γ))
≤ ηd

γ(1− β)
≤ 2ηd

γ
≤ 1

2
,

where the last inequality is because of the choice of γ = 4dη. In addition, based on the definition
of ℓ̂t, we have ∥ηℓ̂t∥0 = 1. Therefore, we can apply Lemma 6 and obtain that

Et
[
DR∗

(
∇R(a(j)t )− ηℓ̂t,∇R(a(j)t )

)]
= Et

[
∥ηℓ̂t∥2yt,∗

]
≤ η2 · 2

3
p−1 (1− ∥a(j)t ∥

p
p)

p(p− 1)

d∑
n=1

Et
[(
|a(j)t,n|2−p + |ηℓ̂t,n|

2−p
p−1

)
ℓ̂2t,n

]
= η2 · 2

3
p−1 (1− ∥a(j)t ∥

p
p)

p(p− 1)

(
d∑

n=1

Et
[
|a(j)t,n|2−p · ℓ̂2t,n

]
︸ ︷︷ ︸

TERM (A)

+

d∑
n=1

Et
[
|ηℓ̂t,n|

2−p
p−1 · ℓ̂2t,n

]
︸ ︷︷ ︸

TERM (B)

)
,

where the first equality holds for some yt ∈ [∇R(a(j)t )− ηℓ̂t,∇R(a(j)t )] by the definition of Breg-
man divergence and the mean value theorem, the second inequality is by Lemma 6. The last equality
splits the desired quantity into two terms, and we upper bound TERM (A) and TERM (B) respectively.

For TERM (A), substituting the definition of loss estimator ℓ̂t (see definition in Eq. (6)) yields

d∑
n=1

Et
[
|a(j)t,n|2−p · ℓ̂2t,n

]
=

d2

(1− β)(1−
∑t

i=1 p̂t,i∥a
(i)
t ∥p)2

d∑
n=1

|a(j)t,n|2−p ·
t∑

τ=1

p̂t,τEt
[
(1− ξ(τ)t )2ã

(τ)2

t,n ⟨ã
(τ)
t , ℓt⟩2

]
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=
d2)

(1− β)(1−
∑t

i=1 p̂t,i∥a
(i)
t ∥p)2

d∑
n=1

|a(j)t,n|2−p ·
t∑

τ=1

p̂t,τ (1− ∥a(τ)t ∥p) ·
1

d

d∑
n′=1

[
1{n′ = n}ℓ2t,n′

]
=

d

(1− β)(1−
∑t

i=1 p̂t,i∥a
(i)
t ∥p)

d∑
n=1

|a(j)t,n|2−pℓ2t,n

≤ d

(1− β)(1−
∑t

i=1 p̂t,i∥a
(i)
t ∥p)

,

where the last inequality is because of Hölder’s inequality, ∥ℓt∥q ≤ 1 and ∥a(j)t ∥p ≤ 1.
For TERM (B), again by definition of the loss estimator, we have

d∑
n=1

Et
[
|ηℓ̂t,n|

2−p
p−1 · ℓ̂2t,n

]

≤
d∑

n=1

Et

∣∣∣∣η(1− ξt)d(xtx⊤t ℓt)n(1− β)γ

∣∣∣∣
2−p
p−1

· ℓ̂2t,n


=

d∑
n=1

Et

∣∣∣∣η(1− ξt)d(xtx⊤t ℓt)n(1− β)γ

∣∣∣∣
2−p
p−1

· (1− ξt)
2d2(xtx

⊤
t ℓt)

2
n · 1{ρt = 0}

(1− β)2(1−
∑t

i=1 p̂t,i∥a
(i)
t ∥p)2


≤

d∑
n=1

Et

∣∣∣∣(xtx⊤t ℓt)n2

∣∣∣∣
2−p
p−1

· (1− ξt)
2d2(xtx

⊤
t ℓt)

2
n · 1{ρt = 0}

(1− β)2(1−
∑t

i=1 p̂t,i∥a
(i)
t ∥p)2

 (γ = 4dη, 1− β ≥ 1
2 )

≤ d2

(1− β)2(1−
∑t

i=1 p̂t,i∥a
(i)
t ∥p)2

d∑
n=1

Et
[
(1− ξt)2(xtx⊤t ℓt)qn · 1{ρt = 0}

]
(note that 2−p

p−1 + 2 = q)

≤ 1

(1− β)2
· d2

(1−
∑t

i=1 p̂t,i∥a
(i)
t ∥p)2

·
d∑

n=1

(1− β)
t∑

τ=1

p̂t,τ (1− ∥a(τ)t ∥p) ·
1

d
· ℓqt,n

≤ d

(1− β)(1−
∑t

i=1 p̂t,i∥a
(i)
t ∥p)

.

Combining the above upper bounds for TERM (A) and TERM (B), we obtain

Et
[
DR∗

(
∇R(a(j)t )− ηℓ̂t,∇R(a(j)t )

)]
≤ η2

1− β
· 2d · 2

3
p−1

p(p− 1)
· 1− ∥a(j)t ∥

p
p

1−
∑t

i=1 p̂t,i∥a
(i)
t ∥p

≤ η2

1− β
· d · 2

4
p−1

p(p− 1)
· 1− ∥a(j)t ∥

p
p

1−
∑t

i=1 p̂t,i∥a
(i)
t ∥p

≤ η2

1− β
· d · 2

4
p−1

p− 1
· 1− ∥a(j)t ∥p
1−

∑t
i=1 p̂t,i∥a

(i)
t ∥p

.

Note that the last step is true because we have 1− ∥x∥pp ≤ p(1− ∥x∥p) by the following inequality

1 + p · ∥x∥
p
p − 1

p
≤
(
1 +
∥x∥pp − 1

p

)p
,
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which holds due to p ∈ (1, 2] and 0 ≤ ∥x∥p ≤ 1 as well as the Bernoulli’s inequality that 1 + rθ ≤
(1 + θ)r for any r ≥ 1 and θ ≥ −1.

Therefore, we finish proving the desired upper bound in Eq. (20). Further combining it with the
upper bound in Eq. (19) finishes the proof of Lemma 7.

We will show later that the second term in the bound shown in Eq. (18) can in fact be cancelled by
the NEG-BIAS. Finally, we bound the term META-REGRET.

B.6. Bounding META-REGRET

We prove the following lemma to bound the META-REGRET.

Lemma 8 For an arbitrary interval I ⊆ [T ] started at round j, setting ε
λγT ≤

1
8 , β = 8dε and

µ = 1
T , Algorithm 2 guarantees that

∑
t∈I
⟨pt − ej , ĉt⟩ ≤

2 log T

ε
+ ε

∑
t∈I

T∑
i=1

pt,iĉ
2
t,i +O

(
|I|
εT

)
. (21)

Proof Note that the meta algorithm essentially performs the exponential weights with a fixed-share
update and sleeping expert. Define vt+1,i ≜ pt,i exp(−εĉt,i)∑T

t=1 pt,i exp(−εĉt,i)
for all i ∈ [T ]. Then pt+1,i =

µ
T + (1− µ)vt+1,i. Note that

⟨pt, ĉt⟩+
1

ε
log

(
T∑
i=1

pt,i exp(−εĉt,i)

)

≤ ⟨pt, ĉt⟩+
1

ε
log

(
T∑
i=1

pt,i(1− εĉt,i + ε2ĉ2t,i)

)

= ⟨pt, ĉt⟩+
1

ε
log

(
1− ε ⟨pt, ĉt⟩+ ε2

T∑
i=1

pt,iĉ
2
t,i

)

≤ ε
T∑
i=1

pt,iĉ
2
t,i.

The first inequality is because exp(−x) ≤ 1−x+x2 holds for x ≥ −1
2 . To show that εmaxi∈[t] |ĉt,i| ≤

1
2 , we have

εmax
i∈[t]
|ĉt,i| = εmax

i∈[t]

∣∣∣〈ã(i)t , M̃−1
t xtx

⊤
t ℓt

〉
− bi

∣∣∣ ≤ εmax
i∈[t]

∣∣∣ã(i)⊤t M̃−1
t xt

∣∣∣+ εmax
i∈[t]
|bt,i| .

We can bound the first term by Hölder’s inequality

εmax
i∈[t]

∣∣∣ã(i)⊤t M̃−1
t xt

∣∣∣ ≤ εmax
i∈[t]
∥ã(i)t ∥p∥M̃

−1
t xt∥q ≤ ε∥M̃−1

t xt∥2 ≤
εd

β
∥xt∥2 ≤

εd

β
∥xt∥p ≤

εd

β
,

where 1
p +

1
q = 1. The second inequality is by ∥ã(i)t ∥p ≤ 1 and p ≤ 2 ≤ q. The third one is because

M̃t has the smallest eigenvalue β
d . By the definition of bt,i, we can bound the second term as

εmax
i∈[t]
|bt,i| ≤

ε

λT (1− β)
· 1
γ
≤ 2ε

λTγ
.
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Therefore, according to the choice of ε, γ and λ, we have εmaxi∈[t] |ĉt,i| ≤ 1
2 . Furthermore, by the

definition of vt+1,i, we have
∑T

j=1 pt,j exp(−εĉt,j) = pt,i exp(−εĉt,i)/vt+1,i. Therefore, we have

1

ε
log

 T∑
j=1

pt,j exp(−εĉt,j)

 = −1

ε
log

(
vt+1,i

pt,i

)
− ĉt,i.

Combining the two equations and taking summation over t ∈ I, we have for any ej ∈ ∆T , j ∈ [T ],

∑
t∈I
⟨pt, ĉt⟩ −

∑
t∈I
⟨ej , ĉt⟩ ≤ ε

∑
t∈I

T∑
i=1

pt,iĉ
2
t,i +

1

ε

∑
t∈I

log

(
vt+1,j

pt,j

)
.

Further note that∑
t∈I

log

(
vt+1,j

pt,j

)
=
∑
t∈I

log

(
pt+1,j

pt,j

)
+
∑
t∈I

log

(
vt+1,j

µ
T + (1− µ)vt+1,j

)
≤ log

(
pq+1,j

ps,j

)
+ |I| log

(
1

1− µ

)
(let I = [s, q])

≤ log(T 2) +O
(
|I|
T

)
(22)

where the last step is due to pt,j ≥ µ
T = 1

T 2 for j ∈ [T ] and t ∈ [T ], and moreover, we have
log( 1

1−µ) = log(1 + µ
1−µ) = O(1/T ) as µ = 1

T ≤
1
2 .

Combining the above two inequalities achieves

∑
t∈I
⟨pt − ej , ĉt⟩ ≤ ε

∑
t∈I

T∑
i=1

pt,iĉ
2
t,i +

2 log T

ε
+O

(
|I|
εT

)
.

which finishes the proof.

