
Journal of Machine Learning Research 24 (2023) 1-70 Submitted 3/22; Published 6/23

Non-stationary Online Learning with Memory and
Non-stochastic Control

Peng Zhao zhaop@lamda.nju.edu.cn
National Key Laboratory for Novel Software Technology
Nanjing University, Nanjing 210023, China

Yu-Hu Yan yanyh@lamda.nju.edu.cn
National Key Laboratory for Novel Software Technology
Nanjing University, Nanjing 210023, China

Yu-Xiang Wang yuxiangw@cs.ucsb.edu
Department of Computer Science
University of California, Santa Barbara, CA 93106, USA

Zhi-Hua Zhou zhouzh@lamda.nju.edu.cn

National Key Laboratory for Novel Software Technology

Nanjing University, Nanjing 210023, China

Editor: Shipra Agrawal

Abstract

We study the problem of Online Convex Optimization (OCO) with memory, which allows
loss functions to depend on past decisions and thus captures temporal effects of learning
problems. In this paper, we introduce dynamic policy regret as the performance measure
to design algorithms robust to non-stationary environments, which competes algorithms’
decisions with a sequence of changing comparators. We propose a novel algorithm for
OCO with memory that provably enjoys an optimal dynamic policy regret in terms of time
horizon, non-stationarity measure, and memory length. The key technical challenge is how
to control the switching cost, the cumulative movements of player’s decisions, which is
neatly addressed by a novel switching-cost-aware online ensemble approach equipped with
a new meta-base decomposition of dynamic policy regret and a careful design of meta-
learner and base-learner that explicitly regularizes the switching cost. The results are
further applied to tackle non-stationarity in online non-stochastic control (Agarwal et al.,
2019), i.e., controlling a linear dynamical system with adversarial disturbance and convex
cost functions. We derive a novel gradient-based controller with dynamic policy regret
guarantees, which is the first controller provably competitive to a sequence of changing
policies for online non-stochastic control.

Keywords: online learning, online convex optimization with memory, online non-stochastic
control, non-stationary environments, dynamic policy regret, online ensemble

1 Introduction

Online Convex Optimization (OCO) (Shalev-Shwartz, 2012; Hazan, 2016) is a versatile
model of learning in adversarial environments, which can be regarded as a sequential game
between a player and an adversary (environments). At each round, the player makes a
prediction from a convex set wt ∈ W ⊆ Rd, the adversary simultaneously selects a convex
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loss ft : W 7→ R, and the player incurs a loss ft(wt). The goal of the player is to minimize
the cumulative loss. The framework is found useful in a variety of disciplines including
learning theory, game theory, and optimization, etc (Cesa-Bianchi and Lugosi, 2006).

The standard OCO framework considers only memoryless adversary, in the sense that
the resulting loss is only determined by the player’s current prediction without involving
past ones. In real-world applications, particularly those related to online decision making,
it is often the case that past predictions/decisions would also contribute to the current
loss, which makes the standard OCO framework not viable. To remedy this issue, Online
Convex Optimization with Memory (OCO with Memory) was proposed as a simplified and
elegant model to capture the temporal effects of learning problems (Merhav et al., 2002;
Anava et al., 2015). Specifically, at each round, the player makes a prediction wt ∈ W,
the adversary chooses a loss function ft : Wm+1 7→ R, and the player will then suffer
a loss ft(wt−m, . . . ,wt). Notably, now the loss function depends on both current and
past predictions. The parameter m is the memory length, and evidently the OCO with
memory model reduces to the standard memoryless OCO when memory length m = 0. The
performance measure for OCO with memory is policy regret (Dekel et al., 2012), defined as

RegretT =

T∑
t=1

ft(wt−m:t)− min
v∈W

T∑
t=1

ft(v, . . . ,v), (1)

where throughout the paper we adopt the notation ai:j to denote the vector sequence
ai, . . . ,aj . We start the index from 1 for convenience. Recent studies apply online learners
with provable low policy regret to a variety of related problems (Chen et al., 2018; Agarwal
et al., 2019; Daniely and Mansour, 2019; Chen et al., 2020). However, the policy regret (1)
only measures the performance versus a fixed comparator and is thus not suitable for learn-
ing in non-stationary and open environments (Sugiyama and Kawanabe, 2012; Zhou, 2022).
For instance, in the recommendation system, the users’ interest may change when looking
through the product pages; in the traffic flow scheduling, the traffic network pattern changes
throughout the day. Therefore, it is necessary to design online decision-making algorithms
with robustness to non-stationary environments. To this purpose, we introduce the dynamic
policy regret to guide algorithm design, measuring the competitive performance against an
arbitrary sequence of time-varying comparators v1, . . . ,vT ∈ W, defined as

D-RegretT (v1:T ) =

T∑
t=1

ft(wt−m:t)−
T∑
t=1

ft(vt−m:t). (2)

The upper bound of D-RegretT (v1:T ) should be a function of the comparator sequence
v1:T , while the algorithm is agnostic to the choice of comparators. The proposed measure
is very general—it subsumes static policy regret (1) as a special case when comparators
become the best predictor in hindsight, i.e., v1:T = v∗ ∈ argminv∈W

∑T
t=1 ft(v, . . . ,v).

Therefore, dynamic policy regret is a more stringent measure than standard policy regret
and algorithms that optimize it are more robust to non-stationary environments.

The fundamental challenge of dynamic policy regret optimization is how to simultane-
ously compete with all comparator sequences with vastly different levels of non-stationarity.
Our approach builds upon recent advance of non-stationary online learning (Zhang et al.,
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2018a; Zhao et al., 2020, 2021b) to hedge the uncertainty via the meta-base online ensem-
ble structure, along with several new ingredients specifically designed for the OCO with
memory setting. In particular, it is essential to control the switching cost for OCO with
memory, the cumulative movement of player’s predictions. The amount is relatively easy
to control in static policy regret (Anava et al., 2015), yet becomes much harder in dynamic
policy regret and could even scale linearly due to the meta-base online ensembles structure.
Intuitively, online algorithms minimizing dynamic regret necessitate maintaining a certain
probability of aggressive movement to catch up with potential changes within non-stationary
environments, which results in tensions between dynamic regret and switching cost. We
elegantly address the difficulty by proposing a switching-cost-aware online ensemble ap-
proach. Our approach features a novel meta-base decomposition of dynamic policy regret
and a switching-cost-regularized surrogate loss, which avoids directly handling switching
cost altogether but regularizes the switching cost to meta-learner and base-learner instead.
Our proposed online-ensemble algorithm provably enjoys an optimal O(

√
T (1 + PT )) dy-

namic policy regret, where PT =
∑T

t=2∥vt−1 − vt∥2 denotes the unknown path length of
comparators. As a byproduct, our result can serve as a solution for minimizing dynamic
regret of online convex optimization with switching cost, a variant of classic OCO setting by
penalizing switching cost of returned decisions (Blum and Kalai, 1999; Gofer, 2014; Chen
et al., 2018). Specifically, consider the OCO problem with online functions h1, . . . , hT with
ht : W 7→ R. Denote by w1, . . . ,wT the returned decisions by our algorithm. Then, we
have

∑T
t=1 ht(wt) −

∑T
t=1 ht(vt) + λ

∑T
t=2∥wt − wt−1∥2 ≤ O(

√
λT (1 + PT )), where PT is

the path length as defined above. We also establish the lower bound to show the minimax
optimality in terms of switching-cost coefficient λ, time horizon T , and path length PT .
Compared to our conference paper (Zhao et al., 2022b), the current result improves the
dependence in the memory parameter λ to be optimal, which is achieved via a novel usage
of the laze update mechanism.

The results of OCO with memory yield an important application in online decision-
making problems. Specifically, we investigate the problem of online non-stochastic con-
trol (Agarwal et al., 2019), i.e., controlling a linear dynamical system with adversarial
(non-stochastic) disturbance and adversarial convex cost functions. Online non-stochastic
control has attracted much recent research attention due to its relaxed assumptions on dis-
turbances and flexibility of cost functions. Existing studies mainly focus on optimizing static
policy regret, whereas the optimal controller of each round would naturally change over it-
erations since the disturbances and cost functions both change adversarially. Therefore, it
is necessary to investigate dynamic policy regret, which competes controller’s performance
with time-varying benchmark controllers. By adopting the “disturbance-action” policy pa-
rameterization (Agarwal et al., 2019), online non-stochastic control is reduced to OCO with
memory, and thus its dynamic policy regret can be optimized by a similar meta-base online
ensemble structure as developed before. Our designed controller attains an Õ(

√
T (1 + PT ))

dynamic policy regret, where PT measures the fluctuation of compared controllers. To the
best of our knowledge, this is the first controller competitive to a sequence of changing
“disturbance-action” policies. Given that our techniques for OCO with memory provide a
provable way to handle the memory effects of past decisions, we anticipate that they would
have broader applications in online decision-making problems.

The main contributions of this paper are summarized as follows.
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• We introduce dynamic policy regret as the performance measure to guide the algo-
rithm design of OCO with memory and online non-stochastic control to enhance the
robustness of online algorithms to non-stationary environments.

• We propose a novel algorithm for OCO with memory, which enjoys an optimal dy-
namic policy regret of order O(

√
T (1 + PT )). To achieve this, several key algorithmic

ingredients are designed to handle unknown environments and control switching cost.
• The results are further applied to the problem of online non-stochastic control, yielding
an online controller with Õ(

√
T (1 + PT )) dynamic policy regret, which is the first

online controller competitive with a sequence of time-varying policies.

In the following, we first review related works in Section 2 and then introduce some
preliminaries in Section 3. Next, we present the main results for OCO with memory and
online non-stochastic control in Section 4 and Section 5. Section 6 reports the experiments.
We finally conclude the paper in Section 7. All the proofs are included in appendices.

2 Related Work

In this section, we briefly discuss related works on OCO with memory, online non-stochastic
control, and dynamic regret minimization for online learning.

OCO with Memory. OCO with memory is initiated by Merhav et al. (2002), who prove
an O(T 2/3) policy regret by a blocking technique. Later, Anava et al. (2015) propose a
simple gradient-based algorithm that provably achieves O(

√
T ) and O(log T ) policy regret

for convex and strongly convex functions, respectively. Recent study discloses that the
policy regret of OCO with memory over exp-concave functions is at least Ω(T 1/3) (Sim-
chowit, 2020, Theorem 2.3). One of the key concepts of OCO with memory is switching
cost, the cumulative movement of decisions, which is also concerned in smoothed online
learning (Chen et al., 2018; Goel et al., 2019; Goel and Wierman, 2019), online learning
with switching budget (Altschuler and Talwar, 2018; Chen et al., 2020; Sherman and Koren,
2021; Wang et al., 2021). Online learning with memory is also studied in the prediction
with expert advice setting (Geulen et al., 2010; György and Neu, 2014; Cesa-Bianchi et al.,
2013; Altschuler and Talwar, 2018) and bandit settings (Dekel et al., 2012, 2014; Altschuler
and Talwar, 2018; Arora et al., 2019).

Online Non-stochastic Control. Recently, there is a surge of interest to apply modern
statistical and algorithmic techniques to the control problem. Online non-stochastic control
is proposed by Agarwal et al. (2019), where the regret is chosen as the performance measure
and the disturbance is allowed to be adversarially chosen. When online cost functions are
convex and Lipschitz, Agarwal et al. (2019) obtain an O(

√
T ) policy regret for known linear

dynamical system by introducing the DAC parameterization and reducing the problem to
OCO with memory. Hazan et al. (2020) show an O(T 2/3) policy regret for unknown system
via system identification. In addition, Foster and Simchowitz (2020) propose the online
learning with advantages technique and obtain logarithmic regret for known system with
quadratic cost and adversarial disturbance, whose results are strengthened by Simchowit
(2020) to accommodate arbitrary changing costs. All mentioned results are developed for
fully observed system, and Simchowitz et al. (2020) present a clear picture for non-stochastic
control with partially observed systems. We are still witnessing a variety of recent advances,
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for example, non-stochastic control with bandit feedback (Gradu et al., 2020a; Cassel and
Koren, 2020), adaptive regret minimization (Gradu et al., 2020b; Zhang et al., 2022b,c),
etc. We will present more discussions on the relationship between these works for adaptive
regret minimization and our work (for dynamic regret minimization) at the end of this
section. There are other related works studying non-stationary online control from the lens
of competitive ratio (Shi et al., 2020; Goel and Hassibi, 2022b) and robust control (Goel
and Hassibi, 2020, 2022a). In addition, there have been considerable efforts dedicated to
the broader field of online (stochastic) control over the past several decades. While only a
handful can be mentioned here (Guo and Ljung, 1995; Fiechter, 1997; Abbasi-Yadkori and
Szepesvári, 2011; Cohen et al., 2018; Dean et al., 2020; Cassel et al., 2022a,b), interested
readers can refer to the references therein to explore more recent developments in this area.

Dynamic Regret. Benchmarking the regret in term of changing comparators dates back
to early development of prediction with expert advice (Herbster and Warmuth, 1998, 2001),
in which they studied a special form of dynamic regret that supports the comparators change
for at most S times (often referred to as S-tracking/shifting/switching regret) (Herbster and
Warmuth, 1998, 2001; Bousquet and Warmuth, 2002; Cesa-Bianchi et al., 2012; György and
Szepesvári, 2016; Wei et al., 2016; Zheng et al., 2019; Luo et al., 2022). For online convex
optimization, Zinkevich (2003) pioneers the study of dynamic regret and shows that OGD
can attain an O(

√
T (1 + PT )) dynamic regret. Zhang et al. (2018b) show that the mini-

max lower bound is Ω(
√
T (1 + PT )) and close the gap by proposing an algorithm with an

O(
√
T (1 + PT )) regret. Recent works achieve problem-dependent guarantees by exploiting

smoothness and incorporating the optimistic online learning techniques (Zhao et al., 2020,
2021b), and other works obtain an improved rate by exploiting exp-concavity or strong con-
vexity (Baby and Wang, 2021, 2022). More results for dynamic regret minimization have
been developed in bandit convex optimization (Zhao et al., 2021a), Markov decision pro-
cesses (Zhao et al., 2022a), online label shift problems (Bai et al., 2022; Baby et al., 2023),
time-varying games (Zhang et al., 2022a; Yan et al., 2023), etc. We note that the dynamic
regret measure studied in this paper is also called the universal dynamic regret, in the sense
that the regret guarantee holds universally against any comparator sequence in the domain.
Another special variant called the worst-case dynamic regret is frequently studied in the
literature (Besbes et al., 2015; Jadbabaie et al., 2015; Mokhtari et al., 2016; Zhang et al.,
2017; Baby and Wang, 2019; Zhang et al., 2020; Zhao and Zhang, 2021), which specifies
comparators as the optimizers of online functions. The worst-case dynamic regret is less
general than the universal one. Indeed, both worst-case dynamic regret and static regret
are special cases of the universal dynamic regret with different choices of comparators, and
we refer the reader to (Zhao et al., 2021b) for more elaborations.

More Discussions. Online non-stochastic control in non-stationary environments is also
recently studied via the measure of adaptive regret (Hazan and Seshadhri, 2009; Daniely
et al., 2015)—the regret compared to the best policy on any interval in the time hori-
zon. Gradu et al. (2020b) propose the first controller with an Õ(

√
T ) expected adaptive

regret on any interval in the total horizon. The result is strengthened in a recent work
(concurrent to our paper) (Zhang et al., 2022b), which presents a strongly adaptive con-
troller with an Õ(

√
|I|) deterministic adaptive regret on any interval I ⊆ [T ]. The two

papers and our work all study non-stationary online control, however, the concerned mea-
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sures and used techniques are completely different. (1) Measures: dynamic regret examines
the global behavior to ensure a competitive performance with time-varying compared po-
lices, whereas adaptive regret focuses on the local behavior with respect to a fixed strategy.
Even though a black-box reduction from dynamic regret to adaptive regret has been known
in the simpler setting of prediction with expert advice (i.e., online linear optimization over
the simplex) (Luo and Schapire, 2015, Theorem 4), the relationship between strongly adap-
tive regret and universal dynamic regret for online convex optimization over the general
setup (Zhang, 2020, Section 5) remains highly unclear, which is even more vague when
further taking the switching cost into account. (2) Techniques: optimizing either dynamic
regret or adaptive regret requires the meta-base online ensemble structure to deal with
uncertainty of the non-stationary environments. However, the specific techniques, espe-
cially the way to control switching cost, exhibit significant difference. Gradu et al. (2020b)
leverage the Follow-the-Leading-History framework (Hazan and Seshadhri, 2009) with a
shrinking technique (Geulen et al., 2010) to keep previous experts unchanged with a certain
probability to reduce the switching cost, so their result holds in expectation only. The
improved result of O(

√
|I|) deterministic strongly adaptive regret bound (Zhang et al.,

2022b) is achieved by a very different framework drawn inspirations from parameter-free
online learning (Cutkosky, 2020). By contrast, the key ingredients of our approach are
the novel meta-base decomposition and the switching-cost-regularized loss, which avoid
explicitly handling the switching cost of final decisions but directly control the switching
cost of meta-algorithm and individual base-algorithm. These mechanisms finally lead to a
deterministic dynamic policy regret guarantee for our methods.

3 Preliminaries

This section introduces preliminaries for online convex optimization (OCO) with memory.

Problem Setup. OCO with memory is a variant of standard OCO framework to capture
the long-term effects of past decisions, whose protocol is shown below.

1: for t = m+ 1, . . . , T do
2: the player chooses a decision wt ∈ W;
3: the adversary reveals the loss ft : Wm+1 7→ R that applies to last m+ 1 decisions;
4: the player suffers a loss of ft(wt−m, . . . ,wt);
5: end for

In above,m is the memory length, and ft : Wm+1 7→ R is convex in memory, which means its
unary function f̃t(w) = ft(w, . . . ,w) is convex in w. Clearly, OCO with memory recovers
the standard memoryless OCO when m = 0. The standard measure is policy regret (Dekel
et al., 2012) as defined in (1). We introduce a strengthened measure called dynamic policy
regret to compete with changing comparators as defined in (2). The dynamic policy regret
upper bound usually involves the path length PT =

∑T
t=2∥vt−1 − vt∥2, which measures the

variation of comparators and thus captures the environmental non-stationarity. Throughout
the paper, O(·)-notation is used to express regret upper bound as a function of T and PT ,
and Õ(·)-notation omits logarithmic factors in T . To make it clear, we mention that the
O(·)-notation does not hide log logPT or log log T terms, even though they are indeed small.
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Assumptions. Next, we introduce several standard assumptions (Anava et al., 2015).
For simplicity we focus on the ℓ2-norm and the extension to general primal-dual norms is
straightforward.

Assumption 1 (coordinate-wise Lipschitzness). The online function ft : Wm+1 7→ R is
L-coordinate-wise Lipschitz, i.e., |ft(x0, . . . ,xm)− ft(y0, . . . ,ym)| ≤ L

∑m
i=0∥xi − yi∥2.

Assumption 2 (bounded gradient). The gradient norm of the unary loss is at most G,
i.e., for all w ∈ W and t ∈ [T ], ∥∇f̃t(w)∥2 ≤ G.

Assumption 3 (bounded domain). The domain W is convex, closed, and satisfies ∥w −
w′∥2 ≤ D for all w,w′ ∈ W. For convenience, we also assume 0 ∈ W.

Static Regret of OCO with Memory. This part briefly reviews the result of static
policy regret. Anava et al. (2015) propose a simple approach based on the gradient descent
based on the observation that when online functions are coordinate-wise Lipschitz, the
policy regret can be upper bounded by the switching cost and the vanilla regret over the
unary loss, formally,

T∑
t=1

ft(wt−m:t)− min
v∈W

T∑
t=1

f̃t(v) ≤ λ

T∑
t=2

∥wt −wt−1∥2 +
T∑
t=1

f̃t(wt)− min
v∈W

T∑
t=1

f̃t(v),

where λ = m2L. The first term is the switching cost measuring the cumulative move-
ment of decisions w1:T and the remaining term is the standard regret of memoryless OCO.
Consequently, it is natural to perform Online Gradient Descent (OGD) (Zinkevich, 2003)
over the unary loss f̃t, i.e., wt+1 = ΠW [wt − η∇f̃t(wt)], where η > 0 is the step size and
ΠW [·] denotes the projection onto the nearest point in W. It is well-known that with an
appropriate step size OGD enjoys an O(

√
T ) regret in memoryless OCO. Further, Anava

et al. (2015) show that the produced decisions move sufficiently slowly. Indeed, switching
cost satisfies

∑T
t=2∥wt − wt−1∥2 ≤ O(ηT ), which will not affect the final regret order by

choosing η = O(1/
√
T ). Combining both facts yields an O(

√
T ) static policy regret (Anava

et al., 2015, Theorem 3.1).

4 OCO with Memory

This section presents dynamic policy regret of OCO with memory. We begin with the gentle
case when the path length is known, and then handle the general case when it is unknown
and present the overall result.

4.1 A Gentle Start: known path length

Similar to the static regret analysis mentioned in the last section, we first upper-bound the
dynamic policy regret (2) in the following way:

D-RegretT (v1:T ) ≤
T∑
t=1

f̃t(wt)−
T∑
t=1

f̃t(vt) + λ
T∑
t=2

∥wt −wt−1∥2 + λ
T∑
t=2

∥vt − vt−1∥2. (3)
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There are three terms in the upper bound: dynamic regret of unary functions, switching
cost of final decisions, and switching cost of comparators. Therefore, it is natural to deploy
OGD over unary functions, and we can prove the following dynamic policy regret guarantee.
The proof can be found in Appendix B.1.

Theorem 1. Under Assumptions 1–3, running OGD over unary losses f̃1, . . . , f̃T ensures

D-RegretT (v1:T ) =
T∑
t=1

ft(wt−m:t)−
T∑
t=1

ft(vt−m:t) ≤ O
(
ηT +

1 + PT
η

+ PT

)
(4)

for any comparator sequence v1, . . . ,vT ∈ W, where PT =
∑T

t=2∥vt − vt−1∥2 is the path
length measuring fluctuation of the comparator sequence.

Suppose the value of path length PT were known a priori, Theorem 1 indicates an op-
timal O(

√
T (1 + PT )) dynamic policy regret by setting step size as η = O(

√
(1 + PT )/T ),

matching the Ω(
√
T (1 + PT )) lower bound of memoryless OCO (Zhang et al., 2018a). How-

ever, this step size tuning is not realistic because we cannot attain the prior information
of path length PT =

∑T
t=2∥vt−1 − vt∥2. Indeed, since the dynamic policy regret measure

holds for any comparator sequence v1, . . . ,vT that can be arbitrarily selected in the feasible
domain W, the path length PT essentially captures the environmental non-stationarity and
is unknown to the player. In Section 4.2, we will further elucidate the challenge of de-
signing online algorithms that enjoy optimal dynamic policy regret and meanwhile do not
require prior knowledge of environmental non-stationarity, especially due to the switching
cost arising in OCO with memory. In Section 4.3, we will present our solution by intro-
ducing several novel algorithmic ingredients. Finally, in Section 4.4 we further improve the
algorithm to achieve an optimal memory dependence along with the corresponding lower
bound argument to show the minimax optimality of our results.

