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Abstract

Bandit Convex Optimization (BCO) is a fundamental framework for modeling sequential
decision-making with partial information, where the only feedback available to the player
is the one-point or two-point function values. In this paper, we investigate BCO in non-
stationary environments and choose the dynamic regret as the performance measure, which
is defined as the difference between the cumulative loss incurred by the algorithm and that
of any feasible comparator sequence. Let T be the time horizon and PT be the path-length
of the comparator sequence that reflects the non-stationarity of environments. We propose
a novel algorithm that achieves O(T 3/4(1 +PT )1/2) and O(T 1/2(1 +PT )1/2) dynamic regret
respectively for the one-point and two-point feedback models. The latter result is optimal,
matching the Ω(T 1/2(1 + PT )1/2) lower bound established in this paper. Notably, our
algorithm is adaptive to the non-stationary environments since it does not require prior
knowledge of the path-length PT ahead of time, which is generally unknown. We further
extend the algorithm to an anytime version that does not require to know the time horizon
T in advance. Moreover, we study the adaptive regret, another widely used performance
measure for online learning in non-stationary environments, and design an algorithm that
provably enjoys the adaptive regret guarantees for BCO problems. Finally, we present
empirical studies to validate the effectiveness of the proposed approach.1

Keywords: Bandit Convex Optimization, Non-stationary Environments, Online Learning,
Dynamic Regret, Adaptive Regret, Ensemble Methods

1. Introduction

Online Convex Optimization (OCO) is a powerful tool for modeling sequential decision-
making problems, which can be regarded as an iterative game between the player and
environments (Shalev-Shwartz, 2012; Hazan, 2016). At iteration t, the player commits a
decision xt from a convex feasible set X ⊆ Rd, simultaneously, a convex function ft : X 7→ R
is revealed by environments, which could be in an adversarial way. Then, the player will
suffer an instantaneous loss ft(xt). The standard performance measure for online convex

1. A preliminary version of this work appeared in Proceedings of the 23rd International Conference on
Artificial Intelligence and Statistics (AISTATS), 2020 (Zhao et al., 2020a).
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optimization is the regret, defined as

S-RegretT =

T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x) (1)

which is the difference between the cumulative loss of the player and that of the best fixed
decision in hindsight. The measure is also called static regret to emphasize the fact that the
comparator in (1) is fixed.

There are two setups for online convex optimization according to the information revealed
by the environments (Hazan, 2016). In the full-information setup, the player has all the
information of the function ft, including the gradients of ft over the feasible set X . By
contrast, in the bandit setup (or we call it the partial-information setup), the instantaneous
loss is the only feedback available to the player. In this paper, we focus on the latter case,
which is referred to as the problem of Bandit Convex Optimization (BCO).

BCO has attracted considerable attention because it successfully models many real-world
scenarios where the feedback available to the decision maker is partial or incomplete (Hazan,
2016). The key challenge lies in the limited feedback, i.e., the player has no access to
gradients of the function. In the standard one-point feedback model, the only feedback is
the one-point function value, based on which Flaxman et al. (2005) constructed an unbiased
estimator of the gradient and then appealed to the online gradient descent algorithm that
developed in the full-information setting (Zinkevich, 2003) to establish an O(T 3/4) expected
static regret. Another common variant is the two-point feedback model, where the player
is allowed to query function values of two points at each iteration. Agarwal et al. (2010)
demonstrated an optimal O(

√
T ) static regret for convex functions under this feedback

model. Algorithms and regret analysis were further developed in the later studies (Saha
and Tewari, 2011; Hazan and Levy, 2014; Bubeck et al., 2015; Dekel et al., 2015; Yang and
Mohri, 2016; Bubeck et al., 2017; Lattimore, 2020).

The static regret in (1) compares with a fixed benchmark, so it implicitly assumes that
there is a reasonably good decision over all iterations. Unfortunately, this may not be
true in non-stationary environments, where the underlying distribution of online functions
changes (Sugiyama and Kawanabe, 2012; Gama et al., 2014; Zhao et al., 2021). To address
this limitation, the notion of dynamic regret is introduced by Zinkevich (2003) and defined as
the difference between the cumulative loss of the player and that of a comparator sequence
u1, . . . ,uT ∈ X ,

D-RegretT (u1, . . . ,uT ) =
T∑
t=1

ft(xt)−
T∑
t=1

ft(ut). (2)

In contrast to a fixed benchmark in the static regret, dynamic regret compares with a sequence
of changing comparators and therefore is more suitable for measuring the performance of
online algorithms in non-stationary environments. We remark that (2) is also called the
universal dynamic regret, since the regret bound holds universally against any feasible
comparator sequence u1, . . . ,uT in the feasible set.

In the literature, there is a variant named the worst-case dynamic regret (Besbes et al.,
2015; Jadbabaie et al., 2015; Mokhtari et al., 2016; Zhang et al., 2017, 2018b; Baby and
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Table 1: Comparisons of existing dynamic regret bounds for BCO problems. In the table, the
column of “dynamic regret” summarizes the attained dynamic regret bound, where T is the time
horizon, PT = PT (u1, . . . ,uT ) and P ∗T = max{x∗

t∈X∗
t }Tt=1

PT (x∗1, · · · ,x∗T ) are the path-length that
reflects the non-stationarity of the environments, with X ∗t being the set of all minimizers of the
online function ft to handle the potential non-uniqueness of the minimizers. The column of “type”
specifies whether the dynamic regret bound holds for any comparator sequence or for the sequence of
minimizers of online functions only. Besides, the column of “Parameter-free” indicates whether the
algorithm requires to know the path-length in advance.

Feedback model Dynamic regret Type Parameter-free Reference

one-point BCO O
(
T

3
4 (1 + P ∗T )

)
worst-case NO Chen and Giannakis (2019)

one-point BCO O
(
T

3
4 (1 + PT )

1
2

)
universal YES This work

two-point BCO O
(√

T (1 + P ∗T )
)

worst-case NO Yang et al. (2016)

two-point BCO O
(√
T (1 + P ∗T )

)
worst-case NO Chen and Giannakis (2019)

two-point BCO O
(√

T (1 + PT )
)

universal YES This work

Wang, 2019; Zhang et al., 2020b; Zhao and Zhang, 2021), defined as

D-Regret∗T = D-RegretT (x∗1, . . . ,x
∗
T ) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ), (3)

where x∗t ∈ arg minx∈X ft(x) is a minimizer of the online function ft over the domain X .
We can see that the worst-case dynamic regret (3) can be regarded as a special case of the
universal dynamic regret by specifying the comparator sequence of (2) to be the sequence of
minimizers of online functions, namely, ut = x∗t ∈ arg minx∈X ft(x). There are many works
studying the worst-case dynamic regret, however, as pointed out by Zhang et al. (2018a), the
worst-case dynamic regret is typically too pessimistic. By contrast, the universal dynamic
regret is more general, and it can encompass the worst-case dynamic regret and static regret
as special cases. Therefore, comparing to the static regret and the worst-case dynamic regret,
the universal dynamic regret studied in this paper is more adaptive to the non-stationarity
of environments and thus is more desired as the performance measure to guide the algorithm
design of online learning in non-stationary environments.

Recently, there are some studies on designing algorithms to minimize the dynamic regret
of BCO problems (Yang et al., 2016; Chen and Giannakis, 2019). However, they provide
the worst-case dynamic regret only, and the algorithms require some quantities as the input
which are generally unknown in advance. Therefore, it is desired to design algorithms that
enjoy universal dynamic regret for BCO problems.

In this paper, we start with the bandit gradient descent (BGD) algorithm of Flaxman
et al. (2005), and analyze its universal dynamic regret. We demonstrate that the optimal
parameter configuration of vanilla BGD also requires prior information of the unknown
path-length. To address this issue, we propose the Parameter-free Bandit Gradient Descent
algorithm (PBGD), which is inspired by the strategy of maintaining multiple learning rates in
adaptive online learning (van Erven and Koolen, 2016). Our approach is essentially an online
ensemble method (Zhou, 2012), consisting of a meta-algorithm and several expert-algorithms.
The basic idea is to maintain a pool of candidate parameters, and then invoke multiple
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instances of the expert-algorithm simultaneously, each of which is associated with a candidate
parameter. Next, the meta-algorithm combines the predictions from expert-algorithms by an
expert-tracking method (Cesa-Bianchi and Lugosi, 2006). However, it is prohibited to run
multiple expert-algorithms with different parameters simultaneously in BCO problems, since
the player is only allowed to query the function values of one/two points in the bandit setup.
To overcome this difficulty, we carefully design a surrogate function, as the linearization of
the smoothed version of the loss function in the sense of expectation, and make the strategy
suitable for bandit convex optimization. Our algorithm and analysis accommodate one-point
and two-point feedback models, and Table 1 summarizes existing dynamic regret bounds for
BCO problems and our results. The main contributions of this work are listed as follows.

• We establish the first universal dynamic regret that supports to compare with any
feasible comparator sequence for the bandit gradient descent algorithm, in a unified
analysis framework.

• We propose a parameter-free algorithm, which does not require to know the upper
bound of the path-length PT ahead of time, and meanwhile enjoys the state-of-the-art
dynamic regret guarantees.

• We establish the first minimax lower bound of the universal dynamic regret for bandit
convex optimization problems.

Our algorithm enjoys universal dynamic regret guarantees and does not require prior
knowledge of the path-length PT ahead of time that is generally unknown. As a result,
our proposed algorithm is more adaptive to the non-stationary environments than BCO
algorithms designed for minimizing static regret or worse-case dynamic regret. Furthermore,
we make several extensions. First, the proposed PBGD algorithm requires the time horizon
T as an input, which is also an impractical demand in real implementations. We remove
the undesired dependence and develop an anytime algorithm that does not need to know
the time horizon T in advance. Second, we investigate another widely used performance
measure for online learning in non-stationary environments—adaptive regret (Hazan and
Seshadhri, 2009), which is defined as the maximum of “local” static regret in every time
interval. We propose an algorithm called Minimizing Adaptive regret in Bandit Convex
Optimization (MABCO) to minimize the measure, and analyze the adaptive regret bound
for the proposed algorithm. To the best of our knowledge, we are the first to systematically
study the two performance metrics (universal dynamic regret and adaptive regret) for bandit
convex optimization in non-stationary environments. On the other hand, as far as we know,
we are also the first to make the techniques originally developed for the full-information
online learning (van Erven and Koolen, 2016) feasible for the bandit setting.

The rest of the paper is structured as follows. Section 2 briefly reviews related work. In
Section 3, we introduce the bandit gradient descent algorithm for BCO problems and provide
the dynamic regret analysis. Section 4 presents the parameter-free BGD algorithm, the
main contribution of this paper, with dynamic regret analysis. We establish the lower bound
of dynamic regret for BCO problems in Section 5. We further design online algorithms
for adaptive regret minimization for BCO problems in Section 6. Section 7 reports the
empirical studies to show the effectiveness of our proposed approach. Finally, we conclude
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the paper and discuss the future work in Section 8. We defer some preliminary knowledge to
Appendix A and proofs of dynamic regret analysis for the BGD algorithm to Appendix B.

2. Related Work

In this section, we briefly introduce related work of bandit convex optimization, as well as
the dynamic regret minimization for online learning in non-stationary environments.

2.1 Bandit Convex Optimization

In the bandit convex optimization setting, the player is only allowed to query function values
of one point or two points, and the gradient information is not accessible as opposed to the
full-information setting. In the following, we briefly discuss the progress of static regret
minimization of the BCO problems.

For the one-point feedback model, the seminal work of Flaxman et al. (2005) constructed
an unbiased gradient estimator and established an O(T 3/4) expected regret for convex and
Lipschitz functions. A similar result was independently obtained by Kleinberg (2004). Later,
an O(T 2/3) rate was shown to be attainable with either strong convexity (Agarwal et al.,
2010) or smoothness (Saha and Tewari, 2011). When functions are both strongly convex
and smooth, Hazan and Levy (2014) designed a novel algorithm that achieves a regret
of O(

√
T log T ) based on the follow-the-regularized-leader framework with self-concordant

barriers, matching the Ω(
√
T ) lower bound (Shamir, 2013) up to logarithmic factors. Fur-

thermore, recent breakthroughs (Bubeck et al., 2015, 2017) showed that O(ploy(log T )
√
T )

regret is attainable for the convex case, albeit with a high dependence on the dimension d.
The dimension-dependence is recently improved from d9.5 to d2.5 by the information-theoretic
argument (Lattimore, 2020).

BCO with two-point feedback was proposed and studied by Agarwal et al. (2010),
and was also independently studied in the context of stochastic optimization (Nesterov,
2011). Agarwal et al. (2010) first established the expected regret of O(d2

√
T ) and O(d2 log T )

for convex Lipschitz and strongly convex Lipschitz functions, respectively. These bounds are
proved to be minimax optimal in terms of the time horizon T (Agarwal et al., 2010), and
the dependence on the dimension d is later improved to be optimal (Shamir, 2017).

Besides, bandit linear optimization is a special case of BCO where the feedback is assumed
to be a linear function of the chosen decision, and has been studied extensively (Awerbuch
and Kleinberg, 2004; McMahan and Blum, 2004; Dani et al., 2007; Abernethy et al., 2008;
Bubeck et al., 2012, 2019).