Next, we prove the following lemma, which bounds the second term shown in Eq. (21)

Lemma 9 For any t ∈ [T ], setting λ2γ = Θ
(√

1
dST 3

)
and β ≤ 1

2 , Algorithm 2 guarantees that

T∑
i=1

pt,iĉ
2
t,i ≤

∑
i∈[t]

p̂t,iĉ
2
t,i ≤ 2

∑
i∈[t]

p̂t,ic
2
t,i +O

(√
dS

T

)
, (23)

where ct,i = ⟨ã(i)t , ℓ̄t⟩ for i ∈ [t].

Proof According to the definition of p̂t, we have

T∑
i=1

pt,iĉ
2
t,i =

∑
i∈[t]

pt,iĉ
2
t,i +

∑
i>t

pt,i

∑
i∈[t]

p̂t,iĉt,i

2

≤
∑
i∈[t]

pt,iĉ
2
t,i +

∑
i>t

pt,i

∑
i∈[t]

p̂t,iĉ
2
t,i


=

∑
i∈[t]

pt,i

∑
i∈[t]

p̂t,iĉ
2
t,i

+

(∑
i>t

pt,i

)∑
i∈[t]

p̂t,iĉ
2
t,i

 =
∑
i∈[t]

p̂t,iĉ
2
t,i,
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where the inequality is because of Cauchy-Schwarz inequality. Besides, recall that ct,i = ⟨ã(i)t , ℓ̄t⟩
and ĉ2t,i = (ct,i − bt,i)2 ≤ 2c2t,i + 2b2t,i. According to the definition of bt,i, we know that

∑
i∈[t]

p̂t,ib
2
t,i ≤

4

(λT )2
1

γ

∑
i∈[t]

p̂t,i
1− ∥a(i)t ∥p

1−
∑

j∈[t] p̂t,j∥a
(j)
t ∥p

=
4

(λT )2
1

γ
= O

(√
dS

T

)
,

where the first inequality uses the fact that bt,i ≤ 1
λTγ(1−β) ≤

2
λTγ and the last step holds because

we choose λ2γ = Θ
(√

1
dST 3

)
.

Combining Lemma 8 and Lemma 9, we obtain the following lemma to bound the meta-regret.

Lemma 10 Define C =
√
p− 1 · 2−

2
p−1 . Set parameters ε = min

{√
S
dT ,

1
16d ,

C2

2

}
, β = 8dε,

λ = C√
dST

, γ = 4C
√

dS
T and µ = 1

T . Then, Algorithm 2 guarantees that

E [META-REGRET] ≤ Õ
(√

dST
)
.

Proof It is evident to verify that the choice of ε, λ, β and γ satisfies the condition required
in Lemma 8 and Lemma 9, then based on the two lemmas, with β = 8dε ≤ 1

2 , for each inter-
val Ik, we have

E

∑
t∈Ik

⟨pt − ejk , ĉt⟩


≤ 2 log T

ε
+ 2εE

∑
t∈Ik

∑
i∈[t]

p̂t,ic
2
t,i

+O

(
ε|Ik|

√
dS

T

)
+O

(
|Ik|
εT

)

≤ 2 log T

ε
+ 2εE

∑
t∈Ik

t∑
i=1

p̂t,iã
(i)⊤

t M̃−1
t xtx

⊤
t M̃

−1
t ã

(i)
t

+O

(
ε|Ik|

√
dS

T

)
+O

(
|Ik|
εT

)

≤ 2 log T

ε
+ 2ε

∑
t∈Ik

t∑
i=1

p̂t,iã
(i)⊤

t M̃−1
t ã

(i)
t +O

(
ε|Ik|

√
dS

T

)
+O

(
|Ik|
εT

)
(Et[xtx⊤t ] = M̃t)

≤ 2 log T

ε
+

2ε

1− β
∑
t∈Ik

t∑
i=1

p̂t,iã
(i)⊤

t

(
t∑
i=1

p̂t,iã
(i)
t ã

(i)⊤

t

)−1

ã
(i)
t +O

(
ε|Ik|

√
dS

T

)
+O

(
|Ik|
εT

)

≤ 2 log T

ε
+ 4εd|Ik|+O

(
ε|Ik|

√
dS

T

)
+O

(
|Ik|
εT

)
. (24)

Summing the regret over all the intervals achieves the following meta-regret upper bound:

E [META-REGRET] = E

 S∑
k=1

∑
t∈Ik

⟨pt − ejk , ĉt⟩


≤ 2S log T

ε
+ 4εdT +O

(
ε
√
dST

)
+O (1/ε) ≤ Õ

(√
dST

)
,

(25)
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where the last inequality is because we choose ε = min

{√
S
dT ,

C2

2 ,
1

16d

}
.

B.7. Proof of Theorem 1

Putting everything together, we are now ready to prove our main result (Theorem 1).

Proof Based on the regret decomposition in Eq. (15), upper bound of bias term in Eq. (16), upper
bound of positive term Eq. (17), base regret upper bound in Lemma 7 and meta regret upper bound
in Eq. (25), we have

E[REGS ] = E

 S∑
k=1

∑
t∈Ik

⟨xt − ůk, ℓt⟩


≤ 2

λ
+

S∑
k=1

log(1/γ)

ηjk
+

(
2

4
p−1dηjk

(p− 1)(1− β)
− 1

λT (1− β)

)∑
t∈Ik

1− ∥a(jk)t ∥p
1−

∑t
i=1 p̂t,i∥a

(i)
t ∥p

+ (β + γ)T + Õ
(√

dST
)
.

Importantly, note that the coefficient of the third term is actually zero. Indeed, due to the parameter

configurations that γ = 4C
√

dS
T , η = C

√
S
dT , λ = C√

dST
, β = 8dε, ε = min

{
1

16d ,
C2

2 ,
√

S
dT

}
and C =

√
p− 1 · 2−

2
p−1 , we can verify that

2
4

p−1dη

p− 1
− 1

λT
=

2
2

p−1
√
dS√

(p− 1)T
−
√
dS

C
√
T

= 0.

Therefore, we obtain the following switching regret:

E[REGS ] ≤
2

λ
+ 8
√
dST + 4C

√
dST + Õ(

√
dST ) ≤ Õ

(√
dST

)
,

which finishes the proof.

In addition, we also provide the following theorem showing the expected interval regret bound,
which will be useful in the later analysis, for example, the unconstrained linear bandits in Section 5.

Theorem 11 Define C =
√
p− 1 · 2−

2
p−1 . Set parameters ε = min

{√
S
dT ,

1
16d ,

C2

2

}
, β = 8dε,

λ = C√
dST

, γ = 4C
√

dS
T , µ = 1

T and η = C
√

S
dT . Then, Algorithm 2 guarantees that for any

interval I and comparator u ∈ X ,

E

[∑
t∈I

ℓ⊤t xt −
∑
t∈I

ℓ⊤t u

]
≤ Õ

(√
dT

S
+ |I|

√
dS

T

)
. (26)

28



CORRALLING A LARGER BAND OF BANDITS

Proof Based on the regret decomposition Eq. (15), Eq. (16), Eq. (17), Lemma 7 and Eq. (24) within
rounds t ∈ I starting at round j, we have

E

[∑
t∈I

ℓ⊤t xt −
∑
t∈I

ℓ⊤t u

]

≤ 2|I|
λT

+
log(1/γ)

ηj
+

(
2

4
p−1dηj

(p− 1)(1− β)
− 1

λT (1− β)

)∑
t∈I

1− ∥a(j)t ∥p
1−

∑t
i=1 p̂t,i∥a

(i)
t ∥p

+ (β + γ)|I|+ Õ

(
ε|I|

√
dS

T

)
+O

(
|I|
εT

)
.

Again, note that according to the choice of γ, η, λ, β and ε, we have

2
4

p−1dη

p− 1
− 1

λT
=

2
2

p−1
√
dS√

(p− 1)T
−
√
dS

C
√
T

= 0.

Therefore, we have

E

[∑
t∈I

ℓ⊤t xt −
∑
t∈I

ℓ⊤t u

]

≤ 2

C
|I|
√
dS

T
+

log

(
1
4C ·

√
T
dS

)
C

·
√
dT

S
+ 8d|I|

√
S

dT
+ 4C|I|

√
dS

T
+ Õ

(
ε|I|

√
dS

T
+
|I|
εT

)

≤ Õ

(√
dT

S
+ |I|

√
dS

T

)
,

which finishes the proof.

Appendix C. Extension to Smooth and Strongly Convex Set

In this section, we extend our results for linear bandits with ℓp-ball feasible domain in Section 4
to the setting when the feasible domain is a smooth and strongly convex set. Kerdreux et al. (2021)
studied the static regret for linear bandits in this setting, and we focus on the S-switching regret.

C.1. Main Results

Formally, we investigate adversarial linear bandits with a smooth and strongly convex feasible do-
main. In the following, we present the definitions of smooth set (Kerdreux et al., 2021, Definition 1)
and strongly convex set (Kerdreux et al., 2021, Definition 3).

Definition 12 (smooth set) A compact convex set X is smooth if and only if |NX (x) ∩ ∂X ◦| = 1
for any x ∈ ∂X , where NX (x) ≜ {u ∈ Rd | ⟨x − y, u⟩ ≥ 0, ∀y ∈ X}, ∂X is the boundary of X
and X ◦ = {u ∈ Rd | ⟨u, x⟩ ≤ 1, ∀x ∈ X} is the polar of X .
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Definition 13 (strongly convex set) Let X be a centrally symmetric set with non-empty interior.
Let α > 0 be the curvature coefficient. The set X is α-strongly convex with respect to ∥ · ∥X if and
only if for any x, y, z ∈ X and γ ∈ [0, 1], we have(

γx+ (1− γ)y + α

2
γ(1− γ)∥x− y∥2X · z

)
∈ X ,

where ∥x∥X ≜ inf{λ > 0 | x ∈ λX} is the gauge function to X .

Conventionally, we assume that |ℓ⊤t x| ≤ 1 holds for all x ∈ X and t ∈ [T ]. We also assume
that ℓp(1) ⊆ X ⊆ ℓq(1) with p ∈ (1, 2] and 1

p + 1
q = 1, where ℓs(r) ≜ {x ∈ Rd | ∥x∥s ≤ r}

denotes the ℓs-norm ball (s ≥ 1) with radius r > 0. We here stress the connection and difference
between the strongly convex set setting and the ℓp-ball setting considered in Section 4. Note that X
is a subset of ℓq ball and includes ℓp ball. Besides, ℓp ball is also smooth when p ∈ (1, 2]. Therefore,
it includes ℓp-ball feasible set for p ∈ (1, 2] but can be more general. Nevertheless, the switching
regret bound we will prove is Õ(d1/p

√
ST ), which recovers the Õ(

√
dST ) switching regret of ℓp-

ball feasible domain in Theorem 1 only when p = 2 but leads to a slightly worse dependence on d
when p ∈ (1, 2). Note that as p > 1, this bound is still better than Õ(d

√
ST ).

