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Learning with data streams has attracted much attention in recent decades. Conventional approaches typically
assume that the feature and label of a data item can be timely observed at each round. In many real-world
tasks, however, it often occurs that either the feature or the label is observed firstly while the other arrives
with delay. For instance, in distributed learning systems, a central processor collects training data from
different sub-processors to train a learning model, whereas the feature and label of certain data items can
arrive asynchronously due to network latency. The problem of learning with asynchronous feature or label in
streams encompasses many applications but still lacks sound solutions. In this paper, we formulate the problem
and propose a new approach to alleviate the negative effect of asynchronicity and mining asynchronous
data streams. Our approach carefully exploits the timely arrived information and builds an online ensemble
structure to adaptively reuse historical models and instances. We provide the theoretical guarantees of our
approach and conduct extensive experiments to validate its effectiveness.

CCS Concepts: • Computing methodologies→Machine learning.

Additional Key Words and Phrases: Data streams, Asynchronous data, Weakly supervised learning, Ensemble
methods

1 INTRODUCTION
Machine learning has achieved great success in a variety of applications [12]. In the supervised
learning setup, a predictive model is built on a collection of training data and then deployed in the
testing phase. However, in many real-world applications, data arrive continuously over time and
thus are collected in the form of a stream. Therefore, a learning model for streaming data should be
able to update online, respond timely and be robust to environmental uncertainty, which poses
new challenges to the design of stream learning algorithms.
In conventional streaming learning, at the beginning of each timestamp, the predictive model

receives the feature of a data item and is required to make a prediction, and subsequently, the model
will receive the ground-truth label as the feedback at the end of this timestamp. Notably, both the
feature and ground-truth label of this current data item can be observed at this round. However, it
is common in practice that features and labels could arrive at different timestamps due to system
delays or network latency. For instance, in IoT monitoring applications, a central processor aims
to predict the abnormal status of IoT devices based on its received network communication data
(feature) and a monitor device (label). As IoT devices are geographically spread out, the feature and
label of a data item usually arrive at different timestamps due to network latency [27]. As shown in
Figure 1, at timestamp 𝑡 = 1, the feature x1 of an IoT device is received instantly, while its label 𝑦1
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Fig. 1. A typical data stream with asynchronous la-
bels, where we receive a bunch of feature(s) and la-
bel(s) at each time. The possible delay at both the
label and the feature levels is the key challenge of the
asynchronous learning setup.

is received at 𝑡 = 2 due to transmission delay;
at timestamp 𝑡 = 4, we receive the instant label
𝑦4, and its delayed feature x4 is received at 𝑡 = 5.
Such an issue of asynchronicity also occurs in
the task of taxi-compliant predictions, where a
central server receives videos and customer com-
plaints through the network.We aim to instantly
evaluate the probability of customer complaints
based on video records. User complaints (label)
are usually not reported until they respond, and
the video records (feature) require a certain time
to be uploaded to the server through the net-
work, which results in the potential asynchronic-
ity in the data streams.
The asynchronicity issue poses a great challenge to the streaming learning. Most previous

streaming learning algorithms [21, 48, 53, 54] usually assume that the feature and label pair is
revealed simultaneously, and thus are typically not tailored for data streams with delayed feature
or label. There is a line of studies explore the delayed labels problem [6, 20, 46], wherein the
label of each sample may be disclosed with an unknown delay, whose approaches can be roughly
categorized into wait-and-update methods and historical-data-reaccess methods. Specifically, a wait-
and-update method will wait for delayed labels until they arrive and then update the model [3, 32];
historical-data-reaccess algorithms store a handful of representative historical data and handle
delayed labels by re-training them [34, 39, 45]. Although these techniques designed for delayed
labels can be helpful for tackling the asynchronicity issue, they cannot be directly deployed to
address our problems. The wait-and-update methods are too general to capture instantly available
information in asynchronous streams, and historical-data-reaccess methods typically need to store
plenty of historical data and retrain the model, which is costly in streaming learning. In summary,
these two kinds of methods update the model using the fully arrived feature-label pairs, while do
not exploit partially arrived features and labels, which are instantly available in our scenario.