2.2 Dynamic Regret

There are two types of dynamic regret as aforementioned. The universal dynamic regret
holds against any feasible comparator sequence, while the worst-case one only compares
with the sequence of minimizers of online functions.

For the universal dynamic regret, existing results are only limited to the full-information
setting. Zinkevich (2003) showed that online gradient descent (OGD) achieves an O(

√
T (1 +

PT )) regret, where PT = PT (u1, . . . ,uT ) is the path-length of comparator sequence u1, . . . ,uT ,
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defined as

PT (u1, . . . ,uT ) =
T∑
t=2

‖ut−1 − ut‖2.

Recently, Zhang et al. (2018a) demonstrated that this upper bound is not optimal by
establishing an Ω(

√
T (1 + PT )) lower bound, and further proposed an online algorithm

that attains a minimax optimal dynamic regret bound of order O(
√
T (1 + PT )) for convex

functions. Zhao et al. (2020b) designed more adaptive algorithms for convex and smooth
functions, and they proved problem-dependent dynamic regret bounds that could be much
smaller than the minimax rate and safeguard the worst case simultaneously. However, to the
best of our knowledge, there is no algorithms designed for minimizing the universal dynamic
regret in the bandit setting.

For the worst-case dynamic regret, there are many studies in the full-information
setting (Besbes et al., 2015; Jadbabaie et al., 2015; Yang et al., 2016; Mokhtari et al., 2016;
Zhang et al., 2017; Baby and Wang, 2019; Zhang et al., 2020b; Zhao and Zhang, 2021)
as well as the bandit setting (Gur et al., 2014; Wei et al., 2016; Yang et al., 2016; Luo
et al., 2018; Auer et al., 2019; Chen and Giannakis, 2019). We mainly focus on the bandit
convex optimization setting. There are two works designed for minimizing the (worst-case)
dynamic regret of bandit convex optimization (Yang et al., 2016; Chen and Giannakis, 2019).
Specifically, suppose the value of path-length P ∗T is known, Yang et al. (2016) established an
O(
√
T (1 + P ∗T )) dynamic regret for BCO with two-point feedback, in which the path-length

for the worst-case dynamic regret is defined as

P ∗T = max
{x∗t∈X ∗t }Tt=1

PT (x∗1, · · · ,x∗T ) = max
{x∗t∈X ∗t }Tt=1

{
T∑
t=2

‖x∗t−1 − x∗t ‖2

}
where X ∗t denotes the set of all minimizers of the online function ft to handle the potential
non-uniqueness of the minimizers. Later, Chen and Giannakis (2019) applied the BCO
techniques to the dynamic Internet-of-Things management, showing O(T 3/4(1 + P ∗T )) and
O(T 1/2(1 + P ∗T )) dynamic regret bounds for the one-point and two-point feedback models,
respectively. We note that the above two algorithms only enjoy the worst-case dynamic
regret (instead of the universal dynamic regret), and meanwhile their algorithms require the
path-length P ∗T as an input parameter, which is unfortunately not available in advance.

Another closely related performance measure for online convex optimization in non-
stationary environments is the adaptive regret (Hazan and Seshadhri, 2009), which is defined
as the maximum of “local” static regret in every time interval [q, s] ⊆ [T ],

A-RegretT = max
[q,s]⊆[T ]

s∑
t=q

ft(xt)−min
x∈X

s∑
t=q

ft(x).

Hazan and Seshadhri (2009) proposed an efficient algorithm that enjoys O(
√
T log3 T ) and

O(d log2 T ) regrets for convex and exponentially concave functions, respectively. The rate
for convex functions was improved later (Daniely et al., 2015; Jun et al., 2017; Zhang
et al., 2019). Moreover, Zhang et al. (2018b) studied the relation between the adaptive
regret and the worst-case dynamic regret. Recently, novel online algorithms are proposed to
minimize the adaptive regret and universal dynamic regret simultaneously for online convex
optimization (Zhang et al., 2020a; Cutkosky, 2020).
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3. Bandit Gradient Descent (BGD)

In this section, we first list assumptions used in the paper, and then present the bandit
gradient descent (BGD) algorithm for BCO problems as well as its universal dynamic regret
analysis. To the best of our knowledge, this is the first work that analyzes the universal
dynamic regret of BGD.

3.1 Assumptions

We make the following common assumptions for the bandit convex optimization (Flaxman
et al., 2005; Agarwal et al., 2010).

Assumption 1 (Bounded Region). The feasible set X is closed and contains the ball of
radius r centered at the origin and is contained in the ball of radius R, namely,

rB ⊆ X ⊆ RB (4)

where B = {x ∈ Rd | ‖x‖2 ≤ 1}.

Assumption 2 (Bounded Function Value). The absolute values of all the functions are
bounded by C, namely,

∀t ∈ [T ], max
x∈X
|ft(x)| ≤ C. (5)

Assumption 3 (Lipschitz Continuity). All the functions are L-Lipschitz continuous over
the feasible set X , that is, for all x,y ∈ X , we have

∀t ∈ [T ], |ft(x)− ft(y)| ≤ L‖x− y‖2. (6)

Meanwhile, we consider loss functions and the comparators are chosen by an oblivious
adversary, that is, the adversary chooses the loss functions and comparators at the start of
the online game.

3.2 Algorithm and Regret Analysis

In this part, we present the bandit gradient descent (BGD) algorithm and analyze its
dynamic regret.

We start from the online gradient descent (OGD) algorithm developed for the full-
information setting (Zinkevich, 2003). OGD begins with any initial decision x1 ∈ X and
performs the following update at each iteration:

xt+1 = ΠX [xt − η∇ft(xt)], (7)

where η > 0 is the step size and ΠX [·] denotes the Euclidean projection onto the nearest
point in the feasible set X .

The key challenge of BCO problems is the lack of gradients. To address the issue, Flaxman
et al. (2005) and Agarwal et al. (2010) proposed to approximate the gradient ∇ft(xt) in (7)
with a gradient estimator g̃t, obtained by evaluating the function at one (in the one-point
feedback model) or two (in the two-point feedback model) random points around xt. Details
will be presented later. Based on the gradient estimator, the algorithm will then perform
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Algorithm 1 Bandit Gradient Descent (BGD)

Input: time horizon T , perturbation parameter δ, shrinkage parameter α, step size η
1: Let y1 = 0
2: for t = 1 to T do
3: Select a unit vector st uniformly at random

{Case 1. One-Point Feedback Model}
4: Submit xt = yt + δst
5: Receive ft(xt) as the feedback
6: Construct the gradient estimator by (8)
7: yt+1 = Π(1−α)X [yt − ηg̃t]

{Case 2. Two-Point Feedback Model}
8: Submit x

(1)
t = yt + δst and x

(2)
t = yt − δst

9: Receive ft(x
(1)
t ) and ft(x

(2)
t ) as the feedback

10: Construct the gradient estimator by (9)
11: yt+1 = Π(1−α)X [yt − ηg̃t]
12: end for

the online gradient descent as shown in the line 7 (one-point feedback model) and line 11
(two-point feedback model). We unify their algorithms in Algorithm 1, called the Bandit
Gradient Descent (BGD). Notice that in lines 8 and 14 of the algorithm, the projection of
yt+1 is on a slightly smaller set (1−α)X instead of the original feasible set X to ensure that
the final decision xt+1 lies in the feasible set X . Note that the idea of clipping the feasible
set for online learning is originated in the works of tracking the best expert (Herbster and
Warmuth, 1998, 2001), but for completely different purposes (the clipping operation therein
enforces the weight of each expert be away from 0 with a minimal level to keep track of
changing best experts).

In the following, we will describe the gradient estimator and analyze the universal
dynamic regret for BCO with one-point and two-point feedback models, respectively.

One-Point Feedback Model. In the seminal work of Flaxman et al. (2005), the authors
proposed the following gradient estimator g̃t ∈ Rd,

g̃t =
d

δ
ft(yt + δst) · st (8)

where st ∈ Rd is a unit vector selected uniformly at random and δ > 0 is the perturbation
parameter. Then, the following lemma due to (Flaxman et al., 2005, Lemma 2.1), a
consequence of Stoke’s theorem, guarantees that the gradient estimator (8) is indeed an
unbiased estimator of the gradient of the smoothed version of the loss function ft.

Lemma 1. For any convex (but not necessarily differentiable) function f : X 7→ R, define its
smoothed version f̂(x) = Ev∈B[f(x + δv)], where the expectation is taken over the random
vectors v ∈ B with B being the unit ball, i.e., B = {x ∈ Rd | ‖x‖2 ≤ 1}. Then, for any δ > 0,
we have

Es∈S

[
d

δ
f(x + δs) · s

]
= ∇f̂(x),
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where the expectation is taken over the random unit vector s ∈ S with S being the unit sphere
centered around the origin, namely, S = {x ∈ Rd | ‖x‖2 = 1}.

Lemma 1 implies that the gradient estimator (8) satisfies Es∈S[g̃t] = ∇f̂t(yt), where
f̂t(x) = Ev∈B[ft(x+δv)] is the smoothed version of original function ft. So we have obtained
an unbiased estimator for the gradient of smoothed function f̂t at the point yt. Meanwhile,
we will set the decision xt as yt plus a small amount of perturbation, more specifically,
xt = yt + δst. As a result, the smoothed function f̂t approximates the original function
ft well, and the decision xt is also very close to yt, both of which are controlled by the
small perturbation parameter δ. Hence, we can minimize the regret over the sequence of
smoothed functions {f̂t}t=1,...,T using its expected gradients, which is a good surrogate for
minimizing the regret over the sequence of original loss functions {ft}t=1,...,T . The idea
essentially yields the bandit gradient descent (BGD) algorithm shown in Algorithm 1: the
main update procedures of the one-point feedback model are summarized in Case 1 (lines
4-7), where we use the gradient estimator g̃t to perform the online gradient descent to
obtain the intermediate decision yt+1 (line 7), and the final decision xt at each iteration
is attained by adding an extra perturbation xt = yt + δst (line 4). We have the following
result regarding its universal dynamic regret.

Theorem 1. Under Assumptions 1, 2, and 3, for any perturbation parameter δ > 0, step
size η > 0, and shrinkage parameter α = δ/r, the expected dynamic regret of BGD(T, δ, α, η)
for the one-point feedback model satisfies

E

[
T∑
t=1

ft(xt)

]
−

T∑
t=1

ft(ut) ≤
7R2 +RPT

4η
+
ηd2C2T

2δ2
+

(
3L+

LR

r

)
δT

for any feasible comparator sequence u1, . . . ,uT ∈ X .

The proof of Theorem 1 can be found in Appendix B.1.

Remark 1. For notational convenience, we denote by L̃ = 3L + LR/r the effective Lip-
schitz constant. By setting η = η∗ = (dCL̃)−1/2((7R2 + RPT )/T )3/4 and δ = δ∗ =
(dC/L̃)1/2((7R2 +RPT )/T )1/4, we can obtain an O(T 3/4(1 + PT )1/4) dynamic regret. How-
ever, such a configuration requires prior knowledge of the path-length PT , which is generally
unavailable. We will develop a parameter-free algorithm to eliminate the undesired depen-
dence later in Section 4.

Two-Point Feedback Model. In this setup, the player is allowed to query two points.
Specifically, we will commit two decisions symmetrically sampled around the point yt,

namely, x
(1)
t = yt + δst and x

(2)
t = yt − δst. Then, the function values ft(x

(1)
t ) and ft(x

(2)
t )

are revealed as the feedback. To leverage the benefit of the two-point feedback, we will use
the following gradient estimator (Agarwal et al., 2010),

g̃t =
d

2δ

(
ft(yt + δst)− ft(yt − δst)

)
· st. (9)

Lemma 1 implies the above estimator also satisfies the unbiased property, by noticing that
the distribution of perturbation st is symmetric.
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We here explain the advantage of the two-point estimator over the one-point estimator.
The major limitation of the one-point gradient estimator (8) is that it has a potentially large
magnitude, proportional to the 1/δ which is usually quite large, because the perturbation
parameter δ is typically set small. The undesired feature is avoided in the two-point gradient
estimator (9), whose magnitude is at most dL, independent of the perturbation parameter
δ. The crucial advantage leads to the substantial improvement in the dynamic regret (also
static regret) for the two-point BCO.

Theorem 2. Under Assumptions 1, 2, and 3, for any perturbation parameter δ > 0, step
size η > 0, and shrinkage parameter α = δ/r, the expected dynamic regret of BGD(T, δ, α, η)
for the two-point feedback model satisfies

E

[
T∑
t=1

1

2

(
ft(x

(1)
t ) + ft(x

(2)
t )
)]
−

T∑
t=1

ft(ut) ≤
7R2 +RPT

4η
+
ηd2L2

2
T +

(
3L+

LR

r

)
δT

for any feasible comparator sequence u1, . . . ,uT ∈ X .

The proof of Theorem 2 can be found in Appendix B.2.

Remark 2. By setting perturbation δ = δ∗ = dLR/(L̃
√
T ) and step size η = η∗ =√

(7R2 +RPT )/(2d2L2T ), we can attain an O(T 1/2(1 + PT )1/2) dynamic regret. Here,

L̃ = 3L+ LR/r is the effective Lipschitz constant, also defined in Remark 1. However, the
above parameter configuration has an unpleasant dependence on the unknown quantity PT ,
which will be removed in the next section. Furthermore, we would like to mention that we
set the optimal perturbation parameter as dLR/(L̃

√
T ) for the sake of a more succinct and

beautiful regret form, and one can alternatively choose other appropriate configurations like
dR/
√
T without affecting the regret order.

