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Abstract—In many real-world applications, data are continu-
ously accumulated within open environments. For instance, in dis-
ease diagnosis, the prevalence of diseases can vary across seasons,
and new types of diseases can emerge. This paper investigates the
problem of learning from unlabeled data where the label distri-
bution evolves over time, and meanwhile, previously unseen new
class appears in the data stream. To handle the new class in online
label shift, we first design a novel risk estimator by unbiased
risk rewriting and mixture proportion estimation. Subsequently,
we employ the online ensemble paradigm for model updating
to handle unknown distribution shifts. The proposed approach
enjoys a theoretical guarantee of dynamic regret, ensuring its
effectiveness in adapting to the changing label distribution and
the presence of the new class in streams. Experiments conducted
on diverse benchmark datasets and two real-world applications
demonstrate the effectiveness of the proposed algorithm.

Index Terms—data stream, distribution shift, new class, weakly
supervised learning, online label shift

I. INTRODUCTION

Machine learning algorithms have made significant suc-
cesses across various applications. These approaches, such as
deep learning [1], typically rely on the assumption that the
training and testing data are generated from an identical dis-
tribution. However, in many real-world tasks, the testing data
are constantly collected from open environments, resulting in
a distribution mismatch between the training and testing data,
and the data distribution of testing data can even change over
time [2, 3, 4, 5, 6]. Further, owing to the streaming nature
of data, new class data could appear, presenting instances that
were not encountered previously. Therefore, it is essential to
adaptively learn from unlabeled data streams with changing
distributions, particularly with the presence of new classes.

In this paper, we investigate the problem of handling new
class in online label shift. Specifically, the learner can have
some offline labeled data for model training. However, during
the online testing phase, unlabeled data continuously arrives
with its distribution changing over time; simultaneously, new
class data may appear in online unlabeled data stream, as
shown in Figure 1. The learner is required to continuously
adapt to the changing distribution and accommodate the arrival
of new class. This problem is crucial because it encompasses
various real-world tasks. For instance, considering disease
diagnosis tasks, the prevalence of diseases may vary across
seasons [7], which induces continuous label shifts. Moreover,
the appearance of new diseases, such as COVID-19, that
were not encountered in the historical labeled data, poses a
significant challenge in handling these new classes.

*Equal contribution.

Existing approaches primarily focused on either handling
online label shift within a fixed label space, or dealing with
new classes while employing a fixed classifier for known
classes. As a typical kind of distribution change, online
label shift, characterized by continuous changes in the label
distribution of unlabeled data stream, has garnered substantial
interest in the literature [8, 9]. This line of research firstly
estimates the underlying loss of online unlabeled data in an
unbiased manner, followed by formulating the problem as an
online convex optimization problem. However, these studies
do not consider the appearance of new classes in the open
environments, which is a common occurrence in various real-
world tasks. Furthermore, research on handling the new classes
focuses on handling only the new classes within unlabeled
data stream [10, 11, 12]. This line of research uses various
anomaly detectors to detect new classes and updates models
accordingly. However, these studies mainly concentrate on
detecting new classes while disregarding distribution changes
within the known class data, which may cause a degradation in
the overall performance. It is noteworthy that in numerous real-
world scenarios, the issue of label shifts and new class occurs
simultaneously, posing potential challenges to the existing al-
gorithms. Additionally, while these methods show remarkable
performances, their theoretical properties remain unclear.

We initiate and investigate the problem of handling New
class in Online Label Shift (N-OLS), which encompasses a
wide range of real-world tasks. Although previous works have
studied the new class and label shift problems separately, the
conjunction of online label shift and the new class presents
new challenges, especially under unlabeled data streams. On
one hand, the presence of the new class can introduce bias
to the estimator that is solely trained on known classes. On
the other hand, label shifts in known classes data can worsen
the identification of the new classes. Therefore, it is crucial
to adaptively learn the model in the online label shift setting
with the new class. To this end, we explore the unlabeled data
and develop a novel risk estimator for this problem employing
unbiased risk rewriting and mixture proportion estimation
techniques, enabling updates of the model under unknown
level of distribution shift. To adapt to the continuous label shift
in data streams, we employ the online ensemble paradigm [13],
which maintains a group of base learners and adaptively
combines their outputs to track the changing distribution. The
proposed algorithm, HAndling New class in Online Label
shift (HANOL), enjoys a theoretical guarantee of dynamic
regret, ensuring its effectiveness in adapting to the evolving
distribution. Extensive experiments are conducted, including
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Fig. 1: Illustration of the N-OLS problem. In the offline initialization stage, the learner observes labeled data from known classes; in the
online adaptation stage, the learner receives a few unlabeled data containing the new class, and the distribution is changing over time.