In this paper, we initiate the study of stream learning with asynchronous labels, where the feature
and label of a certain sample within the data stream can arrive at different time stamps. This
problem takes place in many real-world tasks but is rarely studied in the literature. We emphasize
that the possible delays at both the label and feature levels in streaming learning is one of the key
challenges of the asynchronous label learning setup. As opposed to previous algorithms that only
handle the simplified setting of delayed labels and update the model only when the feature-label
pair both arrived, we aim to exploit the instantly arrived partial feature or label to update the model
in an online manner, which is crucial for alleviating the asynchronicity and enjoy both empirical
and theoretical improvements in the asynchronous setup. To this end, we propose a novel online
ensemble approach named Learning AsynChronous labels with Hint (LACH). Our approach first
constructs a set of base models to handle the asynchronously arrived features and labels. Based on
the essential observation that only part of an instance is delayed while either the feature or the
label is instantly available, we extract these instant side information to further benefit the model’s
online updating procedure. The proposed LACH algorithm enjoys sound regret guarantee and
achieves remarkable performance improvements on synthetic examples, benchmark datasets, and
real-world applications. Our main contributions are as follows.

(1) We initiate and investigate the challenging problem of stream learning with asynchronous
labels, which accommodates many real-world tasks but was not studied in prior works.
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(2) We propose a novel online ensemble algorithm with novel designs, in which we maintain a
bunch of base models to deal with the asynchronous issue, and then exploit instantly arrived
feature or label to further benefit model updating. Theoretical analysis is also presented to justify
the rationality of our designed method.

(3) We conduct extensive empirical evaluations on synthetic, benchmark datasets, and real-world
applications to demonstrate the superiority of our proposed algorithm.

The rest of this paper is organized as follows. The related works are discussed in Section 2. We
formulate the problem in Section 3, followed by our algorithm in Section 4 and theoretical analyses
in Section 5. Then we present detailed proofs in Section 6. Experiments on synthetic, benchmark
and real-world datasets are presented in Section 7. Finally, we conclude our work in Section 8.

2 RELATEDWORK
In the following, we discuss the related topics of stream learning with asynchronous labels. To
the best of our knowledge, there is no sound solution for this problem yet. Previously streaming
learning algorithms [21, 25, 47, 48, 52–54] typically assume that the feature and label pair is disclosed
simultaneously, and not tailored for data streams with delayed feedback. For example, Wu et al.
[48] propose an online streaming feature selection algorithm based on feature relevance, which
maintains a small set of features to maximize the predictive performance with incremental features.
Zhao et al. [54] propose an ensemble-based method to adaptively adjust the weights of historical
models according to the performance on the current data batch to deal with non-stationary data
streams. However, these methods typically assume that labels are revealed instantly after making
the prediction, and thus cannot be directly applied to deal with the asynchronicity issue and are
unable to mine the structure of the asynchronous data streams.

The most related topic is learning with delayed labels, which considers the simplified setting that
the delay only occurs in label level (note that the delay can occur in both label and feature levels in
our case) [6, 14, 17, 19, 20, 46, 50, 58]. Below, we briefly discuss the research efforts in this thread,
which can be generally categorized into wait-and-update and historical-data-reaccess methods.

Wait-and-Update Methods. This line of work typically considers the issue of delayed gradient
feedback, i.e., regardless of the feature or label of a data item that comes first, we can wait for the
other till it arrives and update the model with delayed feedback. The pioneering work of Weinberger
and Ordentlich [46] consider the fixed delay and introduces a ‘divide and conquer’ method. They
construct multiple base models to handle the delayed gradients. Joulani et al. [20] later extend
this method to deal with the cases of stochastic and adversarial delays. For a fully adversary case,
Quanrud and Khashabi [32] prove that online gradient descent already obtains minimax optimal
regret under unknown delays. That is, at every iteration 𝑡 , the learner can directly perform online
gradient descent with delayed gradients. Bedi et al. [3] propose an online augmented Lagrangian
algorithm to handle the delayed gradients.

Recently, Flaspohler et al. [10] provide a formal reduction of the delayed online learning problem
to a non-delayed optimistic online learning problem, and achieve the optimal regret for online
convex optimization. Subsequent work [40] investigates the strongly convex functions in online
learning with unknown delays scenarios, and establishes a better regret bound. Similar results are
further extended to projection-free online learning [41, 42] and bandit online learning [43]. Goyal
et al. [13] proposed an SSGD (Synchronized SGD) method which aggregates gradients on all the
nodes to update the current model. These approaches consider the general delayed feedback but do
not take the instant side information into consideration, thus are not able to tackle the challenges
of both label and feature delays and become sub-optimal in the asynchronous data streams.
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Parameters: Predictor set W, feature space X, loss function ℓ , time horizon 𝑇 (optional).
At each time stamp 𝑡 = 1, . . . ,𝑇 :
1. Observe feature x𝑡 ∈ X or label 𝑦𝑡 ∈ Y
2. Receive 𝑘 delayed label(s) {𝑦𝑡−𝑑1 , . . . , 𝑦𝑡−𝑑𝑘 } and 𝑘 ′ delayed feature(s) {x𝑡−𝑑 ′