4. Parameter-free Bandit Gradient Descent (PBGD)

From Theorem 1 and Theorem 2, we observe that the optimal parameter configurations of
BGD algorithm require to know the path-length PT in advance, which is generally unknown.
Thus, the parameter configurations are impractical for real implementations. In this section,
we develop a parameter-free algorithm to address this limitation.

4.1 Algorithm

The fundamental obstacle in obtaining universal dynamic regret guarantees is that the path-
length PT is unknown in advance. Indeed, PT remains unknown even after all iterations,
because the comparator sequence u1, . . . ,uT can be chosen arbitrarily from the feasible
set. As a consequence, the well-known doubling trick (Cesa-Bianchi et al., 1997) cannot be
employed to remove the dependence. Another possible technique to overcome this difficulty is
based on the idea of online ensemble, more specifically, to grid search the optimal parameter
by maintaining candidates in parallel and using expert-tracking algorithms to combine
predictions and track the best parameter (van Erven and Koolen, 2016). However, it is
infeasible to directly apply this ensemble method to bandit convex optimization because of
the inherent difficulty of the bandit problems—it is only allowed to query the function value
once at each iteration.

10
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To address this issue, we need a closer investigation of the dynamic regret analysis of
BCO problems. Taking the one-point feedback model as an example, we can decompose the
expected dynamic regret into the following three terms,

E

[
T∑
t=1

ft(xt)

]
−

T∑
t=1

ft(ut)

= E

[
T∑
t=1

(
f̂t(yt)− f̂t(vt)

)]
︸ ︷︷ ︸

term (a)

+E

[
T∑
t=1

(
ft(xt)− f̂t(yt)

)]
︸ ︷︷ ︸

term (b)

+E

[
T∑
t=1

(
f̂t(vt)− ft(ut)

)]
︸ ︷︷ ︸

term (c)

,

(10)

where v1, . . . ,vT is the scaled comparator sequence, set as vt = (1 − α)ut and α is the
shrinkage parameter. Note that the shrinkage parameter is actually set as α = δ/r and the
perturbation parameter δ = O(1/T 1/4), so we assume the time horizon T is large enough
such that α ∈ (0, 1). Among the three terms, term (b) and term (c) are essentially the
approximation error, which capture the amount of error introduced by the perturbation
of functions (ft versus f̂t) and decisions/comparators (xt versus yt, and ut versus vt),
respectively. A rigorous analysis will show that term (b) and term (c) can be bounded by
2LδT and (Lδ + LαR)T respectively without involving the unknown path-length, and the
argument can be found in (40) and (41) of Appendix B.1. On the other hand, term (a)
essentially depicts the dynamic regret over the smoothed functions f̂1, . . . , f̂T , comparing
to the scale comparator sequence v1, . . . ,vT . The quantity will depend on the step size
configuration of BGD algorithms, which relies on the knowledge of the unknown path-length.
Hence, it suffices to design parameter-free algorithms to optimize the term (a).

However, it remains infeasible to maintain multiple learning rates for optimizing the
dynamic regret of the sequence of smoothed functions f̂1, . . . , f̂T . The reason is as follows.
Suppose there are in total N experts where each expert is associated with a specific
learning rate (step size), then at iteration t, expert-algorithms will require the information
of ∇f̂t(y1

t ),∇f̂t(y2
t ), . . . ,∇f̂t(yNt ) to perform the bandit gradient descent. This necessitates

to query N function values of original loss ft, which is prohibited in the bandit convex
optimization setting. Fortunately, we discover that the expected dynamic regret of f̂t can be
upper bounded by that of a linear function, as demonstrated in the following proposition.

Proposition 1. E[f̂t(yt)− f̂t(vt)] ≤ E[〈g̃t,yt − vt〉].

Proof. First, from the convexity of the smoothed function f̂t, we have

f̂t(yt)− f̂t(vt) ≤ 〈∇f̂t(yt),yt − vt〉 = 〈∇f̂t(yt)− g̃t,yt − vt〉+ 〈g̃t,yt − vt〉.

Besides, similar to the argument of Flaxman et al. (2005), let ξt = ∇f̂t(yt) − g̃t, then
E[ξt | x1, f1, . . . ,xt, ft] = 0 due to Lemma 1. Thus, for any fixed x ∈ X , we have

E[ξTt x] = E[E[ξTt x | x1, f1, . . . ,xt, ft]] = E[E[ξt | x1, f1, . . . ,xt, ft]
Tx] = 0,

which implies E[〈∇f̂t(yt)− g̃t,yt − vt〉] = 0, since the comparator sequence is assumed to
be chosen by an oblivious adversary. This ends the proof.

11
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The feature brings us many benefits, and thereby we can resolve the aforementioned
difficulty. Indeed, Proposition 1 motivates us to design the following surrogate loss function
`t : (1− α)X 7→ R,

`t(y) = 〈g̃t,y − yt〉, (11)

which can be regarded as a linearization of the smoothed function f̂t at the point yt in the
expectation sense. Furthermore, the surrogate loss enjoys the following two properties.

Property 1. For any y ∈ (1− α)X , ∇`t(y) = g̃t.

Property 2. For any v ∈ (1− α)X , E[f̂t(yt)− f̂t(v)] ≤ E[`t(yt)− `t(v)].

Property 1 follows from the definition of surrogate loss, and Proposition 1 immediately
implies Property 2. These two properties are simple yet quite useful, and they together make
the online ensemble method feasible in bandit convex optimization. Concretely speaking,

• Property 1 implies that we can now initialize N experts to perform the bandit gradient
descent over the surrogate loss where each expert is associated with a specific step
size, since all the gradients ∇`t(y1

t ),∇`t(y2
t ), . . . ,∇`t(yNt ) essentially equal g̃t, which

can be obtained by querying the function value of original loss function ft only once.

• Property 2 guarantees the expected dynamic regret of smoothed functions f̂t’s is upper
bounded by that of the surrogate loss functions `t’s.

Consequently, we propose to optimize the surrogate loss `t instead of the original loss
ft (or its smoothed version f̂t). We note that the idea of constructing surrogate loss for
maintaining multiple step sizes (learning rates) is originally due to van Erven and Koolen
(2016) but for different purposes. They constructed a quadratic upper bound for the original
loss ft as the surrogate loss, with the aim to adapt to the potential curvature of online
functions in the full-information online convex optimization. In this paper, we design the
surrogate loss as the linearization of the smoothed function f̂t in terms of the expectation,
to make the grid search of optimal parameter (or online ensemble) doable for bandit convex
optimization. To the best of our knowledge, this paper is the first time to optimize the
surrogate loss for maintaining multiple step sizes in the bandit setup.

In the following, we describe the design details of the parameter-free algorithm for BCO
with one-point feedback, including the configurations of step size pool, expert-algorithm,
and meta-algorithm. The algorithm for the two-point feedback model is similar and slightly
simpler, whose specialized configurations and theoretical analysis will be presented in
Section 4.2.2.

In the one-point feedback model, from the dynamic regret analysis of BGD (refer to
Theorem 1 and Remark 1), we know that the optimal step size is η∗ = (dCL̃)−1/2((7R2 +
RPT )/T )3/4 and the optimal perturbation parameter is δ∗ = (dC/L̃)1/2((7R2 +RPT )/T )1/4,
where L̃ = 3L + LR/r is the effective Lipschitz constant for notational simplicity. The
optimal tuning of both step size and perturbation parameter requires the prior knowledge
of the unknown path-length PT , and thus the tuning is infeasible in real implementations.
As aforementioned, we will maintain multiple experts to grid search the optimal parameter
tuning. There are two unknown parameters–the step size η and the perturbation parameter
δ. Unfortunately, our online ensemble method can only support to grid search the step size,

12
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and it is not applicable for approximating the perturbation parameter. Otherwise, we have
to query the function more than once at each iteration, since the perturbation is imposed
in the final decision xt = yt + δst. Therefore, we have to set the perturbation parameter
δ a constant independent of the path-length PT . More specifically, we will use the online
ensemble method to grid search the following parameter configurations instead:

δ† =

(
dCR

L̃

) 1
2

T−
1
4 , and η† =

√
R(7R2 +RPT )

2dCL̃
T−

3
4 . (12)

Noticing that the perturbation parameter δ† now is independent of the path-length PT .
Substituting the parameters into the dynamic regret analysis of Theorem 1, we can attain an
O
(
T

3
4 (1 + PT )

1
2

)
dynamic regret. We remark that the step size tuning of (12) still exhibits

the dependence on the unknown path-length PT . In the following, we will demonstrate how
to maintain multiple experts to achieve the same dynamic regret bound without requiring
the prior knowledge of path-length.

Step size pool. The best possible step size is η† =

√
R(7R2 +RPT )/(2dCL̃) · T−3/4,

which is unavailable due to the unknown path-length PT . Nevertheless, due to the non-
negativity and boundedness of the path-length, namely, 0 ≤ PT ≤ 2RT , we assure that the
best step size lies in the following range:√

7R3

2dCL̃
· T−

3
4 ≤ η† ≤

√
(7 + 2T )R3

2dCL̃
· T−

3
4 .

Hence, we can construct the following pool of candidate step sizes denoted by H to discretize
the above range,

H =

ηi = 2i−1

√
7R3

2dCL̃
· T−

3
4 | i = 1, . . . , N

 , (13)

where N denotes the number of candidate step sizes, set as

N =

⌈
1

2
log2

(
1 +

2T

7

)⌉
+ 1.

Notice that there are only N = O(log T ) candidate step sizes, thanks to the exponential
grid in the construction of the step size pool. As a result, we do not have to pay too much
computational efforts for the meta-expert aggregation.

The configuration of the step size pool (13) ensures that there exists an index k ∈
{1, . . . , N − 1} such that

ηk ≤ η† ≤ ηk+1 = 2ηk.

That is to say, there exists a step size in the pool H that is not optimal but sufficiently
close to η†, even though we are unaware of the index of this particular expert. Next, we will
instantiate N expert-algorithms, where the i-th expert is a BGD algorithm with parameters
ηi ∈ H and δ = δ† = (dCR/L̃)1/2T−1/4. Then, an expert-tracking algorithm is adopted
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Algorithm 2 PBGD: Meta-algorithm

Input: time horizon T , number of experts N , pool of candidate step sizes H = {η1, . . . , ηN},
learning rate of the meta-algorithm ε

1: Run expert-algorithms (14) with different step sizes simultaneously
2: Initialize the weight of each expert i ∈ [N ] as wi1 = N+1

N · 1
i(i+1)

3: for t = 1 to T do
4: Receive yit from each expert i ∈ [N ]
5: Obtain yt =

∑
i∈[N ]w

i
ty
i
t

6: Submit xt = yt + δst and incur loss ft(xt)
7: Compute gradient estimator g̃t by (8)
8: Construct surrogate loss `t(·) as (11)
9: Update the weight of each expert i ∈ [N ] by

wit+1 =
wit exp(−ε`t(yit))∑

i∈[N ]w
i
t exp(−ε`t(yit))

10: Send the gradient estimator g̃t to each expert
11: end for

as the meta-algorithm to combine predictions from all the experts to produce the final
decision. Owing to nice theoretical guarantees of the meta-algorithm, the dynamic regret of
final decisions is comparable to that of the best expert, i.e., the expert-algorithm with the
near-optimal step size.

We now present the descriptions for expert-algorithm and meta-algorithm of PBGD
(for BCO with one-point feedback).

Expert-algorithm. We initialize an expert for each candidate step size of the pool H.
So there are in total N experts, and the expert i ∈ [N ] runs the online gradient descent over
the surrogate loss defined in (11). Specifically, at iteration t, the expert i performs

yit+1 = Π(1−α)X
[
yit − ηi∇`t(yit)

]
= Π(1−α)X

[
yit − ηig̃t

]
, (14)

where ηi ∈ H is the step size of the expert i, shown in (13).
The above update procedure once again demonstrates the necessity of constructing the

surrogate loss. Due to the nice property of surrogate loss (Property 1), at each iteration,
all the experts can perform the exact online gradient descent in the same direction g̃t. By
contrast, suppose each expert is conducted over the smoothed loss function f̂t, then at each
iteration it requires to query multiple gradients ∇f̂t(yit), or equivalently, to query multiple
function values ft(x

i
t), which is unavailable in bandit convex optimization.

Meta-algorithm. To combine predictions returned from multiple experts, we adopt the
exponentially weighted average forecaster algorithm (Cesa-Bianchi and Lugosi, 2006) with
nonuniform initial weights as the meta-algorithm, whose input is the pool of candidate step
sizes H in (13) and its own learning rate ε. The nonuniform initialization of weights aims
to make the meta-regret smaller, which will be clear by checking the proofs in the next
subsection. Algorithm 2 presents detailed procedures. Note that the meta-algorithm itself
does not require any prior information of the unknown path-length PT .
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The meta-algorithm in Algorithm 2, together with the expert-algorithm (14), yields our
proposed PBGD (short for Parameter-free Bandit Gradient Descent) for minimizing the
dynamic regret of bandit convex optimization in non-stationary environments.

4.2 Dynamic Regret Analysis

The following theorem states the dynamic regret of the proposed PBGD algorithm.