Our proposed algorithm for smooth and strongly convex set is basically the same as the one
proposed for the ℓp ball setting, except that we now need to modify the base algorithm based on the
algorithm introduced in (Kerdreux et al., 2021) and also need to revise the construction of injected
bias bt,i and the loss estimator ℓ̂t in the meta level. Specifically, in the base algorithm we use online
mirror descent with the following regularizer,

R(x) = − log(1− ∥x∥X )− ∥x∥X ,

whose detailed update procedures are presented in Algorithm 7. For the meta algorithm, the update
procedures are in Algorithm 6, notably, the injected bias bt is constructed according to Eq. (29) and
the base loss estimator ℓ̂t is constructed according to Eq. (27).

We have the following theorem regarding the switching regret of our proposed algorithm for
linear bandits on smooth and strongly convex feasible domain.

Theorem 14 Consider a compact convex setX that is centrally symmetric with non-empty interior.
Suppose that X is smooth and α-strongly convex with respect to ∥ · ∥X and ℓp(1) ⊆ X ⊆ ℓq(1),

p ∈ (1, 2], 1
p+

1
q = 1. DefineC =

√
α

10α+8 . Set parameters γ = 4Cd
1
q

√
S
T , λ = Cd

− 1
q√

ST
, β = 8d

2
p ε,

ε = min

{
1

16d
2
p
, C

2

2 , d
− 1

p

√
S
T

}
, µ = 1

T and η = Cd
− 1

p

√
S
T . Then, Algorithm 6 guarantees

E[REGS ] = E

[
T∑
t=1

ℓ⊤t xt −
T∑
t=1

ℓ⊤t ut

]
≤ Õ

(
d
1/p
√
ST
)
,

where u1, . . . , uT ∈ X is the comparator sequence such that
∑T

t=2 1{ut−1 ̸= ut} ≤ S − 1.

In the following, we first introduce some definitions and lemmas useful for the analysis in
strongly convex set in Appendix C.2 and then prove Theorem 14 in Appendix C.3–C.8. To prove The-
orem 14, similar to the analysis structure in Appendix B, we first prove the unbiasedness of loss
estimators in Appendix C.3, and then in Appendix C.4, we decompose the regret into several terms,
and subsequently upper bound each term in Appendix C.5, Appendix C.6, and Appendix C.7. We
finally put everything together and present the proof in Appendix C.8.
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Algorithm 6 Algorithm for adversarial linear bandits over smooth and strongly convex set with
switching regret
Input: clipping parameter γ, base learning rate η, meta learning rate ε, mixing rate µ, exploration
parameter β, bias coefficient λ, initial uniform distribution p1 ∈ ∆T .
for t = 1 to T do

Start a new base algorithm Bt, which is an instance of Algorithm 7 with learning rate η, clipping
parameter γ, and initial round t.
Receive local decision (ã

(i)
t , a

(i)
t , ξ

(i)
t ) from base algorithm Bi for each i ≤ t.

Compute the renormalized distribution p̂t ∈ ∆t such that p̂t,i ∝ pt,i for i ∈ [t].
Sample a Bernoulli random variable ρt with mean β. If ρt = 1, uniformly sample xt from
{±en}dn=1; otherwise, sample it ∈ [t] according to p̂t, and set xt = ã

(it)
t and ξt = ξ

(it)
t .

Make the final decision xt and receive feedback ℓ⊤t xt.
Construct the base loss estimator ℓ̂t ∈ Rd as follows and send it to all base algorithms {Bi}ti=1:

ℓ̂t =
1{ρt = 0}1{ξt = 0}

1− β
· d(ℓ⊤t xt)

1−
∑t

i=1 p̂t,i∥a
(i)
t ∥X

· xt. (27)

Construct another loss estimator ℓ̄t ∈ Rd as

ℓ̄t = M̃−1
t xtx

⊤
t ℓt, (28)

where M̃t =
β
d

∑d
i=1 eie

⊤
i + (1− β)

∑t
i=1 p̂t,iã

(i)
t ã

(i)⊤

t .
Construct the meta loss estimator ĉt ∈ RT as:

ĉt,i =

{
⟨ã(i)t , ℓ̄t⟩ − bt,i, i ≤ t,∑t

j=1 p̂t,j ĉt,j , i > t,
where bt,i =

1

λT (1− β)
1− ∥a(i)t ∥X

1−
∑t

j=1 p̂t,j∥a
(j)
t ∥X

. (29)

Meta algorithm updates the weight pt+1 ∈ ∆T according to

pt+1,i = (1− µ) pt,i exp(−εĉt,i)∑T
j=1 pt,j exp(−εĉt,j)

+
µ

T
, ∀i ∈ [T ]. (30)

end

C.2. Preliminary

This subsection collects some useful definitions and lemmas for the analysis. We refer the reader
to (Kerdreux et al., 2021) for detailed introductions. Define ∥ · ∥X is the gauge function to X as

∥x∥X = inf{λ > 0 | x ∈ λX}. (32)

The polar of X is defined as X ◦ = {ℓ ∈ Rd | ⟨x, ℓ⟩ ≤ 1,∀x ∈ X}. If X is symmetric, then based
on the assumption |⟨x, ℓt⟩| ≤ 1, we have ℓt ∈ X ◦. Based on the definition of gauge function, we
have ∥x∥X ≤ 1 for all x ∈ X . In addition, we have the Hölder’s inequality ⟨x, ℓ⟩ ≤ ∥x∥X · ∥ℓ∥X ◦ .
In this problem, we also assume that ℓp(1) ⊆ X ⊆ ℓq(1), p ∈ (1, 2], 1

p + 1
q = 1 which implies
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Algorithm 7 Base algorithm for linear bandits on strongly convex set
Input: learning rate η, clipping parameter γ, initial round t0.
Define: clipped feasible domain X ′ = {x | ∥x∥X ≤ 1− γ, x ∈ X}.
Initialize: a(t0)t0

= argminx∈X ′ R(x) and ξ(t0)t0
= 0.

Draw ã
(t0)
t0

uniformly randomly from {±en}dn=1.
for t = t0 to T do

Send (ã
(t0)
t , a

(t0)
t , ξ

(t0)
t ) to the meta algorithm.

Receive a loss estimator ℓ̂t.
Update the strategy based on OMD with regularizer R(x) = − log(1− ∥x∥X )− ∥x∥X :

a
(t0)
t+1 = argmin

a∈X ′

{〈
a, ℓ̂t

〉
+

1

η
DR(a, a

(t0)
t )

}
. (31)

Generate a random variable ξ(t0)t+1 ∼ Ber(∥a(t0)t+1∥X ) and set

ã
(t0)
t+1 =

{
a
(t0)
t+1/∥a(t0)t+1∥X if ξ(t0)t+1 = 1,

δen if ξ(t0)t+1 = 0,

where n is uniformly chosen from {1, . . . , d} and δ is a uniform random variable over {−1,+1}.
end

that {±en}n∈[d] ⊆ X . By the definition of X ◦, we also have ℓp(1) ⊆ X ◦ ⊆ ℓq(1). The following
lemmas show some useful identities for the regularizer R(x).

Lemma 15 (Lemma 5 of Kerdreux et al. (2021)) A gauge function ∥ · ∥X is differentiable at x ∈
Rd\{0} if and only if its support set S(X ◦, x) = {h ∈ X ◦ | ⟨h, x⟩ = suph′∈X ◦ ⟨h′, x⟩} contains
a single point h. If this is the case, we have ∇∥ · ∥X (x) = d. Besides, the following assertions are
true: (1) ∥(∇∥ · ∥X (x))∥X ◦ = 1; (2)∇∥ · ∥X (λx) = ∇∥ · ∥X (x), for any λ > 0; (3) if X ◦ is strictly
convex, then ∥ · ∥X is differentiable in Rd\{0}.

Lemma 16 (Corollary 8 of Kerdreux et al. (2021)) Let X be a centrally symmetric set with non
empty interior. Assume that X is α-strongly convex with respect to ∥ ·∥X . Then for any (u, v) ∈ Rn,

D 1
2
∥·∥2X◦

(u, v) ≤ 4(α+ 1)

α
∥u− v∥2X ◦ .

Lemma 17 (Lemma 15 of Kerdreux et al. (2021)) Assume X ⊆ Rd is strictly convex compact
and smooth set. Let x ∈ X such that ∥x∥X < 1 and h ∈ Rd\{0}. We have R(x) is differentiable
on int(X ) and

∇R(x) = ∥x∥X
1− ∥x∥X

· ∇∥ · ∥X (x),

R∗(h) = ∥h∥X ◦ − log(1 + ∥h∥X ◦),

∇R∗(h) =
∥h∥X ◦

1 + ∥h∥X ◦
∇∥ · ∥X ◦(h).
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C.3. Unbiasedness of Loss Estimator

We first show that the loss estimator for the meta algorithm ℓ̄t and the one for the base algorithm ℓ̂t
constructed in Algorithm 6 are unbiased.

Lemma 18 The meta loss estimator ℓ̄t defined in Eq. (28) and the base loss estimator ℓ̂t defined
in Eq. (27) satisfy that Et[ℓ̄t] = ℓt and Et[ℓ̂t] = ℓt for all t ∈ [T ].

Proof The the unbiasedness of ℓ̄t can be proven in the exact same way as in Eq. (14). For ℓ̂t,
according to the sampling scheme of xt, we have

Et[ℓ̂t] = Et

[
1− ξt
1− β

· d

1−
∑t

i=1 p̂t,i∥a
(i)
t ∥X

xtx
⊤
t ℓt · 1{ρt = 0}

]

= Et

[
(1− ξt) ·

d

1−
∑t

i=1 p̂t,i∥a
(i)
t ∥X

xtx
⊤
t ℓt

∣∣∣∣ ρt = 0

]

= Et

 t∑
j=1

p̂t,j ·
d(1− ξ(j)t )

1−
∑t

i=1 p̂t,i∥a
(i)
t ∥X

ã
(j)
t ã

(j)⊤

t ℓt


=

t∑
j=1

p̂t,j ·
d(1− ∥a(j)t ∥X )

1−
∑t

i=1 p̂t,i∥a
(i)
t ∥X

1

d

d∑
n=1

ene
⊤
n ℓt = ℓt.

This ends the proof.

