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Abstract

This paper studies the problem of learning with augmented classes (LAC), where
augmented classes unobserved in the training data might emerge in the testing
phase. Previous studies generally attempt to discover augmented classes by exploit-
ing geometric properties, achieving inspiring empirical performance yet lacking
theoretical understandings particularly on the generalization ability. In this paper
we show that, by using unlabeled training data to approximate the potential distribu-
tion of augmented classes, an unbiased risk estimator of the testing distribution can
be established for the LAC problem under mild assumptions, which paves a way
to develop a sound approach with theoretical guarantees. Moreover, the proposed
approach can adapt to complex changing environments where augmented classes
may appear and the prior of known classes may change simultaneously. Extensive
experiments confirm the effectiveness of our proposed approach.

1 Introduction

Recent advances in machine learning encourage its application in high-stake scenarios, where the
robustness is the central requirement [1, 2]. A robust learning system should be able to handle
the distribution change in the non-stationary environments [3, 4, 5]. In this paper, we focus on the
problem of learning with augmented classes (LAC) [6], where the class distribution changes during
the learning process—some augmented classes unobserved in training data might emerge in testing.
To make reliable predictions, desired learning systems are required to identify augmented classes and
retain good generalization performance over the testing distribution.

The main challenge of the LAC problem lies in how to depict relationships between known and
augmented classes. A typical solution is to learn a compact geometric description of the known
classes and take those beyond the description as augmented classes, where the anomaly detection
or novelty detection approaches can be employed (such as one-class SVM [7, 8], kernel density
estimation [9, 10] and iForest [11]). Da et al. [6] give the name of LAC and employ the low-density
separation assumption to adjust the decision boundaries in a multi-class situation. In addition to the
effort of machine learning community, the computer vision and pattern recognition communities
also contribute to the study of the problem (or its cousin). Scheirer et al. [12] propose the notion of
open space risk to penalize predictions outside the support of training data, based on which several
approaches are developed [12, 13]. Later, approaches based on the nearest neighbor [14] and extreme
value theory [15] are also developed. More discussions on related topics are deferred to Section 5.

Although various approaches are proposed with nice performance and some of them conduct the-
oretical analysis, generalization properties of the LAC problem is less explored. Scheirer et al.
[12, 13], Rudd et al. [15] formally use the open space risk or extreme value theory to identify aug-
mented classes, but the generalization error of learned models is not further analyzed. There are also
works [16, 17, 18] focusing on the Neyman-Pearson (NP) classification, which controls the novelty
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Figure 1: Distribution of augmented classes can be estimated by those of labeled and unlabeled training data.

detection ratio of augmented classes or false positive ratio of known classes with the constraint on
another. By using unlabeled data, authors develop approaches with one-side PAC-style guarantees for
the binary NP classification whereas the generalization ability for the LAC problem is not studied.

To design approaches with generalization error guarantees for the LAC problem, it is necessary to
assess the distribution of augmented classes in the training stage. Note that in many applications,
during the training stage, in addition to labeled data, there are abundant unlabeled training data
available. In this paper, we show that by exploiting unlabeled training data, an unbiased risk estimator
over the testing distribution can be established under mild assumptions. The intuition is that, though
instances from augmented classes are unobserved from labeled data, their distribution information
may be contained in unlabeled data and estimated by separating the distribution of known classes from
unlabeled data (Figure 1). More concretely, we propose the class shift condition to model the testing
distribution as a mixture of known and augmented classes’ distributions. Under such a condition,
classifiers’ risk over testing distribution can be estimated in the training stage, where minimizing
its empirical estimator finally gives our EULAC approach, short for Exploiting Unlabeled data for
Learning with Augmented Classes. Moreover, the EULAC approach can further take the prior change
on known classes into account, which enables its adaptivity to complex changing environments.

EULAC enjoys several favorable properties. Theoretically, our approach has both asymptotic (con-
sistency) and non-asymptotic (generalization error bound) guarantees. Notably, the non-asymptotic
analysis further justifies the capability of our approach in exploiting unlabeled data, since the gener-
alization error becomes smaller with an increasing number of unlabeled data. Moreover, extensive
experiments validate the effectiveness of our approach. It is noteworthy to mention that our approach
can now perform the standard cross validation procedure to select parameters, while most geometric-
based approaches cannot due to the unavailability of the testing distribution, and their parameters
setting heavily relies on the experience. We summarize main contributions of this paper as follows.

(1) We propose the class shift condition to characterize the connection between known and
augmented classes for the learning with augmented class problem.

(2) Based on the class shift condition, we establish an unbiased risk estimator over the testing
distribution for the LAC problem by exploiting the unlabeled data. Similar results are also
attainable for a general setting of class distribution change.