4.2 Challenge: unknown path length and switching cost of OCO with memory

As mentioned in the last paragraph, the fundamental difficulty of attaining optimal dynamic
policy regret lies in the infeasible step size tuning that depends on the unknown comparator
sequence v1, . . . ,vT . We emphasize that such an unpleasant dependence cannot be removed
by the well-known doubling trick (Cesa-Bianchi et al., 1997), because we cannot monitor the
empirical value of path length, Pt =

∑t
s=2∥vs − vs−1∥2, as comparators v1, . . . ,vT can be

arbitrarily chosen in the feasible domain W and are entirely unknown to the learner. Similar
challenge also emerges in recent studies of memoryless non-stationary online learning (Zhang
et al., 2018a; Zhao et al., 2020), inspired by which we employ the meta-base online ensemble
framework to design a two-layer approach to optimize the dynamic policy regret. Below, we
will first briefly review the framework and then elucidate the challenge of its application in
OCO with memory, mainly due to the tension between dynamic regret and switching cost,
which necessitates additional new ideas.

Meta-base Online Ensemble Framework. The framework admits a two-layer struc-
ture and is essentially an online ensemble method (Zhou, 2012; Zhao, 2021). We first
need to design an appropriate pool of candidate step sizes H = {η1, . . . , ηN} to ensure the
existence of a step size ηi∗ that approximates optimal step size η∗ well. Then, multiple
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base-learners B1, . . . ,BN are maintained, and each performs base-algorithm (for example,
OGD) with a step size ηi ∈ H and generates the decision sequence w1,i,w2,i, . . . ,wT,i.
Finally, a meta-learner, supposed to be able to track the best base-learner, is used to com-
bine all intermediate results of base learners to produce final output w1,w2, . . . ,wT , where
wt =

∑N
i=1 pt,iwt,i. The final output of meta-base algorithm can well approximate the de-

cision sequence of the best base-learner (the one with near-optimal step size ηi∗) and thus
ensure a good dynamic regret bound.

Indeed, by employing OGD over unary functions f̃1, . . . , f̃T and designing a proper step
size pool H, it is not hard to prove a dynamic regret bound over unary functions, that is,∑T

t=1 f̃t(wt)−
∑T

t=1 f̃t(vt) ≤ O(
√
T (1 + PT )). Then, by (9) we have

D-RegretT (v1:T ) ≤ O(
√
T (1 + PT )) +O(PT ) +

T∑
t=2

∥wt −wt−1∥2.

So we are in the position to control switching cost. Below, we demonstrate that a vanilla
deployment of the meta-base method may move too fast to achieve a sublinear switching cost
and will ruin the overall policy regret bound, which necessitates additional novel algorithmic
ingredients to better balance the dynamic regret and switching cost.

Switching Cost. The switching cost is the pivot of the analysis for OCO with mem-
ory. Anava et al. (2015) demonstrate that many popular OCO algorithms for static regret
minimization naturally produce slow-moving decisions, however, it becomes more difficult
in dynamic regret. Intuitively, for dynamic online algorithms, it is necessary to keep some
probability of aggressive movement in order to catch up with the potential changes of non-
stationary environments, which results in tensions between dynamic regret and switching
cost. Formally, denote by wt =

∑N
i=1 pt,iwt,i the final decision returned by the two-layer

approach, then the switching cost can be bounded by

T∑
t=2

∥wt −wt−1∥2 ≤ D

T∑
t=2

∥pt − pt−1∥1 +
T∑
t=2

N∑
i=1

pt,i∥wt,i −wt−1,i∥2. (5)

A formal proof is presented in Appendix B.2. In the upper bound, the first term
∑T

t=2∥pt−
pt−1∥1 is the switching cost of meta-learner, which is at most O(

√
T ). However, the second

term
∑T

t=2

∑N
i=1 pt,i∥wt,i−wt−1,i∥2, the weighted sum of switching cost of all base-learners,

becomes the major barrier, which could be very large and even grow linearly over iterations.
Specifically, for each base-learner Bi (OGD with step size ηi), its switching cost is at most
O(ηiT ); additionally, to ensure a coverage of the optimal step size, the pool of candidate
step sizes is usually set as H = {ηi = O(2i · T−1/2), i ∈ [N ]} such that η1 = O(T−1/2) and
ηN = O(1). Therefore, the base-learner with larger step sizes would incur unacceptable
switching cost, for instance, the switching cost of base-learner BN could grow linearly, of
order O(T ). As a result, the term

∑T
t=2

∑N
i=1 pt,i∥wt,i − wt−1,i∥2 could be enlarged by

base-learners whose step sizes are too large and therefore is difficult to control.
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4.3 Algorithmically Enforcing Low Switching Cost: a new meta-base
decomposition

To resolve the challenge of switching cost in dynamic policy regret minimization, we propose
a novel switching-cost-aware online ensemble approach. Specifically, we start with proposing
the following new meta-base regret decomposition to avoid directly controlling switching
cost of final predictions or controlling switching cost of every base-learner:

T∑
t=1

f̃t(wt)−
T∑
t=1

f̃t(vt) + λ

T∑
t=2

∥wt −wt−1∥2 (6)

≤
T∑
t=1

⟨∇f̃t(wt),wt − vt⟩+ λD

T∑
t=2

∥pt − pt−1∥1 + λ

T∑
t=2

N∑
i=1

pt,i∥wt,i −wt−1,i∥2

=
T∑
t=1

(
⟨pt, ℓt⟩ − ℓt,i

)
+ λD

T∑
t=2

∥pt − pt−1∥1︸ ︷︷ ︸
meta-regret

+

T∑
t=1

(
gt(wt,i)− gt(vt)

)
+ λ

T∑
t=2

∥wt,i −wt−1,i∥2︸ ︷︷ ︸
base-regret

.

The first inequality follows from the convexity of unary functions and switching cost de-
composition (5), and for convenience we introduce the notation of linearized loss gt(w) =
⟨∇f̃t(wt),w⟩. The second equation is crucial, in which the key ingredient is the introduced
switching-cost-regularized surrogate loss ℓt ∈ RN for the meta-algorithm, defined as

ℓt,i ≜ gt(wt,i) + λ∥wt,i −wt−1,i∥2. (7)

Intuitively, the base-learner’s switching cost is now taken into account when evaluating
its performance—the meta-learner will impose more penalty on base-learners with larger
switching cost. Technically, the key improvement upon previous analysis in (5) lies in the
switching cost term of the base-learner: we now only need to bound switching cost of a
single base-learner

∑T
t=2∥wt,i −wt−1,i∥2, which is to be contrasted to the switching cost of

all the base-learners
∑T

t=2

∑N
i=1 pt,i∥wt,i −wt−1,i∥2.

Furthermore, noting that the new meta-base decomposition (6) holds simultaneously
for any index i ∈ [N ], we can therefore choose the compared index as i∗ (the one with
near-optimal step size) and the switching cost of this base-learner Bi∗ is at most O(ηi∗T ) =
O(
√
T (1 + PT )). In other words, we successfully escape from those base-learners with

unacceptably large step sizes, whose switching cost is too large to tolerate.
Consequently, we can tackle switching cost in the meta-base methods with the help of

the switching-cost-regularized technique. The rest is more or less standard. Specifically, the
meta-base regret decomposition indicates the following requirements on the base-algorithm
and meta-algorithm:

• base-algorithm needs to achieve low dynamic regret over unary functions and tolerate
its own switching cost

∑T
t=2∥wt,i −wt−1,i∥2;

• meta-algorithm needs to optimize the switching-cost-regularized loss to impose more
penalty on base-learners with larger switching cost, and tolerate its own switching
cost

∑T
t=2∥pt − pt−1∥1.
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Below, we outline the specific configurations of our switching-cost-aware online ensemble
approach (including settings of step size pool, base-algorithm, and meta-algorithm) to fulfill
above requirements.

Step Size Pool. We initiate N =
⌈
1
2 log2(1 + T )

⌉
+1 = O(log T ) base-learners, with step

size pool set as

H =

{
ηi

∣∣∣∣∣ ηi = 2i−1 ·

√
D2

(λG+G2)T
, i ∈ [N ]

}
. (8)

Base-algorithm. The base-algorithm is chosen as OGD running over the linearized loss
{gt}t=1:T . The switching cost of each base-learner can be safely controlled, as indicated by
Theorem 1. More specifically, there are N base-learners denoted by B1, . . . ,BN and the
base-learner Bi (with step size ηi ∈ H) performs

wt+1,i = ΠW [wt,i − ηi∇gt(wt,i)] = ΠW [wt,i − ηi∇f̃t(wt)].

The second equation is from gt(w) = ⟨∇f̃t(wt),w⟩ and the update exhibits the computa-
tional advantage due to linearization: although multiple base-learners are performed, they
share the same gradient and thus the algorithm only calculates one gradient per iteration,
rather than N gradients as was anticipated.

Meta-algorithm. The meta-algorithm is set as the well-known Hedge algorithm (Freund
and Schapire, 1997) running over the switching-cost-regularized loss. The weight pt+1 ∈ ∆N

is updated by pt+1,i ∝ pt,i exp(−εℓt,i), where ℓt ∈ RN is the switching-cost-regularized
surrogate loss defined in (7) and ε > 0 is the learning rate. Then, the meta-regret∑T

t=1

(
⟨pt, ℓt⟩ − ℓt,i

)
+ λD

∑T
t=2∥pt − pt−1∥1, essentially the static regret with switching

cost, can be well controlled with ε = O(
√
1/T ). For technical reasons, we adopt a non-

uniform initialization by setting p1 ∈ ∆N with p1,i ∝ 1/(i2+ i). The dependence of learning
rate on T can be removed by either a time-varying tuning or doubling trick.

We finally remark that base-algorithm (OGD) and meta-algorithm (Hedge) can be un-
derstood in a unified view from the aspect of Online Mirror Descent (OMD) (Nemirovsky
and Yudin, 1983; Shalev-Shwartz, 2012; Srebro et al., 2011). OMD is a powerful online
method accommodating general geometries and both OGD and Hedge are its special in-
stances. We can generalize the dynamic policy regret of Theorem 1 from OGD to OMD, and
this can be used to extend all the results in this paper from ℓ2-norm to general primal-dual
norms. More descriptions are supplied in Appendix B.3.

Overall Algorithm. Combining all above ingredients, we propose the Switching-Cost-
Regularized Ensemble Algorithm for OCO with Memory (Scream) algorithm, which is
based on online mirror descent and admits a two-layer meta-base online ensemble structure.
Algorithm 1 presents overall procedures: each base-learner performs OGD with its step size
as shown in Line 10; the meta-learner combines local decisions and updates the weight
according to the switching-cost-regularized loss as described in Lines 4–9. The following
theorem demonstrates that our algorithm can attain a favorable dynamic policy regret,
striking a good balance between regret and switching cost.
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Algorithm 1 Scream

Input: step size pool H = {η1, . . . , ηN}, learning rate of meta-algorithm ε
1: Initialization: w1:m ∈ W, wm,i ∈ W, ∀i ∈ [N ]; pm ∈ ∆N with pm,i ∝ 1/(i2+i), ∀i ∈ [N ]
2: for t = m+ 1 to T do
3: Receive wt,i from base-learner Bi for i ∈ [N ]

4: Submit the decision wt =
∑N

i=1 pt,iwt,i

5: Suffer a loss of ft(wt−m, . . . ,wt)
6: Observe the online function ft : Wm+1 7→ R that applies to last m+ 1 decisions
7: Construct the linearized loss by gt(w) = ⟨∇f̃t(wt),w⟩
8: Construct the switching-cost-regularized loss ℓt ∈ RN with ℓt,i = gt(wt,i) + λ∥wt,i −

wt−1,i∥2 for i ∈ [N ]
9: Update the weight pt+1 ∈ ∆N according to pt+1,i ∝ pt,i exp(−εℓt,i)

10: Base-learner Bi updates the local decision by wt+1,i = ΠW [wt,i−ηi∇f̃t(wt)], ∀i ∈ [N ]
11: end for

Theorem 2. Under Assumptions 1–3, by setting the learning rate optimally of meta-
algorithm as ε =

√
2/((2λ+G)(λ+G)D2T ) and the step size pool H as (8), our proposed

Scream algorithm ensures that for any comparator sequence v1, . . . ,vT ∈ W, we have

D-RegretT (v1:T ) ≤ O
(√

λT (1 + PT ) + λ
3
4

√
T (1 + log logPT ) + λPT

)
,

where λ = m2L and PT =
∑T

t=2∥vt−1 − vt∥2. So dynamic policy regret is O(
√
T (1 + PT )).

The proof of Theorem 2 is presented in Appendix B.4.

Remark 1. Since the dynamic policy regret holds for any comparator sequence, by simply
setting comparators as the fixed best decision in hindsight (now PT = 0), our dynamic
policy regret implies the O(

√
T ) static policy regret (Anava et al., 2015). Second, when

omitting the consideration of the λ-dependence, the dynamic regret bound simplifies to
O(
√
T (1 + PT )), which is minimax optimal in terms of T and PT , as an Ω(

√
T (1 + PT ))

lower bound has been established for the dynamic regret of memoryless OCO (Zhang et al.,
2018a), which is a special case of OCO with memory when setting m = 0.

Remark 2. We further examine the memory dependence of the attained bounds. The
dynamic policy regret in Theorem 2 exhibits a quadratic dependence on the memory length
m (i.e., linear dependence on λ = m2L). Recall that the dynamic policy regret is upper
bounded by the dynamic regret of unary functions and switching cost of decisions (i.e.,∑T

t=1 f̃t(wt)−
∑T

t=1 f̃t(vt)+λ
∑T

t=2∥wt−wt−1∥2) as well as the switching cost/ path length

of comparators (i.e., λ
∑T

t=2∥vt − vt−1∥2 = λPT ), namely,

D-RegretT (v1:T ) ≤
T∑
t=1

f̃t(wt)−
T∑
t=1

f̃t(vt) + λ
T∑
t=2

∥wt −wt−1∥2︸ ︷︷ ︸
dynamic regret of OCO with switching cost

+λ

T∑
t=2

∥vt − vt−1∥2︸ ︷︷ ︸
path length (=λPT )

. (9)

Notably, the last path length term is the variation of comparators and thus irrelevant to
the algorithm, which already exhibits a quadratic memory dependence. As a result, in the
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following we will focus the memory dependence of the first two terms, which is essentially
the dynamic regret of OCO with switching cost. Indeed, our conference version (Zhao et al.,
2022b) gives an O(

√
λT (1 + PT )+λ

√
T (1+log logPT )) ≤ O(λ

√
T (1 + PT )) regret bound,

1

whereas Theorem 2 of this paper improves the result to O(
√
λT (1 + PT ) + λ3/4

√
T (1 +

log logPT )) ≤ O(λ3/4
√
T (1 + PT )) through a refined analysis (there is no modification on

the algorithm), achieving an λ1/4 improvement.

As a benefit, when choosing a fixed comparator, Theorem 2 implies an O(λ3/4
√
T ) static

regret, improving upon the O(λ
√
T ) static regret implication based on the dynamic policy

regret in the conference version (Zhao et al., 2022b), where λ = O(m2) is the squared
memory length. Nevertheless, the best static policy regret for OCO with switching cost
is O(

√
λT ) = O(m

√
T ), which enjoys a linear dependence on the memory length (Anava

et al., 2015) (see discussions in Appendix B.8 for details), and our result still exhibits a gap
here. Therefore, we are wondering what the optimal memory dependence of dynamic regret
for OCO with switching cost is. We answer this question in the next subsection.

4.4 Improved Algorithm with an Optimal Memory Dependence

In this part, we resolve the question raised at the end of the last subsection. Specifically,
we first illustrate the failure of Scream algorithm in achieving optimal memory dependence;
and then we propose an improved algorithm building upon Scream (Algorithm 1) that
enjoys an O(

√
λT (1 + PT )) dynamic regret for OCO with switching cost, hence matching

the O(
√
λT ) static regret (Anava et al., 2015) when choosing a fixed comparator such that

PT = 0. We finally supply the lower bound to demonstrate the minimax optimality of our
attained upper bound in terms of the memory dependence.

Failure of Scream Algorithm. Inspecting the proof of Theorem 2, we can observe that
the sub-optimality of memory dependence mainly comes from the meta-regret

∑T
t=1⟨pt, ℓt⟩−∑T

t=1 ℓt,i+λD
∑T

t=2∥pt−pt−1∥1 (see the decomposition in (6) for more details). Specifically,
consider the switching cost of meta-algorithm, which can be upper bounded as follows:

λ
T∑
t=2

∥pt − pt−1∥1 ≤ λ
T∑
t=2

ε∥ℓt∥∞ ≤ λεGmetaT ≤ O(λ
3
4

√
T ), (10)

where the first inequality holds by the standard analysis on the meta-algorithm (see (31) for
more details). The second inequality is by definition of Gmeta = supt∈[T ],i∈[N ]|ℓt,i|, that is,
the maximum scale of the loss of meta-algorithm. The last inequality is due to the setting
of ε = O(1/

√
T ) and our analysis shows that Gmeta ≤ O(

√
λ).

From (10), we can see that the switching cost of meta-algorithm exhibits an undesirable
memory dependence of order O(λ3/4) = O(m3/2), whereas our desired one is linear in m.
Therefore, it is natural to ask for an improved meta-algorithm that can enjoy a better
memory dependence. However, we present the following theorem to negatively show that
when the loss of meta-algorithm lies in the range of [−C,C] for some C > 0, any algorithm
must incur a regret of Ω(

√
λCT ). The proof is deferred to Appendix B.5.

1. Note that the log logPT term can be dominated by
√
PT and is thus absorbed within the O(·)-notation.
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Algorithm 2 Lazy Scream

Input: Scream A (Algorithm 1), epoch number B, epoch length ∆
1: Initialization: w1 from Scream A
2: for k = 1 to K do
3: Initialize ∇k = 0
4: for t = (k − 1)∆ + 1 to k∆ do
5: Submit the decision wt = ẘk

6: Suffer a loss of ft(wt−m:t)
7: ∇k = ∇k +∇f̃t(wt) = ∇k +∇f̃t(ẘk)
8: end for
9: Send ∇k to Scream A for update and receive ẘk+1

10: end for

Theorem 3. Consider a T -round prediction with expert advice problem with λ-switching
cost. Given λ > 0 and C > 0, there exists a sequence of loss functions ℓ1, . . . , ℓT satisfying
ℓt ∈ [−C,C]N for all t ∈ [T ] such that any feasible expert algorithm (whose output is
p1, . . . ,pT ∈ ∆N ) incurs the following regret

T∑
t=1

⟨ℓt,pt⟩ − min
i∈[N ]

T∑
t=1

ℓt,i + λ
T∑
t=2

∥pt − pt−1∥1 ≥ Ω(
√
λCT ).

In our case, we have |ℓt,i| ≤ GD+
√
λ (see the argument in (33) for details). Therefore,

by applying Theorem 3, we know that the meta-algorithm will incur at least Ω(λ3/4
√
T )

regret, which prohibits Scream from achieving the desired O(
√
λ) memory dependence.

An Improved Algorithm. To address this memory dependence issue, we propose an
improved algorithm called Lazy Scream, presented in Algorithm 2, which is a simple
variant of the vanilla Scream algorithm (see Algorithm 1). Specifically, Lazy Scream builds
upon Scream with episodic updates, and proceeds in K epochs (Line 2). The k-th epoch
is denoted by Ik such that |Ik| = ∆, for all k ∈ [K]. Specifically, the algorithm updates
at the epoch-level, for each epoch Ik, the learner submits the same decision (Line 5) and
computes the cumulative loss gradient (Line 7), and at the end of each epoch, the learner
sends the cumulative gradient to the original Scream algorithm (Algorithm 1) for update
(Line 9). The next theorem shows that Lazy Scream attains an improved dynamic policy
regret in terms of memory length, whose proof can be found in Appendix B.6.

Theorem 4. Under the same assumptions as Theorem 2, by setting the learning rate of
meta-algorithm optimally and the step size pool H as (8), our proposed Lazy Scream (Algo-
rithm 2) with epoch length ∆ =

√
λ ensures that

D-RegretT (v1:T ) ≤ O
(√

λT (1 + PT ) + λPT
)
,

for any comparator sequence v1, . . . ,vT ∈ W, where λ = m2L and PT =
∑T

t=2∥vt−1−vt∥2.

Theorem 4 implies an O(
√
λT (1 + PT )) dynamic regret for OCO with switching cost.

Below we further prove that our result is minimax optimal in switching-cost coefficient λ,
time horizon T , and path length PT .

14



Non-stationary Online Learning with Memory and Non-stochastic Control

Theorem 5. Given a real value τ ∈ [0, DT ] and a parameter λ > 0, there exist (1) a
sequence of convex loss functions h1, . . . , hT with ht : W 7→ R for t ∈ [T ], which satisfy
Assumption 2 and some feasible domain W ⊆ Rd with Assumption 3; and (2) a sequence
of comparators v1, . . . ,vT ∈ Rd whose path length PT (v1, . . . ,vT ) =

∑T
t=2∥vt−vt−1∥2 ≤ τ ,

such that any online algorithm returning w1, . . . ,wT ∈ W satisfies

T∑
t=1

ht(wt)−
T∑
t=1

ht(vt) + λ
T∑
t=2

∥wt −wt−1∥2 ≥ Ω(
√
λτT ). (11)

Theorem 5 demonstrates the minimax optimality of the obtained O(
√
λT (1 + PT )) dy-

namic regret bound for OCO with switching cost, which is optimal in terms of switching-cost
coefficient λ, time horizon T , and path length PT . The corresponding proof can be found
in Appendix B.7.

5 Online Non-stochastic Control

In this section, we apply the results of OCO with memory to an important online decision-
making problem, online non-stochastic control (Agarwal et al., 2019), which draws much
attention from researchers in online learning and control theory communities (Agarwal
et al., 2019; Simchowitz et al., 2020; Hazan et al., 2020; Simchowit, 2020; Gradu et al.,
2020a; Cassel and Koren, 2020; Gradu et al., 2020b; Zhang et al., 2022b).

5.1 Problem Statement

Problem Setting. We study the online control of the linear dynamical system (LDS)
governed by

xt+1 = Axt +But + wt, (12)

where at iteration t, the controller provides the control ut upon the observed dynamical
state xt and suffers a cost ct(xt, ut) with convex function ct : Rdx ×Rdu 7→ R. Following the
notational convention of previous works, throughout the section we will use unbold fonts to
denote vectors (including control signal, state, disturbance, etc.). We focus on online non-
stochastic control (Agarwal et al., 2019), that is, the disturbance can be generated arbitrarily
and no statistical assumption is imposed on its distribution; additionally, cost functions can
be chosen adversarially. The adversarial nature of the disturbance and online cost functions
hinders an a priori computation of the optimal policy as in settings of classical control
theory (Kalman, 1960) and therefore requires techniques from modern online learning to
tackle adversarial environments.