C.4. Regret Decomposition

Similar to the analysis in Appendix B, we decompose the expected switching regret into five terms
and then bound each term respectively. Again, we split the horizon to I1, . . . , IS , and let jk be the
start time stamp of Ik. We introduce u′t = (1 − γ)ut and ů′k = (1 − γ)̊uk to ensure that u′t ∈ X ′

for t ∈ [T ] and ů′k ∈ X ′ for k ∈ [S], where X ′ = {x | ∥x∥X ≤ 1 − γ, x ∈ X}. Similar to the
decomposition method of Eq. (15), the expected regret can be decomposed as

E[REGS ] = E

[
T∑
t=1

⟨xt, ℓt⟩ −
T∑
t=1

⟨ut, ℓt⟩

]

= E

[
S∑
k=1

∑
t∈Ik

⟨pt − ejk , ĉt⟩︸ ︷︷ ︸
META-REGRET

+

S∑
k=1

∑
t∈Ik

〈
a
(jk)
t − ů′k, ℓ̂t

〉
︸ ︷︷ ︸

BASE-REGRET

+

T∑
t=1

t∑
i=1

p̂t,ibt,i︸ ︷︷ ︸
POS-BIAS

−
S∑
k=1

∑
t∈Ik

bt,jk︸ ︷︷ ︸
NEG-BIAS

+

T∑
t=1

〈
u′t − ut, ℓt

〉
− β

T∑
t=1

t∑
i=1

p̂t,i

〈
ã
(i)
t , ℓt

〉
︸ ︷︷ ︸

DEVIATION

]
. (33)

In the following, we will bound each term respectively.
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C.5. Bounding DEVIATION and POS-BIAS

DEVIATION. DEVIATION term can still be bounded by (β + γ)T as

T∑
t=1

〈
u′t − ut, ℓt

〉
− β

T∑
t=1

t∑
i=1

p̂t,i

〈
ã
(i)
t , ℓt

〉
≤

T∑
t=1

((1− γ)− 1) ⟨ut, ℓt⟩+ βT

≤
T∑
t=1

(1− (1− γ)) + βT = (β + γ)T. (34)

POS-BIAS. According to the definition of bt,i, we have

1

λT (1− β)

T∑
t=1

t∑
i=1

p̂t,i(1− ∥a(i)t ∥X )
1−

∑t
j=1 p̂t,j∥a

(j)
t ∥X

=
1

λ(1− β)
≤ 2

λ
, (35)

where the last inequality is because β ≤ 1
2 .

In the following two subsections, we bound BASE-REGRET and META-REGRET respectively.

C.6. Bounding BASE-REGRET

Before bounding the term BASE-REGRET, we show the following two lemmas which will be useful
in the analysis. The first lemma bounds the scale of the loss estimator used for the base algorithm.

Lemma 19 For any x ∈ (1−γ)X and η, define u = ∇R(x)−ηℓ̂t and v = ∇R(x) with ℓ̂t defined
in Algorithm 6. We have

∥u∥X ◦ − ∥v∥X ◦

1 + ∥v∥X ◦
≥ −2ηd

γ
.

Proof First, note that using Lemma 15 and Lemma 17, the denominator can be written as

1

1 + ∥v∥X ◦
=

1

1 + ∥∇R(x)∥X ◦
= (1− ∥x∥X )(∥(∇∥ · ∥X (x))∥X ◦)−1 = 1− ∥x∥X . (36)

For the numerator, note that a(i)t ∈ (1− γ)X for all t ∈ [T ] and i ∈ [t] and β ≤ 1
2 , we have

∥ℓ̂t∥X ◦ ≤ d

(1− β)(1− (1− γ))
|x⊤t ℓt| · ∥xt∥X ◦ · 1{xt ∈ {±en}n∈[d]} ≤

2d∥xt∥X ◦

γ
1{xt ∈ {±en}n∈[d]}.

Therefore, according to triangle inequality, we have

∥u∥X ◦ − ∥v∥X ◦ ≥ −η∥ℓ̂t∥X ◦ ≥ −2dη

γ
∥xt∥X ◦ · 1{xt ∈ {±en}n∈[d]}.

Note that X ⊆ ℓq(1), we have ℓq(1)◦ = ℓp(1) ⊆ X ◦, which means that en ∈ X ◦. This means that
∥en∥X ◦ ≤ 1 and we have

∥u∥X ◦ − ∥v∥X ◦ ≥ −2ηd

γ
,
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which finishes the proof.

The second lemma helps to bound the stability of the base algorithm, which is originally intro-
duced in (Kerdreux et al., 2021, Lemma 17). For completeness, we include the proof here.

Lemma 20 Suppose X to be a α-strongly convex and centrally symmetric set with non-empty
interior. Let x ∈ X such that ∥x∥X ≤ 1− γ and if η∥ℓ̂t∥X ◦ ≤ 1

2 ,

DR∗(∇R(x)− ηℓ̂t,∇R(x)) ≤ (1− ∥x∥X )
(
1 +

4(α+ 1)

α

)
η2∥ℓ̂t∥2X ◦ .

Proof Define u = ∇R(x)− ηℓ̂t, v = ∇R(x) and z = ∥u∥X◦−∥v∥X◦
1+∥v∥X◦ . By the definition of Bregman

divergence and using Lemma 17, we have

DR∗(u, v) = R∗(u)−R∗(v)− ⟨∇R∗(v), u− v⟩

= ∥u∥X ◦ − ∥v∥X ◦ − log

(
1 + ∥u∥X ◦

1 + ∥v∥X ◦

)
− ∥v∥X ◦

1 + ∥v∥X ◦
⟨∇∥ · ∥X ◦(v), u− v⟩

= z − log(1 + z) +
1

1 + ∥ν∥X ◦
[∥v∥X ◦(∥u∥X ◦ − ∥v∥X ◦)− ∥v∥X ◦ ⟨∇∥ · ∥X ◦ , u− v⟩]

= z − log(1 + z)− 1

2

(∥u∥X ◦ − ∥v∥X ◦)2

1 + ∥v∥X ◦
+
D 1

2
∥·∥2X◦

(u, v)

1 + ∥v∥X ◦

≤ z − log(1 + z) +
D 1

2
∥·∥2X◦

(u, v)

1 + ∥v∥X ◦

Note that z ≥ −1
2 as ∥u∥X◦−∥v∥X◦

1+∥v∥X◦ ≥ −η∥ℓ̂t∥X ◦ ≥ −1
2 , we have z − log(1 + z) ≤ z2. Therefore,

we have

DR∗(u, v) ≤
(
∥u∥X ◦ − ∥v∥X ◦

1 + ∥v∥X ◦

)2

+
1

1 + ∥v∥X ◦
D 1

2
∥·∥2X◦

(u, v).

Note that according to Lemma 15, we have 1
1+∥v∥X◦ = 1 − ∥x∥X . Therefore, using triangle in-

equality leads to

DR∗(u, v) ≤ (1− ∥x∥X )2∥u− v∥2X ◦ + (1− ∥x∥X )D 1
2
∥·∥2X◦

(u, v).

Finally, using Lemma 16, we have

DR∗(u, v) ≤ (1− ∥x∥X )2∥u− v∥2X ◦ + (1− ∥x∥X ) ·
4(α+ 1)

α
∥u− v∥2X ◦

≤ (1− ∥x∥X )
(
1 +

4(α+ 1)

α

)
η2∥ℓ̂t∥2X ◦ .

With the help of Lemma 19 and Lemma 20, we are able to bound BASE-REGRET.
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Lemma 21 For an arbitrary interval I started at round j, setting γ = 4dη′ for all j′ ∈ [T ],
Algorithm 6 ensures that the base regret of Bj with learning rate η (starting from round j) for any
comparator u ∈ X ′ is at most

E

[∑
t∈I

〈
a
(j)
t − u, ℓ̂t

〉]
≤ log(1/γ)

η
+

2d
2
p η

1− β
·
(
1 +

4(α+ 1)

α

)∑
t∈I

1− ∥a(j)t ∥X
1−

∑t
i=1 p̂t,i∥a

(i)
t ∥X

.

Proof Again, according to the standard analysis of OMD (see Lemma 27) we have

E

[∑
t∈I

〈
a
(j)
t − u, ℓ̂t

〉]
≤
R(u)−R(a(j)j )

η
+

1

η

∑
t∈I

E
[
DR∗

(
∇R(a(j)t )− ηℓ̂t,∇R(a(j)t )

)]
.

The first term can still be upper bounded by log(1/γ)
η as a(j)j = argminx∈X ′ R(x) and u ∈ X ′ =

{x | ∥x∥X ≤ 1− γ}, we have

R(u)−R(a(j)j ) ≤ − log(1− (1− γ))− 0 = − log γ.

For the second term, we will show that

Et
[
DR∗

(
∇R(a(j)t )− ηℓ̂t,∇R(a(j)t )

)]
≤ 2d

2
p η2

1− β
·
(
1 +

4(α+ 1)

α

)∑
t∈I

1− ∥a(j)t ∥X
1−

∑t
i=1 p̂t,i∥a

(i)
t ∥X

.

According to Eq. (36) and the choice of η and γ, we have η∥ℓ̂t∥X ◦ ≤ 2dη
γ = 1

2 . Based on Lemma 20,
we only need to show that

Et
[
∥ℓ̂t∥2X ◦

]
≤ 2d

2
p

(1− β)(1−
∑t

i=1 p̂t,i∥a
(i)
t ∥X )

.

In fact, according to the definition of ℓ̂t, we have

Et
[
∥ℓ̂t∥2X ◦

]
≤ d2

(1− β)2(1−
∑t

i=1 p̂t,i∥a
(i)
t ∥X )2

Et
[
(1− ξt)2∥xt∥2X ◦ · |x⊤t ℓt|2 · 1{ρt = 0}

]

≤ d2

(1− β)2(1−
∑t

i=1 p̂t,i∥a
(i)
t ∥X )2

Et

(1− β) t∑
j=1

p̂t,j(1− ξ(j)t )2∥ã(j)t ∥2X ◦ · |ã(j)
⊤

t ℓt|2


≤ d2

(1− β)(1−
∑t

i=1 p̂t,i∥a
(i)
t ∥X )2

t∑
j=1

p̂t,jEt

[
(1− ∥a(j)t ∥X ) ·

1

d

d∑
n=1

∥en∥2X ◦ · |ℓt,n|2
]
.

Note that X ⊆ ℓq(1), we have ℓp(1) ⊆ X ◦, which means that en ∈ X ◦ and ∥en∥X ◦ ≤ 1. Also using

the fact that ℓp(1) ⊆ X , we have ℓt ∈ X ◦ ⊆ ℓq(1) and ∥ℓt∥22 ≤ d
1− 2

q ∥ℓt∥2q ≤ d
1− 2

q . Therefore, we
have

Ej
[
∥ℓ̂t∥2X ◦

]
≤

2d
2
p
∑t

j=1 p̂t,j(1− ∥a
(j)
t ∥X )

(1− β)(1−
∑t

i=1 p̂t,i∥a
(i)
t ∥X )2

=
2d

2
p

(1− β)(1−
∑t

i=1 p̂t,i∥a
(i)
t ∥X )

,

which finishes the proof.
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C.7. Bounding META-REGRET

In this section, we first prove several useful lemmas and then bound the term META-REGRET. We
prove the following lemma, which is a counterpart of Lemma 8.