Theorem 3. Under Assumptions 1, 2, and 3, with a proper setting of the pool of candidate
step sizes H and the learning rate ε for the meta-algorithm, our PBGD algorithm enjoys
the following expected dynamic regret guarantees.

• For the one-point feedback model, PBGD algorithm satisfies that

E[D-RegretT (u1, . . . ,uT )] = E

[
T∑
t=1

ft(xt)

]
−

T∑
t=1

ft(ut)

≤
√

2dCR(3L+ LR/r)T
3
4
(
2 + 2 ln(1 + dlog2(1 + PT /(7R))e) +

√
7 + (PT /R)

)
= O

(
T

3
4 (1 + PT )

1
2
)
.

• For the two-point feedback model, PBGD algorithm satisfies that

E[D-RegretT (u1, . . . ,uT )] = E

[
T∑
t=1

1

2

(
ft(x

(1)
t ) + ft(x

(2)
t )
)]
−

T∑
t=1

ft(ut)

≤ dLR
√

2T
(
3 + 2 ln(1 + dlog2(1 + PT /(7R))e) +

√
7 + (PT /R)

)
= O

(
T

1
2 (1 + PT )

1
2
)
.

The above results hold universally against any feasible comparator sequence u1, . . . ,uT ∈ X .

Remark 3. Theorem 3 shows that the dynamic regret can be improved from O
(
T

3
4 (1+PT )

1
2

)
to O

(
T

1
2 (1 + PT )

1
2

)
when it is allowed to query two points at each iteration. The attained

dynamic regret (though in expectation) of BCO with two-point feedback, surprisingly, is in
the same order with that of the full-information setting (Zhang et al., 2018a). This extends
the claim argued by Agarwal et al. (2010) knowing the value of each loss function at two
points is almost as useful as knowing the value of each function everywhere to dynamic regret
analysis. Furthermore, we will show in Theorem 5 in the next section that the obtained
dynamic regret for the two-point feedback model is actually minimax optimal.

4.2.1 Proof of Theorem 3 (One-Point Feedback Model)

Proof. As shown in (10), the expected dynamic regret can be decomposed into three terms,
consisting of term (a), term (b) and term (c). Concretely, from the analysis of BGD in (40)
and (41), we know that the term (b) and term (c) are at most 2LδT and (Lδ + LαR)T
respectively. Hence, it suffices to bound term (a). Since term (a) is over the original loss
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functions while the algorithm performs over the surrogate loss function, we need to establish
their relationship. Indeed, Proposition 1 implies that the term (a) can be upper bounded by

term (a) ≤ E

[
T∑
t=1

(
`t(yt)− `t(vt)

)]
. (15)

Notably, the quantity inside the expectation is essentially the dynamic regret over the
surrogate loss and can be decomposed as

T∑
t=1

(
`t(yt)− `t(vt)

)
=

T∑
t=1

`t(yt)−
T∑
t=1

`t(y
k
t )︸ ︷︷ ︸

meta-regret

+
T∑
t=1

`t(y
k
t )−

T∑
t=1

`t(vt)︸ ︷︷ ︸
expert-regret

, (16)

where yk1 , . . . ,y
k
T is the prediction sequence returned by the expert k. Note that the above

decomposition holds for any expert k ∈ [N ]. In the following, we will bound the expert-regret
and meta-regret respectively.

First, we examine the expert-regret. The regret decomposition (16) holds for any expert
k ∈ [N ], we therefore choose the best expert to obtain a sharpest possible bound. Specifically,
due to the boundedness of path-length PT and the setting of the desired step size η†, we
can verify that there exists an index k∗ ∈ {1, . . . , N − 1} such that ηk∗ ≤ η† ≤ ηk∗+1 = 2ηk∗

with

k∗ ≤
⌈

1

2
log2

(
1 +

PT
7R

)⌉
+ 1. (17)

In other words, the expert k∗ is the best expert in the pool in the sense that it has a
near-optimal step size ηk∗ to approximate the unknown step size η†. Since each expert
performs the deterministic online gradient descent over the surrogate loss, we can apply the
existing dynamic regret guarantee of OGD (shown in Theorem 8 of Appendix A) and obtain

expert-regret =
T∑
t=1

`t(y
k∗
t )−

T∑
t=1

`t(vt)

≤ 7R2 +RPT
4ηk∗

+
ηk∗G̃

2T

2

≤ 7R2 +RPT
2η†

+
η†d2C2T

2δ2

=

√
(7R2 +RPT )dCL̃

2R
· T

3
4 +

√
(7R2 +RPT )dCL̃

4R
· T

3
4

=

√
2dCL̃(7R+ PT ) · T

3
4 ,

(18)

where the first inequality follows from the dynamic regret guarantee of OGD, and G̃ is the
upper bound of gradient norm. Actually, G̃ = supt∈[T ]‖g̃t‖2 = dC/δ holds for the one-point
gradient estimator (8) by noticing that for all t ∈ [T ],

‖g̃t‖2 ≤
∥∥∥∥dδ ft(yt + δst)st

∥∥∥∥
2

(5)

≤ dC

δ
. (19)
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Moreover, the second inequality of (18) holds due to ηk∗ ≤ η† ≤ 2ηk∗ , and the last
equality holds by substituting the specific setting of the best possible step size η† =√
R(7R2 +RPT )/(2dCL̃)·T−3/4 and the perturbation parameter δ = δ† = (dCR/L̃)1/2T−1/4.
Next, we bound the meta-regret. Note that the meta-algorithm is essentially the

exponentially weighted average forecaster with nonuniform initial weights, and the magnitude
of surrogate loss `t satisfies

|`t(y)| = |〈g̃t,y − yt〉| ≤ ‖g̃t‖2‖y − yt‖2
(4)

≤ 2G̃R

for any y ∈ (1 − α)X and t ∈ [T ]. We can thus apply the standard regret guarantee of
exponentially weighted average forecaster with nonuniform initial weights (Cesa-Bianchi and
Lugosi, 2006, Excercise 2.5) and obtain the following meta-regret bound, whose proof can
be found in Appendix A.4.

Lemma 2. For any step size ε > 0, we have

T∑
t=1

`t(yt)− min
i∈[N ]

(
T∑
t=1

`t(y
i
t) +

1

ε
ln

1

wi1

)
≤ 2εT G̃2R2.

Therefore, by setting ε =

√
1/(2TG̃2R2) to minimize the above upper bound, we obtain that

T∑
t=1

`t(yt)−
T∑
t=1

`t(y
i
t) ≤ G̃R

√
2T

(
1 + ln

1

wi1

)

holds for any index i ∈ [N ], where G̃ is the magnitude of the gradient estimator.

Notice that Lemma 2 holds for any expert i ∈ [N ]. In particular, the lemma holds for
expert k∗ (see its definition in (17)), so we have

meta-regret =

T∑
t=1

`t(yt)−
T∑
t=1

`t(y
k∗
t )

≤ G̃R
√

2T
(

1 + ln(1/wk
∗

1 )
)

≤ dCR

δ

√
2T
(
1 + 2 ln(k∗ + 1)

)
=
√

2dCRL̃T 3/4
(
1 + 2 ln(k∗ + 1)

)
(20)

By combining upper bounds of expert-regret (18) and meta-regret (20), we conclude
that the term (a) of (10) is at most

term (a) = E

[
T∑
t=1

f̂t(yt)−
T∑
t=1

f̂t(vt)

]
(15)

≤ E

[
T∑
t=1

`t(yt)−
T∑
t=1

`t(vt)

]
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= E

[
T∑
t=1

`t(yt)−
T∑
t=1

`t(y
k∗
t )

]
+ E

[
T∑
t=1

`t(y
k∗
t )−

T∑
t=1

`t(vt)

]
(18), (20)

≤
√

2dCRL̃T 3/4
(
1 + 2 ln(k∗ + 1) +

√
7 + (PT /R)

)
which in conjunction with upper bounds of term (b) and term (c) in (40) and (41) finally
yields the expected dynamic regret bound as follows,

E

[
T∑
t=1

ft(xt)

]
−

T∑
t=1

ft(ut)

(10)
= term (a) + term (b) + term (c)

≤ term (a) + 2LδT + (Lδ + LαR)T

≤
√

2dCRL̃T 3/4
(
1 + 2 ln(k∗ + 1) +

√
7 + (PT /R)

)
+ (3L+ LR/r)

√
dCR/L̃T 3/4

≤
√

2dCRL̃T 3/4
(
2 + 2 ln(k∗ + 1) +

√
7 + (PT /R)

)
≤
√

2dCR(3L+ LR/r)T
3
4
(
2 + 2 ln(1 + dlog2(1 + PT /(7R))e) +

√
7 + (PT /R)

)
= O

(
T 3/4(1 + PT )1/2

)
,

where the last inequality plugs in the setting of perturbation parameter δ = (dCR/L̃)1/2T−1/4

and makes use of the upper bound of index k∗ in (17).

4.2.2 Proof of Theorem 3 (Two-Point Feedback Model)

In this part, we first present the configuration of the step size pool H for the two-point
feedback model, and then provide the proof of dynamic regret.

In the two-point feedback model, the optimal step size is η∗ =
√

7R2+RPT
2d2L2T

, and we know√
7R2

2d2L2T
≤ η∗ ≤

√
7R2 + 2R2T

2d2L2T

always holds due to 0 ≤ PT ≤ 2RT (by the boundedness assumption of the feasible set,
shown in Assumption 1). Hence, we will construct the following pool of candidate step sizes,

H =

{
ηi = 2i−1

√
7R2

2d2L2T
| i = 1, . . . , N

}
,

where N denotes the number of candidate step sizes, set as

N =

⌈
1

2
log2

(
1 +

2T

7

)⌉
+ 1.

Based on the configurations, we proceed to present the proof of Theorem 3 for the two-point
feedback model.
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Proof. The proof is analogous to that of the one-point feedback model, where the main
differences lie in two quantities: the index of optimal expert k∗, and the magnitude of the
gradient estimator G̃. In the two-point feedback model, we can ensure that the index of
best expert k∗ is at most

k∗ ≤
⌈

1

2
log2

(
1 +

PT
7R

)⌉
+ 1 (21)

and the associated step size satisfies ηk∗ ≤ η∗ ≤ ηk+1. Besides, the magnitude of the gradient
estimator G̃ = supt∈[T ]‖g̃t‖2 = dL holds for two-point gradient estimator (9) by noticing
that for all t ∈ [T ],

‖g̃t‖2 =
d

2δ

∥∥(ft(yt + δst)− ft(yt − δst)
)
st
∥∥
2

=
d

2δ
|ft(yt + δst)− ft(yt − δst)|

(6)

≤ dL

2δ
‖2δst‖2 = dL.

(22)

In above, to obtain the last inequality we use the Lipschitz property by Assumption 3. We
remark that in stark contrast to that in the one-point feedback model as shown in (19), the
upper bound of gradient norm G̃ here is independent of the 1/δ, which leads to substantially
improved bounds for both the static regret analysis (Agarwal et al., 2010) and the dynamic
regret analysis presented in this paper.

For the two-point feedback model, its expected dynamic regret can be decomposed as

E

[
T∑
t=1

1

2

(
ft(x

(1)
t ) + ft(x

(2)
t )
)]
−

T∑
t=1

ft(ut)

= E

[
T∑
t=1

1

2

(
ft(yt + δst) + ft(yt − δst)

)]
−

T∑
t=1

ft(ut)

(44)

≤ E

[
T∑
t=1

ft(yt)

]
+ LδT −

T∑
t=1

ft(ut)

= E

[
T∑
t=1

f̂t(yt)−
T∑
t=1

f̂t(vt)

]
︸ ︷︷ ︸

term (a)

+δLT + E

[
T∑
t=1

(
ft(yt)− f̂t(yt)

)]
︸ ︷︷ ︸

term (b)

+

[
T∑
t=1

(
f̂t(vt)− ft(ut)

)]
︸ ︷︷ ︸

term (c)

,

(23)

where the first inequality exploits the Lipschitz property of the loss function. So we will
bound the three terms individually.
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First, the expert-regret is upper bounded by

expert-regret =
T∑
t=1

`t(y
k∗
t )−

T∑
t=1

`t(vt)

≤ 7R2 +RPT
4ηk∗

+
ηk∗G̃

2T

2

≤ 7R2 +RPT
2η∗

+
η∗d2L2T

2

=
3
√

2

4
dL
√
T (7R2 +RPT ),

where the last equation is obtained by plugging the parameter setting of η∗ =
√

7R2+RPT
2d2L2T

.
Besides, the meta-regret is bounded by

meta-regret =

T∑
t=1

`t(yt)−
T∑
t=1

`t(y
k∗
t )

≤ G̃R
√

2T
(

1 + ln(1/wk
∗

1 )
)

≤ dLR
√

2T
(
1 + 2 ln(k∗ + 1)

)
.