benchmark and two real-world applications SHL [14] and
fMoW [15]. Our approach enhances the average accuracy by
11% on SHL and 10% on fMoW datasets.

II. PROBLEM FORMULATION

We consider a multi-class classification setting. The feature
space is denoted by X ⊆ Rd, where d represents the feature
dimension. Here, we denote [K] ≜ {1, . . . ,K} as the known
classes in the initial offline labeled data, and nc as the
new class, which does not appear in the offline data but is
encountered in online unlabeled data streams. Therefore, the
total label space is Y = [K]∪{nc}, classes [K] ≜ {1, . . . ,K},
which consists of K + 1 classes in total.

In addition to the presence of new class, we consider the
issue of online label shift. Specifically, throughout the entire
time horizon of unlabeled data stream, conditional distribution
remains unchanged, i.e., Dt(x | y) = D0(x | y) for all x ∈
X , y ∈ [K] and t ∈ [T ]; Dt(x | y) = Dt−1(x | y) for all
x ∈ X , y = K + 1 and t ≥ 2. However, the label distribution
can change dynamically, i.e., Dt(y = j) ̸= Dt−1(y = j) for
j ∈ [K + 1]. Additionally, for every j ∈ [K], D0(y = j) > 0.

In this paper, we formulate the New class in Online Label
Shift (N-OLS) problem into the following two phases:
• Offline supervised initialization. Before adaptation, the

learner has a certain number of labeled data S0 =
{xi, yi}n0

i=1 from the initial distribution D0(x, y) defined
over the known classes X × [K], D0(x) =

∑K
j=1[µy0

]j ·
Dj

0(x), where [µy0
]j = D0(y = j) is the label prior for the

j-th class, Dj
0(x) = D0(x | y = j) is the marginal distribu-

tion of the feature x over the known class j ∈ [K]. As an
initialization, we suppose that we can have a labeled training
dataset to obtain a well-performed model f0 : X 7→ Y ,
which serves as a reliable classifier for known class data.

• Online unsupervised adaptation. After obtaining the initial
model f0, the learner deploys it to a fully unsupervised
changing environment. At round t ∈ [T ], the learner can
receive a small number of unlabeled data St = {xi}nt

i=1

drawn from the current distribution Dt(x). Note that the
label distribution in the online adaptation phase comprises
not only the known classes y ∈ [K], but also a new class
y ∈ nc, absent in the offline data, and is changing over
time. The learner must sequentially explore the unlabeled
data stream to adaptively update the model wt and make
accurate predictions for each St.

III. PROPOSED APPROACH

In this section, we present our approach for the N-OLS
problem, with the overall protocol illustrated in Figure 2.

A. Risk Estimator for N-OLS Problem

In this part, we propose a new risk estimator designed for the
N-OLS problem, employed to update the model by leveraging
both the unlabeled and offline data. The estimator is designed
by exploiting unlabeled data stream via the risk rewriting
technique. We denote Rk

t (w) ≜ Ex∼Dt(x | y=k)[ℓ(f(w,x), k)]
as the risk of the model w over the k-th class at round t,
where t ∈ {0} ∪ [T ]. Then we have Rk

t (w) = Rk
0(w) for the

known classes k ∈ [K] due to the online label shift assumption
Dt(x | y) = D0(x | y). However, since new class can appear
in the online unlabeled data stream, label distribution of the
new class is unavailable, making risk Rnc

0 (w) ≜ RK+1
0 (w)

unknown. To tackle this issue, we propose a novel estimator
for the expected online risk Rt. Notice that the marginal
distribution Dt(x) can be decomposed as