(3) We develop our EULAC approach with the unbiased risk estimator, whose theoretical
effectiveness is proved by both consistency and generalization error analyses. We also
conduct extensive experiments to validate its empirical superiority.

2 An Unbiased Risk Estimator for LAC problem

In this section, we formally describe the LAC problem, followed by the introduction of the class
shift condition, based on which we develop the unbiased risk estimator over the testing distribution.
Moreover, we show the potential of our approach for adapting to complex changing environments.

2.1 Problem Setup and Class Shift Condition

LAC problem. In the training stage, the learner collects a labeled dataset DL = {(xi, yi)}nl
i=1

sampled from distribution of known classes Pkc defined over X × Y ′, where X denotes the feature
space and Y ′ = {1, . . . ,K} is the label space of K known classes. In the testing stage, the learner
requires to predict instances from the testing distribution Pte, where augmented classes not observed
before might emerge. Since the specific partition of augmented classes is unknown, the learner
will predict all of them as a single augmented class ac. So the testing distribution is defined over
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X × Y , where Y = {1, . . . ,K, ac} is the augmented label space. The goal of the learner is to
train a classifier f : X 7→ Y achieving good generalization ability by minimizing the expected risk
R(f) = E(x,y)∼Pte

[1(f(x) 6= y)] over the testing distribution, where 1(·) is the indicator function.

Unlabeled data. In our setup, the learner additionally receives a set of unlabeled dataDU = {xi}nu
i=1

sampled from the testing distribution and hopes to use it to enhance performance of the trained
classifier. This learning scenario happens when labeled training data fail to capture certain classes of
the testing distribution due to the class distribution change, while we can easily collect a vast amount
of unlabeled data from current environments. Essentially, the missed class information has already
been contained in the training data (unlabeled data) though is not revealed in the supervision (labeled
training data). We thus prefer to call such classes as the “augmented class” instead of “new class”.

Class shift condition. Although not explicitly stated, previous works [12, 6, 14] essentially rely on
the assumption that the distribution of known classes remains unchanged when augmented classes
emerge. Following the same spirit, we introduce the following class shift condition for the LAC
problem to rigorously depict the connection between known and augmented class distributions.
Definition 1 (Class Shift Condition). The testing distribution Pte, the distribution of known classes
Pkc and the distribution of augmented classes Pac are under the class shift condition, if

Pte = θ · Pkc + (1− θ) · Pac, (1)

where θ ∈ [0, 1] is a certain mixture proportion.1

Class shift condition states that the testing distribution can be regarded as a mixture of those of known
and augmented classes with a certain proportion θ, based on which we can evaluate classifiers’ risk
over the testing distribution with labeled and unlabeled training data.

2.2 Convex Unbiased Risk Estimator

This part, we develop an unbiased risk estimator for the LAC problem under the class shift condition.
We first introduce the notation conventions. The density function is denoted by the lowercase p, and
the joint, conditional and marginal density functions are indicated by the subscripts XY , X|Y (Y |X)
and X (Y ). For instance, pteX(x) refers to the marginal density of the testing distribution over X .

OVR scheme. Suppose the joint testing distribution were available, the LAC problem would degener-
ate to standard multi-class classification, which can be then addressed by existing approaches. Among
those approaches, we adopt the one-versus-rest (OVR) strategy, which enjoys sound theoretical
guarantees [19] and nice practical performance [20]. The risk minimization is formulated as,

min
f1,...,fK+1

Rψ(f1, . . . , fK+1) = E(x,y)∼Pte

[
ψ(fy(x)) +

∑K+1

k=1,k 6=y
ψ(−fk(x))

]
, (2)

where fk is the classifier for the k-th class, k = 1, . . . ,K; and fac is the classifier for the augmented
class. For simplicity, we substitute fac with fK+1 in the formulation. ψ : R 7→ [0,+∞) is a binary
surrogate loss such as hinge loss. The OVR scheme predicts by f(x) = arg maxk∈{1,...,K,ac} fk(x).

Approximating the testing distribution. However, the joint testing distribution is unavailable in
the training stage due to the absence of labeled instances from augmented classes. Fortunately, we
show that given the mixture proportion θ, it can be approximated with the labeled and unlabeled data.
Under the class shift condition, the joint density of the testing distribution can be decomposed as

pteXY (x, y)
(1)
= θ · pkc

XY (x, y) + (1− θ) · pac
XY (x, y)

= θ · pkc
XY (x, y) + 1(y = ac) · (1− θ) · pac

X (x), (3)

where the last equality follows from the fact that pac
XY (x, y) = 0 holds for all x ∈ X and y 6= ac.