Lemma 22 For an arbitrary interval I ⊆ [T ] started at round j, setting ε
λγT ≤

1
8 , β = 8d

2
p ε ≤ 1

2

and µ = 1
T , Algorithm 6 guarantees that

∑
t∈I
⟨pt − ej , ĉt⟩ ≤

2 log T

ε
+ ε

∑
t∈I

T∑
i=1

pt,iĉ
2
t,i +O

(
|I|
εT

)
. (37)

Proof Define vt+1,i ≜
pt,i exp(−εĉt,i)∑T
t=1 pt,i exp(−εĉt,i)

for all i ∈ [T ]. Then pt+1,i =
µ
T + (1 − µ)vt+1,i. Note

that

⟨pt, ĉt⟩+
1

ε
log

(
T∑
i=1

pt,i exp(−εĉt,i)

)

≤ ⟨pt, ĉt⟩+
1

ε
log

(
T∑
i=1

pt,i(1− εĉt,i + ε2ĉ2t,i)

)

= ⟨pt, ĉt⟩+
1

ε
log

(
1− ε ⟨pt, ĉt⟩+ ε2

T∑
i=1

pt,iĉ
2
t,i

)

≤ ε
T∑
i=1

pt,iĉ
2
t,i.

The first inequality is because exp(−x) ≤ 1− x+ x2 for x ≥ −1
2 and according to the choice of ε,

γ and λ, we have

εmax
i∈[t]
|ĉt,i| ≤ εmax

i∈[t]

∣∣∣ã(i)⊤t M̃−1
t xt − bt,i

∣∣∣ ≤ εmax
i∈[t]

∣∣∣ã(i)⊤t M̃−1
t xt

∣∣∣+ εmax
i∈[t]
|bt,i| .

For the first term, by using Hölder’s inequality, we have

εmax
i∈[t]

∣∣∣ã(i)⊤t M̃−1
t xt

∣∣∣ ≤ εmax
i∈[t]
∥ã(i)t ∥X · ∥M̃

−1
t xt∥X ◦

≤ ε∥M̃−1
t xt∥p (ã(i)t ∈ X and ℓp(1) ⊆ X ◦)

≤ εd
1
p
− 1

2 ∥M̃−1
t xt∥2

≤ εd
1
2
+ 1

p

β
· ∥xt∥2 (M̃t ⪰ β

d I)

≤ εd
2
p

β
. (∥x∥2 ≤ d

1
2
− 1

q ∥x∥q ≤ d
1
p
− 1

2 )

In above argument, we use the fact that for vector x ∈ Rd and 0 < s < r, we have ∥x∥r ≤ ∥x∥s ≤
d

1
s
− 1

r ∥x∥r. Moreover, note that p ∈ (1, 2] and ℓp(1) ⊆ X ⊆ ℓq(1).
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For the second term, according to the definition of bt,i, |bt,i| ≤ 1
λT (1−β)γ ≤

2
λTγ . There-

fore, combining the above two bounds shows that εmaxi∈[t] |ĉt,i| ≤ 1
8 + 1

4 ≤
1
2 according to the

choice of ε, γ, and λ. Furthermore, by the definition of vt+1,i, we have
∑T

j=1 pt,j exp(−εĉt,j) =
pt,i exp(−εĉt,i)/vt+1,i. Therefore, we have

1

ε
log

 T∑
j=1

pt,j exp(−εĉt,j)

 = −1

ε
log

(
vt+1,i

pt,i

)
− ĉt,i.

Combining the two equations and taking summation over t ∈ I, we have for any ej ∈ ∆T , j ∈ [T ],∑
t∈I
⟨pt, ĉt⟩ −

∑
t∈I
⟨ej , ĉt⟩ ≤ ε

∑
t∈I

T∑
i=1

pt,iĉ
2
t,i +

1

ε

∑
t∈I

log

(
vt+1,j

pt,j

)
.

The second term can be dealt with according to Eq. (22) and we then have∑
t∈I
⟨pt − ej , ĉt⟩ ≤

2 log T

ε
+ ε

∑
t∈I

T∑
i=1

pt,iĉ
2
t,i +O

(
|I|
εT

)
,

which finishes the proof.

Next, we prove the following lemma, which bounds the second term shown in Eq. (37)

Lemma 23 For any t ∈ [T ], setting λ2γ = Θ
(
d
− 1

q

√
1

ST 3

)
, Algorithm 6 guarantees that

T∑
i=1

pt,iĉ
2
t,i ≤

∑
i∈[t]

p̂t,iĉ
2
t,i ≤ 2

∑
i∈[t]

p̂t,ic
2
t,i +O

(
d

1
q

√
S

T

)
, (38)

where ct,i = ⟨ã(i)t , ℓ̄t⟩.
Proof According to the definition of p̂t and ĉt, we have

T∑
i=1

pt,iĉ
2
t,i =

∑
i∈[t]

pt,iĉ
2
t,i +

∑
i>t

pt,i

 t∑
j=1

p̂t,j ĉt,j

2

≤
∑
i∈[t]

pt,iĉ
2
t,i +

∑
i/∈[t]

pt,i

∑
j∈[t]

p̂t,j ĉ
2
t,j


=

∑
i∈[t]

pt,i

∑
i∈[t]

p̂t,iĉ
2
t,i

+

∑
i/∈[t]

pt,i

∑
i∈[t]

p̂t,iĉ
2
t,i

 =
∑
i∈[t]

p̂t,iĉ
2
t,i,

where the inequality is because of Cauchy-Schwarz inequality. Besides, recall that ct,i =
〈
ã
(i)
t , ℓ̄t

〉
and ĉ2t,i = (ct,i − bt,i)2 ≤ 2c2t,i + 2b2t,i. According to the definition of bt,i, we know that

∑
i∈[t]

p̂t,ib
2
t,i ≤

4

(λT )2
1

γ

∑
i∈[t]

p̂t,i
1− ∥a(i)t ∥X

1−
∑

i∈[t] p̂t,i∥a
(i)
t ∥X

=
4

(λT )2
1

γ
= O

(
d

1
q

√
S

T

)
,

where the last step holds because we choose λ2γ = Θ
(
d
− 1

q

√
1

ST 3

)
.

Combining Lemma 22 and Lemma 23, we obtain the following lemma showing the upper bound
for META-REGRET, which is exactly the same as Lemma 10 except for the choice of parameters.
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Lemma 24 Define C =
√

α
10α+8 . Set ε = min

{
d
− 1

p

√
S
T ,

1

16d
2
p
, C

2

2

}
, β = 8d

2
p ε, λ = Cd

− 1
q√

ST
,

γ = 4Cd
1
q

√
S
T and µ = 1

T . Algorithm 6 guarantees that

E [META-REGRET] ≤ Õ
(
d

1
p
√
ST
)
.

Proof First, it is direct to check that the choice of λ, γ and ε satisfies the condition required
in Lemma 22 and Lemma 23. Based on the two lemmas, for each interval Ik, let jk be the start time
stamp for Ik. As β = 8d

2
p ε ≤ 1

2 , we follow the derivation of Eq. (24) and obtain that

E

∑
t∈Ik

⟨pt − ejk , ĉt⟩

 ≤ 2 log T

ε
+ 4εd|Ik|+O

(
ε|Ik|d

1
q

√
S

T

)
+O

(
|Ik|
εT

)
.

Summing the regret over all the intervals achieves the bound for META-REGRET:

E [META-REGRET] = E

 S∑
k=1

∑
t∈Ik

⟨p̂t − ejk , ĉt⟩


≤ 2S log T

ε
+ 4εdT +O

(
d

1
q
√
ST
)
+O(1/ε) ≤ Õ

(
d

1
p
√
ST
)
,

where the last inequality is because we choose ε = min

{
d
− 1

p

√
S
T ,

C2

2 ,
1

16d
2
p

}
.

C.8. Proof of Theorem 14

Putting everything together, we are now ready to prove our main result (Theorem 14) in the setting
when the feasible domain is α-strongly convex.

Proof First, it is evident to check that the parameter choice satisfies the condition required in Lemma 21
and Lemma 24. Therefore, based on the regret decomposition in Eq. (33), upper bound of bias term
in Eq. (34), upper bound of positive term Eq. (35), base regret upper bound in Lemma 21 and meta
regret upper bound in Lemma 24, we have

E[REGS ] = E

 S∑
k=1

∑
t∈Ik

⟨xt − ůk, ℓt⟩


≤ 2

λ
+

S∑
k=1

log(1/γ)

ηjk
+

(
2d

2
p η

(1− β)
· 5α+ 4

α
− 1

λT (1− β)

)∑
t∈Ik

1− ∥a(jk)t ∥X
1−

∑t
i=1 p̂t,i∥a

(i)
t ∥X

+ (β + γ)T + Õ
(
d

1
p
√
ST
)
.

Importantly, note that the coefficient of the third term is actually zero. Indeed, due to the pa-

rameter configurations that γ = 4Cd
1
q

√
S
T , η = Cd

− 1
p

√
S
T , λ = Cd

− 1
q√

ST
, β = 8d

2
p ε, ε =
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min

{
1

16d
2
p
, C

2

2 , d
− 1

p

√
S
T

}
and C =

√
α

10α+8 , we can verify that

2dη(5α+ 4)

α
− 1

λT
= 0.

Then we can achieve E[REGS ] ≤ Õ
(
d

1
p
√
ST
)

and complete the proof.

Appendix D. Omitted Details for Section 5

In this section, we consider the switching regret of unconstrained linear bandits.

D.1. Proof of Lemma 2

Proof Our switching regret decomposition for linear bandits is inspired by the existing black-box
reduction designed for the full information online convex optimization (Cutkosky and Orabona,
2018) and static regret of linear bandits (van der Hoeven et al., 2020). Indeed, the switching regret
can be decomposed in the following way.

REG(u1, . . . , uT ) =
T∑
t=1

ℓ⊤t xt −
T∑
t=1

ℓ⊤t ut

=
S∑
k=1

∑
t∈Ik

ℓ⊤t xt −
S∑
k=1

∑
t∈Ik

ℓ⊤t ůk

=
S∑
k=1

∑
t∈Ik

ℓ⊤t (zt · vt − ůk) (xt = zt · vt)

=
S∑
k=1

∑
t∈Ik

⟨zt, ℓt⟩ (vt − ∥ůk∥2) + ∥ůk∥2
∑
t∈Ik

〈
zt −

ůk
∥ůk∥2

, ℓt

〉
=

S∑
k=1

REGV
Ik(∥ůk∥2) +

S∑
k=1

∥ůk∥2 · REGZ
Ik

(
ůk
∥ůk∥2

)
,

which finishes the proof.

D.2. Algorithm for Unconstrained OCO with Switching Regret

In this section, we present the details of our proposed algorithm for unconstrained OCO with switch-
ing regret.

Under the unconstrained setup, the diameter of the feasible domain is D = ∞. However,
as observed in (Chen et al., 2021, Appendix D.5), we can simply assume maxk∈[S]∥ůk∥2 ≤ 2T .
Otherwise, we will have T ≤ log2(maxk∈[S]∥ůk∥2), and by constraining the learning algorithm
such that ∥vt∥2 ≤ 2T , we can obtain the following trivial upper bound for switching regret: REG ≤∑T

t=1∥∇ft(vt)∥2∥vt − ut∥2 ≤ T (2T + maxk∈[S]∥ůk∥2) = Õ(maxk∈[S]∥ůk∥2), which is already
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adaptive to the comparators. Therefore, we can simply focus on the constrained online learning with
a maximum diameter D = 2T . In addition, as mentioned earlier, we do not assume the knowledge
of the number of switch S in advance in this part. To this end, we propose a two-layer approach to
simultaneously adapt to the unknown scales of the comparators and the unknown number of switch,
which consists of a meta algorithm learning over a set of base learners. Below we specify the details.