Dt(x) = (1− θt)Dnc
t (x) + θt

(∑K

j=1
[µyt ]jD0(x | j)

)
, (1)

where Dnc
t is the distribution of the new class in Dt, µyt ∈ ∆K

is the label distribution vector of known classes, and (1−θt) ∈
[0, 1] is the proportion of new class at round t. By Eqn. (1),
we rewrite the risk associated with new class data Rnc

t (w) as

(1− θt)R
nc
t (w) ≜ (1− θt)EDnc

t (x)[ℓ(f(w,x), nc)]
= EDt(x)[ℓ(f(w,x), nc)]−θtEDkc

t (x)[ℓ(f(w,x), nc)]

= EDt(x)[ℓ(f(w,x), nc)]−θt

K∑
j=1

[µyt ]jEDj
0(x)

[ℓ(f(w,x), nc)].

The expected risk over distribution Dt(x) can be approxi-
mated by the empirical risk over the unlabeled data St, given
by 1/nt

∑
x∈St

ℓ(f(w,x),nc), while the risk over distribution
Dj

0(x) ≜ D0(x | y = j) can be approximated by the empirical
risk over offline data S0. Hence, we can build an estimator
R̂t(w) for the online expected risk Rt(w) as follows.

R̂t(w) = θ̂tR̂
kc
t (w) + (1− θ̂t)R̂

nc
t (w)

= θ̂t

K∑
j=1

[µ̂yt ]jR
j
0(w) + ESt(x)[ℓ(f(w,x), nc)]

− θ̂t

K∑
j=1

[µ̂yt ]jES
j
0(x)

[ℓ(f(w,x), nc)]. (2)

Overall, we build an estimator R̂t(w) for the N-OLS
problem by leveraging online unlabeled data and offline la-
beled data. This estimator will be unbiased, provided that we
accurately determine the values of θ̂t and µ̂yt . The remaining
question is how to estimate the parameters θ̂t and µ̂yt . In
the following, we use black box shift estimator (BBSE) [16]
to estimate the label distribution µyt

, and mixture proportion
estimation (MPE) methods [17, 18] to estimate θt given that
we can empirically observe D0(x | j) and Dt(x).
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Fig. 2: Overall protocol of our approach. We first develop a risk
estimator by exploiting unlabeled data stream. Then, we employ the
paradigm of online ensemble to adapt to the continuous label shift.

B. Label Distribution Estimation with Unlabeled Data

In this part, we introduce the details of estimating the
changing label distribution µyt

for known classes and the
proportion of the new class θt in the N-OLS problem.
• Estimate Proportion for Known Classes Data. We

use BBSE [16] to estimate the class prior of known
classes µyt

via solving µ̂yt
= C−1

0 · µ̂ŷt
, where C0 ∈

RK×K is the classifier’s confusion matrix with [C0]i,j ≜
Ex∼D0(x | y=j)

[
1(f0(x) = i)

]
being the classification rate

that the initial model f0 predicts samples from class i as
class j, and µ̂ŷt

∈ ∆K with [µ̂ŷt
]j = 1/nt ·

∑
x∈St

[f0(x)]j
is the estimated class prior of the prediction f0(x). Benefit
from the benign properties of BBSE [16], we can guarantee
that the estimation µ̂yt satisfies E[µ̂yt ] = µyt , where µyt ≜
C−1

0 µŷt
= Dkc

t (y) is the ground-truth label distribution.
• Estimate Proportion for New Class Data. Notice that the

construction of the risk estimator R̂t requires to estimate the
proportion θt, which is known as the problem of mixture
proportion estimation (MPE) [17, 18], where one aims to
estimate the proportion of a certain class in the whole
distribution given their empirical observations. To tackle
the challenge of limited data availability in the online
stream, we propose a sliding window-based MPE algorithm.
Specifically, we maintain a window queue of length L. At
time t, following the first-in-first-out principle, the current
round sample St is added to the queue, and a certain number
of samples are removed from the queue’s front. At each time
step, inspired by the recently proposed Best Bin Estimation
(BBE) technique [19], we utilize resampled offline labeled
data and online unlabeled data in the sliding window to
estimate the proportion of new class. We first train a well-
performed classifier h : X 7→ [0, 1], where 0 means the data