The first part pkc
XY (x, y) is accessible via the labeled data. The only unknown term is the second

part, the marginal density of the augmented class pac
X (x). Under the class shift condition, it can be

evaluated by separating the distribution of labeled data from unlabeled data as

(1− θ) · pac
X (x) = pteX(x)− θ · pkc

X(x). (4)

Thus, by plugging (4) into (3), the testing distribution becomes attainable, and consequently, we can
evaluate the OVR risk Rψ in the training stage through an equivalent risk RLAC .

1We redefine all the distributions over the space X × Y , where pkc
XY (x, ac) = 0 for all x ∈ X
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Proposition 1. Under the class shift condition, for measurable functions f1, . . . , fK , fac, we have
Rψ(f1, . . . , fK , fac) = RLAC(f1, . . . , fK , fac), where RLAC is defined as,

RLAC = θ · E(x,y)∼Pkc [ψ(fy(x))− ψ(−fy(x)) + ψ(−fac(x))− ψ(fac(x))]

+ Ex∼pteX (x)

[
ψ(fac(x)) +

∑K

k=1
ψ(−fk(x))

]
.

(5)

Remark 1. We can assessRLAC during training as the distribution of known classes Pkc and marginal
testing distribution pteX(x) can be estimated by labeled and unlabeled training data, respectively.

The remaining issue for the LAC risk RLAC is the non-convexity caused by terms −ψ(−fy(x)) and
−ψ(fac(x)), which are non-convex w.r.t the classifiers even with the convex binary surrogate loss ψ.
Inspired by studies [21, 22], we can eliminate the non-convexity by carefully choosing the surrogate
loss satisfying ψ(z)− ψ(−z) = −z for all z ∈ R, and thereby RLAC enjoys a convex formulation

RLAC = θ · E(x,y)∼Pkc [fac(x)− fy(x)] + Ex∼pteX (x)

[
ψ(fac(x)) +

∑K

k=1
ψ(−fk(x))

]
. (6)

Many loss functions satisfy the above condition [22], such as logistic loss ψ(z) = log(1 + exp(−z)),
square loss ψ(z) = (1− z)2/4 and double hinge loss ψ(z) = max(−z,max(0, (1− z)/2)). Since
LAC risk RLAC equals to the ideal OVR risk Rψ , its empirical estimator R̂LAC is unbiased over the
testing distribution. We can thus perform the standard empirical risk minimization. Finally, we note
that Proposition 1 can be generalized for arbitrary multiclass losses, if the convexity is not required,
where more multiclass and binary losses can be used. We will take this as a future work.

2.3 Convex Unbiased Risk Estimator under Generalized Class Shift Condition

The class shift condition in Definition 1 models the appearance of augmented classes with the
assumption that the distribution of known classes is identical to that in the testing stage. In real-world
applications, however, the environments might be more complex, where the distribution of known
classes could also shift. We consider a specific kind of class distribution change: in addition to the
emerging augmented classes, the prior of each class pteY (y) varies from labeled data to testing data,
while their conditional density remains the same, namely pteX|Y (x|y) = pkc

X|Y (x|y) for all y ∈ [K].
To this end, we propose following generalized class shift condition to model such a case by further
decomposing the distribution of known classes in the testing stage as a mixture of several components,

Pte =
∑K

k=1
θkte · Pk +

(
1−

∑K

k=1
θkte

)
· Pac, (7)

where Pk is the distribution of the k-th known class whose marginal density equals to pkc
X|Y (x|k), and

θkte = pteY (k) is the prior of k-th known class in testing, for all k ∈ [K]. When there is no distribution
change on known classes, the generalized class shift condition recovers the vanilla version in (1).

With the generalized class shift condition (7), following the similar argument in Section 2.2, we can
evaluate the OVR risk for the testing distribution even if the prior of known classes has changed.
Proposition 2. Under the generalized class shift condition (7), by choosing the surrogate loss
function satisfying ψ(z)− ψ(z) = −z for all z ∈ R, for measurable functions f1, . . . , fK , fac, we
have Rψ(f1, . . . , fK , fac) = RshiftLAC (f1, . . . , fK , fac), where RshiftLAC is defined as,

RshiftLAC =
∑K

k=1
θkte · E(x,y)∼Pk

[fac(x)− fy(x)] + Ex∼pteX (x)

[
ψ(fac(x)) +

∑K

k=1
ψ(−fk(x))

]
.

Proposition 2 implies that we can handle the augmented classes together with the distribution change
on prior of known classes by empirically minimizing the risk RshiftLAC . Note that since RshiftLAC further
decomposes the distribution of known classes into several components, it enjoys more flexibility than
RLAC in evaluating the testing risk, yet requires more efforts in estimation of class prior θkte for each
known class rather than mixture proportion θ only, which will be discussed next.