1
, . . . , x𝑡−𝑑 ′

𝑘′
}

3. Use asynchronous feedback to update the model w𝑡 ∈ W (and make prediction)
4. The label 𝑦𝑡 ∈ Y or the feature x𝑡 ∈ X is scheduled to be received after 𝑑𝑡 time stamps

Fig. 2. The protocol of streaming data learning with asynchronous labels. The feature or label of a sample
can arrive at different time stamps with an unfixed delay.

Historical-data-Reaccess Methods. Some works consider dealing with the delayed labels by
storing historical data and retraining the model. Souza et al. [36] seek to classify evolving data
streams with infinitely delayed labels by a clustering algorithm. Plasse and Adams [30] assume
the data are generated from a Gaussian distribution and propose an algorithm based on forgetting
factor. Su et al. [39] use two models to deal with the issue: a predictor to make predictions and an
extra time-delay model to estimate delays. They use the EM algorithm to optimize two models
jointly. Saito et al. [34] design a dual learning algorithm that alternatively optimizes a predictor and
bias estimator based on historical data. Wang et al. [45] transform the delays into discrete slots and
estimate which slot the label will fall into based on observed data. AdaDelay [37] adds a penalty to
the delayed gradients. They decrease the learning rates of delayed gradients to alleviate the delayed
gradient problem. Albeit with promising empirical performance, the theoretical properties of those
methods are generally unclear. Besides, these methods typically need to store the entire dataset
and retrain the model, which is costly in practice streaming data learning scenarios [4, 9, 18].
The above-mentioned wait-and-update and historical-data-reaccess methods mainly consider

delays in the label level, while in asynchronous streaming learning problems, we further need
to consider delays in the feature level and mine the instant arrived feature or label to alleviate
the negative impact of asynchronous feedback and benefit model’s online updating. Meanwhile,
we aim to explore the instantly arrived partial information of features or labels to update the
model in an online fashion. However, wait-and-update methods are too general to capture instant
information in asynchronous data streams, and historical-data-reaccess methods typically need
to store historical data and retrain the model at each round, which is costly in the data stream
learning. Although the techniques designed for tackling the delayed labels are greatly helpful for
our purpose, all those methods do not consider the more challenging issue of potential delays in
the feature level and thus become sub-optimal in the asynchronous scenarios. The key challenge of
the asynchronous label learning setup is the possible delays in both label and feature levels in the
streaming learning. Unlike previous methods that only take the delayed labels into consideration,
we explore non-asynchronous information to update the models in a timely manner to improve the
performance both empirically and theoretically.

3 PROBLEM FORMULATION
We formulate the problem of streaming learning with asynchronous labels as an iterative game
between a learner and an adversary, similar to the protocol of classic online learning [5]. At the
beginning of each timestamp, the adversary sends a data item to the learner, in which its feature x𝑡
is sampled from a fixed set X ∈ R𝑁 and its ground-truth label 𝑦𝑡 from label space Y = {1, ...,𝐶}.
Due to the transmission delays, the learner might receive the feature and label at different time
stamps. Specifically, the learner might only observe a part of the current data item, i.e., its feature
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Fig. 3. Handling asynchronous labels by multiple base models. We divide the data stream into several sub-
sequences according to asynchronously arrived features and labels. Each sub-sequence is addressed by a base
model in which the feedback is non-asynchronous.

or label, and receive (multiple) features or labels of previous instances at the same time. If the
learner only receives x𝑡 and its 𝑦𝑡 is not available, the learner requires to output a classifierw𝑡 from
a fixed set W and make prediction 𝑓 (w𝑡 ; x𝑡 ) instantly, where 𝑓 : X ×W ↦→ R is a hypothesis
function. In addition, the learner is required to update the model in an online fashion for streaming
data. We denote the time interval between data generation and its arrival by 𝑑𝑡 ∈ N, that is, the
feature or label of a data item is received with an unfixed delay 𝑑𝑡 ∈ N. When 𝑑𝑡 ≡ 0, we recover
the standard (non-asynchronous) streaming learning setting. Throughout this work, we assume
that for every data item, at least one part, i.e., x𝑡 or 𝑦𝑡 , can be observed at each time. Otherwise, the
learning model can hardly make effective updates unless imposing strong prior knowledge on the
data generation processes. We summarize the overall protocol in Figure 2.