Algorithm 1 HANOL:HAndlingNewclass in OnlineLabelshift

Require: step size pool H; learning rate ε; step size ηi ∈ H
1: initialization: get wi

1 ∈ W by offline supervised initial-
ization; ∀i ∈ [N ], pi1 = 1/N

2: for t = 2 to T do
3: for i = 1 to N do
4: construct risk estimator R̂t(w

i
t) as (2)

5: update the i-th base model wi
t by (3)

6: update the weight pit according to (4)
7: end for
8: output final model wt =

∑N
i=1 p

i
t ·wi

t
9: end for

is sampled from the online unlabeled data, and 1 means data
is sampled from labeled data, then we get

qp(z) =

∑
xi∈S0

I [h(xi)⩾z]

|S0|
, qu(z) =

∑
xi∈Swin

I [h(xi)⩾z]

|Swin|
,

where S0 is the offline dataset, and Swin is the online
unlabeled data in the sliding window. By solving

ĉ = argmin
c∈[0,1]

qu(c)

qp(c)
+

1 + γ

qp(c)

(√
log(4/δ)

2Swin
+

√
log(4/δ)

2S0

)
,

where 0 < δ, γ < 1 are the hyper-parameters, then, we
can estimate new class proportion by θ̂t = qu(ĉ)/qp(ĉ).
The estimated proportion by sliding-window MPE enjoys a
convergence rate of O(min(|S0|, |Swin|)−1/2) [19], thus can
obtain the proportion of new class with a small variance.

Remark 1. Although the proposed algorithm primarily fo-
cuses on scenarios involving a single new class, it possesses
practical potential in managing scenarios involving the emerg-
ing new classes [4], where more and more unseen new classes
successively arise in the data stream as time evolves. Moreover,
techniques such as core set and sketching can be employed to
enhance the sample storage efficiency of S0. Further details
will be presented in the extended version.

C. Adaptation via Online Ensemble

Based on the risk estimator R̂t(w) constructed in Sec-
tion III-A and the parameter estimating approach in Sec-
tion III-B, we then design online adaptation algorithms to
adapt model wt to the changing distribution Dt. A natural
choice is to minimize the risk estimator R̂t(w) from scratch,
which means wt ∈ argminw R̂t(w). Whereas, R̂t(w) can
suffer from high variance due to the small online sample size
nt, which may lead to poor generalization performance. To
this end, we turn to reusing historical information via online
gradient descent (OGD). However, OGD with a fixed step size
may not be able to adapt to the changing distribution Dt. To
handle this issue, we propose an adaptive algorithm with a
two-layer structure, which can adaptively track the suitable
step size to the distribution Dt, as shown in Algorithm 1.

In order to adapt to changing distributions, we employ the
paradigm of online ensemble learning [20, 13]:
• Construct base learners with multiple step sizes. At round

t, with risk estimator R̂t(w) in (2), we can obtain the
estimated gradient ∇R̂t(w) and update the model wt by



gradient descent, given by the following update schedule
wt+1 = ΠW [wt − η∇R̂t(wt)], where ΠW [·] denotes the
projection onto the domain W and η > 0 is the step size.

However, this OGD algorithm with a single step size
cannot adapt to the changing distribution Dt. To this end,
following the idea of ensemble learning, we propose an
online ensemble algorithm to adaptively track the changing
distribution Dt. Specifically, we maintain a set of base
learners with different step sizes H = {ηi}Ni=1. At round
t, we update the i-th base learner wi

t by

wi
t+1 = ΠW

[
wi

t − ηi∇R̂t(w
i
t)
]
. (3)

Thus, we obtain a group of base models {wi
t}Ni=1, where

different models excel in handling different shift intensi-
ties. By the following meta learner that adaptively assigns
weights to different base models, our approach effectively
tracks the varying environments in real time.