Policy Regret. The standard measure for online non-stochastic control is the policy re-
gret (Agarwal et al., 2019), defined as the difference between cumulative loss of the designed
controller A and that of the compared controller π ∈ Π, namely,

RegretT =

T∑
t=1

ct(xt, ut)−min
π∈Π

T∑
t=1

ct(x
π
t , u

π
t ). (13)

The comparator could be chosen with complete foreknowledge of the disturbance and loss
functions. Recently, a variety of control algorithms have been proposed to optimize this
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measure under different settings (Agarwal et al., 2019; Hazan et al., 2020; Simchowitz et al.,
2020; Cassel and Koren, 2020; Gradu et al., 2020a; Foster and Simchowitz, 2020). However,
we argue that competing with a fixed controller may be not appropriate, especially because
the unknown disturbances and cost functions can change arbitrarily in the non-stochastic
control setting so that the optimal controller of each round would also change accordingly.
Therefore, it is necessary to enable the online controller to compete with time-varying
controllers to adapt to those changes. To this end, we generalize the standard measure (13)
to the dynamic policy regret to benchmark the algorithm with a sequence of time-varying
controllers π1, . . . , πT ∈ Π, formally,

D-RegretT (π1:T ) =
T∑
t=1

ct(xt, ut)−
T∑
t=1

ct(x
πt
t , u

πt
t ). (14)

The measure clearly subsumes the standard policy regret (13) when choosing the compared
controllers as a fixed one, i.e., π∗ ∈ argminπ∈Π

∑T
t=1 ct(x

π
t , u

π
t ). In this work, the bench-

mark set Π is chosen as the class of disturbance-action controllers (see Definition 1), which
encompasses many controllers of interest.

5.2 Reduction to OCO with Memory

Following the pioneering work (Agarwal et al., 2019), we will work on the Disturbance-
Action Controller (DAC) policy class, which parametrizes the executed action as a linear
function of the past disturbances. By doing so, we can reduce online non-stochastic control
to OCO with memory so that the results of Section 4 can be leveraged to design robust
controllers with provable dynamic policy regret guarantee.

Definition 1 (Disturbance-Action Controller, DAC). A disturbance-action controller, de-
noted by π(K,M), with memory length H is specified by a fixed matrix K and param-
eters M = (M [1], . . . ,M [H]). At each iteration t, the controller π(K,M) chooses the ac-
tion as a linear map of the past disturbances with an offset linear controller, formally,
ut = −Kxt +

∑H
i=1M

[i]wt−i.

For convenience, we define wi = 0 for i < 0. The DAC policy is implementable because
the disturbance can be recovered by wt = xt+1−Axt−But as system dynamics A and B are
supposed to be known. Our method can also extend to the scenario of online non-stochastic
control with unknown systems, which is presented at the end of this section. The following
proposition by Agarwal et al. (2019) presents an important property of DAC policy.

Proposition 6 (Lemma 4.3 of Agarwal et al. (2019)). Suppose the initial state is x0 = 0
and one chooses the DAC controller π(K,Mt) at iteration t, the reaching state and the
corresponding DAC control are

xKt (M0:t−1) =

H+t−1∑
i=0

ΨK,t−1
t−1,i (M0:t−1)wt−1−i,

uKt (M0:t) = −KxKt (M0:t−1) +

H∑
i=1

M
[i]
t wt−i,
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where ÃK = A−BK and

ΨK,h
t,i (Mt−h:t) = ÃiK1i≤h +

h∑
j=0

ÃjKBM
[i−j]
t−j 11≤i−j≤H .

Evidently, both state xt and control ut are linear functions of DAC parameters M0:t,
so the cost ct(x

K
t (M0:t−1), u

K
t (M0:t)) is a function of historical parameters M0:t. Thereby,

the remaining challenge is to handle this memory issue due to the state transition of online
control, which can be addressed by OCO with memory studied in Section 4. Note that
there is one big caveat in applying the technique—the current memory length is not fixed
but growing with time, which is not feasible in OCO with memory. To this end, Agarwal
et al. (2019) further propose a truncation operation that truncates the state with a fixed
memory length H and defines the following truncated loss.

Definition 2 (Truncated Loss). For the cost function ct : Rdx ×Rdu 7→ R and DAC policies
{π(K,Mt)}t=1,...,T , given memory length H, the induced truncated loss ft : MH+2 7→ R is
defined as

ft(Mt−1−H:t) = ct(y
K
t (Mt−1−H:t−1), v

K
t (Mt−1−H:t)),

where the truncated state and truncated DAC control are

yKt+1 =

2H∑
i=0

ΨK,H
t,i (Mt−H:t)wt−i, and vKt+1 = −KyKt+1(Mt−H:t) +

H∑
i=1

M
[i]
t+1wt+1−i.

It can be proved that the error introduced by the truncation operation (the gap between
ft and ct) can be precisely controlled. Therefore, by feeding the truncated loss ft to the
OCO with memory framework with a memory length of H+2, we finish the reduction from
online non-stochastic control to OCO with memory.

5.3 Dynamic Policy Regret of Online Non-stochastic Control

The above reduction enables us to leverage results of OCO with memory (Section 4) to
design online controllers competitive with time-varying compared policies. We propose the
Scream.Control algorithm, consisting of the following two components:

(1) DAC parameterization for reduction: using DAC control ut = π(K,Mt) for param-
eterization and define the unary loss of the truncated loss, i.e., f̃t : M 7→ R with
f̃t(M) = ft(M, . . . ,M) (see Definition 2).

(2) meta-base online ensemble structure for OCO with memory: performing Scream al-
gorithm of Section 4 over unary loss f̃t, and using meta-algorithm to combine inter-
mediate parameters Mt,1, . . . ,Mt,N from all base-learners to produce the final Mt.

Algorithm 3 describes our proposed algorithm for optimizing dynamic policy regret of
online non-stochastic control. We further provide its theoretical guarantee. We begin with
several standard assumptions used in the literature (Agarwal et al., 2019; Hazan et al., 2020;
Gradu et al., 2020a) and next present the main result.
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Algorithm 3 Scream.Control

Input: step size pool H = {η1, . . . , ηN}; learning rate of meta-learner ε; memory length
H; linear controller K; feasible domain M

1: Initialization: u1, . . . , uH , any feasible output control signals for the first H rounds;
2: Initialization: base decisions of the H-th round MH,1,MH,2, . . .MH,N ∈ M; non-

uniform weight pH+1 ∈ ∆N with pH+1,i ∝ 1/(i2 + i), ∀i ∈ [N ]
3: for t = H + 1 to T do
4: Receive Mt,i from base-learner Bi for i ∈ [N ]

5: Obtain the policy parameter Mt =
∑N

i=1 pt,iMt,i

6: Output ut = −Kxt +
∑H

i=1M
[i]
t wt−i

7: Suffer a loss of ct(xt, ut) and observe the cost function ct : Rdx × Rdu 7→ R
8: Construct the truncated loss ft : MH+2 7→ R by Definition 2 and the linearized loss

by gt(M) = ⟨∇f̃t(Mt),M⟩
9: Compute the switching-cost-regularized loss ℓt ∈ RN with ℓt,i = λ∥Mt,i−Mt−1,i∥F +

gt(Mt,i) for i ∈ [N ]
10: Update the weight to pt+1 ∈ ∆N via pt+1,i ∝ pt,i exp(−εℓt,i)
11: Base-learner Bi updates the local parameter by Mt+1,i = ΠM[Mt,i − ηi∇f̃t(Mt)]
12: Observe the new state xt+1 and calculate the disturbance wt = xt+1 −Axt −But
13: end for

Assumption 4. The system matrices are bounded, i.e., ∥A∥op ≤ κA and ∥B∥op ≤ κB.
Besides, the disturbance ∥wt∥ ≤W holds for any t ∈ [T ].

Assumption 5. The cost function ct(x, u) is convex. Further, when ∥x∥, ∥u∥ ≤ D, it holds
that |ct(x, u)| ≤ βD2 and ∥∇xct(x, u)∥, ∥∇uct(x, u)∥ ≤ GcD.

Assumption 6. DAC controller π(K,M) satisfies:

(1) K is (κ, γ)-strongly stable, whose precise definition is in Definition 4 of Appendix A.2;

(2) M ∈ M where M = {M = (M [1], . . . ,M [H]) | ∥M [i]∥op ≤ κBκ
3(1− γ)i}.

Theorem 7. Under Assumptions 4–6, we set learning rate optimally and the step size pool
H as

H =

ηi
∣∣∣∣∣∣ ηi = 2i−1 ·

√√√√ D2
f

(λGf +G2
f )T

, i ∈ [N ]

 , (15)

where N =
⌈
1
2 log2(1 + T )

⌉
+ 1 = O(log T ) is the number of base-learners, and λ = (H +

2)2Lf . The parameters Lf , Gf , Df are defined in Lemma 29 and only depend on natural
parameters of the linear dynamical system and truncated memory length H. By choosing
H = Θ(log T ), our Scream.Control algorithm enjoys

T∑
t=1

ct(xt, ut)−
T∑
t=1

ct(x
πt
t , u

πt
t ) ≤ Õ

(√
T (1 + PT )

)
,

where π1, . . . , πT ∈ Π can be any comparator sequence in the compared DAC policy class
Π = {π(K,M) | M ∈ M} with πt = π(K,M∗

t ) for t ∈ [T ]. The path length PT =∑T
t=2∥M∗

t−1 −M∗
t ∥F measures the cumulative variation of comparators.
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Algorithm 4 System Identification via Random Inputs (Hazan et al., 2020)

Input: rounds of exploration T0.
1: for t = 1, . . . , T0 do
2: Execute the control ut = −Kxt + ũt with ũt ∼i.i.d. {±1}du
3: Record the observed state xt+1

4: end for
5: Declare Nj =

1
T0−k

∑T0−k−1
t=0 xt+j+1ũ

⊤
t , for all j ∈ [k]

6: Define Ĉ0 = [N0, . . . , Nk−1] , Ĉ1 = [N1, . . . , Nk] and return estimation Â, B̂ as

B̂ = N0, ÂK ≜ Ĉ1Ĉ
⊤
0

(
Ĉ0Ĉ

⊤
0

)−1
, Â = ÂK + B̂K.

Till now, we assume the knowledge of the underlying system A and B. By further
adopting the system identification via random inputs developed by Hazan et al. (2020),
our result can be extended to online non-stochastic control with unknown systems. Indeed,
when the system is unknown, i.e., A and B are not known in advance, we follow the explore-
then-commit method of Hazan et al. (2020) to identify the underlying dynamics and then
deploy the control algorithm based on the estimated system dynamics. The algorithmic
descriptions are summarized in Algorithm 4. In the exploration phase, the identification
algorithm (Hazan et al., 2020, Algorithm 2) uses some random inputs to approximately
recover the system dynamics. Specifically, given an estimation budget T0 < T , in the first
T0 rounds, we input the control signal ut = −Kxt+ ũt with the random inputs ũt ∼ {±1}du
and then observe the corresponding state xt+1. Then, by the estimation method presented
in Line 6 of Algorithm 4, we can show that the estimation regret overhead is Õ(T 2/3) when
choosing T0 = Θ(T 2/3).

To give the formal regret analysis and ensure finite-sample convergence rate, we focus
on the system with strong controllability following the work of Hazan et al. (2020).

Definition 3 (Strong Controllability). For a linear dynamical system and a strongly stable
linear controller K, for k ≥ 1, define a matrix Ck ∈ Rdx×kdu as

Ck =
[
B, ÃKB, . . . , Ã

k−1
K B

]
, (16)

where ÃK = A−BK. A linear dynamical system is controllable with controllability index
k if Ck has full row-rank. In addition, such a system is also (k, κc)-strongly controllable if

∥
(
CkC

⊤
k

)−1∥ ≤ κc.

Assumption 7 (Strong Controllability). The dynamical system xt+1 = Axt +But +wt is
(k, κc)-strongly controllable.

Theorem 8. Under the same assumptions of Theorem 7 except that system matrices A and
B are now unknown, and suppose the systems are strongly controllable (see Assumption 7)
and the time horizon T is sufficiently large, Scream.Control with system identification (Al-
gorithm 4) ensures that with high probability,

T∑
t=1

ct(xt, ut)−
T∑
t=1

ct(x
πt
t , u

πt
t ) ≤ Õ(

√
T (1 + PT ) + T 2/3),
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where π1, . . . , πT ∈ Π can be any comparator sequence in the compared DAC policy class
Π = {π(K,M) | M ∈ M} with πt = π(K,M∗

t ) for t ∈ [T ]. The path length PT =∑T
t=2∥M∗

t−1 −M∗
t ∥F measures the cumulative variation of comparators.

Finally, we note that our obtained dynamic policy regret bound in Theorem 7 can recover
the Õ(

√
T ) static policy regret for non-stochastic control with known systems (Agarwal

et al., 2019), and the result in Theorem 8 implies an Õ(T 2/3) high-probability static policy
regret for non-stochastic control with unknown systems (Hazan et al., 2020).

Corollary 9. For known systems, under the same assumptions of Theorem 7, it holds that
Scream.Control enjoys a static policy regret at most

T∑
t=1

ct(xt, ut)−min
π∈Π

T∑
t=1

ct(x
π
t , u

π
t ) ≤ Õ(

√
T ).

For unknown systems, under the same assumptions of Theorem 8, Scream.Control with
system identification ensures that with high probability,

T∑
t=1

ct(xt, ut)−min
π∈Π

T∑
t=1

ct(x
π
t , u

π
t ) ≤ Õ(T 2/3).

In above, the comparator set Π can be chosen as either the set of DAC policies or the set
of strongly linear controllers.

6 Experiment

Although our paper mainly focuses on the theoretical investigation, in this section, we
further present empirical studies to support our theoretical findings. We report the results
of OCO with memory in Section 6.1 and online non-stochastic control in Section 6.2.

6.1 OCO with Memory

Since OCO with memory is essentially tackled by optimizing the upper bound of the policy
regret, which consists of the vanilla regret over the unary functions and the switching cost,
as explained in (9) for dynamic policy regret. Thus, in the empirical studies, we directly
investigate the performance of different algorithms in optimizing this upper bound, i.e., the
unary regret with switching cost. More specifically, we consider the following OCO with
switching cost problem: at each round, the player predicts wt ∈ W and the environments
choose the loss function ft : W 7→ R. The player will then suffer a loss of ft(wt) as well as
a switching cost of ∥wt −wt−1∥2, and thus the overall loss is ft(wt) + λ∥wt −wt−1∥2 with
some λ > 0 as the trade-off parameter.

Settings. We simulate the online learning scenario by the following setting: the player
sequentially receives the feature of data item and then predicts its label. The data item of
each round is denoted by (xt, yt) ∈ X × Y, where X is a d-dimensional ball with diameter
Γ and Y ∈ R is the space of real values. The time horizon is set as T = 50000 and the
dimension is set as d = 10. To simulate the distribution changes, we generate the output
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according to yt = x⊤
t w

∗
t + εt, where w∗

t ∈ Rd is the underlying model and εt ∈ [0, 0.1] is a
random noise. The underlying model w∗

t will change every 1000 rounds, randomly sampled
from a d-dimensional ball with diameter D/2, so there are in total S = 50 changes. We
the squared loss as loss functions, defined as ft(w) = 1

2(w
⊤xt − yt)

2 and thus the gradient
is ∇ft(w) = (w⊤xt − yt) · xt. The feasible set W is also set as d-dimensional ball with
diameter D/2, and thus from all above settings, we know that ∥xt∥2 ≤ Γ, ∥w∥2 ≤ D/2,
and ∥∇ft(w)∥2 ≤ DΓ2. We set Γ = 1 and D = 2, so the gradient norm is upper bounded
by G = DΓ2 = 2.

Contenders and Measure. We benchmark our proposed Scream algorithm with the
following two algorithms: (1) OGD (Zinkevich, 2003), is the online gradient descent algo-
rithm. The work of Anava et al. (2015) proves that this simple static regret minimization
algorithm also enjoys a low switching cost when choosing the step size as η = O(1/

√
T ).

(2) Ader (Zhang et al., 2018a), is the online algorithm designed in non-stationary online
convex optimization. Ader is also in a meta-base structure to optimize the dynamic regret,
but the algorithm does not consider the switching cost. Thus its switching cost might be
huge (as analyzed in Section 4.2).

We examine the performance of all compared algorithms via the following three mea-
sures: (1) the overall cost

∑T
t=1 ft(wt) + λ

∑T
t=2∥wt − wt−1∥2, (2) the cumulative loss∑T

t=1 ft(wt), and (3) the switching cost λ
∑T

t=2∥wt −wt−1∥2. Here, we set the regularizer
coefficient λ = αG, where G is the gradient norm upper bound, with the purpose of match-
ing the magnitude of cumulative loss and the switching cost. We consider three cases with
different regularizer coefficients that impose different levels of penalty on the switching cost:

(i) small regularizer (α = 0.1): in this case the switching cost is small so that optimizing
the dynamic regret would dominate the performance;

(ii) medium regularizer (α = 1): in this case the algorithm needs to have a good balance
of dynamic regret and switching cost in order to behave well;

(iii) large regularizer (α = 2): in this case dynamic regret is small so that optimizing the
switching cost would dominate the performance.

We repeat the experiments five times and report the mean and standard deviation of dif-
ferent algorithms with respect to three performance measures (overall loss, cumulative loss,
and switching cost).

Results. Figure 1 plots performance comparisons of three algorithms (OGD, Ader, Scream)
under different regularizer coefficients. There are in total nine sub-figures, where each row
presents the performance under a particular regularizer coefficient (α = 0.1, 1, 2), and each
column reports the performance in terms of a specific measure (overall loss, cumulative loss,
and switching cost). For instance, Figure 1(d) plots the overall loss under the setting of
λ = αG with α = 0.1. We first focus on the measure of overall loss. From the results of
overall loss (Figures 1(a), 1(d), 1(g)), we can see that under the case of small regularizer
(α = 0.1), Ader achieves the best, and Scream is comparable, while the performance of OGD
is not good; with the medium regularizer (α = 1), Scream evidently ranks the first, whereas
Ader and OGD are not well-behaved; under the case of large regularizer (α = 2), OGD
performs surprisingly well, and Scream is comparable, whereas the performance of Ader is
not desired. The results accord to our theory well, especially after a further examination of
corresponding cumulative loss (Figures 1(b), 1(e), 1(h)) and switching cost (Figures 1(c),
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(a) overall loss (α = 0.1)
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(b) cumulative loss (α = 0.1)
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(c) switching cost (α = 0.1)
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(d) overall loss (α = 1)
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(e) cumulative loss (α = 1)
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(f) switching cost (α = 1)
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(g) overall loss (α = 2)
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(h) cumulative loss (α = 2)
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(i) switching cost (α = 2)

Figure 1: Performance comparisons of OGD, Ader, Scream, under different regularizer co-
efficients (λ = αG, G is the gradient norm upper bound). The performance is
evaluated by three measures: overall loss, cumulative loss, and switching cost.

1(f), 1(i)). Indeed, we can observe that Ader focuses on optimizing the dynamic regret (i.e.,
cumulative loss) but fails to control the switching cost; and OGD indeed yields a sequence
of slow-moving decisions, but it fails to optimize the dynamic regret. Consequently, when
the regularizer is small, one can optimize the overall loss by simply forgetting about the
switching cost, and this is why Ader could behave well in this setting. Moreover, the switch-
ing cost plays a more important role in the overall loss with a large regularizer. Therefore,
the algorithm can optimize the overall loss by simply producing a sequence of slow-moving
decisions regardless of regret minimization. This is why OGD could achieve a surprisingly
good performance in this setting. However, under the non-degenerate settings (for example,
with medium regularizer), the two compared methods behave badly and Scream achieves
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the best. It is because our proposed Scream algorithm strikes a good balance between
minimizing the dynamic regret and controlling the switching cost, owing to the novel on-
line ensemble structure via the introduced switching-cost-regularized loss. Therefore, the
above empirical studies demonstrate the effectiveness of our proposed algorithm and its
algorithmic components.

6.2 Online Non-stochastic Control

This part further examines the performance of our proposed algorithm in online non-
stochastic control.

Settings. We conduct the experiments in synthetic linear dynamical system (LDS) en-
vironments and a real inverted pendulum environment. For the synthetic environment,
we consider a time-varying LDS governed by xt+1 = Atxt + Btut + wt, where wt is the
Gaussian noise, At and Bt are the time-varying system matrices to be specified later. It
is generally challenging to control time-varying systems, and we here consider a special
case that can be handled by the online non-stochastic control framework. Specifically,
we design the system matrices as At = A + ∆t,A and Bt = B + ∆t,B, where A and B
are fixed, and ∆t,A,∆t,B are time-varying zero-mean Gaussian random matrices. Notably,
when applying online non-stochastic control methods, we only need to access A and B, and
the changes of system matrices can be treated as a part of disturbance. Indeed, we have
xt+1 = Axt+But+ (wt+∆t,Axt+∆t,But) = Axt+But+ w̃t, where w̃t is the effective dis-
turbance of this time-varying system. Moreover, we choose the quadratic loss as the online
cost function, defined as ct(xt, ut) = x⊤t Qtxt+u

⊤
t Rtut, where Qt = atI and Rt = btI change

over time. By setting different at and bt, we simulate the following two environments. (1)
gradual change: in which at = sin(t/(10π)) and bt = sin(t/(20π)); (2) abrupt change: the
whole time horizon is divides into five stages, and the cost functions only change between
different stages. In addition, we examine the performance in the real inverted pendulum
environment, which is a commonly used benchmark consisting of a nonlinear and unstable
system. The goal of this task is to balance the inverted pendulum by applying torque that
will stabilize it in a vertically upright position. The state is a 2-dimensional vector denoted
by xt = [θt, θ̇t]

⊤, where the first entry θt is the deviation angle normalized between [−π, π]
and the second entry θ̇t is the rotational velocity. The action is a 1-dimensional ut = θ̈t
representing the torque applied on the system. The inverted pendulum environment is a
non-linear dynamical system with transitions

xt+1 =

[
θt+1

θ̇t+1

]
=

[
θt + cθ̇t

θ̇t + a sin(θt + π) + bθ̈t

]
.

and the online cost function is set as ct(xt, ut) = atθ
2
t + btθ̇

2
t + ctθ̈

2
t , where at = sin(t/(10π)),

bt = sin(t/(20π)), and ct = sin(t/(20π)) are slowly evolving parameters.