Base algorithm. The base algorithm tackles OCO problem with a given scale of feasible domain.
The only requirement is as follows: given a constrained domain X ⊆ Rd with diameter D =
supx∈X ∥x∥2, base algorithm running over X ensures an Õ(D

√
|I|) static regret over any interval

I ⊆ [T ]. Formally, we assume the base algorithm to satisfy the following requirement.

Requirement 1 Consider the online convex optimization problem consisting a convex feasible
domain X ⊆ Rd and a sequence of convex loss functions f1, . . . , fT , where ft : X 7→ R and we
assume 0 ∈ X and ∥∇ft(v)∥2 ≤ 1 for any v ∈ X and t ∈ [T ]. An online algorithmA running over
this problem returns the decision sequence v1, . . . , vT ∈ X . We require the algorithm A to ensure
the following regret guarantee∑

t∈I
ft(vt)−min

u∈X

∑
t∈I

ft(u) ≤ Õ
(
D
√
|I|
)

(39)

for any interval I ⊆ [T ], where D = supx∈X ∥x∥2 is the diameter of the feasible domain.

This requirement can be satisfied by recent OCO algorithms with interval regret (or called strongly
adaptive regret) guarantee, such as Algorithm 1 of Daniely et al. (2015), Algorithm 2 of Jun et al.
(2017), Theorem 6 of Cutkosky (2020). We denote by B any suitable base algorithm.

Since both the scale of comparators and the number of switch are unknown in advance, we
maintain a set of base algorithm instances, defined as

S =
{
Bi,r, ∀(i, r) ∈ [H]×[R]

∣∣ Bi,r ← B(Xi), with Xi = {x | ∥x∥2 ≤ Di = T−1 ·2i−1}
}
. (40)

In above, H = ⌈log2 T ⌉ + T + 1 and the index i ∈ [H] maintain a grid to deal with uncertainty
of unknown comparators’ scale; R = ⌈log2 T ⌉ and the index r ∈ [R] maintains a grid to handle
uncertainty of unknown number of switch S. There are in total N = H · R base learners. For
i ∈ [H] and r ∈ [R], the base learner Bi,r is an instantiation of the base algorithm whose feasible
domain is Xi ⊆ Rd with diameterDi, and vt,(i,r) denotes her returned decision at round t. We stress
that even if S is known, the two-layer structure remains necessary due to the unknown comparators’
scale.

Meta algorithm. Then, a meta algorithm is used to combine all those base learners, and more
importantly, the regret of meta algorithm should be adaptive to the individual loss scale of each
base learner, such that the overall algorithm can achieve a comparator-adaptive switching regret.
We achieve so by building upon the recent progress in the classic expert problem (Chen et al.,
2021). Our proposed algorithm is OMD with a multi-scale entropy regularizer and certain important
correction terms. Specifically, let the weight vector produced by the meta algorithm be wt ∈ ∆N ,
then the overall decision is vt =

∑H
i=1

∑R
r=1wt,(i,r)vt,(i,r), and the weight is updated by

wt+1 = argmin
w∈Ω

⟨w, ℓt + at⟩+Dψ(w,wt), (41)

where Ω = {w | w ∈ ∆N and wt,(i,r) ≥ 1
T 2·22i , ∀i ∈ [H], r ∈ [R]} is the clipped domain. Besides,

the meta loss ℓt, the correction term at, and a certain regularizer ψ are set as follows:
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• The regularizer ψ : ∆N 7→ R is set as a weighted negative-entropy regularizer defined as

ψ(w) ≜
∑

(i,r)∈[H]×[R]

ci
ηr
w(i,r) logw(i,r) with ci = T−1 · 2i−1 and ηr =

1

32 · 2r
. (42)

• The feedback loss of meta algorithm ℓt ∈ RN is set as such to measure the quality of each
base learner: ℓt,(i,r) ≜ ⟨∇ft(vt), vt,(i,r)⟩ for any (i, r) ∈ [H]× [R].

• The correction term at ∈ RN is set as: at,(i,r) ≜ 32ηrci ℓ
2
t,(i,r) for any (i, r) ∈ [H]× [R], which

is essential to ensure the meta regret compatible to the final comparator-adaptive bound.

The entire algorithm consists of meta algorithm specified above and base algorithm satisfy-
ing Requirement 1. We show the pseudocode in Algorithm 4.

D.3. Proof of Theorem 3

Proof Consider the k-th interval Ik. The regret within this interval can be decomposed as follows.∑
t∈Ik

(
ft(vt)− ft(̊uk)

)
=
∑
t∈Ik

(
ft(vt)− ft(vt,j)

)
+
∑
t∈Ik

(
ft(vt,j)− ft(̊uk)

)
≤
∑
t∈Ik

⟨∇ft(vt), vt − vt,j⟩+
∑
t∈Ik

(
ft(vt,j)− ft(̊uk)

)
=
∑
t∈Ik

⟨wt − ej , ℓt⟩︸ ︷︷ ︸
META-REGRET

+
∑
t∈Ik

(
ft(vt,j)− ft(̊uk)

)
︸ ︷︷ ︸

BASE-REGRET

, (43)

where the final equality is because ℓt,j = ⟨∇ft(vt), vt,j⟩ and vt =
∑

j′∈[H]×[R]wt,j′vt,j′ . Note that
the decomposition holds for any index j = (i, r) ∈ [H]× [R].

We first consider the case when ∥ůk∥2 ≥ 1
T and will deal with the other case (when ∥ůk∥2 < 1

T )
at the end of the proof. Under such a circumstance, we can choose (i, r) = (i∗k, r

∗
k) such that

ci∗k = T−1 · 2i∗k−1 ≤ ∥ůk∥2 ≤ T−1 · 2i∗k = ci∗k+1, and

ηr∗k =
1

32 · 2r∗k
≤ 1

32
√
|Ik|
≤ 1

32 · 2r∗k−1
= ηr∗k−1,

(44)

which is valid as i ∈ [H] = [⌈log2 T ⌉ + T + 1] and r ∈ [R] = [⌈log2 T ⌉]. We now give the upper
bounds for META-REGRET and BASE-REGRET respectively.

BASE-REGRET. Based on the assumption of base algorithm, we have base learner Bj∗k satisfying∑
t∈Ik

(
ft(vt,j∗k )− ft(̊uk)

)
≤ Õ

(
ci∗k

√
|Ik|
)
≤ Õ

(
∥ůk∥2

√
|Ik|
)
, (45)

where we use the interval regret guarantee of base algorithm (see Requirement 1) and also use the
fact that the diameter of the feasible domain for base learner Bj∗k is 2i

∗
k as Xi∗k = {x | ∥x∥2 ≤ Di∗k

}
and Di∗k

= ci∗k . The last inequality holds by the choice of i∗k shown in Eq. (44).
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META-REGRET. The meta algorithm is essentially online mirror descent with a weighted entropy
regularizer. Based on Lemma 1 in (Chen et al., 2021), if for all i ∈ [H] and r ∈ [R], 32ηrci |ℓt,(i,r)| ≤
1, then we have for any q ∈ Ω,∑

t∈Ik

⟨wt − q, ℓt⟩ ≤
∑
t∈Ik

(
Dψ(q, wt)−Dψ(q, wt+1)

)
+ 32

∑
t∈Ik

∑
i∈[H]

∑
r∈[R]

ηr
ci
q(i,r)ℓ

2
t,(i,r). (46)

Note that this is a simplified version of Lemma 1 in (Chen et al., 2021) for the interval regret, which
employs a fixed learning rate for each action and does not include the optimism in the algorithm.
We present the simplified lemma in Lemma 28 in Appendix E for completeness.

To this end, we first verify the condition of 32ηrci |ℓt,(i,r)| ≤ 1 for all i ∈ [H], r ∈ [R]. In fact,

32ηr
ci

∣∣ℓt,(i,r)∣∣ ≤ 1

ci · 2r
∥∇ft(vt)∥2 · ∥vt,i∥2 ≤

1

2r
≤ 1,

where the first inequality is by the definition of ηr = 1
32·2r and the construction of meta loss ℓt,(i,r) =

⟨∇ft(vt), vt,(i,r)⟩, the second inequality is because ∥vt,i∥2 ≤ ci and ∥∇ft(v)∥2 ≤ 1 for all v ∈ Rd,
and the third inequality holds as r ≥ 1.

Then we define ēj∗k ≜ ē(i∗k,r
∗
k)

=
(
1− R·a0

T 2

)
e(i∗k,r

∗
k)

+
∑

(i,r)∈[H]×[R]
1

T 2·22i e(i,r), where a0 =∑H
i=1

1
22i

= 1
3(1 −

1
4H

) is a constant which guarantees ēj∗k ∈ Ω. Using Eq. (46) with q = ēj∗k , we
have∑
t∈Ik

〈
wt − ēj∗k , ℓt

〉
≤
∑
t∈Ik

(
Dψ(ēj∗k , wt)−Dψ(ēj∗k , wt+1)

)
+ 32

∑
t∈Ik

∑
i∈[H]

∑
r∈[R]

ηr
ci
ēj∗k ,(i,r)ℓ

2
t,(i,r)

=
(
Dψ(ēj∗k , wsk)−Dψ(ēj∗k , wsk+1

)
)
+ 32

∑
t∈Ik

∑
i∈[H]

∑
r∈[R]

ηr
ci
ēj∗k ,(i,r)ℓ

2
t,(i,r),

where sk denotes the starting index of the interval Ik and sk+1 is defined as T + 1 if Ik is the last
interval. The two terms on the right-hand side are called bias term and stability term respectively.
In the following, we will give their upper bound individually.