• Combine the outputs by meta learner. We maintain a meta
learner that combines the outputs of multiple base learners
through weighted averaging to obtain the final model, given
by wt =

∑N
i=1 p

i
t ·wi

t. The weights pit ∈ [0, 1] denotes the
extent of utilization for the i-th base learner, and statistically
satisfies

∑N
i=1 p

i
t = 1. Since the environment changes

dynamically, the weights pit should be adaptively updated
according to the performance of the base learners,

pit ∝ exp
(
− ε

∑t−1

s=1
R̂s

(
wi

s

) )
, (4)

where ε > 0 is a hyper-parameter that controls sensitivity
of the meta learner to performances of base learners. Intu-
itively, meta learner assigns higher weights to base learners
that exhibit better cumulative performance, thereby enabling
adaptively tracking of the optimal base learner.

IV. THEORETICAL ANALYSIS

In this section, we analyze the theoretical properties of our
algorithm. We consider the convex feasible domain and loss
functions. Our goal is to obtain a sequence of online model pa-
rameters {wt}Tt=1 that can minimize the cumulative expected
risk over the whole time horizon:

∑T
t=1 Rt(wt). The excepted

risk Rt(w) at each round is defined as EDt(x,y)[ℓ(f(w,x), y)],
where ℓ : RK+1 × Y 7→ R is any convex loss function and
f(w,x) is the prediction of the model w ∈ W on the feature
x. We adopt the dynamic regret Regd

T as the measure [9]. It
is defined as the difference between the cumulative expected
risk of the predictive model sequence {wt}Tt=1 with {w∗

t }Tt=1:

Regd
T ≜

∑T

t=1
Rt(wt)−

∑T

t=1
Rt(w

∗
t ),

where model parameter w∗
t ∈ argminw∈W Rt(w) is the best

model at each round t. A small dynamic regret indicates that
the algorithm can adapt to a changing environment and achieve
a performance competitive with the best model sequence.

We denote the upper bound of gradient norm by G ≜
supX ,Y,W ∥∇ℓ(f(w,x), y)∥2 and denote the diameter of the
convex parameter space W by Γ ≜ supw1,w2∈W ∥w1 −w2∥2.
We use B ≜ sup(x,y)∈X×Y,w∈W |ℓ(f(w,x), y)| as the upper
bound of loss function value, and σ as the minimum singular

value of the confusion matrix C0. Under the assumption that
the confusion matrix C0 is invertible, i.e., σ > 0, our proposed
algorithm enjoys the following dynamic regret guarantee.

Theorem 1 (Dynamic Regret). Suppose the confusion matrix
C0 is invertible. Set the step size pool as H = {ηi =

σΓ

2G
√

(K+1)T
·2i−1 | i ∈ [N ]}, where N = 1+⌈ 1

2 log2(1+2T )⌉
is the number of base-learners. Our HANOL ensures that

E[Regd
T ] ≤ O(max{V 1/3

T T 2/3,
√
T}),

or simplified as O(V
1/3
T T 2/3) for non-degenerated cases of

VT ≥ Θ(T− 1
2 ), where VT =

∑T
t=2∥Dt(y) − Dt−1(y)∥1

measures the intensity of label distributions variation.

Proof Sketch. We convert the overall dynamic regret into
two components: meta regret and base regret. The meta regret
quantifies the gap between the ensemble model and individual
base models, which is bounded by 2B

σ

√
(lnN + 2)(K + 1)T .

The base regret measures the gap between base model and the
optimal model sequence, for which we introduce a piecewise
stationary reference sequence with a total change count of ∆
and decompose the base regret into two parts. The first part
is the gap between the base model sequence and reference se-
quence, which can be bounded by 3GΓ

σ

√
(K + 1)T

(
1 + 2T

∆

)
.

The second part is the gap between the reference sequence and
optimal model sequence, which can be bounded by 2∆BVT .
By combining upper bound of the meta regret with the base
regret and tuning the change count ∆, we can establish the
overall dynamic regret guarantee. Further, we theoretically
demonstrate that our algorithm can track the optimal base
learner adaptively by only maintaining about log T base learn-
ers. Detailed proofs will be provided in the extended version.

V. EXPERIMENTS

In this section, we present the empirical evaluation of our
approach, which aims to answer the following questions:
• Q1: Does HANOL outperform other contenders in the N-

OLS problem when confronted with various types of shifts?
• Q2: Does HANOL show effectiveness in real-world tasks

with the arrival of new classes and continuous label shift?
• Q3: Does HANOL correctly detect the shifts and estimate

the proportion of the new class? Is it efficient?