Contenders and Measure. We benchmark our proposed Scream.Control algorithm with
the following two algorithms: (1) OGD.Control, which uses the OGD algorithm for the
online non-stochastic control (Agarwal et al., 2019); (2) Ader.Control, Ader is an OCO al-
gorithm (Zhang et al., 2018a) that admits a two-layer structure and enjoys dynamic regret
guarantee. Although it cannot deal with the OCO with memory problem (see discussions
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(a) LDS, gradual
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(b) LDS, abrupt
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(c) Inverted Pendulum

Figure 2: Performance comparisons of different algorithms. The performance is measured
by the cumulative loss, the smaller the better. From left to right: (a) synthetic
time-varying LDS with gradual changes; (b) synthetic time-varying LDS with
abrupt changes; (c) real pendulum environments.

in Section 4.2), we apply it for online-non-stochastic control, serving to validate the ef-
fectiveness of our proposed switching-cost-regularized surrogate loss. We denote the three
control algorithms simply as “OGD”, “Ader”, and “Scream” when there is no confusion.
We record the cumulative loss as the performance measure, namely,

∑T
t=1 ct(xt, ut). We

repeat the experiments five times and report the mean and standard deviation.

Results. Figure 2 plots the performance comparison of three algorithms (OGD, Ader,
Scream) in terms of the cumulative cost. The result shows that our proposed algorithm
outperforms the other two contenders, which validates that the meta-base structure (com-
pared with OGD) and the switching-cost-regularizer (compared with Ader) are necessary
for online non-stochastic control problems in non-stationary environments.

7 Conclusion

This paper investigates the dynamic policy regret of online convex optimization with mem-
ory and online non-stochastic control. For OCO with memory, we propose the Scream
algorithm and prove an optimal O(

√
T (1 + PT )) dynamic policy regret, where PT is the

path length of comparators that reflects the environmental non-stationarity. Our approach
admits the meta-base online ensemble structure to handle uncertain environments and intro-
duces a novel meta-base decomposition via switching-cost regularized loss to algorithmically
address the tension between dynamic regret and switching cost. The approach is further
used to design robust controllers for online non-stochastic control, where the underlying dis-
turbance and cost functions could be chosen adversarially. We adopt the DAC parameteri-
zation and design the Scream.Control algorithm that provably achieves an Õ(

√
T (1 + PT ))

dynamic policy regret, where PT is the path length of compared controllers. Minimizing
dynamic policy regret facilitates our controller with more robustness, since it can compete
with any sequence of time-varying controllers instead of a fixed one.

In the future, we will explore the possibility of extension to bandit feedback, where the
only feedback to the controller is the loss value (Cassel and Koren, 2020; Gradu et al., 2020a).
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Moreover, it would be also intriguing to investigate whether dynamic policy regret can be
improved when the cost functions are strongly convex or exponentially concave (Foster and
Simchowitz, 2020; Baby and Wang, 2021, 2022).
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Appendix A. Preliminaries

In this section, we present the preliminaries, including the dynamic regret results of mem-
oryless online convex optimization, additional notions, and some technical lemmas.

A.1 Dynamic Regret of Memoryless OCO

In this part we present the dynamic regret analysis of the online gradient descent (OGD)
algorithm for memoryless online convex optimization (Zinkevich, 2003; Zhang et al., 2018a;
Zhao et al., 2020).

We first specify the problem settings and notations of memoryless online convex opti-
mization. Specifically, the player iteratively selects a decision w ∈ W from a convex set
W ⊆ Rd and then suffers a loss of ft(wt), in which the loss function ft : W 7→ R is assumed
to be convex and chosen adversarially by the environments. The performance measure we
are concerned with is the dynamic regret, defined as

D-RegretT (v1, . . . ,vT ) =

T∑
t=1

ft(wt)−
T∑
t=1

ft(vt),

where v1, . . . ,vT ∈ W is the comparator sequence arbitrarily chosen in the domain by the
environments. The critical advantage of the above measure is that it supports to compete
with a sequence of time-varying comparators, instead of a fixed one as specified in the
standard (static) regret.

In the development of dynamic regret of memoryless OCO, one of the most crucial
building blocks is the well-known Online Gradient Descent (OGD) algorithm (Zinkevich,
2003), which starts from any w1 ∈ W and performs the following update,

wt+1 = ΠW [wt − η∇ft(wt)]. (17)

Here, η > 0 is the step size and ΠW [·] denotes the Euclidean projection onto the nearest point
in the feasible domain W. The standard textbooks of online convex optimization (Shalev-
Shwartz, 2012; Hazan, 2016) show that OGD can achieves an optimal O(

√
T ) static regret
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for convex functions, providing with appropriate step size settings. Furthermore, such a
simple algorithm actually also enjoys the following dynamic regret guarantee (Zinkevich,
2003, Theorem 2), and we supply the proof for self-containedness.

Theorem 10. Let W ∈ Rd be a bounded convex and compact set in Euclidean space, and
we denote by D an upper bound of the diameter of the domain, i.e., ∥w − w′∥2 ≤ D
holds for any w,w′ ∈ W. Suppose the gradient norm of ft over W is bounded by G, i.e.,
∥∇ft(w)∥2 ≤ G holds for any w ∈ W and t ∈ [T ]. Then, OGD (17) enjoys the following
dynamic regret,

D-RegretT (v1, . . . ,vT ) ≤
η

2
G2T +

1

2η
(D2 + 2DPT ),

which holds for any comparator sequence v1, . . . ,vT ∈ W, and PT =
∑T

t=2∥vt−1 − vt∥2 is
the path length that measures the cumulative movements of the comparator sequence.

Proof Since the online functions are convex, we have

D-RegretT (v1, . . . ,vT ) =
T∑
t=1

ft(wt)−
T∑
t=1

ft(vt) ≤
T∑
t=1

⟨∇ft(wt),wt − vt⟩.

Thus, it suffices to bound the sum of ⟨∇ft(wt),wt−vt⟩ over iterations. Note that from
the update rule in (52),

∥wt+1 − vt∥22 = ∥ΠX [wt − η∇ft(wt)]− vt∥22
≤ ∥wt − η∇ft(wt)− vt∥22
= η2∥∇ft(wt)∥22 − 2η⟨∇ft(wt),wt − vt⟩+ ∥wt − vt∥22

The inequality holds due to Pythagorean theorem (Hazan, 2016, Theorem 2.1). After
rearranging, we obtain

⟨∇ft(wt),wt − vt⟩ ≤
η

2
∥∇ft(wt)∥22 +

1

2η

(
∥wt − vt∥22 − ∥wt+1 − vt∥22

)
.

Summing the above inequality from t = 1 to T yields,

D-RegretT (v1, . . . ,vT ) ≤
η

2

T∑
t=1

∥∇ft(wt)∥22 +
1

2η

T∑
t=1

(
∥wt − vt∥22 − ∥wt+1 − vt∥22

)
.

We further provide an upper bound for the second term on the right-hand side. Indeed,

T∑
t=1

(
∥wt − vt∥22 − ∥wt+1 − vt∥22

)
≤

T∑
t=1

∥wt − vt∥22 −
T∑
t=2

∥wt − vt−1∥22

≤ ∥w1 − v1∥22 +
T∑
t=2

(
∥wt − vt∥22 − ∥wt − vt−1∥22

)
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= ∥w1 − v1∥22 +
T∑
t=2

⟨vt−1 − vt, 2wt − vt−1 − vt⟩ ≤ D2 + 2D
T∑
t=2

∥vt−1 − vt∥2.

Combining all above inequalities, we have

D-RegretT (v1, . . . ,vT ) ≤
η

2

T∑
t=1

∥∇ft(wt)∥22 +
1

2η

(
D2 + 2D

T∑
t=2

∥vt−1 − vt∥2

)

≤ η

2
G2T +

1

2η
(D2 + 2DPT ).

Hence, we complete the proof.

A.2 Additional Notions

We introduce the formal definition of strongly stable linear controllers (Cohen et al., 2018;
Agarwal et al., 2019). Indeed, the stable condition can guarantee the convergence, but
nothing can be ensured about the rate of convergence. While working on the class of
strongly stable controllers, we can establish the non-asymptotic convergence rate.

Definition 4. A linear controller K is (κ, γ)-strongly stable if there exist matrices L,H
satisfying A−BK = HLH−1, such that the following two conditions are satisfied:

(i) The spectral norm of L satisfies ∥L∥ ≤ 1− γ.

(ii) The controller and transforming matrices are bounded, i.e., ∥K∥, ∥H∥, ∥H−1∥ ≤ κ.

A.3 Technical Lemmas

The following lemmas are important in analyzing algorithms based on the mirror descent.

Lemma 11 (Lemma 3.2 of Chen and Teboulle (1993)). Let X be a convex set in a Banach
space B and f : X 7→ R be a closed proper convex function on X . Given a convex regularizer
ψ : X 7→ R and its induced Bregman divergence Dψ(·, ·), any update of the form

xk = argmin
x∈X

{f(x) +Dψ(x,xk−1)}

satisfies the following inequality for any u ∈ X ,

f(xk)− f(u) ≤ Dψ(u,xk−1)−Dψ(u,xk)−Dψ(xk,xk−1).

Lemma 12. If the regularizer ψ : X 7→ R is λ-strongly convex with respect to a norm ∥ · ∥,
then the induced Bregman divergence is lower-bounded as Dψ(x,y) ≥ λ

2∥x− y∥2.
Proof By the definition of strong convexity, we know that for any x,y ∈ X , ψ(x) ≥ ψ(y)+
∇ψ(y)⊤(x− y) + λ

2∥x− y∥2. Reformulating the inequality and combining the definition of

Bregman divergence, we know that Dψ(x,y) ≜ ψ(x)−ψ(y)+∇ψ(y)⊤(x−y) ≥ λ
2∥x−y∥2,

which ends the proof.

The following concentration inequality is used in analyzing dynamic policy regret for
non-stochastic control with unknown systems.
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Lemma 13 (Azuma-Hoeffding’s Inequality for Vectors (Hayes, 2005, Theorem 1.8)). Sup-
pose that Sm =

∑m
t=1Xt is a martingale where X1, . . . , Xm take values in Rn and are such

that E[Xt] = 0 and ∥Xt∥2 ≤ D for all t, for t > 0. Then for every ε > 0,

Pr[∥Sm∥2 ≥ ε] ≤ 2e2e−
ε2

2mD2 .

Appendix B. Omitted Details for Section 4 (OCO with Memory)

In this section, we present omitted details for Section 4 OCO with memory, including proofs
of Theorem 1 (in Appendix B.1) and Theorem 2 (in Appendix B.4). Moreover, we provide
the proof of the switching cost decomposition (5) in Appendix B.2 and supply more details
for the online mirror descent in Appendix B.3. The proofs of Theorem 2, Theorem 3,
Theorem 4, Theorem 5 are listed in the following sections. We finally discuss the memory
dependence in Appendix B.8.

B.1 Proof of Theorem 1

Proof The coordinate-Lipschitz continuity of ft (Assumption 1) implies that

|ft(wt−m, . . . ,wt)− f̃t(wt)| ≤ L ·
m∑
i=1

∥wt −wt−i∥2 ≤ mL
m∑
i=1

∥wt−i+1 −wt−i∥2.

Therefore, we have

T∑
t=m

ft(wt−m, . . . ,wt)−
T∑
t=m

f̃t(wt) ≤ m2L
T∑
t=m

∥wt −wt−1∥2, (18)

and the dynamic policy regret can be thus upper bounded by

D-RegretT (v1, . . . ,vT ) =

T∑
t=1

ft(wt−m, . . . ,wt)−
T∑
t=1

ft(vt−m, . . . ,vt)

(18)

≤
T∑
t=1

f̃t(wt)−
T∑
t=1

f̃t(vt)︸ ︷︷ ︸
dynamic regret over unary loss

+ λ

T∑
t=1

∥wt −wt−1∥2︸ ︷︷ ︸
switching cost of decisions

+ λ

T∑
t=1

∥vt − vt−1∥2︸ ︷︷ ︸
switching cost of comparators

,

(19)

where we define λ ≜ m2L for notational convenience. Note that the first term is the
dynamic regret over the unary loss, which is optimized by OGD over the unary loss. Since
the sequence of unary loss {f̃t}Tt=1 is convex and memoryless, from the standard dynamic
regret analysis (Zinkevich, 2003; Zhang et al., 2018a), as shown in Theorem 10, we get

T∑
t=1

f̃t(wt)−
T∑
t=1

f̃t(vt) ≤
η

2
G2T +

1

2η
(D2 + 2DPT ), (20)

where PT =
∑T

t=2∥vt−vt−1∥2 is the path length measuring the fluctuation of the comparator
sequence v1,v2, . . . ,vT . Next, the last term of (19) is the switching cost of the comparators,
which is exactly the path length λPT .
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So we only need to further examine the switching cost of the decisions, i.e.,
∑T

t=2∥wt−1−
wt∥2, as well as the dynamic regret over the unary loss, i.e.,

∑T
t=1 f̃t(wt)−

∑T
t=1 f̃t(vt). By

the non-expansive property of the projection operator, we can derive an upper bound for
the switching cost:

T∑
t=1

∥wt −wt−1∥2 =
T∑
t=1

∥ΠW [wt−1 − η∇f̃t(wt−1)]−wt−1∥2 ≤ η
T∑
t=1

∥∇f̃t(wt−1)∥2 ≤ ηGT.

(21)
Combining above two inequalities (21) and (20) yields

T∑
t=1

ft(wt−m, . . . ,wt)−
T∑
t=1

ft(vt−m, . . . ,vt) ≤
η

2
(G2 + 2λG)T +

1

2η
(D2 + 2DPT ) + λPT ,

with λ = m2L. We thus compete the proof.

B.2 Proof of Switching Cost Decomposition

The following lemma restates the switching cost decomposition presented in (5).

Lemma 14. The switching cost of meta-base outputs can be upper bounded as

T∑
t=2

∥wt −wt−1∥2 ≤ D

T∑
t=2

∥pt − pt−1∥1 +
T∑
t=2

N∑
i=1

pt,i∥wt,i −wt−1,i∥2.

Proof By the meta-base structure, the final decision of each round is wt =
∑N

i=1 pt,iwt,i.
Therefore, we can expand the switching cost of the final prediction sequence as

∥wt −wt−1∥2 =

∥∥∥∥∥
N∑
i=1

pt,iwt,i −
N∑
i=1

pt−1,iwt−1,i

∥∥∥∥∥
2

≤

∥∥∥∥∥
N∑
i=1

pt,iwt,i −
N∑
i=1

pt,iwt−1,i

∥∥∥∥∥
2

+

∥∥∥∥∥
N∑
i=1

pt,iwt−1,i −
N∑
i=1

pt−1,iwt−1,i

∥∥∥∥∥
2

≤
N∑
i=1

pt,i∥wt,i −wt−1,i∥2 +D

N∑
i=1

|pt,i − pt−1,i|

=

N∑
i=1

pt,i∥wt,i −wt−1,i∥2 +D∥pt − pt−1∥1, (22)

where the second step holds due to the triangle inequality and the third step is true due
to the boundedness of the feasible domain (Assumption 3). Hence, we complete the proof.
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B.3 Additional Results for Online Mirror Descent

In this section, we present additional results and descriptions for Online Mirror Descent
(OMD), which enables a unified view for algorithm design of both meta-algorithm and
base-algorithm.

Consider the standard online convex optimization setting, and the sequence of online
convex functions are {ht}t=1,...,T with ht : W 7→ R. Online mirror descent starts from any
w1 ∈ W, and at iteration t, the algorithm performs the following update:

wt+1 = argmin
w∈W

η⟨∇ht(wt),w⟩+Dψ(w,wt), (23)

where η > 0 is the step size. The regularizer ψ : W 7→ R is a differentiable convex function
defined on W and is assumed (without loss of generality) to be 1-strongly convex w.r.t.
some norm ∥ · ∥ over W. The induced Bregman divergence Dψ is defined by Dψ(x,y) =
ψ(x)− ψ(y)− ⟨∇ψ(y),x− y⟩.

The following generic result gives an upper bound of dynamic regret with switching cost
of OMD, which can be regarded as a generalization of Theorem 1 from gradient descent
(for Euclidean norm) to mirror descent (for general primal-dual norm).

Theorem 15. Online Mirror Descent (23) satisfies that

T∑
t=1

ht(wt)−
T∑
t=1

ht(vt) + λ

T∑
t=2

∥wt −wt−1∥ ≤ 1

η

(
R2 + γPT

)
+ η(λG+G2)T, (24)

provided that Dψ(x, z) − Dψ(y, z) ≤ γ∥x − y∥ holds for any x,y, z ∈ W. In above, R2 =
supx,y∈W Dψ(x,y), and G = supw∈W,t∈[T ]∥∇ht(w)∥∗. Note that the above result holds for
any comparator sequence v1, . . . ,vT ∈ W.

Remark 3. The dynamic regret of Theorem 15 holds against any comparator sequence in
the domain. In particular, we can set them as the best fixed decision in hindsight and thus
obtain static regret with switching cost,

∑T
t=1 ht(wt)−

∑T
t=1 ht(w

∗)+λ
∑T

t=2∥wt−wt−1∥ ≤
R2/η+ η(λG+G2)T , that holds for any w∗ ∈ W. A technical caveat is that when deriving
the static regret, the Bregman divergence is not required to satisfy the Lipschitz condition.

Theorem 15 exhibits a general analysis for the dynamic regret and switching cost of
OMD. By flexibly choosing the regularizer ψ and comparator sequence v1, . . . ,vT , we have
the following two implications, which correspond to base-regret (dynamic regret with switch-
ing cost of OGD) and meta-regret (static regret with switching cost of Hedge) respectively.

Before presenting the proof of Theorem 15, we first analyze the switching cost of the
online mirror descent, as demonstrated in the following stability lemma.

Lemma 16. For Online Mirror Descent (23), the instantaneous switching cost is at most

∥wt −wt+1∥ ≤ η∥∇ht(wt)∥∗. (25)

Proof From the update procedure of OMD (23) and Lemma 11, we know that

⟨wt+1 −wt, η∇ht(wt)⟩ ≤ Dψ(wt,wt)−Dψ(wt,wt+1)−Dψ(wt+1,wt),
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which implies

Dψ(wt,wt+1) +Dψ(wt+1,wt) ≤ ⟨wt −wt+1, η∇ht(wt)⟩.

Since the regularizer ψ is chosen as a 1-strongly convex function with respect to the norm
∥ · ∥, by Lemma 12 we have

Dψ(wt,wt+1) +Dψ(wt+1,wt) ≥ ∥wt −wt+1∥2.

Combining above two inequalities and further applying the Hölder’s inequality, we obtain

∥wt −wt+1∥2 ≤ ⟨wt −wt+1, η∇ht(wt)⟩ ≤ ∥wt −wt+1∥∥η∇ht(wt)∥∗.

Therefore, we conclude that ∥wt −wt+1∥ ≤ η∥∇ht(wt)∥∗ and finish the proof.

Based on the above stability lemma, we can now prove Theorem 15 regarding dynamic
regret with switching cost for OMD.
Proof [of Theorem 15] Notice that the dynamic regret can be decomposed as follows:

T∑
t=1

ht(wt)−
T∑
t=1

ht(vt) ≤
T∑
t=1

⟨∇ht(wt),wt − vt⟩

=
T∑
t=1

⟨∇ht(wt),wt −wt+1⟩︸ ︷︷ ︸
term (a)

+
T∑
t=1

⟨∇ht(wt),wt+1 − vt⟩︸ ︷︷ ︸
term (b)

.

From Lemma 16 and Hölder’s inequality, we have

term (a) ≤
T∑
t=1

∥∇ht(wt)∥∗∥wt −wt+1∥ ≤ η

T∑
t=1

∥∇ht(wt)∥2∗. (26)

Next, we investigate the term (b):

term (b) ≤ 1

η

T∑
t=1

(Dψ(vt,wt)−Dψ(vt,wt+1)−Dψ(wt+1,wt))

≤ 1

η

T∑
t=2

(Dψ(vt,wt)−Dψ(vt−1,wt)) +Dψ(v1,w1)

≤ γ

η

T∑
t=2

∥vt − vt−1∥+
1

η
R2, (27)

where the first inequality holds due to Lemma 11, and the second inequality makes uses
of the non-negativity of the Bregman divergence. The last inequality holds due to the
assumption of Lipschitz property that Dψ(x, z)−Dψ(y, z) ≤ γ∥x−y∥ holds for any x,y, z ∈
W. Furthermore, the switching cost can be bounded by Lemma 16,

T∑
t=2

∥wt −wt−1∥ ≤ η

T∑
t=2

∥∇ht−1(wt−1)∥∗. (28)

31



Zhao, Yan, Wang, and Zhou

Combining (26), (27), and (28), we can attain that

λ

T∑
t=2

∥wt −wt−1∥+
T∑
t=1

ht(wt)−
T∑
t=1

ht(vt)

≤ 1

η
(R2 + γPT ) + η

T∑
t=1

(λ∥∇ht(wt)∥∗ + ∥∇ht−1(wt−1)∥2∗)

≤ 1

η
(R2 + γPT ) + η(λG+G2)T,

which finishes the proof.

As we mentioned earlier, Theorem 1 can be regarded as a corollary of Theorem 15, by
specifying the Euclidean norm and ψ(w) = 1

2∥w∥22. We give a formal statement in the
following corollary.

Corollary 17. Setting the ℓ2 regularizer ψ(w) = 1
2∥w∥22 and step size η > 0 for OMD,

suppose ∥∇f̃t(w)∥2 ≤ G and ∥w−w′∥2 ≤ D hold for all w ∈ W and t ∈ [T ], then we have

λ

T∑
t=2

∥wt −wt−1∥2 +
T∑
t=1

f̃t(wt)−
T∑
t=1

f̃t(vt) ≤ (G2 + λG)ηT +
1

2η
(D2 + 2DPT ), (29)

which holds for any comparator sequence v1, . . . ,vT ∈ W, and PT =
∑T

t=2∥vt−1 − vt∥2 is
the path length that measures the cumulative movements of the comparator sequence.

Further, we present a corollary regarding the static regret with switching cost for the
meta-algorithm, which is essentially a specialization of OMD algorithm by setting the
negative-entropy regularizer.

Corollary 18. Setting the negative-entropy regularizer ψ(p) =
∑N

i=1 pi log pi and learning
rate ε > 0 for OMD, suppose ∥ℓt∥∞ ≤ G holds for any t ∈ [T ] and the algorithm starts from
the initial weight p1 ∈ ∆N , then we have

λ
T∑
t=2

∥pt − pt−1∥1 +
T∑
t=1

⟨pt, ℓt⟩ −
T∑
t=1

ℓt,i ≤
ln(1/p1,i)

ε
+ ε(λG+G2)T. (30)

Proof From the proof of Theorem 15, we can easily obtain that

λ

T∑
t=2

∥pt − pt−1∥1 +
T∑
t=1

⟨pt, ℓt⟩ −
T∑
t=1

ℓt,i ≤
Dψ(ei,p1)

ε
+ ε(λG+G2)T.