For the bias term, we have

Dψ(ēj∗k , wsk)−Dψ(ēj∗k , wsk+1
)

=
∑
i∈[H]

∑
r∈[R]

ci
ηr

(
ēj∗k ,(i,r) log

wsk,(i,r)

wsk+1,(i,r)
+ wsk,(i,r) − wsk+1,(i,r)

)
(by definition in Eq. (42))

=
∑
i∈[H]

∑
r∈[R]

ci
ηr

(
ēj∗k ,(i,r) log

wsk,(i,r)

wsk+1,(i,r)

)
+
∑
i∈[H]

∑
r∈[R]

ci
ηr

(
wsk,(i,r) − wsk+1,(i,r)

)
≤
ci∗k
ηr∗k

log
(
T 2 · 22i∗k

)
+

∑
(i,r)̸=(i∗k,r

∗
k)

1

T 2 · 22i
ci
ηr

log
(
T 2 · 22i

)
+
∑
i∈[H]

∑
r∈[R]

ci
ηr

(
wsk,(i,r) − wsk+1,(i,r)

)
(wsk , wsk+1

∈ Ω)

≤
ci∗k
ηr∗k

log
(
4T 4 · c2i∗k

)
+

∑
(i,r)̸=(i∗k,r

∗
k)

2 log T + (4 log 2) · T
32 · T 3 · 2i+r+1

+
∑
i∈[H]

∑
r∈[R]

ci
ηr

(
wsk,(i,r) − wsk+1,(i,r)

)
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= Õ

(
ci∗k
ηr∗k

log ci∗k

)
+ Õ

(
1

T 2

)
+
∑
i∈[H]

∑
r∈[R]

ci
ηr

(
wsk,(i,r) − wsk+1,(i,r)

)
. (47)

Moreover, for the stability term, we have

32
∑
t∈Ik

∑
i∈[H]

∑
r∈[R]

ηr
ci
ēj∗k ,(i,r)ℓ

2
t,(i,r)

= 32
∑
t∈Ik

ηr∗k
ci∗k

(
1− R · a0

T 2
+

1

T 2 · 22i∗k

)
ℓ2t,(i∗k,r

∗
k)
+ 32

∑
t∈Ik

∑
(i,r)̸=(i∗k,r

∗
k)

ηr
ci
ēj∗k ,(i,r)ℓ

2
t,(i,r)

≤ 32
∑
t∈Ik

ηr∗k
ci∗k

ℓ2t,(i∗k,r
∗
k)
+ 32

∑
t∈Ik

∑
i∈[H]

∑
r∈[R]

ηrci
T 2 · 22i

≤ O
(
ηr∗kci

∗
k
|Ik|
)
+
∑
t∈Ik

∑
i∈[H]

∑
r∈[R]

1

T 3 · 2i+r+1

= O
(
ηr∗kci

∗
k
|Ik|
)
+O

(
1

T 2

)
(48)

where the two inequalities hold as ℓ2t,(i,r) = ⟨∇ft(vt), vt,(i,r)⟩2 ≤ ∥∇ft(vt)∥22∥vt,(i,r)∥22 ≤ c2i .
Combining the upper bounds of bias term in Eq. (47) and stability term in Eq. (48), we get

∑
t∈Ik

〈
wt − ēj∗k , ℓt

〉
≤ Õ

(
ηr∗kci

∗
k
|Ik|+

ci∗k
ηr∗k

log ci∗k

)
+Õ

(
1

T 2

)
+
∑
i∈[H]

∑
r∈[R]

ci
ηr

(
wsk,(i,r)−wsk+1,(i,r)

)
.

Further, notice that

∑
t∈Ik

〈
ēj∗k − ej∗k , ℓt

〉
≤
∑
t∈Ik

∑
i∈[H]

∑
r∈[R]

1

T 2 · 22i
· ℓt,(i,r) ≤

∑
t∈Ik

∑
i∈[H]

∑
r∈[R]

1

T 3 · 2i+1
≤ Õ

(
1

T 2

)
,

(49)

and we thus obtain the overall meta regret upper bound in the interval Ik:

∑
t∈Ik

〈
wt − ej∗k , ℓt

〉
=
∑
t∈Ik

〈
wt − ēj∗k , ℓt

〉
+
∑
t∈Ik

〈
ēj∗k − ej∗k , ℓt

〉

≤ Õ

(
ηr∗kci

∗
k
|Ik|+

ci∗k
ηr∗k

log ci∗k

)
+ Õ

(
1

T 2

)
+
∑
i∈[H]

∑
r∈[R]

ci
ηr

(
wsk,(i,r) − wsk+1,(i,r)

)
= Õ

(
∥ůk∥2

√
|Ik|
)
+ Õ

(
1

T 2

)
+
∑
i∈[H]

∑
r∈[R]

ci
ηr

(
wsk,(i,r) − wsk+1,(i,r)

)
, (50)

where the last inequality is because of the choice of i∗k and r∗k defined in Eq. (44). The Õ(·)-notation
omits logarithmic dependence on T and comparator norm ∥ůk∥2.
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OVERALL REGRET. The overall regret is obtained by combining the base regret and meta regret
and further summing over all the intervals I1, . . . , IS . Indeed, we have the following total meta-
regret by taking summation over intervals on Eq. (50),

S∑
k=1

∑
t∈Ik

〈
wt − ej∗k , ℓt

〉

≤ Õ

(
S∑
k=1

∥ůk∥2
√
|Ik|

)
+ Õ

(
S

T 2

)
+

S∑
k=1

∑
i∈[H]

∑
r∈[R]

ci
ηr

(
wsk,(i,r) − wsk+1,(i,r)

)

≤ Õ

(
S∑
k=1

∥ůk∥2
√
|Ik|

)
+
∑
i∈[H]

∑
r∈[R]

ci
ηr
w1,(i,r)

= Õ

(
S∑
k=1

∥ůk∥2
√
|Ik|

)
, (51)

where the final equality is because we choose w1,(i,r) ∝
η2r
c2i

for all (i, r) ∈ [H]× [R]. Indeed, such
a setting of prior distribution ensures that∑

i∈[H]

∑
r∈[R]

ci
ηr
· w1,(i,r) =

∑
i∈[H]

∑
r∈[R]

ηr
ci∑

i∈[H]

∑
r∈[R]

η2r
c2i

=
16

T
·
∑

i∈[H]

∑
r∈[R]

1
2i+r∑

i∈[H]

∑
r∈[R]

1
22i+2r

=
144

T
·

(
1−

(
1
2

)R)(
1−

(
1
2

)H)(
1−

(
1
4

)R)(
1−

(
1
4

)H) =
144

T
· 1(

1 +
(
1
2

)R)(
1 +

(
1
2

)H) ≤ O
(
1

T

)
,

and also guarantees that w1 ∈ Ω since for any (i, r) ∈ [H]× [R],

w1,(i,r) =

η2r
c2i∑

i′∈[H]

∑
r′∈[R]

η2
r′
c2
i′

=
1

22i+2r∑
i′∈[H]

∑
r′∈[R]

1
22i′+2r′

≥ 1

T 2 · 22i
· 1

1
9

(
1−

(
1
4

)R)(
1−

(
1
4

)H) ≥ 1

T 2 · 22i
,

where the first inequality holds in that we have 2r ≤ T for r ∈ [R].
Substituting the meta regret upper bound Eq. (51) and the base regret upper bound Eq. (45) into

the regret decomposition Eq. (43) obtains that

S∑
k=1

∑
t∈Ik

(
ft(vt)− ft(̊uk)

)
≤ Õ

(
S∑
k=1

∥ůk∥2
√
|Ik|

)
≤ Õ

(
max
k∈[S]
∥ůk∥2 ·

√
ST

)
, (52)

which finishes the proof for the case when ∥ůk∥2 ≥ 1
T holds for every k ∈ [S].

We now consider the case when the condition is violated. Suppose for some k ∈ [S], it holds
that ∥ůk∥2 < 1

T . Then, we pick any ů′k ∈ Rd such that ∥ů′k∥2 =
1
T , and obtain that∑

t∈Ik

(
ft(vt)− ft(̊uk)

)
=
∑
t∈Ik

(
ft(vt)− ft(̊u′k)

)
+
∑
t∈Ik

(
ft(̊u

′
k)− ft(̊uk)

)
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=
∑
t∈Ik

(
ft(vt)− ft(̊u′k)

)
+
∑
t∈Ik

∥∇ft(̊u′k)∥2∥ů′k − ůk∥2

≤
∑
t∈Ik

(
ft(vt)− ft(̊u′k)

)
+O

(
|Ik|
T

)
.

Clearly, the last additional term will not be the issue even after summation over S intervals. More-
over, notice that now the comparator ů′k satisfies the condition of ∥ů′k∥2 ≥

1
T , we can still use the

earlier results including the base regret bound in Eq. (45) and meta regret bound in Eq. (50). Thus,
we can guarantee the same regret bound as Eq. (52) under this scenario.

Hence, we finish the proof for the overall theorem. We finally remark that our algorithm for
unconstrained OCO actually does not require the knowledge of S ahead of time.

D.4. Data-dependent Switching Regret of Unconstrained Online Convex Optimization

In this subsection, we further consider achieving data-dependent switching regret bound for uncon-
strained online convex optimization.

In Appendix D.2, we require the base algorithm to achieve an Õ(D
√
|I|) interval regret for

any interval I ⊆ [T ], where D is the diameter of the feasible domain. See Requirement 1 for more
details. To achieve a data-dependent switching regret for unconstrained OCO, we require a stronger
regret for the base algorithm.

Requirement 2 Consider the online convex optimization problem consisting a convex feasible
domain X ⊆ Rd and a sequence of convex loss functions f1, . . . , fT , where ft : X 7→ R and we
assume 0 ∈ X and ∥∇ft(v)∥2 ≤ 1 for any v ∈ X and t ∈ [T ]. An online algorithmA running over
this problem returns the decision sequence v1, . . . , vT ∈ X . We require the algorithm A to ensure
the following regret guarantee

∑
t∈I

ft(vt)−min
u∈X

∑
t∈I

ft(u) ≤ Õ

D√∑
t∈I
∥∇ft(vt)∥22

 (53)

for any interval I ⊆ [T ], where D = supx∈X ∥x∥2 is the diameter of the feasible domain.

This requirement can be satisfied by recent OCO algorithm with data-dependent interval regret
guarantee, such as Algorithm 2 of Zhang et al. (2019) and the algorithm specified by Theorem 6
of Cutkosky (2020).

Using the new base algorithm and the same meta algorithm as Appendix D.2, the overall algo-
rithm can ensure a data-dependent comparator-adaptive switching regret.

Theorem 25 Algorithm 4 with a base algorithm satisfying Requirement 2 guarantees that for any
S, any partition I1, . . . , IS of [T ], and any comparator sequence ů1, . . . , ůS ∈ Rd, we have

S∑
k=1

∑
t∈Ik

ft(vt)−
∑
t∈Ik

ft(̊uk)

 ≤ Õ
 S∑
k=1

∥ůk∥2
√∑
t∈Ik

∥∇ft(vt)∥22


≤ Õ

max
k∈[S]
∥ůk∥2 ·

√√√√S
T∑
t=1

∥∇ft(vt)∥22

 .

(54)
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Notably, the algorithm does not require the prior knowledge of the number of switch S as the input.