A. Benchmark Datasets

This section seeks to answer Q1. We compare our proposed
approach HANOL with seven competing methods using five
benchmark datasets in the N-OLS scenario. The competing
methods comprise a baseline approach (FIX), two for man-
aging distribution shifts (FTFWH [8] and ASL [21]), two for
handling the new classes in data streams (SENC-F [10] and
KNNENS [22]), and two originally designed methods to tackle
the offline N-OLS problem (Self-N and PULSE [23]). The
details of the competitors are deferred to the extended version.

We generate a changing environment where the label dis-
tributions shift over time, and new class data appear in online
stage, which is not contained in the offline training data.



TABLE I: Average error (%) of different algorithms on benchmark datasets with different types of environmental shifts, where HANOL
represents our method. We report the mean and standard deviation over five runs. The best algorithms are emphasized in bold. “◦” indicates
the algorithm is significantly inferior to our algorithms by paired t-test at a 5% significance level. The online sample size is set as nt = 10.

Gradual Shift

FIX FTFWH ASL SENC-F KNNENS Self-N PULSE HANOL

CIFAR10 22.89 ± 0.81 ◦ 19.01 ± 0.73 ◦ 19.23 ± 0.97 ◦ 18.92 ± 0.89 ◦ 19.23 ± 0.79 ◦ 19.11 ± 0.85 ◦ 18.71 ± 0.85 ◦ 18.52 ± 0.89
CINIC10 35.57 ± 1.03 ◦ 30.08 ± 1.08 ◦ 31.45 ± 0.24 ◦ 30.25 ± 0.93 ◦ 30.12 ± 1.05 ◦ 31.95 ± 0.86 ◦ 29.89 ± 1.12 ◦ 28.82 ± 0.96
EuroSAT 16.23 ± 0.03 ◦ 10.82 ± 0.21 ◦ 11.24 ± 0.13 ◦ 10.55 ± 0.04 ◦ 10.91 ± 0.06 ◦ 11.13 ± 0.25 ◦ 09.62 ± 0.16 ◦ 09.73 ± 0.06
Fashion 13.34 ± 0.13 ◦ 12.59 ± 0.16 ◦ 11.35 ± 0.23 ◦ 12.13 ± 0.51 ◦ 11.91 ± 0.32 ◦ 11.72 ± 0.05 ◦ 10.01 ± 0.09 ◦ 09.89 ± 0.02
MNIST 04.98 ± 0.17 ◦ 03.12 ± 0.02 ◦ 02.56 ± 0.78 ◦ 03.01 ± 0.09 ◦ 02.87 ± 0.17 ◦ 02.98 ± 0.05 ◦ 02.43 ± 0.14 ◦ 02.56 ± 0.06

Periodical Shift

FIX FTFWH ASL SENC-F KNNENS Self-N PULSE HANOL

CIFAR10 24.28 ± 0.72 ◦ 20.19 ± 0.82 ◦ 20.98 ± 0.79 ◦ 20.20 ± 0.77 ◦ 20.43 ± 0.77 ◦ 20.56 ± 0.81 ◦ 20.11 ± 0.81 ◦ 19.94 ± 0.74
CINIC10 36.82 ± 1.03 ◦ 31.24 ± 0.91 ◦ 33.31 ± 0.52 ◦ 31.46 ± 1.15 ◦ 31.52 ± 1.15 ◦ 32.29 ± 0.88 ◦ 31.31 ± 1.12 ◦ 30.88 ± 1.04
EuroSAT 17.72 ± 0.29 ◦ 12.12 ± 0.16 ◦ 11.89 ± 0.49 ◦ 11.72 ± 0.21 ◦ 12.22 ± 0.11 ◦ 12.61 ± 0.11 ◦ 10.84 ± 0.05 ◦ 09.93 ± 0.17
Fashion 14.75 ± 0.19 ◦ 14.04 ± 0.36 ◦ 12.96 ± 0.32 ◦ 13.56 ± 0.45 ◦ 13.27 ± 0.48 ◦ 12.67 ± 0.25 ◦ 10.82 ± 0.12 ◦ 11.02 ± 0.44
MNIST 06.41 ± 0.15 ◦ 04.36 ± 0.16 ◦ 04.23 ± 0.15 ◦ 04.44 ± 0.02 ◦ 03.93 ± 0.09 04.02 ± 0.19 ◦ 03.82 ± 0.06 ◦ 03.75 ± 0.04