4 PROPOSED METHOD
In this section, we establish the algorithm for streaming learning with asynchronous labels. In
our approach, we handle delays at both the feature and label levels in the data stream while
simultaneously utilizing instantly arriving features or labels. In particular, we construct a set of
base models to handle the asynchronously arrived features and labels, and meanwhile, introduce
a hint sequence to the online model updating process by exploring the instant side information
and timely updating each base model. Finally, we introduce two novel mechanisms to improve the
algorithm’s storage and time efficiency by dynamically adjusting the base model pool.

4.1 Handling Asynchronous Labels
As a first step, we aim to handle the delays that occur at both the feature and label levels. Intuitively,
if we can exploit the structure of the delayed sequence in order to bridge the gap between the
timestamp of receiving the asynchronous data item and the current timestamp, we can explore
historical data to alleviate the negative effect of asynchronicity. To this end, we first reconstruct the
data stream according to the asynchronously arrived features and the labels. Enlightened by the
insightful work of Joulani et al. [20], we construct several base models and propose a scheduling
algorithm to handle the asynchronicity in both the feature and label levels.
Specifically, at each time, we select an available base model from the model pool to update

and make the prediction according to the available features or the labels. The algorithm runs as
follows. At each time, a base model is available if it has received the feedback corresponding to its
previous prediction, e.g., the delayed feature or label arrives. Before receiving the feedback, we
consider a base model as unavailable because it is waiting for the feedback. When we need to make
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a prediction, we use an available base model because it is ready to make predictions. If no such
base model exists, we create a new one to be used.
Our scheduling algorithm equals to splitting the original stream of length 𝑇 into several sub-

sequences T1,T2, . . . with corresponding base models, respectively. Each sub-sequence T𝑖 = {𝑖, 𝑖 +
𝑑1𝑖 , 𝑖 +𝑑2𝑖 , . . .} is a sub-problem handled by the 𝑖-th base model, where the feature and label arrive in
time. We give an example for explanation. As shown in Figure 3, model 1 and model 2 are employed
for the sub-sequence 𝑡 = 1, 3, 4 and 𝑡 = 2, 5, 6 respectively, where each base model is handling its
own sub-problem without any asynchronicity.

We notice that there does exist some instant side information available at each time, such as the
instantly arrived features or labels. It is crucial to exploit these instant side information for model
updating in streaming data learning. Unlike previous studies waiting for the arrival of both delayed
feature and label, we explore these non-asynchronous information to update the base models in a
timely manner to improve the model’s performance. To this end, we introduce a hint sequence that
can be generated by these non-asynchronous information for model updating [33]. For each base
model, we then perform the following two-step updates,

ŵ𝑡 = arg min
w∈W

[⟨∇ℓ𝑡−𝑑 ′
𝑡
(w𝑡−𝑑 ′

𝑡
),w⟩ + ∥w − ŵ𝑡−𝑑 ′

𝑡
∥22,

w𝑡 = arg min
w∈W

[⟨h𝑡 ,w⟩ + ∥w − ŵ𝑡 ∥22,
(1)

where {h𝑡 }𝑇𝑡=1 is the hint (vector) sequence and ∇ℓ𝑡−𝑑 ′
𝑡
(w𝑡−𝑑 ′

𝑡
) = ∇ℓ (𝑓 (w𝑡−𝑑 ′

𝑡
; x𝑡−𝑑 ′

𝑡
), 𝑦𝑡−𝑑 ′

𝑡
) is the

gradient of the matching feature-label pair (x𝑡−𝑑 ′
𝑡
, 𝑦𝑡−𝑑 ′

𝑡
) we received at time 𝑡 (i.e., the feature or

the label of time 𝑡 − 𝑑 ′𝑡 is received with a delay of 𝑑 ′𝑡 ), [ > 0 is step size.
The hint sequence {h𝑡 }𝑇𝑡=1 serves as a guessing of the next move, which is currently unknown.

Provably, a more precise guessing of the next move will result in a better performance [8, 33]. While
our primary focus here is on prediction problems, we remark that an accurate estimation of the
next move can also be considered a rehearsal for the future [62], which is beneficial in decision-
making problems. In the proposed method, we exploit instant features or labels to generate the
hint sequence {h𝑡 }𝑇𝑡=1 and use this hint sequence to help updating the model. We emphasize that
the property of instantly model updating by capturing side information plays a vital role in our
algorithm to tackle the key challenge of the problem, as we explore instant arrived feature or label
to alleviate the negative impact of asynchronous feedback and benefit model’s online updating.