Therefore, by combining upper bounds of meta-regret and expert-regret, we have

term (a) = E

[
T∑
t=1

f̂t(yt)−
T∑
t=1

f̂t(vt)

]
(15)

≤ E

[
T∑
t=1

`t(yt)−
T∑
t=1

`t(vt)

]

= E

[
T∑
t=1

`t(yt)−
T∑
t=1

`t(y
k∗
t )

]
+ E

[
T∑
t=1

`t(y
k∗
t )−

T∑
t=1

`t(vt)

]

≤ 3
√

2

4
dL
√
T (7R2 +RPT ) + dLR

√
2T
(
1 + 2 ln(k∗ + 1)

)
≤ dLR

√
2T
(

1 + 2 ln(k∗ + 1) +
√

7 + (PT /R)
)

which in conjunction with upper bounds of term (b) and term (c) in (40) and (41) finally
yields the expected dynamic regret bound as follows,

E

[
T∑
t=1

1

2

(
ft(x

(1)
t ) + ft(x

(2)
t )
)]
−

T∑
t=1

ft(ut)

(23)

≤ term (a) + term (b) + term (c) + LδT

≤ term (a) + LδT + (Lδ + LαR)T + LδT

≤ dLR
√

2T
(
1 + 2 ln(k∗ + 1)

)
+

3
√

2

4
dL
√
T (7R2 +RPT ) + dLR

√
T
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≤ dLR
√

2T
(
2 + 2 ln(1 + dlog2(1 + PT /(7R))e) +

√
7 + (PT /R)

)
= O

(
T 1/2(1 + PT )1/2

)
.

where the last inequality plugs in the setting of perturbation parameter δ = dLR/(L̃
√
T )

with L̃ = 3L+LR/r called the effective Lipschitz constant, and the last equation makes use
of the upper bound of index k∗ in (21).

4.3 Extension to Anytime Algorithm

Notice that the proposed PBGD algorithm requires the time horizon T as an input, which
is not available in advance especially for the streaming scenarios and thus makes the
algorithm hard to deploy. In this part, we present a simple approach to remove the undesired
dependence and develop an anytime variant, that is, an online algorithm without requiring
the time horizon in advance.

Our method is essentially a standard implementation of the doubling trick (Cesa-Bianchi
et al., 1997). The idea is to make a guess on the time horizon T . Once the actual number of
iterations exceeds the guess, double the guess and restart the algorithm. The initial guess of
the time horizon is set as 2. So there will be K = blog2 T c+ 1 epochs and the i-th epoch
contains 2i iterations. We have following regret guarantees for the above anytime algorithm.

Theorem 4. Under the same conditions with Theorem 3, the anytime version of PBGD
(via the above strategy of doubling trick) enjoys the following expected dynamic regret,

• One-Point Feedback Model: O
(
T

3
4 (log T + PT )

1
2

)
;

• Two-Point Feedback Model: O
(
T

1
2 (log T + PT )

1
2

)
.

The above results hold universally against any feasible comparator sequence u1, . . . ,uT ∈ X .

Proof. We take BCO with one-point feedback model as an example and provide a brief
analysis as follows. Actually, by the strategy of doubling trick, we can bound the dynamic
regret of the anytime algorithm by

K∑
i=1

T
3
4
i (1 + Pi)

1
2 ≤

√√√√ K∑
i=1

T
3
2
i

√√√√ K∑
i=1

(1 + Pi)

=

√√√√ K∑
i=1

2
3i
2

√
log T + PT

= O
(
T

3
4 (log T + PT )

1
2
)
.

The result for two-point BCO can be similarly proved.

Compared with the O(T 3/4(1 + PT )1/2) rate of the original “non-anytime” PBGD
algorithm, we observe that an extra log T term is suffered due to the anytime demand.
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5. Lower Bound

In this section, we establish the lower bound of the expected universal dynamic regret for
bandit convex optimization problems.

Theorem 5. For any algorithm designed for the one-point feedback BCO and any real value
τ ∈ [0, 2T ], there exists a sequence of loss functions f1, . . . , fT that satisfy Assumptions 1
and 3 with feasible set X ⊆ B and Lipschitzness L = 4, and a sequence of comparators
u1, . . . ,uT ∈ X whose path-length PT is less than τ , such that the outputs of the algorithm
denoted by x1, . . . ,xT satisfies that

E

[
T∑
t=1

ft(xt)−
T∑
t=1

ft(ut)

]
≥ C1d

√
τT , (24)

where C1 is a positive constant independent of time horizon T and dimension d, and the
expectation is taken over the randomness of both the algorithm and the loss functions.

Similarly, for any algorithm designed for the two-point feedback BCO and any real value
τ ∈ [0, 2T ], there exists a sequence of loss functions f1, . . . , fT that satisfy Assumptions 1
and 3 with feasible set X ⊆ B and Lipschitzness L = 1, and a sequence of comparators
u1, . . . ,uT ∈ X whose path-length PT is less than τ , such that the outputs of the algorithm

denoted by (x
(1)
1 ,x

(2)
1 ), . . . , (x

(1)
T ,x

(2)
T ) satisfies that

E

[
T∑
t=1

1

2

(
ft(x

(1)
t ) + ft(x

(2)
t )
)
−

T∑
t=1

ft(ut)

]
≥ C2

√
dτT , (25)

where C2 is a positive constant independent of time horizon T and dimension d, and the
expectation is taken over the randomness of both the algorithm and the loss functions.

Proof. For a given τ ∈ [0, 2T ], we design a piecewise-stationary comparator sequence, whose
path-length is constructed to be smaller than τ . Then, we can split the whole time horizon
into several pieces, where comparators are fixed in each piece. So we can appeal to the
established minimax lower bound of BCO in terms of static regret (Shamir, 2013; Duchi
et al., 2015) in each piece, and finally sum over all pieces to obtain the lower bound of
dynamic regret.

Specifically, for the one-point feedback model, based on Theorem 7 of Shamir (2013),
for any algorithm, we can always find a sequence of loss functions f1, . . . , fT that satisfy
Assumptions 1 and 3 with feasible set X ⊆ B and Lipschitzness L = 4, such that the static
regret satisfies that

E

[
T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x)

]
≥ C3d

√
T ,

where C3 is a constant independent of T . Then, for the case τ ≤ 2, we can always find a
comparator sequence u1, . . . ,uT ∈ X , such that

E

[
T∑
t=1

ft(xt)−
T∑
t=1

ft(ut)

]
≥ E

[
T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x)

]
≥ C3d

√
T ≥ C1d

√
τT ,
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where C1 = C3/
√

2 is a constant. Next, we consider the case τ ≥ 2. Without loss of
generality, we assume dτe divides T , and let K = T/dτe be the length of each piece. To
proceed, we construct the following piecewise-stationary comparator sequence u1, . . . ,uT :
for any i ∈ [1, dτe], denote by Ii = [(i− 1)K + 1, iK] the i-th piece for i = 1, . . . , dτe, the
comparators within the interval are set as

u(i−1)K+1 = u(i−1)K+2 = · · · = uiK = arg min
u∈X

∑
t∈Ii

ft(u). (26)

Note that the path-length of this sequence does not exceeds τ . Thus, the dynamic regret
competing with the comparator sequence u1, . . . ,uT can be evaluated as,

E

[
T∑
t=1

ft(xt)−
T∑
t=1

ft(ut)

]
= E

 T∑
t=1

ft(xt)−
dτe∑
i=1

min
x∈X

∑
t∈Ii

ft(x)


≥ dτeC3d

√
K = C3d

√
T dτe ≥ C1d

√
Tτ.

For the two-point feedback model, based on Proposition 2 of Duchi et al. (2015), for
any algorithm, we can always find a sequence of loss functions f1, . . . , fT that satisfy
Assumptions 1 and 3 with feasible set X ⊆ B and Lipschitzness L = 1, such that

E

[
T∑
t=1

1

2

(
ft(x

(1)
t ) + ft(x

(2)
t )
)
−min

x∈X

T∑
t=1

ft(x)

]
≥ C4

√
dT ,

where C4 is a constant independent of T . For the case τ ≤ 2, we can similarly obtain

E

[
T∑
t=1

1

2

(
ft(x

(1)
t ) + ft(x

(2)
t )
)
−

T∑
t=1

ft(ut)

]

≥ E

[
T∑
t=1

1

2

(
ft(x

(1)
t ) + ft(x

(2)
t )
)
−min

x∈X

T∑
t=1

ft(x)

]
≥ C4

√
dT ≥ C2

√
dτT

where C2 = C4/
√

2 is a constant. For the case τ ≥ 2, we can also construct the comparators
similar to (26) and ensure that

E

[
T∑
t=1

1

2

(
ft(x

(1)
t ) + ft(x

(2)
t )
)
−

T∑
t=1

ft(ut)

]

= E

 T∑
t=1

1

2

(
ft(x

(1)
t ) + ft(x

(2)
t )
)
−
dτe∑
i=1

min
x∈X

∑
t∈Ii

ft(x)


≥ dτeC4

√
dK = C4

√
dT dτe ≥ C2

√
dTτ.

Hence, we complete proofs of lower bounds of both one-point and two-point BCO models.
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Remark 4. From the above lower bounds and the upper bounds in Theorem 3, we know
that our dynamic regret for the two-point feedback model is minimax optimal in terms
of the dependence on time horizon T and path-length PT ; while the rate for one-point
feedback model remains sub-optimal. Notice that our lower bound Ω(

√
TPT ) implies that

no algorithm can achieve sub-linear regret unless the path-length PT is asymptotically
smaller than T . Consequently, we are interested in the instances with path-length PT =
o(T ), for example, PT =

√
T . We note that under such circumstances the desired upper

bound O(T 3/4(1 + PT )1/4) (as demonstrated in Remark 1) does not contradict with the
minimax lower bound, since O(T 3/4(1 + PT )1/4) = O(T 1/2T 1/4(1 + PT )1/4) is larger than
the Ω(T 1/2(1 + PT )1/2) lower bound. Furthermore, we point out the challenge in deriving
a tighter bound for one-point BCO problems. Our attained O(T 3/4(1 + PT )1/2) dynamic
regret bound exhibits a square-root dependence on the path-length, and it becomes vacuous
when PT ≥

√
T , though the path-length is arguably small (otherwise, the problem would

be too hard to learn as indicated by the lower bound). The challenge is that our online
ensemble technique cannot support to grid search and approximate the optimal perturbation
δ∗, which also depends on the unknown path-length PT . Otherwise, we have to query the
function value more than once per iteration, which is prohibited in the bandit setting.

Remark 5. The above remark mainly focuses on the regret dependence on the time horizon
T and the path-length PT , and here we further discuss the dependence on the dimension d.
We first examine the two-point BCO: our approach enjoys an O(d

√
TPT ) dynamic regret

bound as shown in Theorem 3, while the lower bound is O(
√
dTPT ). It is interesting to

investigate how to eliminate the gap in terms of dimension d, and the techniques of (Shamir,
2017) might be useful. Next, we inspect the one-point BCO: our approach achieves an

O(d1/2T 3/4P
1/2
T ) dynamic regret bound as shown in Theorem 3, while the lower bound

is O(d
√
TPT ). At first glance this is kind of be strange that the upper bound exhibits a

square-root dependence on dimension, even smaller than the lower bound. We argue that
this is reasonable as our approach employs the framework of online gradient descent with the
unbiased gradient estimation (Flaxman et al., 2005), which usually yields a low dimension-
dependence at the cost of a sub-optimal dependence on time horizon T . Indeed, the same
framework also delivers an O(d1/2T 3/4) static regret (Flaxman et al., 2005, Theorem 3.3).
On the other hand, existing literatures for minimizing static regret of BCO problems show
that the dimension-dependence would typically become larger when one pursues a milder
dependence on T based on more sophisticated techniques. For example, the seminal work
of Bubeck et al. (2017) used kernel-based gradient estimators to design an BCO algorithm
with O(d9.5

√
T (log T )7.5) static regret, and recent breakthrough (Lattimore, 2020) improved

the result to O(d2.5
√
T log T ) by an information-theoretic argument.

Remark 6. Note that an Ω(
√
T (1 + PT )) lower bound of deterministic universal dynamic

regret for the full-information OCO was established in the previous work (Zhang et al.,
2018a, Theorem 2), which naturally implies the same lower bound of deterministic dynamic
regret for BCO problems since BCO is evidently harder than the full-information OCO.
However, the aforementioned result does not imply a lower bound in terms of the expected
dynamic regret, because the expected dynamic regret is a weaker performance metric than
the deterministic one. Our result holds for the expected dynamic regret and demonstrates
that even for this easier measure, its minimax rate for BCO problems is still no less than
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the order of Ω(
√
T (1 + PT )), which implies the hardness of learning with bandit feedback.

Moreover, for the one-point BCO problems, the lower bound (24) holds even when all the
online functions are strongly convex and smooth, because the minimax static regret of BCO
with one-point feedback can neither benefit from strongly convexity nor smoothness (Shamir,
2013). This is to be contrasted to the full-information setting (Hazan et al., 2007), which
also implies the hardness of the bandit online learning.

6. Adaptive Regret

Aside from dynamic regret, adaptive regret is another performance measure used to guide
the algorithm designs for online learning in non-stationary environments. In this section, we
develop online algorithms to minimize the adaptive regret for bandit convex optimization
problems. Following the seminal work of Hazan and Seshadhri (2009), we define the expected
adaptive regret for BCO as

E[A-RegretT ] = max
[q,s]⊆[T ]

(
E

[
s∑
t=q

ft(xt)

]
−min

x∈X

s∑
t=q

ft(x)

)
.

We note that, in the full-information setting, a stronger version of adaptive regret named
strongly adaptive regret is introduced by Daniely et al. (2015), which aims to strengthen the
adaptive regret guarantee for small intervals. Nevertheless, the authors have proved that it
is impossible to achieve meaningful strongly adaptive regret in the bandit setting (Daniely
et al., 2015, Section 4), so we focus on the notion defined by Hazan and Seshadhri (2009).