Sudden Shift

FIX FTFWH ASL SENC-F KNNENS Self-N PULSE HANOL

CIFAR10 23.58 ± 0.74 ◦ 19.24 ± 0.87 ◦ 19.56 ± 0.35 ◦ 19.23 ± 0.88 ◦ 19.54 ± 0.82 ◦ 19.45 ± 0.76 ◦ 19.39 ± 0.88 ◦ 18.88 ± 0.86
CINIC10 36.21 ± 0.89 ◦ 33.33 ± 1.15 ◦ 32.41 ± 0.72 ◦ 30.77 ± 1.12 ◦ 30.64 ± 0.94 ◦ 32.45 ± 0.94 ◦ 30.55 ± 1.12 ◦ 31.26 ± 0.82
EuroSAT 16.79 ± 0.16 ◦ 11.15 ± 0.16 ◦ 11.23 ± 0.45 ◦ 11.12 ± 0.07 ◦ 11.55 ± 0.08 ◦ 11.36 ± 0.23 ◦ 10.18 ± 0.01 ◦ 10.06 ± 0.21
Fashion 13.64 ± 0.24 ◦ 12.96 ± 0.37 ◦ 12.12 ± 0.07 ◦ 12.62 ± 0.01 ◦ 12.21 ± 0.37 ◦ 12.09 ± 0.05 ◦ 11.61 ± 0.26 ◦ 10.92 ± 0.23
MNIST 05.52 ± 0.05 ◦ 03.48 ± 0.13 ◦ 03.23 ± 0.23 ◦ 03.45 ± 0.16 ◦ 03.44 ± 0.16 ◦ 03.24 ± 0.21 ◦ 03.11 ± 0.13 ◦ 03.08 ± 0.09
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(b) accuracy curve on fMoW
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(d) efficiency comparison

Fig. 3: (a) & (b) Comparison of overall performances on the real-world tasks. (c) Accuracy of the estimated new class proportion of our
sliding-window MPE module. (d) Evaluation of efficiency and accuracy (defined as 100% - average error) of different algorithms. We report
the mean and standard deviation over five runs. An algorithm closer to the top-right corner indicates superior efficiency and performance.

In the online adaptation stage, the learner can only observe
unlabeled data streams. Specifically, we randomly choose two
classes as the new class for each benchmark dataset. The label
distribution at round t is a mixture of two different constant
distributions µ,µ′ ∈ ∆K+1 with a time-varying coefficient
αt, i.e., Dt(y) = (1 − αt)µ + αtµ

′, where µyt denotes
the distribution at round t and αt controls the intensity of
distribution changes. We only observe the label distribution
µ0 ∈ ∆K for known classes in the offline training data. We
simulate three representative types of distribution shifts com-
monly encountered in real-world tasks; the details regarding
the simulation of these shifts can be found in the extended
version. We evaluate all contenders by the average error over
T = 10, 000 rounds, with five benchmarks. More details of
the benchmark datasets are deferred to the extended version.

Implementation Details. For the aforementioned five bench-
mark datasets, we employ a fine-tuned ResNet34 network
for feature extraction. Images used to train the ResNet do
not overlap with either the offline or online datasets. We
sample 30, 000 data for offline initialization. We repeat all
experiments for five times and evaluate the average error and
standard deviation. The learning rates of the algorithms are
set according to theoretical guidelines. The hyper-parameter
ε for the meta learner is set as

√
(lnN)/T . δ and γ in

MPE are set as default values following [19], i.e., 0.1 and
0.01, respectively, without modification. The window size in
sliding-window MPE is L = 20 by default, without delib-
erate selection. Enhanced performance could be potentially
achieved by selecting window size using techniques such as
cross-validation. All experiments are executed on a computer
equipped with 2 Intel Xeon 8358 CPUs, each having 32 cores.