3 Approach

In this section, we develop two practical algorithms for the proposed EULAC approach to minimize
the empirical version of the LAC risk RLAC (similar results can be extended for its generalization
RshiftLAC ). Meanwhile, we discuss how to estimate the mixture proportion θ and class prior θkte.
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Kernel-based hypothesis space. We first consider minimizing the empirical LAC risk R̂LAC in the
reproducing kernel Hilbert space (RKHS) F associated to a PDS kernel κ : X × X 7→ R:

min
f1,...,fK ,fac∈F

R̂LAC + λ
(∑K

k=1
‖fk‖2F + ‖fac‖2F

)
, (8)

where R̂LAC is the empirical approximation of the LAC risk (6)

R̂LAC =
θ

nl

∑nl

i=1
(fac(xi)− fyi(xi)) +

1

nu

∑nu

i=1

(
ψ(fac(xi)) +

∑K

k=1
ψ(−fk(xi))

)
. (9)

According to the representer theorem [23], the optimal solution of (8) is provably in the form of

fk(·) =
∑

xi∈DL

αki κ(·,xi) +
∑

xj∈DU

αkjκ(·,xj), (10)

where αki is the i-th coefficient of the k-th classifier. Plugging (10) into (8), we get a convex
optimization problem with respect to α, which can be solved efficiently. Since the risk estimator
R̂LAC is assessed on the testing distribution directly, we can perform unbiased cross validation to
select parameters. Then, after obtaining the binary classifiers f1, . . . , fK , fac, we follow the OVR
rule to construct the final predictor as f : X 7→ Y with f(x) = arg maxk∈{1,...,K,ac} fk(x).

Deep model. Our approach can be also implemented by deep neural networks. Since the deep models
themselves are non-convex, we directly minimize the non-convex formulation of RLAC (5) by taking
outputs of the deep model as OVR classifiers. However, as shown by Kiryo et al. [24], the direct
minimization easily suffers from over-fitting as the risk is not bounded from below by 0. To avoid the
undesired phenomenon, we apply their proposed non-negative risk [24] to rectify the OVR scheme
for training the deep model, whose effectiveness will be validated by experiments. More detailed
elaborations for the rectified RLAC risk is presented in the full paper [25].

On the estimation of θ. Notice that minimizing R̂LAC requires estimating θ, which is known
as the problem of Mixture Proportion Estimation (MPE) [26], where one aims to estimate the
maximum proportion of distribution H in distribution F given their empirical observations. Many
works have been devoted to developing theoretical foundations and efficient algorithms [27, 17, 28,
29]. We employ the kernel mean embedding (KME) based algorithm proposed by Ramaswamy
et al. [26], which guarantees that the estimator θ̂ converges to true proportion θ in the rate of
O(1/

√
min{nl, nu}) under the separability condition. Moreover, since the KME-based algorithm

easily suffers from the curse of dimensionality in practice, inspired by the recent work [28], we further
use a pre-trained model to reduce the dimensionality of original input to its probability outputs. We
refer to the above estimator as KME-base, and the corresponding approach for LAC as EULAC-base.

Additionally, under the generalized class shift condition, we need more refined estimations for each
known class. Therefore, we use the above MPE estimator to estimate each class prior θkte inRshiftLAC (2)
via the labeled instances from the k-th known class and the unlabeled data, k ∈ [K]. We refer to
such an estimator as KME-shift and the corresponding approach as EULAC-shift. Finally, we note
that since the vanilla LAC can also be modeled with the generalized class shift condition, we can
use KME-shift to estimate the mixture proportion θ̂ by θ̂ =

∑K
k=1 θ̂

k
te. It turns out that KME-shift

achieves comparable (even better) empirical performance with KME-base.

4 Theoretical Analysis

In this section, we first show the infinite-sample consistency of the LAC risk RLAC . Then, we derive
the generalization error bounds. All the proofs can be found in the full paper [25].

Infinite-sample consistency. At first, we show that the LAC risk RLAC is infinite-sample consistent
with the risk over the testing distribution with respect to 0-1 loss. Namely, by minimizing the expected
risk of RLAC , we can get classifiers achieving the Bayes rule over the testing distribution.
Theorem 1. Under the class shift condition, suppose the surrogate loss ψ is convex, bounded below,
differential, satisfying ψ(z) − ψ(−z) = −z and ψ(z) < ψ(−z) when z > 0, then for any ε1 > 0,
there exists ε2 > 0 such that

RLAC(f1, . . . , fK , fac) ≤ R∗LAC + ε2 =⇒ R(f) ≤ R∗ + ε1
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holds for all measurable functions f1, . . . , fK , fac and f(x) = arg maxk∈{1,...,K,ac} fk(x). Here,
R∗LAC = minf1,...,fK ,fac RLAC(f1, . . . , fK , fac) and R∗ = minf R(f) = E(x,y)∼Pte

[1(f(x) 6=
y)] is the Bayes error over the testing distribution.