6.1 Algorithm

In this part, we present our algorithm for minimizing the adaptive regret in bandit convex
optimization. The proposed method is based on the Coin-Betting for Changing Environment
(CBCE) algorithm (Jun et al., 2017), which is primely developed for minimizing the adaptive
regret in the full-information setting. We first give a brief introduction of the CBCE
algorithm, and then describe how to adapt it to the BCO setting.

The CBCE algorithm mainly consists of three parts:

• An expert-algorithm, which can minimize the static regret of a given interval;

• A set of intervals, each of which is associated with an expert-algorithm that minimizes
the static regret of that interval. At iteration t, an expert will be activated only when
its interval includes t. For an interval I, we denote by EI the expert assigned to I,
and by qEI and sEI its starting and ending points;

• A meta-algorithm, which combines the predictions of active experts at each iteration.

For the expert-algorithm, CBCE chooses the standard online gradient decent (OGD)
algorithm. In particular, for a given interval I = [q, s] ⊆ [T ], OGD with step size proportional
to O(1/

√
t− q + 1) can achieve the optimal O(

√
|I|) static regret.
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For the set of intervals, CBCE constructs a set of geometric covering (GC) inter-
vals (Daniely et al., 2015), defined as

I =
⋃

k∈N∪{0}

Ik (27)

where each interval is defined as Ik = {[i · 2k, (i+ 1) · 2k − 1] : i ∈ N} for any k ∈ N ∪ {0}.
We denote the set of active intervals at iteration t as Ct = {I | t ∈ I, I ∈ I}, and the set of
active experts At = {EI | I ∈ Ct}. It can be shown that |At| = O(log t).

For the meta-algorithm, CBCE uses the Sleeping Coin-Betting (SCB) algorithm. Specifi-
cally, at iteration t, each active expert EI is assigned with a coin flip g̃t,EI , a wealth wt,EI ,
and a weight p̂t,EI . At the beginning of each iteration, SCB algorithm first configures wt,EI
for each active expert as

wt,EI =

∑t−1
τ=qEI

g̃τ,EI

t− qEI + 1

and sets p̂t,EI = πEI max{wt,EI , 0}, where πEI is the prior weight of EI . After that, SCB
algorithm computes

pt,EI =


p̂t,EI∑

EI∈At
p̂t,EI

,
∑

EI∈At p̂t,EI > 0

πEI , otherwise.

Next, the algorithm receives the decision of each expert xt,EI , and picks the final decision xt
by xt =

∑
EI∈At xt,EIpt,EI . Finally, after observing the loss function ft(·), g̃t,EI is updated

by
g̃t,EI = 1wt,EI>0(ft(xt)− ft(xt,EI )) + 1wt,EI≤0 max{ft(xt)− ft(xt,EI )}.

It can be shown that CBCE can achieve an O(
√
T log T ) adaptive regret bound in the

full-information setting. However, it is prohibited to directly apply this algorithm to the
bandit scenario by simply making use of the estimated gradients and BGD, because the
CBCE algorithm requires to query the loss function O(log t) times at each iteration t, which
is not allowed in the bandit setup. To address this issue, we follow the same idea of the
development of dynamic regret for BCO problems, presented in Section 4. Concretely, we
introduce the surrogate loss function `t (defined in (28) and (29) for different feedback
models), whose function values as well as gradients can be computed by only using ft(xt)

(or ft(x
(1)
t ) and ft(x

(2)
t ) for the two-point feedback model), without further queries of the

loss function. We then deploy the exact CBCE with OGD on the sequence of surrogate
loss functions `1, . . . , `T , which now can be considered as a full-information problem. The
algorithmic details are summarized in Algorithm 3 (the meta-algorithm, i.e., CBCE) and
Algorithm 4 (the expert-algorithm, i.e., OGD). Based on the relationships between the
surrogate loss `t and the original loss ft, our proposed algorithm finally minimizes the
expected adaptive regret on the sequence of original loss functions f1, . . . , fT .

6.2 Adaptive Regret Analysis

We provide theoretical guarantees in Theorem 6 (one-point BCO) and Theorem 7 (two-point
BCO) as follows, whose proof are presented in Section 6.2.1 and Section 6.2.1, respectively.
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Algorithm 3 MABCO: Meta-algorithm

Input: time horizon T , perturbation parameter δ, shrinkage parameter α
1: Initialize GC interval I as (27), active expert set A1, and prior weight of each expert EI :

p1,EI = πEI =
6

π2

(
1

qEI (1 + b1 + log2 qEI c)

)
.

2: for t = 1 to T do
3: Receive yt,EI from each expert EI ∈ At
4: Obtain yt =

∑
EI∈At yt,EIpt,EI

5: Select a unit vector st uniformly at random
{Case 1. One-Point Feedback Model}

6: Submit xt = yt + δst
7: Receive ft(xt) as the feedback
8: Compute gradient estimator g̃t by (8), namely, g̃t = d

δ ft(xt) · st
9: Construct surrogate loss `t(·) as (28)

{Case 2. Two-Point Feedback Model}
10: Submit x

(1)
t = yt + δst and x

(2)
t = yt − δst

11: Receive ft(x
(1)
t ) and ft(x

(2)
t ) as the feedback

12: Compute gradient estimator g̃t by (9), namely, g̃t = d
2δ (ft(x

(1)
t )− ft(x(2)

t )) · st
13: Construct surrogate loss `t(·) as (29)
14: [either one-point or two-point model] Update the weight for each expert EI ∈ At+1 by

pt+1,EI =


p̂t+1,EI∑

EI∈At+1
p̂t+1,EI

,
∑

EI∈At+1
p̂t+1,EI > 0

πEI , otherwise

where p̂t+1,EI = πEI max{wt+1,EI , 0}, wt+1,EI =

∑t
τ=qEI

g̃τ,EI

t−qEI
, and

g̃t,EI = 1wt,EI>0(`t(yt)− `t(yt,EI )) + 1wt,EI≤0 max{`t(yt)− `t(yt,EI )}

15: Send the gradient estimator g̃t to each expert
16: end for

Algorithm 4 MABCO: Expert-algorithm

1: Let Ĝ = maxy∈(1−α)X ,t∈[T ] ‖∇`t(y)‖2.
2: if qEI = t then
3: yt,EI = 0
4: else

5: yt,EI = Π(1−α)X

[
yt−1,EI − R

Ĝ
√
t−qEI+1

∇`t−1(yt−1,EI )
]

6: end if
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Theorem 6 (one-point feedback model). Under Assumptions 1, 2, and 3, define the surrogate
loss function `t : (1− α)X 7→ R as

`t(y) =
1

2GoneR
〈g̃t,y − yt〉+

1

2
(28)

where Gone = dC/δ and g̃t is the gradient estimator defined in (8). Let Algorithm 3 be
the meta-algorithm, which is fed with `1, . . . , `T as loss functions, and Algorithm 4 be the
expert-algorithm. Set the perturbation parameter δ as in (32) and shrinkage parameter
α = δ/r. Then the expected adaptive regret satisfies

E[A-RegretT ] ≤
√
Cd
(
15R
√
T + 16R

√
7 log T + 5

√
T
)(

3LT +
LR

r
T
)

= O
(
T

3
4 (log T )

1
4
)
.

Theorem 7 (two-point feedback model). Under Assumptions 1, 2, and 3, define the
surrogate loss function `t : (1− α)X 7→ R as

`t(y) =
1

2GtwoR
〈g̃t,y − yt〉+

1

2
(29)

where Gtwo = dL and g̃t is the gradient estimator defined in (9). Let Algorithm 3 be the
meta-algorithm, which is fed with `1, . . . , `T as loss functions, and Algorithm 4 be the expert-
algorithm. Set the perturbation parameter δ = dR/

√
T and shrinkage parameter α = δ/r.

Then the expected adaptive regret satisfies

E[A-RegretT ] ≤ dLR
(

19
√
T + 16

√
7 log T + 5

√
T
)

+
dLR2

r

√
T = O

(
T

1
2 (log T )

1
2
)
.

Note that we cannot hope for an adaptive regret that is better than the static regret.
The adaptive regret bounds in Theorem 6 and Theorem 7 match the O(T 3/4) and O(T 1/2)
static regret bounds for the BGD methods of one-point (Flaxman et al., 2005) and two-
point (Agarwal et al., 2010) feedback models, up to logarithmic factors.

6.2.1 Proof of Theorem 6

Proof. Similar to the analysis of dynamic regret, for any time interval I = [q, s] ⊆ [T ], the
adaptive regret can be decomposed into three terms as follows.

E

[
s∑
t=q

ft(xt)

]
−min

x∈X

s∑
t=q

ft(x)

= E

[
s∑
t=q

f̂t(yt)

]
− min

y∈(1−α)X

s∑
t=q

f̂t(y)︸ ︷︷ ︸
term (a)

+ E

[
s∑
t=q

ft(xt)− f̂t(yt)

]
︸ ︷︷ ︸

term (b)

+ min
y∈(1−α)X

s∑
t=q

f̂t(y)−min
x∈X

ft(x)︸ ︷︷ ︸
term (c)

]

(30)
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Among the three terms, term (b) and term (c) capture the amount of approximation
error introduced by the perturbation of functions (ft versus f̂t) and minimizer (y∗ ∈
arg miny∈(1−α)X

∑s
t=q f̂t(y) versus x∗ ∈ arg minx∈X ft(x)).

Following the dynamic regret analysis of (40) and (41), term (b) and term (c) can be
bounded as follows.

term (b) ≤ 2LδT,

and

term (c) ≤ LδT +
LR

r
δT.

Moreover, since yt is the weighted combination of yi,t, it still satisfies yt ∈ (1− α)X .
Now, it remains to bound term (a). Define the function ht : (1 − α)X 7→ R by

ht(y) = f̂t(y) + 〈y, ξt〉, where ξt = g̃t −∇f̂t(yt) with

g̃t =
d

δ
ft(yt + δst) · st.

By the analysis of dynamic regret (see (37)), we know that E[ht(y)] = E[f̂t(y)] for any
fixed y ∈ (1− α)X . Besides, since ∇ht(yt) = ∇f̂t(yt) + ξt = g̃t, the following holds for any
y ∈ (1− α)X ,

ht(yt)− ht(y) ≤ ∇ht(yt)T(yt − y)
(28)
= −2GoneR`t(y) +GoneR.

Note that since `t(yt) = 1
2 , we know that for any y ∈ (1− α)X ,

E
[
f̂t(yt)− f̂t(y)

]
= E [ht(yt)− ht(y)] ≤ 2GoneR · E [`t(yt)− `t(y)] . (31)

On the other hand, Algorithm 3 is actually a standard CBCE algorithm deploying on
a full-information online learning problem where the loss function sequence is `1, . . . , `T .
Hence, Theorem 10 implies

max
[q,s]⊆[T ]

(
s∑
t=q

`t(yt)− min
y∈(1−α)X

s∑
t=q

`t(y)

)
≤ 15RĜ

√
T + 8

√
7 log T + 5

√
T

where Ĝ = supy∈(1−α)X ,t∈[T ]‖∇`t(y)‖2 ≤ 1
2R . This in conjunction with (31) yields the

following adaptive regret guarantees over the smoothed functions:

max
[q,s]⊆[T ]

(
E

[
s∑
t=q

f̂t(yt)

]
− min

y∈(1−α)X

s∑
t=q

f̂t(y)

)
≤ 15GoneR

√
T + 16GoneR

√
7 log T + 5

√
T .

Plugging the above inequality into (30), we get

E

[
s∑
t=q

ft(xt)

]
−min

x∈X

s∑
t=q

ft(x)

≤ 15GoneR
√
T + 16GoneR

√
7 log T + 5

√
T + 3LδT +

LR

r
δT
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≤ Cd

δ

(
15R
√
T + 16R

√
7 log T + 5

√
T
)

+

(
3L+

LR

r

)
δT

=

√
Cd
(

15R
√
T + 16R

√
7 log T + 5

√
T
)(

3L+
LR

r

)
T

= O
(
T

3
4 (log T )

1
4
)

where we set the perturbation parameter δ optimally as

δ =

√
Cd(15R

√
T + 16R(

√
7 log T + 5

√
T ))

(3L+ LR/r)T
. (32)

We thus complete the proof.

6.2.2 Proof of Theorem 7

Proof. The proof is similar to that in Section 6.2.1. Define the function ht : (1− α)X 7→ R
by

ht(y) = f̂t(y) + yTξt,

where ξt = g̃t −∇f̂t(yt) with

g̃t =
d

2δ

(
ft(yt + δst)− ft(yt − δst)

)
· st.

Similarly, E[ht(y)] = E[f̂t(y)] holds for any fixed y ∈ (1−α)X . Besides, since ∇ht(yt) =
∇f̂t(yt) + ξt = g̃t, we know that for any y ∈ (1− α)X ,

ht(yt)− ht(y) ≤ −2GtwoR`t(y) +GtwoR.