Results on Benchmark Datasets. The results in Table I demon-
strate that our proposed algorithm effectively handles the
new classes in the online label shift problem, outperforming
other approaches. The baseline FIX is inferior to the online
algorithms, highlighting the necessity of sequentially updated
algorithms with online unlabeled data. Our approach surpasses
both FTFWH and ASL, indicating that handling the new
class is crucial in the N-OLS setting. Besides, compared with
SENC-F and KNNENS, which primarily focus on managing
new classes, our approach achieves better performance. This
indicates that label shifts can lead to the misclassification of
the new class, and our black box shift estimator effectively
tackles this issue. Our HANOL algorithm consistently outper-
forms both PULSE and Self-N, showing the effectiveness of
our online updating scheme with sliding window-based MPE
and online ensemble. These results show the success of our
approach in tackling the N-OLS problem.



TABLE II: Average error (%) of different algorithms on the real-
world applications of SHL [14] and fMoW [15] datasets. The
performance metrics reported include both the mean accuracy and
the standard deviation of different algorithms over five separate runs.

FIX FTFWH ASL SENC-F KNNENS Self-N PULSE HANOL

SHL 47.32 43.21 40.78 40.22 41.23 41.25 38.19 36.81
±1.05 ±1.67 ±1.42 ±1.55 ±1.81 ±1.12 ±1.61 ±1.32

fMoW 73.15 69.38 69.54 68.87 69.23 70.37 66.32 63.16
±3.31 ±2.64 ±2.13 ±3.34 ±1.81 ±2.84 ±2.71 ±3.01

B. Real-world Applications

In this part, we aim to answer Q2 and Q3. We compare the
proposed approach with other contenders on two real-world
applications: (i) the SHL locomotion recognition dataset [14],
and (ii) the Functional Map of the World (fMoW) dataset [15],
a sequential satellite image recognition task. We report the
average error of various algorithms on the SHL and fMoW
datasets in Table II, along with their respective timely perfor-
mance depicted in Figure 3(a) and Figure 3(b). As shown in
these empirical studies, our proposed method exhibits superior
performance compared to the FTFWH and ASL methods,
highlighting the significance of addressing the arrival of new
classes in real-world tasks. Moreover, our HANOL effectively
adapts to label shift by the black box shift estimator and
constructing a risk estimator for the N-OLS problem through
the use of unlabeled data, thereby outperforming the SENC-
F and KNNENS methods. Our approach also surpasses the
PULSE and Self-N methods, thanks to the benefits of the
online updating scheme and the proposed sliding-window
MPE mechanism, which alleviate the lack of labeled data
problem in online data streams.

Modular Analysis. As demonstrated in Figure 3(c), our pro-
posed sliding-window MPE module is capable of accurately
estimating the proportion of new classes, thereby managing
the issue of the new class in the N-OLS problem effectively.

Efficiency Comparison. We also compare the efficiency of
different algorithms. Specifically, we evaluate the efficiency
(items processed per second) and accuracy (defined as 100%
- average error) of various algorithms. An algorithm that plots
closer to the top-right corner indicates superior efficiency
and performance since it achieves a better performance with
higher efficiency. As demonstrated in Figure 3(d), the moving
average-based FTFWH is the most efficient, but it yields the
poorest performance. Though ensemble-based methods, ASL
and KNNENS, exhibit slower speed, they accomplish superior
performance. Our approach, albeit with a slight compromise
on efficiency, attains the best performance among all.

VI. CONCLUSION

In this paper, we investigate the problem of handling new
class in online label shift. We proposed a novel method, called
HANOL, to tackle both online label shift and the presence
of the new class in unlabeled data stream. In HANOL, we
first build a risk estimator for unlabeled data stream via risk
rewriting and mixture proportion estimation to handle both
the presence of new class and the distribution shift. Then,
we employ the paradigm of online ensemble to adapt to

the unknown continuous label shift. The proposed method
enjoys a theoretical guarantee of dynamic regret, affirming its
effectiveness in adapting to changing distributions. We conduct
experiments on five benchmark datasets and two real-world
applications to validate the effectiveness of our HANOL.
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