We summarize the proposed algorithm in Algorithm 1. Note that when the budget for the number
of generated base models is limited, we propose two mechanisms to dynamically add and drop the
base models. More details about the algorithm’s efficiency consideration are given in Section 4.3.

4.2 Mining Instant Information
In the proposed approach, we introduce a hint sequence to explore instant features or labels to update
the model and improve prediction performance. In the following, we discuss the implementation
details for timely hints generation. Specifically, when the labels are delayed, we explore instant
feature to generate hints by online model ensemble; when the features are delayed, we explore
instant labels by sketches on previous data features.

Exploring Instant Feature by Ensemble.When the label is delayed, we propose a hints generation
method by online ensemble [57, 60] to explore the current feature. By the observation that the
base models with better recent performance will be more accurate on the current unlabeled data
in many practice scenarios, we combine the base models to estimate the gradient of the current
unlabeled instance. Specifically, we measure the quality of each base model by the cumulative



Learning with Asynchronous Labels 7

Algorithm 1 Learning AsynChronous labels with Hint
Input: Step size [
1: Initialize model queues Qall and Qready, where Qall and Qready are empty at the beginning
2: for 𝑡 = 1, . . . ,𝑇 do
3: if receive 𝑘 delayed label(s) 𝑦𝑡−𝑑1 , . . . , 𝑦𝑡−𝑑𝑘 and 𝑘 ′ delayed feature(s) x𝑡−𝑑 ′

1
, . . . , x𝑡−𝑑 ′

𝑘′
then

4: Check if exists a pair (x𝑡−𝑑 ′
𝑡
, 𝑦𝑡−𝑑 ′

𝑡
), add model ŵ𝑡−𝑑 ′

𝑡
and gradient ∇ℓ𝑡−𝑑 ′

𝑡
(w𝑡−𝑑 ′

𝑡
) in Qready

5: end if
6: if Qready is empty then
7: Initialize a new model ŵ𝑡

8: else
9: Use Qready’s earliest model ŵ𝑡−𝑑 ′

𝑡
and update by ∇ℓ𝑡−𝑑 ′

𝑡
(w𝑡−𝑑 ′

𝑡
) with (1) to get ŵ𝑡

10: Remove ŵ𝑡−𝑑 ′
𝑡
from Qready, remove w𝑡−𝑑 ′

𝑡
from Qall

11: end if
12: Send delayed pair (x𝑡−𝑑 ′

𝑡
, 𝑦𝑡−𝑑 ′

𝑡
) and instant x𝑡 or 𝑦𝑡 , 𝑁𝑡 = |Qall | to Algorithm 2 to get hint h𝑡

13: Update model w𝑡 by h𝑡 with (1), add w𝑡 into Qall
14: end for

discounted loss. For the 𝑖-th base model w𝑖 , the cumulative discounted loss is defined as

𝐿𝑡 (w𝑖 ) = (1 − 𝛾ft)𝐿𝑡−1 (w𝑖 ) + 𝛾ftℓ𝑡−𝑑 ′
𝑡
(w𝑖 ), (2)

where 𝐿𝑡 (w𝑖 ) is the cumulative loss for base model w𝑖 at time 𝑡 , and ℓ𝑡−𝑑 ′
𝑡
(w𝑖 ) is the delayed loss

feedback we received at time 𝑡 for the w𝑖 . The discounted factor 𝛾ft plays a role of determining the
importance of recent performance, i.e., if the distribution changes slowly, we will use a smaller 𝛾ft
which means the performance on previous data is more reliable. This is also widely used in tracking
time-varying control system [15] and non-stationary online learning and prediction [44, 55].

Next, we combine the base models to obtain h𝑡 according to their cumulative discounted loss in
an exponential weighted manner. Suppose we have a total of 𝑁𝑡 base models at time 𝑡 , let 𝛽 ∈ Δ𝑁𝑡

be a weight distribution defined on base models. We define the weight of model w𝑖 as

𝛽𝑖 =
exp (−𝐿𝑡 (w𝑖 ))∑𝑁𝑡

𝑗=1 exp (−𝐿𝑡 (w𝑗 ))
. (3)

We then estimate the labels and obtain h𝑡 ,

𝑦𝑡 =

𝑁𝑡∑︁
𝑖=1

𝛽𝑖 𝑓 (w𝑖 ; x𝑡 ); h𝑡 = ∇ℓ (𝑓 (ŵ𝑡 ; x𝑡 ), 𝑦𝑡 ), (4)

where 𝑦𝑡 is the weighted combination of base models using weights 𝛽 .