When choosing the negative-entropy regularizer, the induced Bregman divergence becomes
Kullback-Leibler divergence, i.e., Dψ(q,p) = KL(q,p) =

∑N
i=1 qi ln(qi/pi). Therefore,

Dψ(ei,p1) = ln(1/p1,i), which implies the desired result.
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B.4 Proof of Theorem 2

Proof As indicated in (19), the dynamic policy regret can be upper bounded by three terms,
including dynamic regret over the unary regret, switching cost of decisions, and switching
cost of comparators. The third term is essentially the path length of the comparators, and
we focus on the first two terms.

T∑
t=1

f̃t(wt)−
T∑
t=1

f̃t(vt) + λ
T∑
t=2

∥wt −wt−1∥2

(5)

≤
T∑
t=1

⟨∇f̃t(wt),wt − vt⟩+ λD
T∑
t=2

∥pt − pt−1∥1 + λ
T∑
t=2

N∑
i=1

pt,i∥wt,i −wt−1,i∥2

=
T∑
t=1

N∑
i=1

pt,i

(
⟨∇f̃t(wt),wt,i⟩+ λ∥wt,i −wt−1,i∥2

)
−

T∑
t=1

(
⟨∇f̃t(wt),wt,i⟩+ λ∥wt,i −wt−1,i∥2

)
+ λD

T∑
t=2

∥pt − pt−1∥1 +
T∑
t=1

(
⟨∇f̃t(wt),wt,i⟩ − ⟨∇f̃t(wt),vt⟩

)
+ λ

T∑
t=2

∥wt,i −wt−1,i∥2

=
T∑
t=1

(
⟨pt, ℓt⟩ − ℓt,i

)
+ λD

T∑
t=2

∥pt − pt−1∥1︸ ︷︷ ︸
meta-regret

+
T∑
t=1

(
gt(wt,i)− gt(vt)

)
+ λ

T∑
t=2

∥wt,i −wt−1,i∥2︸ ︷︷ ︸
base-regret

,

where the last step uses the convexity of f̃t and the definition of linearized loss gt(w) =
⟨∇f̃t(wt),w⟩. We will formally prove that our proposed algorithm optimizes the right-hand
side of above inequality.

Bounding Meta-regret. Denote by ei the i-th standard basis of RN -space and by λ′ =
λD for simplicity. Denote by Gmeta = maxt∈[T ]∥ℓt∥∞ the maximum scale of the loss of
meta-algorithm. Since the meta-algorithm actually performs Hedge over the switching-
cost-regularized loss ℓt ∈ RN , Corollary 18 implies that for any i ∈ [N ],

T∑
t=1

⟨pt, ℓt⟩ −
T∑
t=1

ℓt,i + λ′
T∑
t=2

∥pt − pt−1∥1 ≤ ε(λ′Gmeta +G2
meta)T +

Dψ(ei,p1)

ε

= ε(λD +Gmeta)GmetaT +
ln(1/p1,i)

ε

≤ ε(λD +Gmeta)GmetaT +
2 ln(i+ 1)

ε
,

(31)

where the last step holds because we adopt a non-uniform weight initialization with the
initial weight p1 ∈ ∆N set as p1,i =

1
i(i+1) ·

N+1
N for any i ∈ [N ]. By choosing the learning

rate as ε = ε∗ =
√

2
Gmeta(λD+Gmeta)T

, we can obtain the following upper bound for the

meta-regret,

T∑
t=1

⟨pt, ℓt⟩ −
T∑
t=1

ℓt,i + λ′
T∑
t=2

∥pt − pt−1∥1 ≤
√
2Gmeta(λD +Gmeta)T (1 + ln(i+ 1)) . (32)
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Note that the dependence of learning rate tuning on T can be removed by either a time-
varying tuning or doubling trick. We now present an upper bound for Gmeta, indeed,

ℓt,i = ⟨∇f̃t(wt),wt,i⟩+ λ∥wt,i −wt−1,i∥2 ≤ ⟨∇f̃t(wt),wt,i⟩+ ληi∥∇f̃t(wt)∥2

≤ GD + ληiG ≤ GD + ληNG ≤ GD

(
1 + 2λ

√
1

λG+G2

)
= O(

√
λ). (33)

Bounding Base-regret. As specified by our algorithm, there are multiple base-learners,
each performing OGD over the linearized loss with a particular step size ηi ∈ H for base-
learner Bi:

wt+1,i = ΠW [wt,i − ηi∇gt(wt,i)] = ΠW [wt,i − ηi∇f̃t(wt)].

As a result, Theorem 15 implies that the base-regret satisfies

T∑
t=1

gt(wt,i)−
T∑
t=1

gt(vt) + λ

T∑
t=2

∥wt,i −wt−1,i∥2 ≤ (G2 + λG)ηiT +
1

2ηi
(D2 + 2DPT ), (34)

which holds for any comparator sequence v1, . . . ,vT ∈ W as well as any base-learner i ∈ [N ].

Bounding Overall Dynamic Regret. Due to the boundedness of the path length, we
know that the optimal step size η∗ provably lies in the range of [η1, ηN ]. Furthermore, by
the construction of the pool of candidate step sizes, we can confirm that there exists an
index i∗ ∈ [N ] ensuring ηi∗ ≤ η∗ ≤ ηi∗+1 = 2ηi∗ . Therefore, we have

i∗ ≤
⌈1
2
log2

(
1 +

2PT
D

)⌉
+ 1. (35)

Notice that the meta-base decomposition at the beginning of the proof holds for any index
of base-learners i ∈ [N ]. Thus, in particular, we can choose the index i∗ and achieve the
following result by using the upper bounds of meta-regret (32) and base-regret (34).

T∑
t=1

f̃t(wt)−
T∑
t=1

f̃t(vt) + λ

T∑
t=2

∥wt −wt−1∥2

≤
T∑
t=1

(
⟨pt, ℓt⟩ − ℓt,i∗

)
+ λD

T∑
t=2

∥pt − pt−1∥1︸ ︷︷ ︸
meta-regret

+

T∑
t=1

(
gt(wt,i∗)− gt(vt)

)
+ λ

T∑
t=2

∥wt,i∗ −wt−1,i∗∥2︸ ︷︷ ︸
base-regret

≤
√
2Gmeta(λD +Gmeta)T (1 + ln(i∗ + 1)) + (G2 + λG)ηi∗T +

1

2ηi∗
(D2 + 2DPT )

≤
√

2Gmeta(λD +Gmeta)T (1 + ln(i∗ + 1)) + (G2 + λG)η∗T +
1

η∗
(D2 + 2DPT )

≲
√
2(GD +

√
λ)(λD +GD +

√
λ)T (1 + ln(i∗ + 1)) +

√
(G2 + λG)(D2 + 2DPT )T (36)

≤ O
(
λ

3
4

√
T (1 + log logPT )

)
+O

(√
λT (1 + PT )

)
,
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where in (36), we use a ≲ b to represent a = O(b). Therefore, we have

D-RegretT (v1:T ) ≤
T∑
t=1

f̃t(wt)−
T∑
t=1

f̃t(vt) + λ
T∑
t=2

∥wt −wt−1∥2 + λ
T∑
t=2

∥vt − vt−1∥2

≤ O
(
λ

3
4

√
T (1 + log logPT ) +

√
λT (1 + PT ) + λPT

)
≤ O(

√
T (1 + PT )).

The last step omits the dependence on λ. Moreover, the inequality holds due to the following
observation:

D-RegretT (v1:T ) ≤ O(
√
T (1 + PT )) +O(PT )

≤ O(
√
T (1 + PT ) + P 2

T ) (
√
a+

√
b ≤

√
2(a+ b))

= O(
√
T + (T + PT )PT )

≤ O(
√
T (1 + PT )),

where the last step holds as PT =
∑T

t=2∥vt − vt−1∥2 ≤ DT due to the boundedness of the
domain. We hence complete the proof of Theorem 2.

B.5 Proof of Theorem 3

Proof First, we show that for any λ > 0 and C > 0, the original online learning problem
can be reduced to optimize the following one through a shifting operation,

T∑
t=1

⟨ℓ′t,p′
t⟩ −

T∑
t=1

ℓ′t,i∗ + λ

T∑
t=2

∥p′
t − p′

t−1∥1, (37)

where ℓ′t,i ≜ ℓt,i + C,p′
t ≜ pt for all t ∈ [T ], i ∈ [N ], and evidently ℓ′t,i ∈ [0, 2C]. The

above equivalence can be simply proven by plugging the definition of ℓ′t,i and p′
t into (37).

Formally,

T∑
t=1

⟨ℓ′t,p′
t⟩ −

T∑
t=1

ℓ′t,i∗ + λ
T∑
t=2

∥p′
t − p′

t−1∥1

=
T∑
t=1

⟨ℓt + [C, . . . , C]⊤,pt⟩ −
T∑
t=1

(ℓt,i∗ + C) + λ

T∑
t=2

∥pt − pt−1∥1

=

T∑
t=1

⟨ℓt,pt⟩ −
T∑
t=1

ℓt,i∗ + λ
T∑
t=2

∥pt − pt−1∥1.

Next, we prove that there exists a sequence of loss functions ℓ′1, . . . , ℓ
′
T satisfying ℓ′t ∈

[0, 2C]N for all t ∈ [T ] such that any feasible expert algorithm (whose output is p′
1, . . . ,p

′
T ∈

∆N ) incurs the following regret

T∑
t=1

⟨ℓ′t,p′
t⟩ −

T∑
t=1

ℓ′t,i∗ + λ
T∑
t=2

∥p′
t − p′

t−1∥1 ≥ Ω(
√
λCT ).
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The remaining proof borrows the intuition from Theorem 13 of Altschuler and Talwar
(2018). First we give a hard constraint on the switching cost, e.g.,

∑T
t=2 ∥p′

t − p′
t−1∥1 = S.

Then we divide the time horizon T into B = 4S2/(a2 logN) blocks, each of uniform length
T/B, where a is some constant to be specified later. For each block b ∈ [B], assign to each
expert i ∈ [N ] a loss sampled from 2C ·Ber(1/2), i.e., 2C with probability 1/2 and otherwise
0, for each iteration in that block. Clearly this adversary is oblivious.

Note that the cumulative loss of the i-th expert, namely,
∑T

t=1 ℓ
′
t(i), is equal in distri-

bution to T/B times a 2C ·Bin(B, 1/2) random variable. In the following, we first consider
the expected cumulative loss of the best expert. Suppose there are N variables drawn i.i.d.
from Bin(B, 1/2), then the minimum one has the following upper bound.

Lemma 19. There exists a universal constant c > 0 such that for all B,N ∈ N+,

E
[
min
i∈[N ]

Zi

]
≤ B

2
− c
√
B logN

where {Zi}i∈[N ] are i.i.d. from Bin(B, 1/2).

The adversary chooses a to be the constant that makes Lemma 19 holds. Thus the loss
of the best expert satisfies that

E

[
T∑
t=1

ℓ′t(i
∗)

]
≤ 2C · T

B

(
B

2
− a
√
B logN

)

= 2C ·

(
T

2
− aT

√
logN

B

)
= 2C ·

(
T

2
− a2T logN

2S

)
.

(38)

Now let us compute the expected loss of any algorithm A whose switching cost is at most
S. It is simple to see that the following strategy is optimal: in the first round of each block,
randomly assign the weights since there is no information about the losses of the experts;
then convert the weight on the bad experts (with loss 2C) to the good experts (with loss
0) if the current switching cost is still less than S. Let the random variable W denote the
total weights that the algorithm assigns to the bad experts in the blocks’ first iteration.
Clearly E[W ] = B/2. Then the random variable min{W,S/2} is equal to the weights that
algorithm A can convert from bad experts to good expert (S/2 dues to that converting
weight of S/2 will suffers S switching cost). Thus, we have

E[cumulative loss of A] = 2C · E[A’s weights on bad experts]

= 2C · E
[
min

{
W,

S

2

}
+
T

B
·
(
W −min

{
W,

S

2

})]
≥ 2C · T

B
· E
[
W − S

2

]
≥ 2C · T

B

(
B

2
− 2S

)
= 2C ·

(
T

2
− 2ST

B

)
= 2C ·

(
T

2
− a2T logN

2S

)
. (39)

Combining (38) and (39), we conclude that any algorithm for λ-switching cost and S-
switching cost budget suffers an expected regret at least a2CT logN/S = Ω(CT/S). As
a result, the regret of (37) is at least Ω(CT/S+λS) = Ω(

√
λCT ), which finishes the proof.
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B.6 Proof of Theorem 4

Proof We begin the proof by decomposing the dynamic regret of OCO with switching
cost, and will then prove the theorem by exploiting the property of Scream algorithm.

Regret Decomposition. We divide the time horizon T into K epochs of equal length
∆, where the k-th epoch is denoted by Ik ≜ {tk,1, . . . , tk,∆} (∆,K to be specified later).
Without loss of generality, we assume T = K ·∆. Since in Algorithm 2, the meta-learner
and base-learners do not update within each epoch, we denote by ẘ1, . . . , ẘK the decisions
of K epochs. Thus the dynamic regret of OCO with switching cost can be decomposed as

T∑
t=1

f̃t(wt)−
T∑
t=1

f̃t(vt) + λ

T∑
t=2

∥wt −wt−1∥2 ≤
T∑
t=1

⟨∇t,wt − vt⟩+ λ

T∑
t=2

∥wt −wt−1∥2

=

K∑
k=1

∑
t∈Ik

⟨∇t, ẘk − vt⟩+ λ

K∑
k=2

∥ẘk − ẘk−1∥2

=

K∑
k=1

〈∑
t∈Ik

∇t, ẘk − v̊k

〉
+ λ

K∑
k=2

∥ẘk − ẘk−1∥2︸ ︷︷ ︸
term (A)

+

K∑
k=1

∑
t∈Ik

⟨∇t, v̊k − vt⟩︸ ︷︷ ︸
term (B)

,

where ∇t ≜ ∇f̃t(wt) and the k-th comparator v̊k ≜ vtk,1 is chosen as the first one in the

k-th epoch. Define gk ≜
∑

t∈Ik ∇t the loss of the k-epoch. Intuitively, term (A) is the
dynamic regret of OCO with switching cost in K rounds with the loss sequence g1:K and
comparator sequence v̊1:K . Since the new comparator sequence is artificially constructed,
we need to measure its difference from the original sequence v1:T , i.e., term (B). Term (B)
can be simply bounded using the sub-additivity property of vector norms, formally,

term (B) ≤ G
K∑
k=1

∑
t∈Ik

∥v̊k − vt∥2 ≤ G

K∑
k=1

|Ik|
∑
t∈Ik

∥vt − vt−1∥2 ≤ G∆PT .

Black-box Use of Scream. Term (A) is actually the dynamic regret of OCO with
switching cost in K rounds. Plugging in the regret bound of Scream (36), it holds that

term (A) =
K∑
k=1

⟨gk, ẘk − v̊k⟩+ λ
K∑
k=2

∥ẘk − ẘk−1∥2

≲
√
2(G′D +

√
λ)(λD +G′D +

√
λ)K (1 + ln(i∗K + 1)) +

√(
G′2 + λG′

)
(D2 + 2DPK)K

≲

√
2(∆GD +

√
λ)(λD +∆GD)

T

∆
(1 + ln(i∗K + 1)) +

√
(∆2G2 + λ∆G) (D2 + 2DPK)

T

∆

=

√
2D(∆GD +

√
λ)

(
λ

∆
+G

)
T (1 + ln(i∗K + 1)) +

√
(∆G2 + λG) (D2 + 2DPK)T

≤ O(
√
λT (1 + PT )),
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where the path length in K epochs PK ≜
∑K

k=2∥v̊k − v̊k−1∥2 ≤ PT , the gradient upper
bound G′ = maxk∈[K]∥gk∥2 ≤ ∆G and a ≲ b means a = O(b). The last step is due to the
property of the best base learner, that is,

i∗K
(35)

≤
⌈1
2
log2

(
1 +

2PK
D

)⌉
+ 1 ≤

⌈1
2
log2

(
1 +

2PT
D

)⌉
+ 1,

and by choosing ∆ =
√
λ. Combining the above inequality with the upper bound of

term (B) ≤ G
√
λPT = O(

√
λT (1 + PT )) finishes the proof.

B.7 Proof of Theorem 5

Proof Overall the proof consists of two parts. First, we propose a lower bound for static
regret of OCO with switching cost. Second, building upon the static regret lower bound, we
give a lower bound for dynamic regret of OCO with switching cost to complete the proof.

Static Regret Lower Bound. To give a static regret lower bound, we first consider a
T -round prediction with expert advice problem with λ-switching cost. Theorem 3 shows
that given λ > 0 and C > 0, there exists a sequence of loss functions ℓ1, . . . , ℓT satisfying
ℓt ∈ [−C,C]N for all t ∈ [T ] such that any feasible expert algorithm (whose output is
p1, . . . ,pT ∈ ∆N ) incurs the following regret

T∑
t=1

⟨ℓt,pt⟩ − min
i∈[N ]

T∑
t=1

ℓt,i + λ

T∑
t=2

∥pt − pt−1∥1 ≥ Ω(
√
λCT ). (40)

Consequently, given a parameter λ > 0, we choose the feasible domain asW = C1∆N , where
C1 = min{1, D/

√
2}. It is easy to observe that W satisfies Assumption 3, because for any

p1,p2 ∈ ∆N , ∥C1p1−C1p2∥2 ≤ C1 ·
√
2 ≤ D holds. Choose C2 = G/

√
N and loss functions

as ht(w) = ⟨ℓt,w⟩, where ℓ1:T is the loss sequence that makes (40) holds given C2 and λ.
Since for any w ∈ W, ∥∇ht(w)∥2 = ∥ℓt∥2 ≤ C2

√
N ≤ G, the loss functions h1, . . . , hT

satisfy Assumption 2. Thus any online algorithm returning w′
1 ≜ C1w1, . . . ,w

′
T ≜ C1wT ∈

W satisfies

T∑
t=1

ht(w
′
t)− min

v∈W

T∑
t=1

ht(v) + λ

T∑
t=2

∥w′
t −w′

t−1∥2

= C1

(
T∑
t=1

⟨ℓt,wt⟩ − min
v∈∆N

T∑
t=1

⟨ℓt,v⟩+ λ

T∑
t=2

∥wt −wt−1∥2

)

≥ C1

(
T∑
t=1

⟨ℓt,wt⟩ − min
i∈[N ]

T∑
t=1

ℓt,i +
λ√
d

T∑
t=2

∥wt −wt−1∥1

)
(40)

≥ C1Ω(
√
λC2T ) = Ω(

√
λT ), (41)

where the first step is by plugging in the definition of h1, . . . , hT and w′
1, . . . ,w

′
T , the second

step is because the optimizer in a simplex is on one of its vertices and the relationship
between ℓ1-norm and ℓ2-norm, formally, ∥x−y∥1 ≤

√
d · ∥x−y∥2, for any x,y ∈ Rd, where

d denotes the dimension.
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Dynamic Regret Lower Bound. We consider two cases according to the value of τ .
When τ ≤ D, we can always find a comparator sequence v1, . . . ,vT ∈ W such that

T∑
t=1

ht(wt)−
T∑
t=1

ht(vt) + λ
T∑
t=2

∥wt −wt−1∥2

≥
T∑
t=1

ht(wt)− min
v∈W

T∑
t=1

ht(v) + λ
T∑
t=2

∥wt −wt−1∥2
(41)

≥ Ω(
√
λT ) = Ω(

√
λτT ),

where the last step holds since τ ≤ D can be seen as a constant and thus will not affect the
order. Next, we consider the case τ ∈ (D,DT ]. Without loss of generality, we assume ⌈τ⌉
divides T and let K = T/⌈τ⌉. To proceed, we construct the following piecewise-stationary
comparator sequence v1, . . . ,vT : for any i ∈ [⌈τ⌉], denote by Ii = [(i − 1)K + 1, iK] the
i-th interval, the comparators within the interval are set as

v(i−1)K+1 = v(i−1)K+2 = · · · = viK ∈ argmin
v∈W

∑
t∈Ii

ht(v).

Note that the path length of this comparator sequence does not exceeds τD. Thus, the
dynamic regret competing with the comparator sequence v1, . . . ,vT can be evaluated as,

T∑
t=1

ht(wt)−
T∑
t=1

ht(vt) + λ
T∑
t=2

∥wt −wt−1∥2

≥
⌈τ⌉∑
i=1

∑
t∈Ii

ht(wt)− min
v∈W

∑
t∈Ii

ht(v) + λ
iK∑

t=(i−1)K+2

∥wt −wt−1∥2


(41)

≳
⌈τ⌉∑
i=1

√
λ|Ii| = ⌈τ⌉

√
λ · T

⌈τ⌉
≥

√
λτT ,

where the first inequality is true by ignoring the switching cost between two consecutive
pieces. In addition, a ≳ b means a = Ω(b). Hence, we complete the proof.

B.8 Discussion on Memory Dependence

In this part, we examine a subtle issue: the memory dependence of our static policy regret
bound (an implication of the dynamic policy regret bound in Theorem 2) and that of existing
work (Anava et al., 2015).

First, we state our attained static policy regret for OCO with memory via performing
OGD over the unary loss with an optimal step size tuning (which is feasible as there is no
dependence on the path length PT ).

Theorem 20. Under Assumptions 1–3, running OGD over the unary loss achieves

T∑
t=1

ft(wt−m:t)− min
v∈W

T∑
t=1

f̃t(v) ≤ (G2 +m2LG)ηT +
2D2

η
.
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Setting the step size optimally as η = η∗ =
√

2D2

(G2+m2LG)T
, we attain an O(m

√
T ) static

policy regret.

Anava et al. (2015) present an O(m3/4
√
T ) static policy regret for OCO with memory,

which seems better than ours at the first glance. However, we point it out that this is due
to the different assumptions imposing over the Lipschitz continuity. Their assumption is
presented as follows.

Assumption 8 (Lipschitzness of Anava et al. (2015)). The function ft : Wm+1 7→ R is
L̄-Lipschitz, i.e.,

|ft(x0, . . . ,xm)− ft(y0, . . . ,ym)| ≤ L̄∥(x0, . . . ,xm)− (y0, . . . ,ym)∥2 = L̄

√√√√ m∑
i=0

∥xi − yi∥22.