Theorem 1 follows from Proposition 1 and analysis in the seminal work of Zhang [19], who inves-
tigates the consistency property of OVR risk in depth. Since the LAC risk RLAC is equivalent to
the OVR risk Rψ, it is naturally infinite-sample consistent. There are many loss functions satisfy
assumptions in Theorem 1 such as the logistic loss ψ(z) = log(1 + exp(−z)) and the square loss
ψ(z) = (1− z)2/4. In particular, we can obtain a more quantitative results for the square loss.
Theorem 2. Under the same condition of Theorem 1, when using ψ(z) = (1−z)2/4 as the surrogate

loss function, we have R(f)−R∗ ≤
√

2
(
RLAC(f1, . . . , fK , fac)−R∗LAC

)
.

Theorem 2 shows that the excess risk of RLAC upper bounds that of 0-1 loss. Thus, by minimizing
the LAC risk RLAC , we can obtain well-behaved classifiers on the testing distribution w.r.t. 0-1 loss.
Remark 2. Theorems 1 and 2 show the consistency for RLAC under class shift condition. Similar
results can be easily obtained for RshiftLAC with the generalized class shift condition, due to the
equivalence of RshiftLAC and the OVR risk, even when prior of known classes have changed.

Finite-sample generalization error bound. We establish the generalization error bound for the pro-
posed approach in this part. Since the approach actually minimizes the empirical risk estimator R̂LAC
with a regularization term of the RKHS F, it is equivalent to investigate the generalization ability of
classifiers f1, . . . , fK , fac in the kernel-based hypothesis set F = {x 7→ 〈w,Φ(x)〉 | ‖w‖F ≤ Λ},
where Φ : x 7→ F is a feature mapping associated with the positive definite symmetric kernel κ, and
w is an element in the RKHS F. We have the following generalization error bound.
Theorem 3. Assume that κ(x,x) ≤ r2 holds for all x ∈ X and the surrogate loss function ψ is
bounded by Bψ ≥ 0 and is L-Lipschitz continuous.2 Then, for any δ > 0, with probability at least
1− δ over the draw of labeled samples DL of size nl from the distribution of known classes Pkc and
unlabeled samples DU of size nu from pteX(x), the following holds for all f1, . . . , fK , fac ∈ F ,

RLAC(f1, . . . , fK , fac)− R̂LAC(f1, . . . , fK , fac)

≤ 2(K + 1)Λr
√
nl

+ 6Λr

√
2 log(4/δ)

nl
+

2(K + 1)LΛr
√
nu

+ 3(K + 1)Bψ

√
log(4/δ)

nu
.

Based on Theorem 3, by the standard argument [30, 31], we can obtain the estimation error bound.

Theorem 4. Under the same assumptions of Theorem 3 and let f̂1, . . . , f̂K , f̂ac be the optimal
solution of the optimization problem (8) with certain λ > 0, with high probability, we have

RLAC(f̂1, . . . , f̂K , f̂ac)− inf
f∈F

RLAC(f1, . . . , fK , fac) ≤ O
(
K + 1
√
nl

+
K + 1
√
nu

)
,

where f denotes (f1, . . . , fK , fac) and F = {f | f1, . . . , fK , fac ∈ F,
∑K
k=1 ‖fk‖2F+‖fac‖2F ≤ c2λ}.

The parameter cλ > 0 is a constant related to λ in (8). We use theO-notation to keep the dependence
on nu, nl and K only, where the full expression can be found in the full paper.
Remark 3. Theorem 3 and Theorem 4 show that, the estimation error of the trained classifiers
decreases with a growing number of labeled and unlabeled data, which theoretically justifies the
effecacy of our approach in exploiting unlabeled data. Experiments also validate the same tendency.

Overview of theoretical results. Recall that the goal of the LAC problem is to obtain classifiers
that approach Bayes rule over the testing distribution, so we need to minimize the excess risk
R
(

argmaxk∈{1,...,K,ac} fk
)
−R∗. According to the consistency guarantee presented in Theorem 1,

it suffices to minimize the excess risk RLAC(f)−R∗LAC , which can be further decomposed into the
estimation error and the approximation error as follows,

RLAC(f)−R∗LAC = RLAC(f)− inff∈F RLAC(f)︸ ︷︷ ︸
estimation error

+ inff∈F RLAC(f)−R∗LAC︸ ︷︷ ︸
approximation error

.