Exploring Instant Label by Sketches. When the feature information is delayed, we generate the
hints by exploring instant labels, in which we sketch the historical data stream by maintaining a
mean vector of each class. Inspired by the previous work of Li et al. [26], for each class, we maintain
a discounted label sketch, which is defined as follows,

m𝑐
𝑡 = (1 − 𝛾lb)m𝑐

𝑡−1 + 𝛾lbx𝑐𝑡−𝑑 ′
𝑡
, (5)

where m𝑐
𝑡 is the discounted label sketch for the 𝑐-th class at time 𝑡 , and 𝑐 ∈ {1, ...,𝐶}. x𝑐

𝑡−𝑑 ′
𝑡
is the

feature we receive at time 𝑡 which belongs to the 𝑐-th class. We define m𝑐
1 = x𝑐1 as the first instance

belonging to the 𝑐-th class. Discounted factor 𝛾lb determines importance of newly received features.
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Algorithm 2 Hints Generation by Exploring Instant Data
Input: Discounted factor 𝛾ft and 𝛾lb, number of base models 𝑁𝑡

1: if receive delayed feature-label pair (x𝑡−𝑑 ′
𝑡
, 𝑦𝑡−𝑑 ′

𝑡
) from Algorithm 1 then

2: for 𝑖 = 1, . . . , 𝑁𝑡 do
3: Update the cumulative discounted loss for the 𝑖-th base model by (2)
4: end for
5: Update the label sketch by (5)
6: end if
7: if observed current feature x𝑡 then
8: Get weights for each base model by (3)
9: Obtain the hint h𝑡 using unlabeled data by (6)
10: else if observed current label 𝑦𝑡 then
11: Obtain the hint h𝑡 using label sketch by (4)
12: end if
13: Send the hint h𝑡 to Algorithm 1

Based on label sketches, we approximate feature by exploring instant label and obtain h𝑡 by

h𝑡 = ∇ℓ (𝑓 (ŵ𝑡 ;m
𝑦𝑡
𝑡 ), 𝑦𝑡 ), (6)

where m𝑦𝑡
𝑡 is the historical label sketch of the class 𝑦𝑡 , which approximates the missing feature.

To this end, we exploit the instant features or labels in the data stream by hints generation
mechanisms. These two hints generation mechanisms play essential roles in making our approach
successful, in whichwe explore the historical information and instant feature or label to approximate
the current gradient and alleviate the asynchronicity through the hint sequence. We summarize
our hints generation mechanisms in Algorithm 2.

4.3 Model Pool Management

Model i

Model j

t = 2 t = 5 t = 9

t = 1 t = 3 t = 6 t = 8

Fig. 4. Illustration of asynchronicity matching
based on bipartite graph matching to deal with
efficiency problem. We use bipartite graph match-
ing (red line connected) to determine the closest
pair of base models.

The number of the base models in our algorithm
is dependent on the asynchronicity of the feature
or label’s arriving timestamp. In practice, however,
the number of generated base models is usually lim-
ited due to the storage budget. In this section, we
propose two mechanisms that reduce the number
of base models to handle asynchronous labels more
efficiently under the storage constraints.

Oldest Dropping. A simple mechanism to control
the number of base models is to clip extra generated
models, that is, maintain a pool and drop the oldest
base model if reaching budget limit.

Asynchronicity Matching. To further employ the structure of the asynchronous labels to deal
with the efficiency problem, we propose the asynchronicity matching method. Specifically, we
maintain a timestamp sequence for each base model, which indicates the timestamps each base
model is handling. When the number of base models exceeds the memory budget, we use the
bipartite graph matching algorithm to find the similar model pairs and then only maintain one of
them and drop the other. The bipartite graph matching algorithm works as follows:
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(1) Initialization of the Bipartite Graph. First, we create a bipartite graph where each vertex
represents a base model, and the edges between the vertices are weighted by the difference
in timestamps when they were added to the model pool. We consider that the more similar
two models are, the smaller the weight of the edge between them. We aim to find similar
model pairs by pairing all vertices and minimizing the sum of the weights of each model pair.