Note that since `t(yt) = 1
2 , we have that

E
[
f̂t(yt)− f̂t(y)

]
= E [ht(yt)− ht(y)] ≤ 2GtwoR · E [`t(yt)− `t(y)]

holds for any y ∈ (1− α)X .
Hence, by deploying the standard CBCE algorithm on the loss function sequence `1, . . . , `T

(Algorithm 3), and based on Theorem 10 in Appendix A.3, we have

max
[q,s]⊆[T ]

(
s∑
t=q

`t(yt)− min
y∈(1−α)X

s∑
t=q

`t(y)

)
≤ 15RĜ

√
T + 8

√
7 log T + 5

√
T (33)

where Ĝ = maxy∈(1−α)X ,t∈[T ] ‖∇`t(y)‖2 ≤ 1
2R . Thus,

E

[
s∑
t=q

1

2

(
ft(x

(1)
t ) + ft(x

(2)
t )
)]
−min

x∈X

s∑
t=q

ft(x)

≤ 15GtwoR
√
T + 16GtwoR

√
7 log T + 5

√
T + 4LδT +

LR

r
δT
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≤ dL
(

15R
√
T + 16R

√
7 log T + 5

√
T
)

+

(
4L+

LR

r

)
δT

= dLR
(

15
√
T + 16

√
7 log T + 5

√
T
)

+

(
4L+

LR

r

)
dR
√
T

= dLR
(

19
√
T + 16

√
7 log T + 5

√
T
)

+
dLR2

r

√
T

= O
(
T

1
2 (log T )1/2

)
,

where we set the perturbation parameter as δ = dR/
√
T . Hence, we complete the proof.

7. Experiments

Despite that the focus of this paper is mainly theoretical, we conduct empirical evaluations
on several datasets to validate the effectiveness of our proposed approach.

Settings. To simulate the online learning scenario, the player will receive the instance
information and make the prediction sequentially. We focus on the regression setting.
Specifically, at iteration t, an instance (xt, yt) arrives with xt ∈ X ⊆ Rd being the feature
and yt ∈ R being the output, and the player can only observe the feature xt. The player
will then make the prediction ŷt ∈ R, probably in the form of ŷt = g(wt,xt), where
g : W × X 7→ Ŷ is some parametric model with w ∈ W as the parameter. After that,
the environments will reveal the loss value of `(yt, ŷt) to the player as the feedback, where
` : R × R 7→ R is the loss function that is unknown to the player. In our experimental
setting, the player will adopt a simple linear model, denoted by ŷt = g(wt,xt) = wT

t xt.
Besides, the loss function is chosen as the squared loss `(y, ŷ) = (y − ŷ)2. Therefore, the
online function at each iteration ft : W 7→ R is essentially a couple of loss function ` and
the instance (xt, yt), namely,

ft(w) = `(wTxt, yt) = (wTxt − yt)2.

Moreover, the features of the datasets are normalized to the range of [0, 1], which implies
the diameter of the feasible set R = 1 (cf. Assumption 1 for the definition of diameter R).

We would like to emphasize again that in the bandit convex optimization setting the
only feedback to the player is the function value of the online function, i.e., ft(wt); while
the player is not allowed to access the function gradients even the function itself. The player
requires to perform bandit convex optimization algorithms for update to obtain the new
model wt+1. In the experiments, we choose the cumulative loss as the performance measure
of different learning algorithms.

Contender. We take the BGD algorithm as the contender, whose step size tuning is set
according to the time horizon T without involving the unknown path-length PT (Yang et al.,
2016; Chen and Giannakis, 2019), and more precisely, the step size of BGD algorithm is set
to R2/(

√
dT 3/4) and R/(dL

√
T ) for one-point and two-point BCO respectively, as suggested

by their theory. Meanwhile, in the experiments we consider both settings of BCO with
one-point feedback and BCO with two-point feedback, and we will use the suffix of “1” and
“2” after the algorithm’s name to denote the two versions, respectively. For example, for

31



Zhao, Wang, Zhang and Zhou

0 250 500 750 1000 1250 1500 1750 2000
iteration

0

20

40

60

80

100
cu

m
ul

at
iv

e 
lo

ss
cumulative loss on synGradual dataset

BGD1
PBGD1
BGD2
PBGD2

(a) synGradual

0 250 500 750 1000 1250 1500 1750 2000
iteration

0

20

40

60

80

100

120

140

cu
m

ul
at

iv
e 

lo
ss

cumulative loss on synAbrupt dataset
BGD1
PBGD1
BGD2
PBGD2

(b) synAbrupt

0 250 500 750 1000 1250 1500 1750 2000
iteration

0

200

400

600

800

1000

1200

cu
m

ul
at

iv
e 

lo
ss

cumulative loss on hyperplane dataset
BGD1
PBGD1
BGD2
PBGD2

(c) hyperplane

Figure 1: Cumulative loss of BGD and PBGD on three synthetic datasets: synGradual,
synAbrupt, and hyperplane. BGD1/PBGD1 denotes the methods for BCO with one-point
feedback, and BGD2/PBGD2 denotes the methods for BCO with two-point feedback.
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Figure 2: Cumulative loss of BGD and PBGD on three real-world datasets: SRU-1, SRU-2,
and debutanizer. BGD1/PBGD1 denotes the methods for BCO with one-point feedback,
and BGD2/PBGD2 denotes the methods for BCO with two-point feedback.

our approach PBGD, we call its version for one-point BCO as PBGD1 and the version
for two-point BCO as PBGD2. Similarly, the contender BGD algorithm also has two
versions—BGD1 and BGD2—for two models respectively.

Data sets. We evaluate above methods on both synthetic and real-world datasets. First,
we conduct experiments over three synthetic datasets. We generate two datasets called
synGradual and synAbrupt, where the synGradual dataset simulates the scenario of gradual
change and the synAbrupt dataset synthesizes the abrupt change. For both datasets, the
feature space is set as the 3-dimensional Euclidean ball, and we simulate 2000 data items (i.e.,
the time horizon T = 2000). At each iteration, the ground-truth output variable is generated
by yt = w∗t

Txt for some unknown regression vector w∗t ∈ Rd. For the synGradual dataset,
the ground-truth regression vector changes with a random drift, namely, w∗t+1 = w∗t + ∆t

with the drifting term ∆t being a random vector sampled from d-dimensional standard
normal distribution scaled by 0.1. For the synAbrupt dataset, the whole time horizon is
split to four stages, each with 500 consecutive data items sharing the same regression vector,
and the regression vectors vary over different stages. Another used synthetic dataset is
the hyperplane dataset (Kolter and Maloof, 2005), which is widely used in the literature
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of streaming data with changing distributions.2 We further include the following three
real-world datasets frequently used in the problems of non-stationary streaming regression.3

- Sulfur recovery unit (Fortuna et al., 2007) is a real-world dataset with records of gas
diffusion. Feature consists of 5 different chemical and physical indexes, with in total
10,081 data samples. There are two outputs in original dataset which represent the
concentration of SO2 and H2S, and we split it into SRU-1 and SRU-2, respectively.

- Debutanizer column (Fortuna et al., 2007) is a real-world dataset with records of
chemical reactions, with in total 2,394 data samples consisting of 7 different features.
The output represents C4 content in the debutanizer bottoms.

We repeat the experiments for 10 times and report the average and standard deviation
to avoid the effect of the randomness caused by the gradient estimation in bandit convex
optimization (cf. descriptions in Section 3.2).

Results. Figure 1 plots the curves of cumulative loss of BGD (contender) and PBGD (our
approach) on three synthetic datasets: synGradual, synAbrupt, and hyperplane. Besides,
Figure 2 shows the results for three real-world datasets: SRU-1, SRU-2, and debutanizer.
The lower the cumulative loss is, the better the performance is. From the results, we can
observe that our PBGD algorithm is always better than the BGD algorithm, no matter in
one-point or two-point feedback models. Thus, the results validate the effectiveness of our
approach. Actually, the crucial advantage of our approach relies on the online ensemble
mechanism, which combine multiple expert-algorithms with different step sizes to hedge the
unknown non-stationarity of the changing environments.

On the other hand, we would like to mention the power of two-point feedback model.
Let us see the comparison between BGD1 and BGD2, as well as PBGD1 and PBGD2.
Obviously, the performance is substantially improved when the player is allowed to query
two-point feedback at each iteration. Notably, the advantage lies in both mean and standard
deviation. The phenomenon accords to our theoretical understandings well, that is, the
two-point feedback model can substantially improve the regret bound (both dynamic regret
and static regret) since the gradient estimator is now in a better quality whose variance is
significantly reduced and is independent of the perturbation parameter δ.

8. Conclusion and Future Work

In this paper, we study the bandit convex optimization (BCO) problems in non-stationary
environments. We propose the Parameter-free Bandit Gradient Descent (PBGD) algorithm
that achieves the state-of-the-art O(T 3/4(1 +PT )1/2) and O(T 1/2(1 +PT )1/2) dynamic regret
for one-point and two-point feedback models respectively. The regret bounds hold universally
against any feasible comparator sequence. Meanwhile, the algorithm does not need to know
prior information of the path length, which is unknown but required in previous studies.
Furthermore, we demonstrate the regret bound for the two-point feedback model is minimax
optimal by establishing the first lower bound for the universal dynamic regret in the bandit
convex optimization setup. We extend the algorithm to an anytime version. Besides, we

2. The dataset can be downloaded from https://www.win.tue.nl/~mpechen/data/DriftSets/.
3. The datasets can be downloaded from https://home.isr.uc.pt/~fasouza/datasets.html.
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also present algorithms for BCO problems to optimize the adaptive regret, another measure
for the non-stationary online learning. Finally, we conduct experiments on both synthetic
and real-world data to further validate the effectiveness of the proposed approach.

There are many interesting issues worthy exploring for the future research. It remains
open on how to achieve optimal or sharper dynamic regret bounds for BCO with one-point
feedback, where some techniques of variance reduction might be useful. Moreover, we will
consider incorporating other properties, like strong convexity and smoothness, to further
enhance the dynamic regret. Another future work is to develop algorithms with problem-
dependent dynamic regret for BCO. Note that such results are provably attainable in the
full-information setting (Zhao et al., 2020b) and recent works (Bubeck et al., 2019; Lee
et al., 2020) have demonstrated data-dependent static regret guarantees for adversarial linear
bandits, which warrant special attention when pursuing problem-dependent dynamic regret
for general bandit convex optimization.
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A. Preliminaries

In this section, we introduce some preliminaries for analyzing dynamic regret and adaptive
regret of algorithms for BCO.

A.1 Projection Issues

Notice that we run the algorithm on a slightly smaller set (1− α)X rather than the original
feasible set X , where the shrinkage parameter α > 0 needs to be sufficiently large so that
the decision yt + δst (and yt − δst) can be guaranteed to locate in X . Consequently, there
are some additional terms involved due to the projection over a shrunk set. In the following
we provide some lemmas justifying the relationships between the original feasible set and the
shrunk set. Note that most of these results can be found in the seminal paper of Flaxman
et al. (2005), we provide the proofs for self-containedness.

Lemma 3. For any feasible point x ∈ (1− α)X , the ball of radius αr centered at x belongs
to the feasible set X .

Proof. The result is originally proved in Observation 3.2 of Flaxman et al. (2005). The proof
is based on the simple observation that

(1− α)X + αrB ⊆ (1− α)X + αX = X

holds since rB ⊆ X and X is convex.

34



Bandit Convex Optimization in Non-stationary Environments

Indeed, since the perturbation parameter is set as δ = αr (cf. Theorem 1 and Theorem 2),
the final decision is xt = yt + δst = yt + α · r · st. Therefore, Lemma 3 ensures that xt ∈ X
by noticing yt ∈ (1− α)X and st being a random unit vector.

The following lemma, originally raised in Observation 3.3 of Flaxman et al. (2005),
establishes a bound on the maximum that the function can change in (1 − α)X , which
essentially acts as an effective Lipschitz condition.

Lemma 4. For any x ∈ (1− α)X , under Assumption 3, we have

|f̂t(x)− ft(x)| ≤ Lδ. (34)

Proof. Since the smoothed function f̂t is an average over inputs within δ of x, the Lipschitz
continuity of the function ft yields the result.

A.2 Dynamic Regret

We have following dynamic regret bounds for the online gradient descent (OGD) algo-
rithm (Zinkevich, 2003).

Theorem 8 (Dynamic Regret of OGD). Consider the online gradient descent (OGD), which
starts with any x1 ∈ X and performs the following update

xt+1 = ΠX [xt − η∇ft(xt)].

Suppose the feasible domain X is bounded, i.e., ‖x− y‖2 ≤ D for any x,y ∈ X ; meanwhile,
the online functions have bounded gradient magnitude, i.e., ‖∇ft(x)‖2 ≤ G for any x ∈ X
and t ∈ [T ]. Then, the dynamic regret of OGD is upper bounded by

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) ≤
7D2 +DPT

4η
+
ηG2T

2
,

for any comparator sequence u1, . . . ,uT ∈ X . In above, PT is the path-length defined as
PT =

∑T
t=2‖ut − ut−1‖2.

In the bandit convex optimization setting, we cannot access the true gradient but the
unbiased gradient estimation instead. Therefore, we extend Theorem 8 to the randomized
version for the loss function chosen from adaptive environments as follows.