2Common surrogate loss functions satisfy these conditions, such as logistic loss, exp loss and square loss.
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Theorem 4 shows that with an increasing number of labeled and unlabeled data, the excess risk
converges to the irreducible approximation error, which measures how well the hypothesis set
approximates the Bayes rule and is generally not accessible for learning algorithms [31]. Thus, the
consistency and excess risk bounds theoretically justify the effectiveness of our approach.

5 Related Work and Discussion

This section discusses several research topics and techniques that are related to our approach.

Class-incremental learning [32] aims to handle new classes appearing in the learning process,
and learning with augmented classes is one of its core tasks. Some early studies [6, 33] try to
exploit unlabeled data for handling the LAC problem. Our approach differs from theirs as we depict
the connection between known and augmented classes by the class shift condition rather than the
geometric assumption, which leads to more clear theoretical understandings and better performance.
Apart from the batch setting, researchers also manage to handle even more challenging scenario
where augmented classes emerge in the streaming data [34, 35, 36, 37]. It is interesting to study that
whether our approach can be tailored for the streaming setting.

Open set recognition [12, 38] is a cousin of the LAC problem studies in the computer vision and
pattern recognition communities. As we have mentioned, several techniques or concepts are employed
to depict the relationship between known and augmented classes, including open space risk [12, 13],
nearest neighbor approach [14], extreme value theory [15] and the adversarial sample generation
framework [39], etc. We note that many works in OSR implicitly use the feature semantic information
to help identifying augmented classes. By contrast, our paper works on a general setting without such
domain knowledge on the semantic information.

Although the approaches achieve nice empirical behavior and are underpinned by formal definitions
or theories, their generalization error over testing distribution are less explored. Exceptions are
works [16, 17, 18]. Authors focus on the Neyman-Pearson (NP) classification problem, where false
positive ratio on known classes are minimized with the constraint on desired novelty detection ratio,
or vice. Scott and Blanchard [16] and Blanchard et al. [17] provide one-side generalization bounds
for both the novelty detection ratio and false positive ratio. However, the results mainly focus on
the binary NP classification problem. The generalization error and excess risk analysis for the
LAC problem, where multiple classes appear, is not investigated. Liu et al. [18] design a general
meta-algorithm that can take any existing novelty detection approach as a subroutine to recognize
augmented classes. They contribute to the PAC-style guarantee for the meta-algorithm on the novelty
detection ratio, while performance on the false positive rate is less explored.

Learning with positive and unlabeled examples (LPUE), also known as PU learning, is a special
semi-supervised learning task aiming to train a classifier for the binary classification with the positive
and unlabeled data only [40, 27, 41, 42, 22]. One research line of LPUE is to exploit the risk rewriting
technique to establish unbiased estimators for classifier training, which have also been adopted in
our paper. The LAC problem with unlabeled data can be seen as a generalized LPUE problem by
taking the known classes as positive. However, most studies on LPUE mainly focus on the binary
scenario and established approaches are no longer unbiased in the multiclass case. For the multiclass
scenario, Xu et al. [43] exploit the risk rewriting technique to train linear classifiers, which has also
been adopted by Tsuchiya et al. [44] for ordinal regression. Although sharing similarity with [43, 44],
our LAC risk is established in a quite different context and brings novel understandings for the LAC,
through which more complex changing environments could be handled. Besides, the LAC risk allows
more flexible implementations where the kernel method and deep model are applicable.

6 Experiments

We examine three aspects of the proposed EULAC approach: (Q1) performance of classifying known
classes and identifying augmented classes; (Q2) accuracy of estimating mixture prior θ and its
influence on EULAC; (Q3) capability of handling the complex changing environments (augmented
class appears and prior of known classes shifts simultaneously). We answer the questions in following
three subsections. In all experiments, classifiers are trained with labeled and unlabeled data, and are
evaluated with an additional testing dataset which is never observed in training.
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Table 1: Macro-F1 scores on benchmark datasets. The best method is emphasized in bold. Besides, •
indicates that EULAC is significantly better than others (paired t-tests at 5% significance level).