(2) Improving the Matching Iteratively. We use the Hungarian algorithm [22] to optimize the
matching. The core of the Hungarian algorithm is a series of steps that iteratively improve
the matching. In each iteration, we select a subset of edges that form a match, and then
adjust the weights of unmatched vertices. This is done by changing the weights to reduce the
overall cost of the matching while maintaining the feasibility of the solution. Specifically, we
modify the weights so that the sum of the weights of the edges in the match is minimized.

(3) Converging to Optimal Matching. These iterations continue until no further improvements can
be made, indicating that the matching has reached its optimal state. The optimality criterion
is based on maximum similarity, which in our case is equivalent to minimizing the timestamp
difference between models.

(4) Merging Models based on Asynchronicity Matching. After obtaining the optimal match, we
identify pairs of models with the strongest similarity. We then randomly retain only one
model from each of these pairs, effectively merging similar models and reducing redundant
ones. This greatly improves the computational and storage efficiency of our algorithm.

In summary, our method seeks a matching that maximizes the total similarity, which denotes
the strongest similarity between timestamp pairs, and merges the similar models to improve the
efficiency. For example, As shown in Figure 4, the time sequence that Model𝑖 and Model𝑗 are
handling is 𝑡 = 2, 5, 9 and 𝑡 = 1, 3, 6, 8 respectively. The weight of an edge between two different
timestamps indicates the similarity between two timestamps, i.e., the higher weight will be if two
timestamps are closer. We then use Hungarian algorithm [22] for bipartite graph matching to
determine the overall similarity between two models, and merge the most similar models together
to reduce the number of base models.
Moreover, there is a recent proposal named “Learnware” aiming at leveraging trained machine

learning models submitted by developers globally to a learnware market, which facilitates future
users in creating machine learning applications without starting from scratch while preserving the
privacy of both developers’ and users’ data [59]. The key of this is a carefully designed Learnware
specification that allows for the identification and reassemble of helpful models without compromis-
ing data privacy [59]. Consequently, the model specification could be potentially used to enhance
our model pool management strategies, which can be explored in the future.

5 THEORETICAL RESULT
In this section, we theoretically analyze the proposed LACH algorithm. We first show the perfor-
mance guarantee of our proposal. Then, we further illustrate the theoretical advantages of mining
instant information to alleviate asynchronicity, especially when the underlying distribution shifts
slowly in the data stream. At last, we provide theoretical analysis for the proposed model pool
management approach. The table of notations is presented in Table 1.

We consider the setting of online convex optimization [16, 29]. We suppose that each feature x𝑡
is generated from a set X and make the following assumptions.

Assumption 1. The feasible model domain W is convex and contains the origin 0, and the
diameter of the domain W is at most 𝐷 , i.e., ∥w −w′∥2 ≤ 𝐷 for any w,w′ ∈ W.

Assumption 2. The norm of the gradients of loss functions over the domain W is bounded by 𝐺 ,
i.e., ∥∇ℓ𝑡 (w)∥2 ≤ 𝐺 , for all w ∈ W and 𝑡 ∈ [𝑇 ].
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Table 1. Table of notations.

Notation Description Notation Description

w𝑡 prediction model at time 𝑡 (x𝑡 , 𝑦𝑡 ) feature label pair
𝑓 hypothesis function 𝑡 𝑁𝑡 number of base models
W feasible model domain h𝑡 hint at time 𝑡
𝐷 diameter of the domain W 𝐺 upper bound of gradients
𝛾ft discounted factor of discounted loss 𝛾lb discounted factor of label sketch
𝑉𝑇 rateofthedistributionchange 𝜖𝑡 inaccuracyofthebasemodel

Assumption 3. The loss function ℓ𝑡 (w) is convex, non-negative and 𝐿-smooth, i.e., ∥∇ℓ𝑡 (w) −
∇ℓ𝑡 (w′)∥2 ≤ 𝐿∥w −w′∥2 for any w,w′ ∈ W and 𝑡 ∈ [𝑇 ].
We note that these properties hold for most of the commonly used loss functions, including the

quadratic loss and most other loss functions.
In streaming data learning, we are required to make a prediction at each round. We introduce

the widely used expected regret in online learning literature [5, 16, 35] as a performance measure
for streams learning with asynchronous labels problem, that is,

E[𝑅𝑇 ] = E
[

𝑇∑︁
𝑡=1

ℓ𝑡 (w𝑡 ) − min
w∈W

𝑇∑︁
𝑡=1

ℓ𝑡 (w)
]
,

where ℓ𝑡 (w) ≜ ℓ (𝑓 (w; x𝑡 ), 𝑦𝑡 ) is the loss function at round 𝑡 . The random quantities are predictors
w1,w2, ... that generated by the learner, which depend on the delayed length 𝑑𝑡 at each time.