Theorem 9 (Expected Dynamic Regret of Randomized OGD). Consider the following
randomized version online gradient descent. The randomized OGD begins with any x1 ∈ X
and performs

xt+1 = ΠX [xt − ηgt],

where E[gt|x1, f1, . . . ,xt, ft] = ∇ft(xt) and ‖gt‖2 ≤ G̃ for some G̃ > 0. Then, the expected
dynamic regret of OGD is upper bounded by

E

[
T∑
t=1

ft(xt)

]
−

T∑
t=1

ft(ut) ≤
7D2 +DPT

4η
+
ηG̃2T

2
, (35)

for any fixed comparator sequence u1, . . . ,uT ∈ X .
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Proof. Define the function ht : X → R by

ht(x) = ft(x) + 〈x, ξt〉, where ξt = gt −∇ft(xt).

Clearly, ∇ht(xt) = ∇ft(xt) + ξt = gt. So we can leverage the result of deterministic
version OGD in Theorem 8 on the function ht and obtain the following dynamic regret over
the sequence of functions h1, . . . , hT :

T∑
t=1

ht(xt)−
T∑
t=1

ht(ut) ≤
7D2 +DPT

4η
+
ηG̃2T

2
. (36)

Note that for any fixed x ∈ X , we have

E[ht(x)] = E[ft(x)] + E[ξTt x]

= E[ft(x)] + E[E[ξTt x|x1, f1, . . . ,xt, ft]]

= E[ft(x)] + E[E[ξt|x1, f1, . . . ,xt, ft]
Tx]

= E[ft(x)].

(37)

Therefore, when both the function sequence and comparator sequence are chosen by an
oblivious adversary (as specified in Section 3.1), we can take expectations over both sides of
(36) and obtain the desired result.

A.3 Adaptive Regret

In the full-information setting, we have the following adaptive regret bound for the Coin
Betting for Changing Environment (CBCE) algorithm proposed by Jun et al. (2017) .

Theorem 10 (Adaptive Regret of CBCE (Jun et al., 2017, Theorem 1)). Consider an OCO
problem where the player iteratively selects a decision xt ∈ X and observes a loss function
ht : X 7→ R. Assume the gradient of all the loss functions are bounded by G, the diameter
of X is bounded by D, and the function value of ht lies in [0, 1], for any st ∈ [T ]. Then, the
CBCE algorithm with the standard OGD algorithm as its expert-algorithm and h1, . . . , hT as
the input loss functions achieves the following adaptive regret,

max
[q,s]⊆[T ]

(
s∑
t=q

ht(xt)−min
x∈X

s∑
t=q

ht(x)

)
≤ 15DG

√
T + 8

√
7 log T + 5

√
T .

The algorithm above is inefficient in the sense that it requires to query the gradient of
the loss function O(log t) times at iteration t. To address this limitation, Wang et al. (2018)
introduced a surrogate loss function `t : X 7→ [0, 1],

`t(x) =
1

2DG
∇ht(xt)>(x− xt) +

1

2

for which we have for any x ∈ X ,

ht(xt)− ht(x) ≤ −2DG`t(x) +DG = 2DG(`t(xt)− `t(x)). (38)
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Notice that the inequality (38) implies that, to solve the original problem where the loss
functions are h1(·), . . . , hT (·), we can deploy CBCE on a new problem where the loss functions
are `1(·), . . . , `T (·). The benefits here is that in this way we only need to query the gradient
of ht once at each iteration and the order of the regret bound remains the same. To be more
specific, we have the following regret bound.

Theorem 11. Consider the same learning setting as in Theorem 10. Then, the CBCE
algorithm with the standard OGD algorithm as its expert-algorithm and `1, . . . , `T as the
input loss functions achieves the following adaptive regret,

max
[q,s]⊆[T ]

(
s∑
t=q

ht(xt)−min
x∈X

s∑
t=q

ht(x)

)
≤ 15DG

√
T + 8DG

√
7 log T + 5

√
T .

A.4 Proof of Lemma 2

Proof. Lemma 2 is essentially the regret guarantee for the exponentially weighted average
forecaster with nonuniform initial weights (Cesa-Bianchi and Lugosi, 2006, Excercise 2.5).
We will prove the lemma by the standard potential argument (Cesa-Bianchi and Lugosi,
2006, Chapter 2).

Let Lt(i) =
∑t

s=1 `s(y
i
s) denote the cumulative loss, and

Φt =
∑
i∈[N ]

wi1 exp(−εLit) =
∑
i∈[N ]

wi1 exp

(
−ε

t∑
s=1

`s(y
i
s)

)

denote the potential function. Then, from the update procedure of line 9 in (2), we have

wit+1 =
wit exp(−ε`t(yit))∑

i∈[N ]w
i
t exp(−ε`t(yit))

=
wi1 exp(−εLit−1)∑

i∈[N ]w
i
1 exp(−εLit−1)

.

On one hand, from the non-negativity, we know that

ln ΦT = ln

∑
i∈[N ]

wi1 exp(−εLiT )

 ≥ ln

(
max
i∈[N ]

wi1 exp(−εLiT )

)
= −ε min

i∈[N ]

(
LiT +

1

ε
ln

1

wi1

)
.

On the other hand, we have

ln

(
Φt

Φt−1

)
= ln

( ∑
i∈[N ]w

i
1 exp(−εLit)∑

i∈[N ]w
i
1 exp(−εLit−1)

)
= ln

∑
i∈[N ]

wit exp(−ε`it(yit))

 ,

and meanwhile

ln Φ1 = ln

∑
i∈[N ]

wi1 exp(−ε`1(yi1))

 .

Thus,

ln ΦT = ln Φ1 +

T∑
t=2

ln

(
Φt

Φt−1

)
=

T∑
t=1

ln

∑
i∈[N ]

wit exp(−ε`t(yit))

 .
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Furthermore, denote by c = 4G̃R the maximal range of the loss function, then by Hoeffding’s
inequality, we have

ln

∑
i∈[N ]

wit exp(−ε`t(yit))

 ≤ − ε ∑
i∈[N ]

wit`t(y
i
t) +

ε2c2

8

≤ − ε`t

∑
i∈[N ]

wity
i
t

+
ε2c2

8

= − ε`t (yt) +
ε2c2

8

where the last inequality holds due to the convexity of the loss function and Jensen’s
inequality. Combining the inequalities of both directions, we have

−ε min
i∈[N ]

(
LiT +

1

ε
ln

1

wi1

)
≤ ln ΦT ≤

T∑
t=1

−ε`t (yt) +
ε2c2

8
.

Thus, we get
T∑
t=1

`t(yt)− min
i∈[N ]

(
T∑
t=1

`t(y
i
t) +

1

ε
ln

1

wi1

)
≤ ε2c2

8
.

We complete the proof by plugging the value c = 4G̃R into the above inequality.

B. Analysis of BGD Algorithm

In this section, we provide the proofs of theoretical guarantees for the BGD algorithm
including Theorem 1 (one-point feedback model) and Theorem 2 (two-point feedback model).

Before presenting rigorous proofs, we first highlight the main idea and procedures of the
argument as follows.

(1) We first guarantee that for any t ∈ [T ], xt is a feasible point in X , which holds due to
the fact that the projection in Algorithm 1 is over yt instead of xt.

(2) We then analyze the dynamic regret of the smoothed functions f̂1, . . . , f̂T in terms of
the scaled comparator sequence.

(3) We finally check the gap between the dynamic regret of the smoothed functions
f̂1, . . . , f̂T and that of the original functions f1, . . . , fT .

B.1 Proof of Theorem 1

Proof. Notice that the projection in Algorithm 1 only guarantees that yt is in a slightly
smaller set (1−α)X , so we first need to prove that ∀t ∈ [T ], xt is a feasible point in X . This
is convinced by Lemma 3, since we know that δ ≤ αr from the parameter setting (α = δ/r).

Next, as demonstrated in (10), the expected dynamic regret can be decomposed as

E

[
T∑
t=1

ft(xt)

]
−

T∑
t=1

ft(ut)
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= E

[
T∑
t=1

(
f̂t(yt)− f̂t(vt)

)]
︸ ︷︷ ︸

term (a)

+E

[
T∑
t=1

(
ft(xt)− f̂t(yt)

)]
︸ ︷︷ ︸

term (b)

+E

[
T∑
t=1

(
f̂t(vt)− ft(ut)

)]
︸ ︷︷ ︸

term (c)

,

where v1, . . . ,vT is the scaled comparator sequence, set as vt = (1− α)ut and α ∈ (0, 1) is
the shrinkage parameter. So we will bound the three terms separately.

The term (a) is essentially the dynamic regret of the smoothed functions. In the one-
point feedback model, the gradient estimator is set according to (8), and we know that
E[g̃t] = ∇f̂t(yt) due to Lemma 1. Therefore, the procedure of yt+1 = Π(1−α)X [yt − ηg̃t] is

actually the randomized online gradient descent over the smoothed function f̂t. So term (a)
can be upper bound by using Theorem 9.

term(a)
(35)

≤ 7D̃2 + D̃P̃T
4η

+
ηG̃2T

2
≤ 7R2 +RPT

4η
+
ηd2C2T

2δ2
, (39)

where P̃T =
∑T

t=2‖vt−1 − vt‖2 = (1 − α)PT , D̃ = (1 − α)R ≤ R and G̃ = dC/δ as shown
in (19). Next, by Assumption 3 and Lemma 4, we have

term (b) = E

[
T∑
t=1

(
ft(xt)− ft(yt) + ft(yt)− f̂t(yt)

)]
≤ 2LδT. (40)

Moreover, term (c) can be bounded by

term (c) ≤ E

[
T∑
t=1

(
|f̂t(vt)− ft(vt)|+ |ft(vt)− ft(ut)|

)]

≤ E

[
T∑
t=1

(Lδ + L‖vt − ut‖2)

]

≤ E

[
T∑
t=1

(Lδ + LαR)

]

=

(
L+

LR

r

)
δT (41)

where the second inequality holds due to Lemma 4 and Assumption 3.
Combining upper bounds of three terms in (39), (40) and (41), we obtain the dynamic

regret of the original function ft over the comparator sequence of u1, . . . ,uT ,

E

[
T∑
t=1

ft(xt)

]
−

T∑
t=1

ft(ut) = term (a) + term (b) + term (c)

≤ 7R2 +RPT
4η

+
ηd2C2T

2δ2
+ 2LδT + (Lδ + LαR)T

≤ 7R2 +RPT
4η

+
ηd2C2T

2δ2
+

(
3L+

LR

r

)
δT (42)
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= 4
√

32(7R2 +RPT )d2C2L2T 3 (43)

≤ 2(dCL)
1
2 (7R2 +RPT )

1
4T

3
4

= O
(

(1 + PT )
1
4T

3
4

)
,

where (42) follows from the setting of α = δ/r. The equation (43) is obtained by the AM-GM
inequality via optimizing values of η and δ, where the optimal parameter configuration is

η∗ = (dCL̃)−
1
2

(
7R2 +RPT

T

) 3
4

, δ∗ =

(
dC

L̃

) 1
2
(

7R2 +RPT
T

) 1
4

,

and L̃ = 3L+ LR/r is the effective Lipschitz constant. After simplifying the upper bound,
we complete the proof of Theorem 1.

B.2 Proof of Theorem 2

Proof. In the two-point feedback model, the gradient estimator is constructed according
to (9), whose norm can be upper bounded by dL, as shown in (22) when analyzing the regret
of the PBGD algorithm for two-point BCO. We emphasize again that in contrast to the one
in the one-point feedback model as shown in (19), the upper bound of gradient norm G̃ here
is independent of the 1/δ, which leads to a substantially improved regret bound.

Meanwhile, by exploiting the Lipschitz property of the online functions, we have

ft(yt + δst) ≤ ft(yt) + L‖δst‖2 = ft(yt) + δL, (44)

and similar result holds for ft(yt − δst). We can thus bound the expected regret as follows,

E

[
T∑
t=1

1

2

(
ft(yt + δst) + ft(yt − δst)

)]
−

T∑
t=1

ft(ut)

(44)

≤ E

[
T∑
t=1

ft(yt)

]
+ δLT −

T∑
t=1

ft(ut)

= E

[
T∑
t=1

f̂t(yt)−
T∑
t=1

f̂t(vt)

]
+ δLT

+ E

[
T∑
t=1

ft(yt)−
T∑
t=1

f̂t(yt)

]
+

[
T∑
t=1

f̂t(vt)−
T∑
t=1

ft(ut)

]

≤ 7R2 +RPT
4η

+
ηd2L2

2
T +

(
3L+

LR

r

)
δT (45)

= dL
√
T
√

(7R2 +RPT )/2 + dRL
√
T (46)

≤ dL
√
T
√

8R2 +RPT (47)

= O
(

(1 + PT )
1
2T

1
2

)
.

We remark that the core characteristic of analysis of the two-point feedback model lies in
the second term of (45), which is independent of 1/δ, and thus is much smaller than that of
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the one-point feedback model shown in (42). The critical advantage owes to the benefit of
the gradient estimator evaluated by two points at each iteration, which reduces the variance
substantially. Notice that (46) can be obtained by setting the step size η and perturbation
parameter δ optimally as

η∗ =

√
7R2 +RPT

2d2L2T
, δ∗ =

dLR

L̃
√
T
,

where L̃ = (3L + LR/r) is the effective Lipschitz constant as aforementioned. Note that
we set the optimal perturbation parameter as dLR/(L̃

√
T ) for the sake of a more succinct

and beautiful regret form, and one may also choose other appropriate configurations like
dR/
√
T without affecting the regret order. The inequality (47) makes use of the fact that√

a+
√
b ≤

√
2(a+ b) holds for any a, b > 0. Hence we compete the proof of Theorem 2.
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