Dataset OVR-SVM W-SVM OSNN EVM LACU-SVM PAC-iForest EULAC

usps 75.42 ± 4.87 • 79.77 ± 4.97 • 63.14 ± 8.91 • 61.14 ± 6.27 • 69.20 ± 8.34 • 55.69 ± 13.3 • 86.52 ± 2.72
segment 71.78 ± 5.12 • 80.82 ± 9.38 • 85.10 ± 5.98 82.13 ± 5.88 • 40.69 ± 12.5 • 63.64 ± 13.1 • 86.17 ± 5.80
satimage 54.67 ± 9.80 • 76.29 ± 13.2 • 62.48 ± 11.2 • 72.10 ± 8.16 • 51.56 ± 17.3 • 60.76 ± 7.79 • 81.25 ± 6.18
optdigits 80.11 ± 3.80 • 87.82 ± 4.64 • 86.97 ± 3.79 • 72.00 ± 8.33 • 80.92 ± 3.68 • 71.65 ± 5.46 • 91.54 ± 2.95
pendigits 72.78 ± 5.19 • 87.79 ± 3.95 86.69 ± 3.39 • 89.94 ± 1.30 70.66 ± 6.18 • 73.21 ± 4.52 • 88.41 ± 4.81
SenseVeh 48.07 ± 3.80 • 45.96 ± 2.32 • 49.91 ± 6.88 • 51.24 ± 3.91 • 51.61 ± 3.31 • 54.12 ± 7.19 • 77.33 ± 2.17
landset 60.43 ± 7.65 • 68.91 ± 17.0 • 73.25 ± 9.23 • 76.00 ± 7.79 • 53.59 ± 9.88 • 70.50 ± 7.16 • 85.70 ± 4.46
mnist 66.74 ± 2.76 • 75.38 ± 4.62 • 57.75 ± 10.9 • 58.39 ± 5.94 • 63.53 ± 7.58 • 48.31 ± 9.62 • 80.66 ± 5.38
shuttle 37.39 ± 14.1 • 58.48 ± 34.5 • 48.21 ± 16.4 • – 34.18 ± 13.4 • 29.36 ± 8.70 • 66.49 ± 17.9
EULAC w/ t/ l 9/ 0/ 0 8/ 1/ 0 8/ 1/ 0 8/ 1/ 0 9/ 0/ 0 9/ 0/ 0 rank first 8/ 9
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Figure 2: Macro-F1 score comparisons when the number of unlabeled data increases.

6.1 Performance Comparison

To answer Q1, we compare two implementations of EULAC (RKHS-based and DNN-based versions)
with contenders on several benchmark datasets for various tasks. The overall performance over testing
distribution is measured by the Macro-F1 score and accuracy. Meanwhile, we report AUC of aug-
mented class score to evaluate the ability of identifying augmented classes. Due to space constraints,
we provide detailed descriptions of datasets, contenders and measures in the full paper [25].

Comparison on RKHS-based Eulac. We adopt 9 datasets, where half of the total classes are
randomly selected as augmented classes for 10 times. In each dataset, the labeled, unlabeled and
testing data contain 500, 1000 and 1000 instance respectively. The instance sampling procedure
repeats 10 times. Meanwhile, there are six contenders, including four without exploiting unlabeled
data (OVR-SVM, W-SVM [13], OSNN [14], EVM [15]) and two using them (LACU-SVM [6],
PAC-iForest [11]). Table 1 reports performance in terms of Macro-F1 score. Similar results for
accuracy and AUC are shown in the full paper. We can see that EULAC outperforms others in most
datasets. Note that it is surprising that W-SVM and EVM achieve better results than LACU-SVM
and PAC-iForest, which are fed with unlabeled data. The reason might be that these methods require
to set parameters empirically and the default one may not be proper for all datasets. By contrast, our
proposed EULAC can perform unbiased cross validation to select proper parameters.

Influence on the size of unlabeled data. We vary the size of unlabeled data from 250 to 1500 with
an interval of 250 on 3 datasets: mnist, landset, and usps. LACU-SVM and PAC-iForest are included
for comparison. Figure 2 presents the Macro-F1 score and shows that the score of LACU-SVM
remains unchanged or even drops in the three datasets, while performance of our approach is enhanced
when provided with more unlabeled data, which is consistent with theoretical analysis in Section 4.
This again validates that our approach can exploit unlabeled data effectively. Notice that PAC-iForest
also enjoys sound theoretical guarantees, yet the guarantees only hold for the novelty detection ratio
and thus the overall performance on the testing distribution is not promised to be improved.

Table 2: AUC for DNN-based EULAC

Methods mnist Cifar-10 SVHN

SoftMax 97.8 ± 0.6 67.7 ± 3.8 88.6 ± 1.4
OpenMax 98.1 ± 0.5 69.5 ± 4.4 89.4 ± 1.3
G-OpenMax 98.4 ± 0.5 67.5 ± 4.4 89.6 ± 1.7
OSRCI 98.8 ± 0.4 69.9 ± 3.8 91.0 ± 1.0
EULAC 98.6 ± 0.4 85.2 ± 2.0 91.2 ± 2.8

Comparison on deep models. We also evaluate DNN-
based EULAC, where the sigmoid loss ψ(z) = 1/(1 +
exp(z)) is used for the non-negative risk. The exper-
iments are conducted on mnist, SVHN and Cifar-10
datasets, where six of all ten classes are randomly se-
lected as known while the rest four are treated as aug-
mented. The contenders are SoftMax, OpenMax [45],
G-OpenMax [46], OSRCI [47]. All methods are trained based on the standard training split. The
unlabeled data are sampled from part of the standard testing split and the rest instances are used for
evaluation. Following the previous study [47], we report AUC of the augmented class in Table 2,
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and results of contenders are also from [47]. DNN-based EULAC can learn nice detection score for
identifying augmented classes, which validates its efficacy.