Proof The argument follows the proof of Appendix D.3. Similar to Eq. (43), the regret within the
interval can be decomposed into meta-regret and base-regret:∑

t∈Ik

(
ft(vt)− ft(̊uk)

)
≤
∑
t∈Ik

⟨wt − ej , ℓt⟩︸ ︷︷ ︸
META-REGRET

+
∑
t∈Ik

(
ft(vt,j)− ft(̊uk)

)
︸ ︷︷ ︸

BASE-REGRET

, (55)

which holds for any index j = (i, r) ∈ [H]× [R].
We first the case when ∥ůk∥2 ≥ 1

T and will deal with the other case (when ∥ůk∥2 < 1
T ) at the

end of the proof. Under such a circumstance, we can choose (i, r) = (i∗k, r
∗
k) such that

ci∗k = T−1 · 2i∗k−1 ≤ ∥ůk∥2 ≤ T−1 · 2i∗k = ci∗k+1, and

ηr∗k =
1

32 · 2r∗k
≤ 1

32
√∑

t∈Ik∥∇ft(vt)∥
2
2

≤ 1

32 · 2r∗k−1
= ηr∗k−1,

(56)

which is valid as i ∈ [H] = [⌈log2 T ⌉ + T + 1] and r ∈ [R] = [⌈log2 T ⌉]. We now give the upper
bounds for META-REGRET and BASE-REGRET respectively.

BASE-REGRET. Based on the assumption of base algorithm, we have base learner Bj∗k satisfies

∑
t∈Ik

(
ft(vt,j∗k )−ft(̊uk)

)
≤ Õ

2i
∗
k

√∑
t∈Ik

∥∇ft(vt)∥22

 ≤ Õ
∥ůk∥2√∑

t∈Ik

∥∇ft(vt)∥22

 , (57)

where we use the interval regret guarantee of base algorithm (see Requirement 2) and also use the
fact that the diameter of the feasible domain for base learner Bj∗k is 2i

∗
k as Xi∗k = {x | ∥x∥2 ≤ Di∗k

}
and Di∗k

= ci∗k . The last inequality holds by the choice of i∗k shown in Eq. (56).

META-REGRET. Note that the meta algorithm remains the same, so we will only improve the
analysis to show that the meta algorithm can also enjoy a data-dependent guarantee. The bias term
will not be affected, which is the same as the data-independent one presented in Eq. (47), and the
main modification will be conducted on the stability term. Indeed, continuing the analysis of the
stability term exhibited in Eq. (48), we have

32
∑
t∈Ik

∑
i∈[H]

∑
r∈[R]

ηr
ci
ēj∗k ,(i,r)ℓ

2
t,(i,r)

≤ 32
∑
t∈Ik

ηr∗k
ci∗k

ℓ2t,(i∗k,r
∗
k)
+O

(
1

T 2

)

≤ O

ηr∗kci∗k ∑
t∈Ik

∥∇ft(vt)∥22

+O
(

1

T 2

)
(58)

where the last inequality holds as ℓ2t,(i,r) = ⟨∇ft(vt), vt,(i,r)⟩
2 ≤ ∥∇ft(vt)∥22∥vt,(i,r)∥22 ≤ c2i ∥∇ft(vt)∥22.

Then, combining the upper bounds of bias term Eq. (47), above stability term Eq. (58), and addi-
tional term Eq. (49) leads to the following result:∑
t∈Ik

〈
wt − ej∗k , ℓt

〉
=
∑
t∈Ik

〈
wt − ēj∗k , ℓt

〉
+
∑
t∈Ik

〈
ēj∗k − ej∗k , ℓt

〉
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≤ Õ

ηr∗kci∗k ∑
t∈Ik

∥∇ft(vt)∥22 +
ci∗k
ηr∗k

log ci∗k

+ Õ
(

1

T 2

)
+
∑
i∈[H]

∑
r∈[R]

ci
ηr

(
wsk,(i,r) − wsk+1,(i,r)

)

= Õ

∥ůk∥2√∑
t∈Ik

∥∇ft(vt)∥22

+ Õ
(

1

T 2

)
+
∑
i∈[H]

∑
r∈[R]

ci
ηr

(
wsk,(i,r) − wsk+1,(i,r)

)
, (59)

where the last inequality is because of the choice of i∗k and r∗k defined in Eq. (56). Summing over
all the intervals I1, . . . , IS achieves a data-dependent upper bound for the meta-regret:

S∑
k=1

∑
t∈Ik

〈
wt − ej∗k , ℓt

〉

≤ Õ

 S∑
k=1

∥ůk∥2
√∑
t∈Ik

∥∇ft(vt)∥22

+

S∑
k=1

∑
i∈[H]

∑
r∈[R]

ci
ηr

(
wsk,(i,r) − wsk+1,(i,r)

)

≤ Õ

 S∑
k=1

∥ůk∥2
√∑
t∈Ik

∥∇ft(vt)∥22

+
∑
i∈[H]

∑
r∈[R]

ci
ηr
w1,(i,r)

= Õ

 S∑
k=1

∥ůk∥2
√∑
t∈Ik

∥∇ft(vt)∥22


≤ Õ

max
k∈[S]
∥ůk∥2 ·

√√√√S
T∑
t=1

∥∇ft(vt)∥22

 . (60)

The last equality holds by the same argument for Eq. (51) and the final inequality is by Cauchy-
Schwarz inequality. Combining the meta-regret and base-regret upper bounds finishes the proof for
the case when ∥ůk∥2 ≥ 1

T holds for every k ∈ [S].
In addition, when the above condition of the comparators’ norm is violated, we can deal with

the scenario by the same argument at the end of Appendix D.3 and attain the same regret guarantee.
Hence, we finish the proof of the overall theorem.

Remark 26 Note that Theorem 25 is for the unconstrained OCO setting, while from the proof we
can see that actually the result holds even if the algorithm is required to make decisions from a
bounded domain. Indeed, in the unconstrained setting, we only need to focus on a bounded domain
with maximum diameter 2T as observed in (Chen et al., 2021, Appendix D.5). As a result, when
working under constrained OCO with a diameter Dmax > 0, we can still use our algorithm by
simply maintaining the set of base algorithm instances as

S ′ =
{
Bi,r, ∀(i, r) ∈ [H ′]× [R]

∣∣ Bi,r ← B(Xi), with Xi = {x | ∥x∥2 ≤ Di = T−1 · 2i−1}
}
.

where H ′ = ⌈log2 T ⌉ + ⌈log2Dmax⌉ + 1 and R = ⌈log2 T ⌉ now. Thus, our result strictly im-

proves the Õ
(
Dmax

√
S
∑T

t=1∥∇ft(vt)∥22
)

result of prior works (Cutkosky, 2020; Zhao et al.,
2020, 2021b) for the constrained OCO setting.
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D.5. Proof of Theorem 4

Proof From Lemma 2, we have

REG(u1, . . . , uT ) =

S∑
k=1

REGV
Ik(∥ůk∥2) +

S∑
k=1

∥ůk∥2 · REGZ
Ik

(
ůk
∥ůk∥2

)
. (61)

In the following, we bound the two terms respectively.
The first term on the right-hand side of Eq. (61) is the switching regret of the OCO algorithm

AV , we have

S∑
k=1

REGV
Ik(∥ůk∥2) =

S∑
k=1

∑
t∈Ik

(
ft(vt)− ft(∥ůk∥2)

)
≤ Õ

(
S∑
k=1

∥ůk∥2
√
|Ik|

)
,

where the first equality is due to the definition of online function ft(v) = v · ⟨ℓt, zt⟩ and the second
inequality holds by the regret guarantee of AV proven in Theorem 3.

The second term on the right-hand side of Eq. (61) requires the switching regret analysis of
the online algorithm for constrained linear bandits AZ . Indeed, since the comparator satisfies that
∥ ůk
∥ůk∥2 ∥2 = 1, the subroutine AZ can be chosen as the proposed algorithm for linear bandits with
ℓp-ball feasible domain (with p = 2), see Algorithm 2. We thus get the following regret bound
according to Theorem 11:

E
[

REGZ
Ik

(
ůk
∥ůk∥2

)]
≤ Õ

(√
dT

S
+

√
Sd

T
|Ik|

)
.

Substituting the above two upper bounds in Eq. (61) gives that

E [REG(u1, . . . , uT )] =
S∑
k=1

E
[
REGV

Ik(∥ůk∥2)
]
+

S∑
k=1

E
[
∥ůk∥2 · REGZ

Ik

(
ůk
∥ůk∥2

)]

≤ Õ

(
S∑
k=1

∥ůk∥2
√
|Ik|

)
+ Õ

(
S∑
k=1

∥ůk∥2
(√dT

S
+

√
Sd

T
|Ik|
))

≤ Õ

(
S∑
k=1

∥ůk∥2
(√dT

S
+

√
Sd

T
|Ik|
))

≤ Õ
(
max
k∈[S]
∥ůk∥2 ·

√
dST

)

where the second inequality is because
√
|Ik| ≤

√
dT
S +

√
Sd
T |Ik|. Hence, we finish the proof.

Appendix E. Lemmas Related to Online Mirror Descent

This section collects several useful lemmas related to online mirror descent (OMD).
We first introduce a general regret guarantee for OMD due to Bubeck and Cesa-Bianchi (2012).
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Lemma 27 (Theorem 5.5 of Bubeck and Cesa-Bianchi (2012)) Let D ⊂ Rd be an open convex
set and let D be the closure of D. Let X be a compact and convex set and let F be a Legendre
function defined on D ⊃ X such that∇F (x)− ε∇ℓ(x) ∈ D∗ holds for any (x, ℓ) ∈ (X ∩D)×L,
whereD∗ = ∇F (D) is the dual space ofD under F . Consider the following online mirror descent:

x′t+1 = ∇F ∗ (∇F (xt)− ε∇ℓt(xt)),
xt+1 = argmin

x∈X
DF (x, x

′
t+1),

(62)

where F ∗ is the Legendre–Fenchel transform of F defined by F ∗(u) = supx∈X (x
⊤u − F (x)).

Then, we have

T∑
t=1

ℓt(xt)−
T∑
t=1

ℓt(x) ≤
F (x)− F (x1)

ε
+

1

ε

T∑
t=1

DF ∗

(
∇F (xt)− ε∇ℓt(xt),∇F (xt)

)
. (63)

We next introduce an important lemma related to the online mirror descent with weighted en-
tropy regularizer, which is a version of (Chen et al., 2021, Lemma 1) in the fixed learning rate and
non-optimistic setting. Note that this is actually an interval version of (Chen et al., 2021, Lemma 1),
replacing the summation range from [T ] to an interval I ⊆ [T ], which is also used in (Chen et al.,
2021, Appendix C.3).

Lemma 28 (Lemma 1 of Chen et al. (2021)) Consider the following online mirror descent up-
date over a compact convex decision subset Ω ⊆ ∆d,

wt+1 = argmin
w∈Ω

{
⟨w, ℓt + at⟩+Dψ(w,wt)

}
where ψ(w) =

∑d
n=1

1
ηn
wn logwn is the weighted entropy regularizer. Suppose that for all t ∈ [T ],

32ηn|ℓt,n| ≤ 1 holds for all n ∈ [d] such that wt,n > 0. Then the above update ensures for any
u ∈ Ω,

∑
t∈I
⟨ℓt, wt − u⟩ ≤

∑
t∈Ik

(
Dψ(u,wt)−Dψ(u,wt+1)

)
+32

∑
t∈I

d∑
n=1

ηnunℓ
2
t,n−16

∑
t∈I

d∑
n=1

ηnwt,nℓ
2
t,n.
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