We compare this definition of Lipschitzness with the version used in our paper, namely,
the coordinate-wise Lipschitzness defined in Assumption 1. Indeed, their definition imposes
a stronger requirement on the function than ours. Clearly, when the online function ft
satisfies L̄-Lipschitz assumption as specified in Assumption 8, it is also L̄-coordinate-wise

Lipschitz due to the simple fact that
√∑m

i=0∥xi − yi∥22 ≤
∑m

i=0∥xi − yi∥2. On the other

hand, when the online function ft is L-coordinate-wise Lipschitz as required by Assump-
tion 1, we thus conclude that it is Lipschitz in the sense of Assumption 8 with the Lips-
chitz coefficient L̄ =

√
mL, due to the following inequality (by Cauchy-Schwarz inequality)

L
∑m

i=0∥xi − yi∥2 ≤ L
√
m
√∑m

i=0∥xi − yi∥2.
In the following, we restate the static regret bound of Anava et al. (2015) under As-

sumption 8. We adapt their results to our notations to ease the understanding.

Theorem 21 (Theorem 3.1 of Anava et al. (2015)). Under Assumptions 2, 3, and the
assumption that the online functions are L̄-Lipschitz (Assumption 8), running OGD over
the unary loss achieves

T∑
t=1

ft(wt−m:t)− min
v∈W

T∑
t=1

f̃t(v) ≤ 2ηG2T +
2D2

η
+ 2L̄m

3
2 ηGT. (42)

Setting the step size optimally yields an O(L̄1/2m3/4
√
T ) static policy regret.

Therefore, when the online functions are only L-coordinate-wise Lipschitz as consid-
ered in this paper, applying above theorem immediately obtains an O(L̄1/2m3/4

√
T ) =

O((
√
mL)1/2m3/4

√
T ) = O(L1/2m

√
T ), which exhibiting a linear memory dependence.

Appendix C. Omitted Details for Section 5 (Non-stochastic Control)

In this section, we present omitted details for Section 5 online non-stochastic control, in-
cluding the proofs of Proposition 6, Theorem 7, Theorem 8, and Corollary 9.
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C.1 Proof of Proposition 6

We will prove the following statement that gives the state recurrence for any h ≤ t, which
is essentially a strengthened result of Proposition 6.

Proposition 22. Suppose one chooses the DAC controller π(Mt,K) at iteration t, the
reaching state is

xt+1 = Ãh+1
K xt−h +

H+h∑
i=0

ΨK,h
t,i (Mt−h:t)wt−i, (43)

where ÃK = A−BK, and ΨK,h
t,i (Mt−h:t) is the transfer matrix defined as

ΨK,h
t,i (Mt−h:t) = ÃiK1i≤h +

h∑
j=0

ÃjKBM
[i−j]
t−j 11≤i−j≤H . (44)

The evolving equation holds for any h ∈ {0, . . . , t}.

Proof First, by substituting the DAC policy into the dynamics equation, we have

xt+1 = Axt +But + wt = (A−BK)xt +
H∑
i=1

BM
[i]
t wt−i + wt

= Ãh+1
K xt−h +

h∑
j=0

ÃjK

(
H∑
i=1

BM
[i]
t−jwt−j−i + wt−j

)

= Ãh+1
K xt−h +

h∑
j=0

H∑
i=1

ÃjKBM
[i]
t−jwt−j−i +

h∑
j=0

ÃjKwt−j .

Exchanging the summation index yields,

h∑
j=0

H∑
i=1

ÃjKBM
[i]
t−jwt−j−i =

H∑
i=1

i+h∑
k=i

Ãk−iK BM
[i]
t−k+iwt−k (45)

=

H+h∑
k=1

k∑
i=k−h

Ãk−iK BM
[i]
t−k+iwt−k11≤i≤H (46)

=
H+h∑
k=1

h∑
l=0

Ãh−lK BM
[l+k−h]
t+l−h wt−k11≤l+(k−h)≤H (47)

=

H+h∑
k=1

h∑
m=0

ÃmKBM
[k−m]
t−m wt−k11≤k−m≤H (48)

=
H+h∑
i=1

h∑
j=0

ÃjKBM
[i−j]
t−j wt−i11≤i−j≤H , (49)

where (45) holds by defining a third variable k = j + i, and (46) is obtained by exchanging
the summation index i and k and the new range of i is from inequality i ≤ k ≤ i + h.
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Moreover, (47) is obtained by another change of variable l = i− k + h, (48) is obtained by
replacing l by h−m, and (49) is true by setting i = k, j = m. Therefore, we obtain that

xt+1 = Ãh+1
K xt−h +

h∑
j=0

H∑
i=1

ÃjKBM
[i]
t−jwt−j−i +

h∑
j=0

ÃjKwt−j

= Ãh+1
K xt−h +

H+h∑
i=0

h∑
j=0

ÃjKBM
[i−j]
t−j wt−i11≤i−j≤H +

h∑
i=0

ÃiKwt−i

= Ãh+1
K xt−h +

H+h∑
i=0

ÃiK1i≤h +

h∑
j=0

ÃjKBM
[i−j]
t−j 11≤i−j≤H

wt−i

and hence complete the proof.

C.2 Proof of Theorem 7

To prove the dynamic policy regret of online non-stochastic control (Theorem 7), we will
first present theoretical analysis of the reduction to OCO with memory in Appendix C.2.1,
then give the dynamic regret analysis over the M-space in Appendix C.2.2, and finally
present the overall proof of Theorem 7 in Appendix C.2.3.

C.2.1 Approximation Error

In Section 5.2 of the main paper, we have presented how to reduce from online non-stochastic
control to OCO with memory, by employing the DAC parameterization and introducing the
truncated loss functions. In this part, we introduce the following theorem that discloses
that the truncation loss ft approximates the original cost function ct well.

Theorem 23 (Theorem 5.3 of Agarwal et al. (2019)). Suppose the disturbance are bounded
by W . For any (κ, γ)-strongly stable linear controller K, and any τ > 0 such that the

sequence of M1, . . . ,MT satisfies ∥M [i]
t ∥op ≤ τ(1 − γ)i, ∀i ∈ [H], the approximation error

between original loss and truncated loss is at most∣∣∣∣∣
T∑
t=1

ct(x
K
t (M0:t−1), u

K
t (M0:t))−

T∑
t=1

ft(Mt−1−H:t)

∣∣∣∣∣ ≤ 2TGcD
2κ3(1− γ)H+1, (50)

where

D ≜
Wκ3(1 +HκBτ)

γ(1− κ2(1− γ)H+1)
+
Wτ

γ
. (51)

Proof By Lipschitzness and definition of the truncated loss, we get that

ct(x
K
t (M0:t−1), u

K
t (M0:t))− ft(Mt−H−1:t)

= ct(x
K
t (M0:t−1), u

K
t (M0:t))− ct(y

K
t (Mt−H−1:t−1), v

K
t (Mt−H−1:t))

≤ GcD
(
∥xKt (M0:t−1)− yKt (Mt−H−1:t−1)∥+ ∥uKt (M0:t)− vKt (Mt−H−1:t)∥

)
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≤ GcD(κ2(1− γ)H+1D + κ3(1− γ)H+1D) ≤ 2GcD
2κ3(1− γ)H+1,

where the last two inequalities use the Lipschitzness and the boundedness presented in
Lemma 28. We complete the proof by summing over the iterations from t = 1, . . . , T .

C.2.2 Dynamic Regret Analysis over M-space

In previous sections, we have analyzed the dynamic regret of our method over the Rd-
space. However, after reducing online non-stochastic control to OCO with memory, we
need to apply their results to the M-space and thus require to generalize the arguments of
previous sections from Euclidean norm for Rd-space to Frobenius norm for M-space. For
completeness, we present the proof here.

At the first place, we analyze the dynamic regret of the online gradient descent (OGD)
algorithm over the Rd-space. OGD begins with any M1 ∈ M and performs the following
update procedure,

Mt+1 = ΠM[Mt − η∇M f̃t(Mt)] (52)

where η > 0 is the step size and ΠM[·] denotes the projection onto the nearest point in the
feasible set M. We have the following dynamic regret regarding its dynamic regret.

Theorem 24. Suppose the function f̃ : M 7→ R is convex, the gradient norm satisfies
maxM∈Mmaxt∈[T ]∥∇M f̃t(M)∥F ≤ Gf and the Euclidean diameter of M is at most Df ,
i.e., supM,M ′∈M∥M −M ′∥F ≤ Df . Then, OGD with a step size η > 0 as shown in (52)
satisfies that

λ
T∑
t=2

∥Mt−1−Mt∥F+
T∑
t=1

f̃t(Mt)−
T∑
t=1

f̃t(M
∗
t ) ≤

η

2
(G2

f +2λGf )T +
1

2η
(D2

f +2DfPT ), (53)

which holds for any comparator sequence M∗
1 , . . . ,M

∗
T ∈ M. Besides, the path length PT =∑T

t=2∥M∗
t−1 −M∗

t ∥F measures the non-stationarity of the comparator sequence.

Proof Denote the gradient by Gt = ∇M f̃t(Mt). The convexity of online surrogate loss
functions implies that

T∑
t=1

f̃t(Mt)−
T∑
t=1

f̃t(M
∗
t ) ≤

T∑
t=1

⟨Gt,Mt −M∗
t ⟩.

Thus, it suffices to bound the sum of ⟨Gt,Mt −M∗
t ⟩. From the OGD update rule and

the non-expensive property, we have

∥Mt+1 −M∗
t ∥2F = ∥ΠM[Mt − ηGt]−M∗

t ∥
2
F ≤ ∥Mt − ηGt −M∗

t ∥2F
= η2∥Gt∥2F − 2η⟨Gt,Mt −M∗

t ⟩+ ∥Mt −M∗
t ∥2F

After rearranging, we obtain

⟨Gt,Mt −M∗
t ⟩ ≤

η

2
∥Gt∥2F +

1

2η

(
∥Mt −M∗

t ∥2F − ∥Mt+1 −M∗
t ∥2F

)
.
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Next, we turn to analyze the second term on the right-hand side. Indeed,

T∑
t=1

(
∥Mt −M∗

t ∥2F − ∥Mt+1 −M∗
t ∥2F

)
≤

T∑
t=1

∥Mt −M∗
t ∥2F −

T∑
t=2

∥Mt −M∗
t−1∥2F

≤ ∥M1 −M∗
1 ∥2F +

T∑
t=2

(
∥Mt −M∗

t ∥2F − ∥Mt −M∗
t−1∥2F

)
= ∥M1 −M∗

1 ∥2F +
T∑
t=2

⟨M∗
t−1 −M∗

t , 2Mt −M∗
t−1 −M∗

t ⟩ ≤ D2
f + 2Df

T∑
t=2

∥M∗
t−1 −M∗

t ∥F.

Hence, combining all above inequalities, we have

T∑
t=1

f̃t(Mt)−
T∑
t=1

f̃t(M
∗
t ) ≤

η

2

T∑
t=1

∥Gt∥2F +
1

2η

(
D2
f + 2Df

T∑
t=2

∥M∗
t−1 −M∗

t ∥F

)

≤ η

2
G2
fT +

1

2η
(D2

f + 2DfPT ).

On the other hand, the switching cost can be bounded by

∥Mt −Mt−1∥F = ∥ΠM[Mt−1 − ηGt−1]−Mt−1∥2F ≤ ∥Mt−1 − ηGt−1 −Mt−1∥F ≤ ηGf ,

which together with the previous dynamic regret bound yields the desired result.

C.2.3 Proof of Theorem 7

Proof We begin with the following dynamic policy regret decomposition,

T∑
t=1

ct(xt, ut)−
T∑
t=1

ct(x
πt
t , u

πt
t )

=

T∑
t=1

ct(x
K
t (M0:t−1), u

K
t (M0:t))−

T∑
t=1

ct(x
K
t (M∗

0:t−1), u
K
t (M∗

0:t))

=

T∑
t=1

ct(x
K
t (M0:t−1), u

K
t (M0:t))−

T∑
t=1

ft(Mt−1−H:t)︸ ︷︷ ︸
≜AT

+

T∑
t=1

ft(Mt−1−H:t)−
T∑
t=1

ft(M
∗
t−1−H:t)︸ ︷︷ ︸

≜BT

+

T∑
t=1

ft(M
∗
t−1−H:t)−

T∑
t=1

ct(x
K
t (M∗

0:t−1), u
K
t (M∗

0:t))︸ ︷︷ ︸
≜CT

. (54)

Notice that both AT and CT essentially represent the approximation error introduced by
the truncated loss, so we can apply Theorem 23 and obtain

AT + CT ≤ 4TGcD
2κ3(1− γ)H+1. (55)
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We now focus on the quantity BT , which is the dynamic policy regret over the truncated
loss functions {ft}t=1,...,T . Indeed,

BT =

T∑
t=1

ft(Mt−1−H:t)−
T∑
t=1

ft(M
∗
t−1−H:t)

≤
T∑
t=1

f̃t(Mt)−
T∑
t=1

f̃t(M
∗
t ) + λ

T∑
t=2

∥Mt−1 −Mt∥F + λ

T∑
t=2

∥M∗
t−1 −M∗

t ∥F

≤
T∑
t=1

⟨∇M f̃t(Mt),Mt −M∗
t ⟩+ λ

T∑
t=2

∥Mt−1 −Mt∥F + λ

T∑
t=2

∥M∗
t−1 −M∗

t ∥F

=

T∑
t=1

gt(Mt)−
T∑
t=1

gt(M
∗
t ) + λ

T∑
t=2

∥Mt−1 −Mt∥F + λ

T∑
t=2

∥M∗
t−1 −M∗

t ∥F, (56)

where λ = (H + 2)2Lf and gt(M) = ⟨∇M f̃t(Mt),M⟩ is the surrogate linearized loss. As a
consequence, we are reduced to proving an dynamic regret over the sequence of functions
{gt}t=1,...,T with switching cost, namely, the first three terms on the right-hand side. We thus
make use of the techniques developed in Appendix B.4 (dynamic policy regret minimization
for OCO with memory) to decompose the terms into meta-regret and base-regret:

T∑
t=1

gt(Mt)−
T∑
t=1

gt(M
∗
t ) + λ

T∑
t=2

∥Mt−1 −Mt∥F

=

(
λ

T∑
t=2

∥Mt−1 −Mt∥F +

T∑
t=1

gt(Mt)

)
−

(
λ

T∑
t=2

∥Mt−1,i −Mt,i∥F +

T∑
t=1

gt(Mt,i)

)
︸ ︷︷ ︸

meta-regret

+

(
λ

T∑
t=2

∥Mt−1,i −Mt,i∥F +
T∑
t=1

gt(Mt,i)−
T∑
t=1

gt(M
∗
t )

)
︸ ︷︷ ︸

base-regret

.

We remark that the regret decomposition holds for any base-learner index i ∈ [N ]. We
now provide the upper bounds for the meta-regret and base-regret, respectively. First,
Theorem 24 ensures the base-regret satisfies that

base-regret ≤ ηi
2
(G2

f + 2λGf )T +
1

2ηi
(D2

f + 2DfPT ),

where PT =
∑T

t=2∥M∗
t−1 −M∗

t ∥F is the path length of the comparator sequence. On the
other hand, similar to Lemma 14 of Section B.2, we can show that the meta-regret satisfies

meta-regret ≤ λ′
T∑
t=2

∥pt−1 − pt∥1 +
T∑
t=1

⟨pt, ℓt⟩ −
T∑
t=1

ℓt,i,

where the surrogate loss vector ℓt ∈ ∆N of the meta-algorithm is defined as

ℓt,i = λ∥Mt−1,i −Mt,i∥F + gt(Mt,i), for i ∈ [N ].
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Then, we can use the static regret with switching cost of online mirror descent for the
prediction with expert advice setting (c.f. Corollary 18 in Appendix B.3) and obtain that

meta-regret ≤ ε(2λ+Gf )(λf +Gf )D
2
fT +

ln(1/p1,i)

ε

= Df

√
2(2λ+Gf )(λ+Gf )T

(
1 + ln(1 + i)

)
,

where the equation can be obtained by an appropriate setting of the learning rate ε.
Since the above decomposition and the upper bounds of meta-regret and base-regret

all hold for any base-learner index i ∈ [N ], we will choose the best index denoted by i∗ to
make the regret bound tightest possible. Specifically, from the construction of the step size
pool, we can ensure that there exists a step size ηi∗ such that the optimal step size provably
satisfies ηi∗ ≤ η∗ ≤ 2ηi∗ . As a result, we have

T∑
t=1

gt(Mt)−
T∑
t=1

gt(M
∗
t ) + λ

T∑
t=2

∥Mt−1 −Mt∥F

≤ ηi∗

2
(G2

f + 2λGf )T +
1

2ηi∗
(D2

f + 2DfPT ) +Df

√
2(2λ+Gf )(λ+Gf )T

(
1 + ln(1 + i)

)
≤ η∗

2
(G2

f + 2λGf )T +
1

η∗
(D2

f + 2DfPT ) +Df

√
2(2λ+Gf )(λ+Gf )T

(
1 + ln(1 + i)

)
≤ 3

2

√
(G2

f + 2λGf )(D
2
f + 2DfPT )T

+Df

√
2(2λ+Gf )(λ+Gf )T (1 + ln(⌈log2(1 + 2PT /D)⌉+ 2)) .

Combining this result with the regret decomposition (54) and the upper bounds (55), (56),
we have

T∑
t=1

ct(xt, ut)−
T∑
t=1

ct(x
πt
t , u

πt
t )

≤ 4TGcD
2κ3(1− γ)H+1 +

3

2

√
(G2

f + 2λGf )(D
2
f + 2DfPT )T

+Df

√
2(2λ+Gf )(λ+Gf )T (1 + ln(⌈log2(1 + 2PT /D)⌉+ 2)) + λPT .

The specific values of D,Lf , Gf , Df can be found in Lemma 29. By setting H = O(log T ),

we obtain an Õ(
√
T (1 + PT )) dynamic policy regret and hence complete the proof.

C.3 Proof of Theorem 8

In this part, we present the proof of Theorem 8. Specifically, we provide the main proof of
Theorem 8 in Appendix C.3.1 and the proofs of some key lemmas in Appendix C.3.2.

Notations. We define some notations for convenience. Define εw an upper bound for the
gap between the true disturbance wt and the estimated one ŵt, i.e., ∥wt − ŵt∥2 ≤ εw, and
define a universal upper bound W0 for εw and disturbance bound W (cf. Assumption 4)
as W, εw ≤ W0. We also define dmin = min{dx, du}, ÃK = A − BK, ÂK = Â − B̂K for
notational convenience.
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C.3.1 Proof of Theorem 8

Proof The overall dynamic regret is at most

T∑
t=1

ct(xt, ut)−
T∑
t=1

ct(x
πt
t , u

πt
t ) ≤

T0∑
t=1

ct(xt, ut)︸ ︷︷ ︸
term (A)

+
T∑

t=T0+1

ct(xt, ut)−
T∑

t=T0+1

ct(x
πt
t , u

πt
t )︸ ︷︷ ︸

term (B)

,

where term (A) is the cumulative cost during the system identification procedure and
term (B) is the dynamic regret caused by Scream.Control algorithm over the rest rounds.
Note that term (A) enjoys a trivial upper bound of O(T0), and term (B) can be decomposed
into two parts:

term (B) =

T∑
t=T0+1

ct(xt, ut)−
T∑

t=T0+1

ct(x
πt
t (Ŝ), uπtt (Ŝ))︸ ︷︷ ︸

term (b-1)

+
T∑

t=T0+1

ct(x
πt
t (Ŝ), uπtt (Ŝ))−

T∑
t=T0+1

ct (x
πt
t (S), uπtt (S))︸ ︷︷ ︸

term (b-2)

.

Here, (xπtt (S), uπtt (S)) is the state-action pair produced by the policy πt on the true system
S = (A,B, {w}), whereas (xπtt (Ŝ), uπtt (Ŝ)) is the state-action pair produced by the policy πt
on the estimated system Ŝ = (Â, B̂, {ŵ}). Summarizing, term (b-1) is the dynamic regret
on the estimated system and term (b-2) is the gap between the cumulative cost of the true
system and that of the estimated system. From Theorem 7, it holds that term (b-1) ≤
Õ(
√
T (1 + PT )). From Lemma 26, we can bound term (b-2) as term (b-2) ≤ O(εA,BT ).

Overall, with probability at least 1− δ, the total dynamic regret is at most

D-RegretT ≤ O(T0) + Õ(
√
T (1 + PT )) +O(εA,BT )

= O(ε−2
A,B + εA,BT ) + Õ(

√
T (1 + PT ))

≤ O(T 2/3) + Õ(
√
T (1 + PT )).

The second step makes use of the relationship between the system identification rounds T0
and the estimation error ∥Â−A∥op, ∥B̂−B∥op ≤ εA,B, as demonstrated in Lemma 25. The
last step holds by setting the rounds of exploration to ensure εA,B = min{10−3κ−10γ2, T−1/3},
which is realized when total time horizon is large enough, i.e., T ≥ 109κ30γ−6.

C.3.2 Key Lemmas in Unknown Systems

The proof of Theorem 8 relies on the two key lemmas (Lemma 25 and Lemma 26). In the
following, we provide the formal statements and corresponding proofs.

Lemma 25 establishes the relationship between the estimation accuracy εA,B and the
number of estimation rounds T0. This lemma is firstly due to Hazan et al. (2020) and is
restated here for self-containedness.
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Lemma 25 (Theorem 19 of Hazan et al. (2020)). Under Assumptions 4, 6, 7, when Algo-
rithm 4 runs for T0 rounds, if the output pair (Â, B̂) satisfies, with probability at least 1−δ,
that ∥Â−A∥op, ∥B̂ −B∥op ≤ εA,B, then it holds that T0 = O(ε−2

A,B).

Proof [of Lemma 25] Based on the observation, we have the following two equations:

ÃKCk = (ÃKCk), ÂKĈ0 = Ĉ1.

Using Lemma 36, it holds that

∥ÃK − ÂK∥op ≤ ∥ÃKCk − Ĉ1∥op + ∥Ck − Ĉ0∥op∥ÃK∥op
σmin(Ck)− ∥Ck − Ĉ0∥op

. (57)

Lemma 31 tells that with probability at least 1− δ, ∥Nj − ÃjKB∥F ≤ ε, where

ε ≜ 3κBκ
2duWγ−1

√
2dmin log (2e2kδ−1)

T0 − k
. (58)

Owing to the benign high-probability guarantee, we only need to focus on the successful
event, that is, under the case when ∥Nj − ÃjKB∥F ≤ ε is true. We then try to bound

∥Ck − C0∥op, ∥ÃKCk − C1∥op,

∥Ck − Ĉ0∥op ≤ ∥Ck − Ĉ0∥F =
∥∥∥[N0 −B, . . . , Nk−1 − Ãk−1

K B
]∥∥∥

F

=

√√√√k−1∑
i=0

∥Ni − ÃiKB∥2F ≤
√
kε2 = ε

√
k,

(59)

∥ÃKCk − Ĉ1∥op ≤ ∥ÃKCk − Ĉ1∥F =
∥∥∥[N1 − ÃKB, . . . , Nk − ÃkKB

]∥∥∥
F

=

√√√√ k∑
i=1

∥Ni − ÃiKB∥2F ≤
√
kε2 = ε

√
k.