6.2 Issue of Mixture Proportion

To answer Q2, we conduct experiments on mnist dataset, where the true mixture proportion varies
from 0.1 to 0.9. Other configurations are the same as those in Section 6.1.
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Figure 3: Influence and estimation accu-
racy of mixture proportion θ.

Influence and accuracy on the estimation of θ. Figure 3
plots the sensitivity curve, where the estimated prior θ̂ varies
from 0.1 to 0.9 under different ground-truth mixture propor-
tions θ. We observe that a misspecified mixture proportion
will clearly lead to performance degeneration. Interestingly,
the degeneration is not isotropy—a larger misspecified value
would be much more benign than a smaller one. We mark
averaged estimated values of KME-base (�) and KME-shift
(F). Evidently, the estimator gives high-quality estimated
prior θ̂, close to the ground-truth value, which prevents our
approach from performance degeneration.

6.3 Handling Complex Changing Environments

To answer Q3, we compare our approach with several baselines when augmented classes appear and
prior of known classes shifts simultaneously. The experiments are simulated on mnist dataset, where
classes {1, 3, 5, 7, 9} are known and share the equal prior in labeled data. {2, 4, 6, 8, 10} are taken as
the augmented classes and account for 50% in unlabeled data. As for the prior shift in the testing
distribution, we scale the the prior of five known classes to [1− α, 1− α/2, 1, 1 + α/2, 1 + α]× 0.2
respectively, where parameter α controls shift intensity ranging from 0 to 0.7.

Contenders. Contenders include LACU-SVM, OVR-shift and three variants of EULAC (EULAC-
base, EULAC-base++ and EULAC-shift), where LACU-SVM and EULAC-base do not consider the
shift on known classes’ prior, while OVR-shift and EULAC-base++ take it into account but are biased.
EULAC-shift is the unbiased estimator. For all approaches, class prior θkte is estimated by KME-shift.
Detailed descriptions of contenders can be found in the full paper [25].
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Figure 4: Comparison in complex environ-
ments (augmented classes & prior shift).

Results. Since Macro-F1 is an insensitive measure for the
prior shift scenario, we report the accuracy for contenders
in Figure 4. First, with the increase of shift intensity, meth-
ods without considering prior shift (LACU-SVM, EULAC-
base) suffer from marked performance degeneration, which
shows the importance for handling distribution change of
known classes with augmented classes. Besides, EULAC-
shift achieves the best accuracy with high shift intensity and
retains comparable performance with its baselines when
there is no prior shift. The results validate the efficacy and
safety of our proposal in complex environments.

7 Conclusion

In this paper, we investigate the problem of learning with unobserved augmented classes by exploiting
unlabeled training data. We introduce the class shift condition to connect known and augmented
classes, based on which an unbiased risk estimator can be established. By empirically minimizing
the risk estimator with various hypothesis sets, we design the EULAC approach, supported by both
consistency and generalization error analysis. Moreover, with the generalized class shift condition,
we show the potential of our approach for handling a more general setting of class distribution change,
where augmented classes appear and the prior of known classes shifts simultaneously. Extensive
empirical studies confirm the effectiveness of the proposed approach. In the future, we will investigate
whether our approach can be tailored for the streaming setting. Besides, it is also interesting to
consider even more general scenarios of class distribution change than the problem settings studied
in this paper, in order to handle more realistic changing environments.
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Broader Impact

In this paper, we develop the EULAC, an approach exploiting unlabeled data for learning with
augmented classes. The augmented classes appear in many applications, such as unobserved animals
appear in species recognition task [1] and unexpected background images exist in object detection [12].
Our approach offers a way to improve the robustness of the learning system for these applications by
identifying the unseen augmented classes more accurately. Nevertheless, we also admit it would raise
concerns when applying these techniques to some malicious applications. For example, one could
employ ML systems to detect rare animals, resulting in an increased probability of rare animals being
hunted and thus making the animals even more dangerous. Therefore, we should call for laws and
regulations to limits the use of ML techniques in such applications.

On the other hand, it is also crucial to facilitate learning systems with the capability of tackling the
augmented classes. Many applications require such robustness and will benefit from our techniques,
and the potential risk is believed to be manageable with more sound human regulations.
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