(60)

Using Lemma 34 to upper-bound σmin(Ck), and plugging (59) and (60) into (57), we have

∥ÃK − ÂK∥op ≤ ε
√
k + ε

√
k · κ2(1− γ)

1/
√
κc − ε

√
k

.

The gap between A and Â can be bounded as

∥A− Â∥op = ∥ÃK +BK − ÂK − B̂K∥op
≤ ∥ÃK − ÂK∥op + ∥K∥op∥B − B̂∥op

≤ ε
√
k + ε

√
k · κ2(1− γ)

1/
√
κc − ε

√
k

+ κε ≤ 3εκ5/2√
1/κc − ε

√
κ
.
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If we want ∥Â−A∥F, ∥B̂ −B∥F ≤ εA,B, the following equations should hold:

∥Â−A∥F ≤
√
dx∥Â−A∥op ≤

√
dx

(
3εκ5/2√

1/κc − ε
√
κ

)
≜ εA ≤ εA,B,

∥B̂ −B∥F ≤
√
dmin∥B̂ −B∥op ≤

√
dminε ≜ εB ≤ εA,B.

(61)

Besides, it is easy to see that εB =
√
dminε ≤

√
dxε ≤ εA, thus conditions in (61) can

be simplified as εA ≤ εA,B. Finally, combining the above inequality with the value of ε
(c.f. (58)), we can obtain that T0 = O(ε−2

A,B).

Lemma 26 measures the difference of the cumulative costs of a policy between the true
system and the estimated one. This result holds for both strongly stable linear controllers
and non-stationary DAC policy and here we only give a proof of the latter, for the former
result, we refer readers to Hazan et al. (2020, Lemma 16).

Lemma 26 (Identification Accuracy). Under Assumptions 4-6, suppose ∥Â − A∥op, ∥B̂ −
B∥op ≤ εA,B ≤ 0.25κ−3γ and let K be any (κ, γ)-strongly stable linear controller with respect
to (A,B). Then for any non-stationary DAC policy π1:T parameterized via M1:T ,∣∣∣∣∣∣

T∑
t=T0+1

ct

(
xπtt (Ŝ), uπtt (Ŝ)

)
−

T∑
t=T0+1

ct (x
πt
t (S), uπtt (S))

∣∣∣∣∣∣ ≤ O
(
εA,BT + ε2A,BT

)
,

where (xπtt (S), uπtt (S)) is the state-action pair produced by policy πt on the true system
S = (A,B, {w}) and (xπtt (Ŝ), uπtt (Ŝ)) is produced on the estimated system Ŝ = (Â, B̂, {ŵ}).

Proof [of Lemma 26] If the policy is a non-stationary DAC policy parameterized via M1:T ,
in system (A,B, {w}), it holds that

∥xπtt+1(S)∥2 ≤W
H+t∑
i=0

∥ΨK,t
t,i (M0:t)∥op

=W
H+t∑
i=0

∥ÃiK1i≤t +

t∑
j=0

ÃjKBM
[i−j]
t−j 11≤i−j≤H∥op

≤W

κ2 H+t∑
i=0

(1− γ)i + κ2Bκ
3
H+t∑
i=0

t∑
j=0

∥ÃjK11≤i−j≤H∥op


≤W

κ2γ−1 + κ2Bκ
3
H+t∑
i=0

i−1∑
j=i−H

∥ÃjK∥op10≤j≤t


≤W

κ2γ−1 + κ2Bκ
5
H+t∑
i=0

i−1∑
j=i−H

(1− γ)j10≤j≤t


≤W

(
κ2γ−1 + κ2Bκ

5H
t∑
i=0

(1− γ)i

)
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≤W
(
κ2γ−1 + κ2Bκ

5Hγ−1
)

≤ 2Wκ2Bκ
5γ−1H.

By Lemma 32, a linear controller K is
(
κ, γ − 2κ3εA,B

)
-strongly stable with respect to

the estimated system Ŝ = (Â, B̂, {ŵ}) if it is (κ, γ)-strongly stable for the true system
S = (A,B, {w}). Thus it can be easily verified that

1− γ + 2κ3εA,B ≤ 1− γ + 2κ3 · 0.25κ−3γ = 1− γ/2.

For simplicity, we can say that linear controller K is (κ, γ/2)-strongly stable for the esti-
mated system Ŝ. Further, let ∥B̂∥op ≤ κ

B̂
, it holds that

κ
B̂
= ∥B̂∥op = ∥(B̂ −B) +B∥op ≤ εA,B + κB ≤ 2κB.

As a result, we can bound ∥xπtt+1(Ŝ)∥2 as

∥xπtt+1(Ŝ)∥2 ≤ 2(εw +W )(2κB)
2κ5(γ/2)−1H = 32W0κ

2
Bκ

5γ−1H.

As for the action uπtt (Ŝ), we can bound it as

∥uπtt (Ŝ)∥2 ≤ ∥−Kxπtt (Ŝ)∥2 +

∥∥∥∥∥
H∑
i=1

M
[i]
t ŵt−i

∥∥∥∥∥
2

≤ 32W0κ
2
Bκ

6γ−1H + 2W0κBκ
3γ−1

≤ 34W0κ
2
Bκ

6γ−1H.

Thus, the diameter of the state-action domain in the estimated system, denoted as D̂, is at
most D̂ ≜ maxt∈[T ]max{∥xt(Ŝ)∥2, ∥ut(Ŝ)∥2} = 34W0κ

2
Bκ

6γ−1H. The gap of the cumulative
costs between the true system and the estimated system can be bounded as∣∣∣∣∣∣

T∑
t=T0+1

ct

(
xπtt (Ŝ), uπtt (Ŝ)

)
−

T∑
t=T0+1

ct (x
πt
t (S), uπtt (S))

∣∣∣∣∣∣
≤ GcD̂

T∑
t=1

∥xπtt (Ŝ)− xπtt (S)∥2 +GcD̂

T∑
t=1

∥uπtt (Ŝ)− uπtt (S)∥2.

(62)

We start by analyzing ∥uπtt (Ŝ)− uπtt (S)∥2:

∥uπtt (Ŝ)− uπtt (S)∥2 =

∥∥∥∥∥
(
−Kxπtt (Ŝ) +

H∑
i=1

M
[i]
t ŵt−i

)
−

(
−Kxπtt (S) +

H∑
i=1

M
[i]
t wt−i

)∥∥∥∥∥
2

≤ κ∥xπtt (Ŝ)− xπtt (S)∥2 +
H∑
i=1

∥M [i]
t (ŵt−i − wt−i)∥

≤ κ∥xπtt (Ŝ)− xπtt (S)∥2 + εwκBκ
3
H∑
i=1

(1− γ)i

≤ κ∥xπtt (Ŝ)− xπtt (S)∥2 + εwκBκ
3γ−1.

(63)
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Plugging (63) into (62), it holds that∣∣∣∣∣∣
T∑

t=T0+1

ct

(
xπtt (Ŝ), uπtt (Ŝ)

)
−

T∑
t=T0+1

ct (x
πt
t (S), uπtt (S))

∣∣∣∣∣∣
≤ 2κGcD̂

T∑
t=1

∥xπtt (Ŝ)− xπtt (S)∥2 +GcD̂εwκBκ
3γ−1T.

(64)

This motivates the need to analyze ∥xπtt (Ŝ)−xπtt (S)∥2. To begin with, we define Ψ̂K,h
t,i (Mt−h:t) =

ÂiK1i≤h+
∑h

j=0 Â
j
KB̂M

[i−j]
t−j 11≤i−j≤H , where ÂK ≜ Â− B̂K. Expanding xπtt (Ŝ) and xπtt (S)

using Proposition 6, it holds that

∥xπtt (Ŝ)− xπtt (S)∥2 =

∥∥∥∥∥
H+t∑
i=0

ΨK,t
t,i (M1:t)wt−i −

H+t∑
i=0

Ψ̂K,t
t,i (M1:t)ŵt−i

∥∥∥∥∥
2

≤

∥∥∥∥∥
H+t∑
i=0

ΨK,t
t,i (M1:t)wt−i −

H+t∑
i=0

ΨK,t
t,i (M1:t)ŵt−i

∥∥∥∥∥
2︸ ︷︷ ︸

term (i)

+

∥∥∥∥∥
H+t∑
i=0

ΨK,t
t,i (M1:t)ŵt−i −

H+t∑
i=0

Ψ̂K,t
t,i (M1:t)ŵt−i

∥∥∥∥∥
2︸ ︷︷ ︸

term (ii)

.

(65)

First, we analyze term (i):

term (i) ≤ εw

H+t∑
i=0

∥ΨK,t
t,i (M1:t)∥op ≤ 2εwκ

2
Bκ

5γ−1H. (66)

Second, we investigate term (ii):

term (ii) ≤ (W + εw)

H+t∑
i=0

∥∥∥ΨK,t
t,i (M1:t)− Ψ̂K,t

t,i (M1:t)
∥∥∥
op

≤ 2W0

H+t∑
i=0

∥∥∥(ÃiK − ÂiK

)
1i≤t

∥∥∥
op

+ κBκ
3

t∑
j=0

∥ÃjKB − ÂjKB̂∥op11≤i−j≤H


≤ 2W0κ

2
t∑
i=0

∥Li − L̂i∥op︸ ︷︷ ︸
term (a)

+2W0κBκ
3
H+t∑
i=0

t∑
j=0

∥ÃjKB − ÂjKB̂∥op11≤i−j≤H︸ ︷︷ ︸
term (b)

. (67)

For term (a), using Lemma 35, it holds that

t∑
i=0

∥Li − L̂i∥op ≤ 3γ−2∥L− L̂∥op ≤ 3γ−2 · 2κ3εA,B = 6κ3γ−2εA,B.

For term (b), by inserting an intermediate term, we have

H+t∑
i=0

t∑
j=0

∥ÃjKB − ÂjKB̂∥op11≤i−j≤H
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≤
H+t∑
i=0

t∑
j=0

∥ÃjKB − ÃjKB̂∥op11≤i−j≤H +
H+t∑
i=0

t∑
j=0

∥ÃjKB̂ − ÂjKB̂∥op11≤i−j≤H

≤ εA,B

H+t∑
i=0

t∑
j=0

∥ÃjK∥op11≤i−j≤H + κ
B̂

H+t∑
i=0

t∑
j=0

∥ÃjK − ÂjK∥op11≤i−j≤H

≤ εA,BHγ
−1 + 2κBκ

2H
t∑
i=0

∥Li − L̂i∥op

≤ εA,BHγ
−1 + 2κBκ

2H · 6κ3γ−2εA,B.

Plugging term (a) and term (b) into (67), we have

term (ii) ≤ 2W0κ
2 · 6κ3γ−2εA,B + 2W0κBκ

3 · (εA,BHγ−1 + 2κBκ
2H · 6κ3γ−2εA,B)

≤ 38W0κ
2
Bκ

8γ−2HεA,B.

Plugging the bounds of (66) and (67) into (65), we have

∥xπtt (Ŝ)− xπtt (S)∥2 ≤ 2εwκ
2
Bκ

5γ−1H + 38W0κ
2
Bκ

8γ−2HεA,B. (68)

Furthermore, by Lemma 33, we have

W0 ≤ 2
√
duκ

3γ−1W, εw ≤ 42
√
duκ

12γ−3WεA,B

Plugging W0 and εw into (68), it holds that

∥xπtt (Ŝ)− xπtt (S)∥2 ≤ O(εA,B + ε2A,B).

Plugging the above bound into (64), we have∣∣∣∣∣∣
T∑

t=T0+1

ct

(
xπtt (Ŝ), uπtt (Ŝ)

)
−

T∑
t=T0+1

ct (x
πt
t (S), uπtt (S))

∣∣∣∣∣∣ ≤ O
(
εA,BT + ε2A,BT

)
,

which finishes the proof.

C.4 Proof of Corollary 9

We now present the proof of Corollary 9, i.e., the static policy regret of the controller.
Corollary 9 states that when the system dynamics are known, Scream.Control enjoys the
following static policy regret,

T∑
t=1

ct(xt, ut)−min
π∈Π

T∑
t=1

ct(x
π
t , u

π
t ) ≤ Õ(

√
T ), (69)

where the comparator set Π can be chosen as either the set of DAC policies or the set
of strongly linear controllers. Let us denote the two comparator sets as ΠDAC and ΠSLC,
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respectively. Moreover, when the system dynamics are unknown, using the identification
algorithm of Hazan et al. (2020), we can achieve an Õ(T 2/3) static regret, which also holds
for either the set of DAC policies or the set of strongly linear controllers. Therefore, in the
following we will prove the statement for two comparator sets separately.

Proof [of Corollary 9] When the comparator set Π is chosen as the set of DAC policies, i.e.,
π ∈ ΠDAC = {π(K,M) |M ∈ M}, the result of (69) can be easily obtained from Theorem 7
by setting π1 = . . . = πT = π∗ ∈ argminπ∈Π

∑T
t=1 ct(x

π
t , u

π
t ). Under such a case, the path

length PT =
∑T

t=2∥Mt−1 −Mt∥F = 0, and thus

T∑
t=1

ct(xt, ut)− min
π∈ΠDAC

T∑
t=1

ct(x
π
t , u

π
t ) ≤ Õ(

√
T ).

On the other hand, when choosing the comparator set Π as ΠSL, i.e., π = K ∈ ΠSL =
{K | K is (κ, γ)-strongly stable}, we will need some efforts to prove the statement.

We show that the statement can be obtained by further incorporating Lemma 30, which
demonstrates that minimizing static policy regret over the DAC class is sufficient to deliver
a policy regret competing with the strongly linear controller class (Agarwal et al., 2019,
Lemma 5.2). In fact, denote by π∗ = K⋆ = argminK∈ΠSL

∑T
t=1 ct(x

K
t , u

K
t ) , and we have

T∑
t=1

ct(xt, ut)− min
π∈ΠSLC

T∑
t=1

ct(x
π
t , u

π
t )

=
T∑
t=1

ct(xt, ut)− min
π∈ΠDAC

T∑
t=1

ct(x
π
t , u

π
t ) + min

π∈ΠDAC

T∑
t=1

ct(x
π
t , u

π
t )−

T∑
t=1

ct(x
K∗
t , uK

∗
t )

≤ Õ(
√
T ) +

T∑
t=1

ct(x
π(M∆,K)
t , u

π(M∆,K)
t )−

T∑
t=1

ct(x
K∗
t , uK

∗
t )

≤ Õ(
√
T ) + T · 4GcDWHκ2Bκ

6(1− γ)H−1γ−1 ≤ Õ(
√
T ),

where the first inequality uses the optimality of argminπ∈ΠDAC

∑T
t=1 ct(x

π
t , u

π
t ) and π(M∆,K)

is a DAC policy with M∆ = (M
[1]
∆ , . . . ,M

[H]
∆ ) defined by M

[i]
∆ = (K −K⋆)(A−BK⋆)i. The

second inequality holds by Lemma 30, and the final inequality sets H = O(log T ).
The above arguments hold for the known system setting. On the other hand, when the

system dynamics are unknown, using the system identification yields an additional estima-
tion overhead of order Õ(T 2/3) no matter which comparator set is chosen. Therefore, the
overall regret remains Õ(T 2/3) for unknown systems. Hence, we complete the proof.

C.5 Supporting Lemmas

In this part, we provide several supporting lemmas used frequently in the analysis of online
non-stochastic control. Most of them are due to the pioneering works (Agarwal et al., 2019;
Hazan et al., 2020), and we adapt them to our notations and provide the proofs to achieve
self-containedness. Specifically,
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• Lemma 27 establishes the norm relations between the ℓ1, op norm and Frobenius norm
used in the M-space.

• Lemma 28 checks the boundedness of several variables of interest.

• Lemma 29 shows several properties of the truncated functions {ft}Tt=1 and the feasible
set M.

• Lemma 30 connects the DAC class and the strongly linear controller class.

• Lemma 31 – Lemma 36 are useful for analysis in unknown systems.

Lemma 27 (Norm Relations). For anyM = (M [1], . . . ,M [H]) ∈ M ⊆ (Rdu×dx)H , its ℓ1, op
norm and Frobenius norm are defined by

∥M∥ℓ1,op ≜
H∑
i=1

∥M [i]∥op, and ∥M∥F ≜

√√√√ H∑
i=1

∥M [i]∥2F.

Denoting by d = min{du, dx}, we then have the following inequalities on their relations:

∥M∥ℓ1,op ≤
√
H∥M∥F, and ∥M∥F ≤

√
d∥M∥ℓ1,op.

Proof [of Lemma 27] We know that for any matrix X ∈ Rm×n, ∥X∥op ≤ ∥X∥F ≤
√
d∥X∥op.

Therefore, by definition and Cauchy-Schwarz inequality, we obtain

∥M∥ℓ1,op =

H∑
i=1

∥M [i]∥op ≤
H∑
i=1

∥M [i]∥F ≤
√
H∥M∥F.

On the other hand, we have

∥M∥F =

√√√√ H∑
i=1

∥M [i]∥2F ≤
H∑
i=1

∥M [i]∥F ≤
H∑
i=1

√
d∥M [i]∥op =

√
d∥M∥ℓ1,op,

which completes the proof.

Lemma 28 (Lemma 5.5 of Agarwal et al. (2019)). Suppose K and K⋆ are two (κ, γ)-
strongly stable linear controllers (cf. Definition 4). Define

D ≜
W (κ3 +HκBκ

3τ)

γ(1− κ2(1− γ)H+1)
+
Wτ

γ
. (70)

Suppose there exists a τ > 0 such that for all i ∈ [H] and t ∈ [T ], ∥M [i]
t ∥F ≤ τ(1 − γ)i.

Then, we have

• ∥xKt (M0:t−1)∥ ≤ D, ∥yKt (Mt−H−1:t−1)∥ ≤ D, and ∥xK⋆

t ∥ ≤ D.

• ∥uKt (M0:t)∥ ≤ D, and ∥vKt (Mt−H−1:t)∥ ≤ D.
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• ∥xKt (M0:t−1)− yKt (Mt−1−H:t−1)∥ ≤ κ2(1− γ)H+1D.

• ∥uKt (M0:t)− vKt (Mt−1−H:t)∥ ≤ κ3(1− γ)H+1D.

In above, the definitions of state xKt (M0:t−1) and corresponding DAC control uKt (M0:t) can
be found in Proposition 6, and the definitions of truncated state xKt (M0:t−1) and correspond-
ing DAC control vKt (M0:t) can be found in Definition 2. The definitions of state xK

⋆

t can
be found (and will be used) in Lemma 30.

Proof [of Lemma 28] We first study the state.

∥xKt (M0:t−1)∥ =

∥∥∥∥∥ÃH+1
K xKt−H−1(M0:t−H−2) +

2H∑
i=0

ΨK,H
t−1,i(Mt−H−1:t−1)wt−1−i

∥∥∥∥∥
≤ κ2(1− γ)H+1∥xKt−H−1(M0:t−H−2)∥+W

2H∑
i=0

∥ΨK,H
t−1,i(Mt−H−1:t−1)∥

≤ κ2(1− γ)H+1∥xKt−H−1(M0:t−H−2)∥+W

2H∑
i=0

(
κ2(1− γ)i +HκBκ

2τ(1− γ)i−1
)

≤ κ2(1− γ)H+1∥xKt−H(M0:t−H−1)∥+W (κ2 +HκBκ
2τ)/γ

≤ W (κ2 +HκBκ
2τ)

γ(1− κ2(1− γ)H+1)
≤ D, (71)

where inequality (71) is a summation of geometric series and the ratio of this series is
κ2(1− γ)H+1. Similarly,

∥yKt (Mt−1−H:t−1)∥ =

∥∥∥∥∥
2H∑
i=0

ΨK,H
t−1,i(Mt−1−H:t−1)wt−1−i

∥∥∥∥∥
≤W

2H∑
i=0

∥ΨK,H
t−1,i(Mt−1−H:t−1)∥

≤W
2H∑
i=0

(
κ2(1− γ)i +HκBκ

2τ(1− γ)i−1
)

≤W

(
κ2 +HκBκ

2τ

γ

)
≤ D.

Besides,

∥xK⋆

t ∥ =

∥∥∥∥∥
t−1∑
i=0

ÃiK⋆wt−1−i

∥∥∥∥∥ ≤W

t−1∑
i=0

κ2(1− γ)i ≤ Wκ2

γ
≤ D.

So the difference can be evaluated as follows:

∥xKt (M0:t−1)− yKt (Mt−H−1:t−1)∥ = ∥ÃH+1
K xKt−H−1(M0:t−H−1)∥ ≤ κ2(1− γ)H+1D.

We now consider the action (or control signal).

∥uKt (M0:t)∥ =

∥∥∥∥∥−KxKt (M0:t−1) +

H∑
i=1

M
[i]
t wt−i

∥∥∥∥∥
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≤ κ∥xKt (M0:t−1)∥+
H∑
i=1

Wτ(1− γ)i−1

≤ W (κ3 +HκBκ
3τ)

γ(1− κ2(1− γ)H+1)
+
Wτ

γ
≤ D.

Similarly,

∥vKt (Mt−H−1:t)∥ ≤ κ∥yKt (Mt−H−1:t−1)∥+
H∑
i=1

Wτ(1− γ)i−1 ≤ D.

The difference of the actions is

∥uKt (M0:t−1)−vKt (Mt−H−1:t−1)∥ = ∥−K(xKt (M0:t−1)−yKt (Mt−H−1:t−1))∥ ≤ κ3(1−γ)H+1D,

which finishes the proof.

To reduce the online non-stochastic control to OCO with memory, in Definition 2 we
define the truncated loss ft : MH+2 7→ R as

ft(Mt−1−H:t) = ct(y
K
t (Mt−1−H:t−1), v

K
t (Mt−1−H:t)),

where yKt+1(Mt−H:t) =
∑2H

i=0Ψ
K,H
t,i (Mt−H:t)wt−i and v

K
t+1(Mt−H:t+1) = −Kyt+1(Mt−H:t) +∑H

i=1M
[i]
t+1wt+1−i. In the following lemma, we show several properties of the truncated

functions {ft}Tt=1 and the feasible set M such that we can further apply the results of OCO
with memory.

Lemma 29. The truncated loss ft : MH+2 7→ R and the feasible set M satisfy the following
properties. For notational convenience, we first let D be defined the same as (51), and we
restate it below

D ≜
Wκ3(1 +HκBτ)

γ(1− κ2(1− γ)H+1)
+
Wτ

γ
.

(i) The function is Lf -coordinate-wise Lipschitz with respect to the Euclidean (i.e., Frobe-
nius) norm, namely,

|ft(Mt−H−1, . . . ,Mt−k, . . . ,Mt)|−|ft(Mt−H−1, . . . , M̃t−k, . . . ,Mt)| ≤ Lf∥Mt−k−M̃t−k∥F,

where Lf ≤ 3
√
HGcDWκBκ

3.

(ii) The gradient norm of surrogate loss f̃t : M 7→ R is bounded by Gf , i.e., ∥∇M f̃t(M)∥F ≤
Gf holds for any M ∈ M and any t ∈ [T ], where Gf ≤ 3Hd2GcWκBκ

3γ−1.

(iii) The diameter of the feasible set is at most Df , namely, ∥M −M ′∥F ≤ Df holds for
any M,M ′ ∈ M, where Df ≤ 2

√
dκBκ

3γ−1.
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Proof [of Lemma 29] We first prove the claim (i), i.e., the Lf -coordinate-wise Lipschitz
continuity. For simplicity, we use the following definitions in the following arguments.

Mt−H−1:t ≜ {Mt−H−1 . . .Mt−k . . .Mt}, Mt−H−1:t−1 ≜ {Mt−H−1 . . .Mt−k . . .Mt−1},

M̃t−H−1:t ≜ {Mt−H−1 . . . M̃t−k . . .Mt}, M̃t−H−1:t−1 ≜ {Mt−H−1 . . . M̃t−k . . .Mt−1}.

By representing ft using ct, we have

ft(Mt−H−1:t)− ft(M̃t−H−1:t)

= ct
(
yKt (Mt−H−1:t−1), v

K
t (Mt−H−1:t)

)
− ct

(
yKt (M̃t−H−1:t−1), v

K
t (M̃t−H−1:t)

)
≤ GcD∥yKt − ỹKt ∥+GcD∥vKt − ṽKt ∥, (72)

where for convenience we use the notations yKt ≜ yKt (M̃t−H−1:t−1), ỹ
K
t ≜ yKt (M̃t−H−1:t−1)

and vKt ≜ vKt (Mt−H−1:t), ṽ
K
t ≜ ṽKt (Mt−H−1:t). Besides, the last inequality holds because

the norm of ∥yKt ∥, ∥ỹKt ∥, ∥vKt ∥, ∥ṽKt ∥ are all bounded by D, as shown in Lemma 28.
Then we try to bound ∥yKt − ỹKt ∥ and ∥vKt − ṽKt ∥.

∥yKt − ỹKt ∥ =

∥∥∥∥∥
2H∑
i=0

(
ΨK,H
t−1,i(Mt−H−1:t−1)−ΨK,H

t−1,i(M̃t−H−1:t−1)
)
wt−1−i

∥∥∥∥∥
=

∥∥∥∥∥ÃkKB
2H∑
i=0

(
M

[i−k]
t−k − M̃

[i−k]
t−k

)
1i−k∈[H]wt−1−i

∥∥∥∥∥
≤ κBκ

2(1− γ)kW

H∑
i=1

∥M [i]
t−k − M̃

[i]
t−k∥

≤ κBκ
2W∥Mt−k − M̃t−k∥, (73)

and we have

∥vKt − ṽKt ∥ =

∥∥∥∥∥−K(yKt − ỹKt ) + 1k=0

H∑
i=1

(
M

[i]
t−k − M̃

[i]
t−k

)∥∥∥∥∥
≤ (κBκ

3W + 1)∥Mt−k − M̃t−k∥

≤ 2κBκ
3W∥Mt−k − M̃t−k∥. (74)

Combining (72), (73), and (74), we obtain

ft(Mt−H−1:t)− ft(M̃t−H−1:t) ≤ GcD∥yKt − ỹKt ∥+GcD∥vKt − ṽKt ∥

≤ GcDκBκ
2W∥Mt−k − M̃t−k∥+GcD2κBκ

3W∥Mt−k − M̃t−k∥

≤ 3GcDκBκ
3W∥Mt−k − M̃t−k∥.

So we have Lf ≤ 3GcDWκBκ
3.

Next, we prove the claim (ii), i.e., the boundedness of the gradient norm. Indeed, we
will try to bound ∇

M
[r]
p,q
f̃t(M) for every p ∈ [du], q ∈ [dx] and r ∈ {0, . . . ,H − 1},

∣∣∣∇
M

[r]
p,q
f̃t(M)

∣∣∣ ≤ Gc

∥∥∥∥∥∂yKt (M)

∂M
[r]
p,q

∥∥∥∥∥
F

+Gc

∥∥∥∥∥∂vKt (M)

∂M
[r]
p,q

∥∥∥∥∥
F

. (75)
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So we will bound the two terms of the right-hand side respectively.∥∥∥∥∥∂yKt (M)

∂M
[r]
p,q

∥∥∥∥∥
F

≤

∥∥∥∥∥∥
2H∑
i=0

H∑
j=0

[
∂ÃjKBM

[i−j]

∂M
[r]
p,q

]
wt−1−i1i−j∈[H]

∥∥∥∥∥∥
F

≤
r+H+1∑
i=r+1

∥∥∥∥∥∂Ãi−r−1
K BM [r]

∂M
[r]
p,q

wt−1−i

∥∥∥∥∥
F

≤WκBκ
2

∥∥∥∥∥∂M [r]

∂M
[r]
p,q

∥∥∥∥∥
F

r+H+1∑
i=r+1

(1− γ)i−r−1

≤ WκBκ
2

γ

∥∥∥∥∥∂M [r]

∂M
[r]
p,q

∥∥∥∥∥
F

≤ WκBκ
2

γ
(76)

∥∥∥∥∥∂vKt (M)

∂M
[r]
p,q

∥∥∥∥∥
F

≤ κ

∥∥∥∥∥∂yKt (M)

∂M
[r]
p,q

∥∥∥∥∥
F

+

H∑
i=1

∥∥∥∥∥ ∂M [i]

∂M
[r]
p,q

wt−i

∥∥∥∥∥
F

≤ WκBκ
3

γ
+W

∥∥∥∥∥∂M [r]

∂M
[r]
p,q

∥∥∥∥∥
F

≤W

(
κBκ

3

γ
+ 1

)
(77)

Combining (75), (76), and (77), we obtain∣∣∣∇
M

[r]
p,q
f̃t(M)

∣∣∣ ≤ Gc
WκBκ

2

γ
+GcW

(
κBκ

3

γ
+ 1

)
≤ 3GcWκBκ

3γ−1.

Thus, ∥∇M f̃t(M)∥F is at most 3Hd2GcWκBκ
3γ−1.

Finally, we prove the claim (iii), i.e., the upper bound of diameter of the feasible set.

Actually, the construction of feasible set M ensures that ∀i ∈ [H], ∥M∥[i]op ≤ κBκ
3(1− γ)i.

Therefore, we have

max
M1,M2∈M

∥M1 −M2∥F
(Lemma 27)

≤
√
d max
M1,M2∈M

∥M1 −M2∥ℓ1,op

≤
√
d max
M1,M2∈M

(∥M1∥ℓ1,op + ∥M2∥ℓ1,op) =
√
d max
M1,M2∈M

(
H∑
i=1

∥M [i]
1 ∥op + ∥M [i]

2 ∥op

)

≤
√
d max
M1,M2∈M

(
2

H∑
i=1

κBκ
3(1− γ)i

)
= 2

√
dκBκ

3
H∑
i=1

(1− γ)i ≤ 2
√
dκBκ

3γ−1.

Hence, we finish the proof of all three claims in the statement.

In the following, we show that minimizing the static policy regret over the DAC class is
sufficient to deliver a policy regret competing with the strongly linear controller class.
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Lemma 30 (Lemma 5.2 of Agarwal et al. (2019)). With K,K⋆ chosen as the (κ, γ)-strongly
stable linear controllers as defined in Definition 4 and under Assumption 5, there exists a

DAC policy π(M∆,K) with M∆ = (M
[0]
∆ , . . . ,M

[H−1]
∆ ) defined by

M
[i]
∆ = (K −K⋆)(A−BK⋆)i

such that

T∑
t=1

ct(x
K
t (M∆), u

K
t (M∆))−

T∑
t=1

ct(x
K⋆

t , uK
⋆

t ) ≤ T · 4GcDWHκ2Bκ
6(1− γ)H−1γ−1,

where xK
⋆

t is the state attained by executing a linear controller K⋆ which chooses the action
uK

⋆

t = −K⋆xK
⋆

t .

Proof [of Lemma 30] The coordinate-wise Lipschitzness of the cost functions implies that

ct
(
xKt (M∆), u

K
t (M∆)

)
− ct

(
xK

⋆

t , uK
⋆

t

)
≤ GcD

∥∥∥xKt (M∆)− xK
⋆

t

∥∥∥+GcD
∥∥∥uKt (M∆)− uK

⋆

t

∥∥∥ .
By the linear dynamical equation (12), we have

xK
⋆

t+1 =

t∑
i=0

(A−BK⋆)iwt−i =

t∑
i=0

ÃiK⋆wt−i (78)

By the property of the DAC policy (Proposition 6), we have

xKt+1(M∆) = Ãh+1
K xKt−h(M∆) +

H+h∑
i=0

ΨK,h
t,i (M∆)wt−i.

Setting h = t and combining the assumption that the starting state x0 = 0, we achieve the
following equation,

xKt+1(M∆) =

H∑
i=0

ΨK,t
t,i (M∆)wt−i +

t∑
i=H+1

ΨK,t
t,i (M∆)wt−i.

Now we turn to calculate the transfer matrix ΨK,h
t,i (M∆) explicitly. Actually, for any i ∈

{0, . . . ,H}, h ≥ H, i.e., 0 ≤ i ≤ H ≤ h, by definition we have

ΨK,h
t,i (M∆) = ÃiK1i≤h +

h∑
j=0

ÃjKBM
[i−j]
∆ 1i−j∈[H]

= ÃiK +
i∑

k=1

Ãi−kK BM
[k]
∆ (79)

= ÃiK +

i∑
k=1

Ãi−kK B(K −K⋆)Ãk−1
K⋆ (80)
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= ÃiK +
i∑

k=1

Ãi−kK (ÃK⋆ − ÃK)Ãk−1
K⋆

= ÃiK +
i∑

k=1

Ãi−kK ÃkK⋆ − Ãi−k+1
K Ãk−1

K⋆

= ÃiK + ÃiK⋆ − ÃiK

= ÃiK⋆ ,

where (79) holds by introducing a new index k = i−j and (80) can be obtained by plugging

the construction of M
[i]
∆ (30). So we achieve the conclusion that

xKt+1(M∆) =
H∑
i=0

ÃiK⋆wt−i +
t∑

i=H+1

ΨK,t
t,i (M∆)wt−i. (81)

Combining (78) and (81) yields

∥∥∥xK⋆

t+1 − xKt+1(M∆)
∥∥∥ =

∥∥∥∥∥
t∑

i=H+1

(
ΨK,t
t,i (M∆)− ÃiK⋆

)
wt−i

∥∥∥∥∥
≤W

(
t∑

i=H+1

∥ΨK,t
t,i (M∆)∥+

t∑
i=H+1

∥ÃiK⋆∥

)

≤W

(
t∑

i=H+1

(
2κ2(1− γ)i +Hκ2Bκ

5(1− γ)i−1
))

≤W
(
2κ2(1− γ)H+1γ−1 +Hκ2Bκ

5(1− γ)Hγ−1
)

≤ κ2W (1− γ)Hγ−1
(
2(1− γ) +Hκ2Bκ

3
)

≤ Hκ2Bκ
5W (1− γ)Hγ−1(2(1− γ) + 1)

≤ 2WHκ2Bκ
5(1− γ)Hγ−1,

where the second inequality makes use of Lemma 28. Next, we investigate the difference
between the control signals,

∥uK⋆

t+1 − uKt+1(M∆)∥ =

∥∥∥∥∥−K⋆xK
⋆

t+1 −

(
−KxKt+1(M∆) +

H∑
i=1

M
[i]
∆wt+1−i

)∥∥∥∥∥
=

∥∥∥∥∥−K⋆xK
⋆

t+1 +KxKt+1(M∆)−
H∑
i=1

(K −K⋆)Ãi−1
K⋆ wt+1−i

∥∥∥∥∥
=

∥∥∥∥∥−K⋆

(
xK

⋆

t+1 −
H−1∑
i=0

ÃiK⋆wt−i

)
+K

(
xKt+1(M∆)−

H−1∑
i=0

ÃiK⋆wt−i

)∥∥∥∥∥
=

∥∥∥∥∥−K⋆
t∑

i=H

ÃiK⋆wt−i +K

t∑
i=H

ΨK,h
t,i (M∆)wt−i

∥∥∥∥∥
60



Non-stationary Online Learning with Memory and Non-stochastic Control

≤ 2WHκ2Bκ
6(1− γ)H−1γ−1.

Using above inequalities and Lipschitz assumption as well as the boundedness result (Lemma 28),
we complete the proof.

The remaining part of this section lists useful supporting lemmas for studying non-
stochastic control in unknown systems. Lemma 31 gives a high-probability bound about
the estimation accuracy in unknown systems.

Lemma 31 (Moment Recovery (Hazan et al., 2020, Lemma 21)). Under Assumption 6,
Algorithm 4 satisfies for all j ∈ [k], with probability at least 1− δ, it holds that

∥Nj − ÃjKB∥F ≤ 3κBκ
2duWγ−1

√
2dmin log (2e2kδ−1)

T0 − k
. (82)

Proof [of Lemma 31] When the control inputs are chosen as ut = −Kxt + ũt, using the
transition equation of linear dynamical systems, it holds that

xt+1 = Axt +But + wt = Axt +B (−Kxt + ũt) + wt = ÃKxt +Bũt + wt

= ÃK (Axt−1 +But−1 + wt−1) = ÃK

(
ÃKxt−1 +Bũt−1 + wt−1

)
+Bũt + wt

= Ã2
Kxt−1 + ÃK (Bũt−1 + wt−1) + (Bũt + wt) = . . .

=
t∑
i=0

Ãt−iK (Bũi + wi) .

Let Nj,t = xt+j+1ũ
⊤
t , we can prove that

E [Nj,t] = E
[
xt+j+1ũ

⊤
t

]
= E

[
t+j∑
i=0

Ãt+j−iK (Bũi + wi) ũ
⊤
t

]

=

t+j∑
i=0

Ãt+j−iK · E
[
(Bũi + wi) ũ

⊤
t

]
= ÃjK · E

[
(Bũt + wt) ũ

⊤
t

]
= ÃjKB · E

[
ũtũ

⊤
t

]
+ ÃjKwt · E

[
ũ⊤t

]
= ÃjKB,

where the second last equation is due to the fact that ũi and ũj are independent when
i ̸= j, and the last step is true because Eũt

[
ũtũ

⊤
t

]
= I,Eũt [ũt] = 0. Consequently, we can

prove that E[Nj ] =
1

T0−k
∑T0−k−1

t=0 E [Nj,t] = ÃjKB. Note that for 0 ≤ t1, t2 ≤ T0 − k − 1
and t1 ̸= t2, Nj,t1 and Nj,t2 are not independent because they contains the same random
variables η, so we cannot use Hoeffding’s inequality here.

For each index j ∈ [k], we can define a sequence of variables Ñj,t ≜ Nj,t− ÃjKB, we can

prove that {Ñj,t}T0−k−1
t=0 is a martingale difference sequence w.r.t. the sequence {ũt}T0−k−1

t=0 :

E
[
Ñj,t

∣∣∣ ũ0:t−1

]
= E [Nj,t | ũ0:t−1]− ÃjKB
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= E

[
t+j∑
i=0

Ãt+j−iK (Bũi + wi) ũ
⊤
t

∣∣∣∣∣ ũ0:t−1

]
− ÃjKB

= E

[
t−1∑
i=0

Ãt+j−iK (Bũi + wi) ũ
⊤
t

∣∣∣∣∣ ũ0:t−1

]
+ E

[
t+j∑
i=t

Ãt+j−iK (Bũi + wi) ũ
⊤
t

]
− ÃjKB

= E
[
ÃjK (Bũt + wt) ũ

⊤
t

]
− ÃjKB = 0.

For all j ∈ [k], t = 0, . . . , T0 − k − 1, the operator norm of Nj,t can be bounded by

∥Nj,t∥op ≤ ∥xt+j+1∥op∥ũt∥op ≤ ∥xt+j+1∥2∥ũt∥2 ≤ 2κBκ
2
√
duWγ−1 ·

√
du = 2κBκ

2duWγ−1.

Also, for Ñj,t, we can prove that

∥Ñj,t∥op ≤ ∥Nj,t∥op + ∥ÃjKB∥op ≤ 2κBκ
2duWγ−1 + κBκ

2(1− γ)j ≤ 3κBκ
2duWγ−1,

∥Ñj,t∥F ≤
√
dmin∥Ñj,t∥op ≤ 3

√
dminκBκ

2duWγ−1 ≜ DN .

Using Lemma 13, we have Pr
[
∥
∑T0−k

t=0 Ñj,t∥F ≥ x
]
≤ 2e2 exp

(
−x2

2(T0−k)D2
N

)
. By substitut-

ing Ñj,t by Nj,t − ÃjKB, it holds that Pr
[
∥Nj − ÃjKB∥F ≥ x

T0−k

]
≤ 2e2 exp

(
−x2

2(T0−k)D2
N

)
.

Finally, let ε = x
T0−k , we have

Pr
[
∥Nj − ÃjKB∥F ≥ ε

]
≤ 2e2 exp

(
−(T0 − k)ε2

2D2
N

)
We set 2e2 exp

(
−(T0−k)ε2

2D2
N

)
= δ

k to make above concentration inequality holds for each

j ∈ [k] with probability at least 1− δ, which implies that

ε = 3κBκ
2duWγ−1

√
2dmin log (2e2kδ−1)

T0 − k
.

Hence, we complete the proof.

Lemma 32 (Preservation of Stability). Under Assumption 6, if K is (κ, γ)-strongly stable
for a linear dynamical system S = (A,B, {w}), i.e., A−BK = QLQ−1, and ∥A−Â∥F, ∥A−
Â∥F ≤ εA,B, then the same linear controller K is

(
κ, γ − 2κ3εA,B

)
-strongly stable for the

estimated system Ŝ = (Â, B̂, {ŵ}), i.e., Â− B̂K = QL̂Q−1, where ∥L̂∥ ≤ 1− γ + 2κ3εA,B.

Proof [of Lemma 32] First, we try to express the strong stability of K with respect to
(Â, B̂) as

Â− B̂K = A−BK + (Â−A)− (B̂ −B)K

= QLQ−1 + (Â−A)− (B̂ −B)K

= Q
(
L+Q−1

(
(Â−A)− (B̂ −B)K

)
Q
)
Q−1 ≜ Q̂L̂Q̂−1,
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where the last equality is by defining L̂ = L + Q−1((Â − A) − (B̂ − B)K)Q. Further, the
operator norm of L̂ can be bounded as

∥L̂∥op = ∥L+Q−1
(
(Â−A)− (B̂ −B)K

)
Q∥op

≤ ∥L∥op + ∥Q−1∥op
(
∥Â−A∥op + ∥K∥op∥B̂ −B∥op

)
∥Q∥op

≤ (1− γ) + κ · (εA,B + κ · εA,B) · κ ≤ 1− γ + 2κ3εA,B.

By definition of strong stability, it holds that K is
(
κ, γ − 2κ3εA,B

)
-strongly stable for the

estimated system Ŝ = (Â, B̂, {ŵ}).

Lemma 33 below provides boundedness results in the fictitious system.

Lemma 33 (Lemma 18 of Hazan et al. (2020)). Under Assumption 4 and Assumption 6,
if it holds that εA,B ≤ 10−3κ−10γ2, then for any t ≥ T0 + 1, we have

∥xt∥2 ≤ 20
√
duκ

11γ−3W, ∥wt− ŵt∥2 ≤ 42
√
duκ

12γ−3WεA,B, ∥ŵt−1∥2 ≤ 2
√
duκ

3γ−1W.

Lemma 34. Under Assumption 7, σmin(Ck) ≥ 1/
√
κc, where Ck is defined in (16).

Proof [of Lemma 34] Under Assumption 7, it holds that ∥(CkC⊤
k )

−1∥op ≤ κc, i.e.,

σmax((CkC
⊤
k )

−1) ≤ κc.

It is apparent that
(
(CkC

⊤
k )

−1
)⊤

=
(
(CkC

⊤
k )

⊤)−1
= (CkC

⊤
k )

−1, i.e., (CkC
⊤
k )

−1 is a sym-
metric matrix. Then we have

σmax((CkC
⊤
k )

−1) = λmax

(
(CkC

⊤
k )

−1
(
(CkC

⊤
k )

−1
)⊤)

= λmax

(
(CkC

⊤
k )

−1(CkC
⊤
k )

−1
)

= λ2max

(
(CkC

⊤
k )

−1
)
≤ κc.

Finally we have σmin(Ck) = λmin(CkC
⊤
k ) ≥ 1/

√
κc, which finishes the proof.

Lemma 35 (Lemma 17 of Hazan et al. (2020)). For any matrix pair L, L̂, such that
∥L∥op, ∥L̂∥op ≤ 1− γ, γ ∈ (0, 1), we have

∑∞
t=0∥Lt − L̂t∥op ≤ 3γ−2∥L− L̂∥op.

Lemma 36 (Perturbation Analysis (Hazan et al., 2020, Lemma 22)). Let x⋆ be the solution
to linear system Ax = b, and x̂ be the solution to (A+∆A)x = b+∆b, then if it holds that
∥∆A∥ ≤ σmin(A), it is true that

∥x⋆ − x̂∥ ≤ ∥∆b∥+ ∥∆A∥∥x⋆∥
σmin(A)− ∥∆A∥op

.
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András György and Csaba Szepesvári. Shifting regret, mirror descent, and matrices. In
Proceedings of the 33rd International Conference on Machine Learning (ICML), pages
2943–2951, 2016.

Thomas P. Hayes. A large-deviation inequality for vector-valued martingales. Combina-
torics, Probability and Computing, 2005.

Elad Hazan. Introduction to Online Convex Optimization. Foundations and Trends in
Optimization, 2(3-4):157–325, 2016.

Elad Hazan and C. Seshadhri. Efficient learning algorithms for changing environments. In
Proceedings of the 26th International Conference on Machine Learning (ICML), pages
393–400, 2009.

Elad Hazan, Sham M. Kakade, and Karan Singh. The nonstochastic control problem. In
Proceedings of the 31st International Conference on Algorithmic Learning Theory (ALT),
pages 408–421, 2020.

Mark Herbster and Manfred K. Warmuth. Tracking the best expert. Machine Learning, 32
(2):151–178, 1998.

Mark Herbster and Manfred K. Warmuth. Tracking the best linear predictor. Journal of
Machine Learning Research, 1:281–309, 2001.

Ali Jadbabaie, Alexander Rakhlin, Shahin Shahrampour, and Karthik Sridharan. Online
optimization: Competing with dynamic comparators. In Proceedings of the 18th Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS), pages 398–406,
2015.

Rudolf Emil Kalman. Contributions to the theory of optimal control. Bolet́ın de la Sociedad
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