We first analyze the expected regret of the proposed LACH algorithm. At the first step, we require
to bound the expected number of generated base models. Let 𝑁𝑇 be the number of base models
created by Algorithm 1 at time 𝑇 . Assuming the delays are independently and identically sampled
from a fixed distribution by the environment, then we have

Lemma 1. Assume 𝑑1,. . ., 𝑑𝑇 a sequence of i.i.d. random variables with finite expected value, then

E[𝑁𝑇 ] ≤ E[𝑑1] +
√︁
4E[𝑑1] · log𝑇 + 2 log𝑇 + 2.

The above result is based on the fact that although 𝑑𝑡 can be as large as 𝑇 , both its expectation
and variance are upper bounded by E[𝑑1].
Now we are ready to propose the main theorem.

Theorem 1. Assume 𝑑1, 𝑑2, . . . , 𝑑𝑇 is a sequence of i.i.d. random variables with finite expected value,
under Assumption 1 and 2, the expected regret of Algorithm 1 after 𝑇 time steps satisfies

E[𝑅𝑇 ] ≤ 𝑂
©«
√√√
(E[𝑑1] + log𝑇 )

𝑇∑︁
𝑡=1

∥∇ℓ𝑡 (w𝑡 ) − h𝑡 ∥22
ª®®¬ ,

where ∇ℓ𝑡 (w𝑡 ) ≜ ∇ℓ (𝑓 (w𝑡 ; x𝑡 ), 𝑦𝑡 ) is gradient of the loss we suffer for making the prediction at 𝑡 .

Proof Sketch. The main technique here is to employ the structure of the subsequences scheduled
by Algorithm 1, where each subsequence is synchronized. Therefore, we can bridge the gap between
the timestamp of receiving the matching feature-label pair 𝑡 + 𝑑𝑡 and the current timestamp 𝑡 . The
current instantaneous loss of each base model can be decomposed as follows.

ℓ𝑡 (w𝑡 ) − ℓ𝑡 (w∗) ≤ ⟨∇ℓ𝑡 (w𝑡 ),w𝑡 −w∗⟩
=

〈
∇ℓ𝑡 (w𝑡 ) − h𝑡 ,w𝑡 − ŵ𝑡+𝑑𝑡

〉︸                              ︷︷                              ︸
term (a)

+
〈
h𝑡 ,w𝑡 − ŵ𝑡+𝑑𝑡

〉︸               ︷︷               ︸
term (b)

+
〈
∇ℓ𝑡 (w𝑡 ), ŵ𝑡+𝑑𝑡 −w∗〉︸                       ︷︷                       ︸

term (c)

.
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These three terms will be bounded individually. For term (a), intuitively, it should be small
if the hint h𝑡 is close to true gradient ∇ℓ𝑡 (w𝑡 ). We bound term (a) by the stability lemma (see
Lemma 4) which implies ∥w𝑡 − ŵ𝑡+𝑑𝑡 ∥ ≤ [∥∇ℓ𝑡 (w𝑡 ) − h𝑡 ∥2. For term (b) and term (c), we appeal to
the Bregman proximal inequality (see Lemma 3) which explores the update step in (1). Then we
combine the regret bound of each base model together to obtain the overall regret guarantee. □

Remark 1. Theorem 1 exhibits that the regret can be bounded by the expected delay length and
the gap between the true gradient ∇ℓ𝑡 (w𝑡 ) and hint h𝑡 . Our proposed algorithm aims to minimize
the second term. Namely, we explore the instant feature or label to approximate the true gradient
∇ℓ𝑡 (w𝑡 ) by the hint sequence {h𝑡 }𝑇𝑡=1. The exploitation of instant data is more beneficial when
distribution changes slowly, in which case the cumulative discounted losses and sketches better
indicate the model reusability. We discuss this in Corollary 2. Notice that in the worst-case scenario,
our method recovers back to the regret guarantee in previous work [20].

Next, we propose the following corollary to demonstrate that by the proposed instant information
mining approach, our method achieves provable lower regret especially when the underlying
distribution of the stream changes slowly, which is theoretically illustrated as follows.

Corollary 2. Under the assumptions in Theorem 1 andAssumption 3, the expected regret of Algorithm 1
after 𝑇 time steps satisfies

E[𝑅𝑇 ] ≤ 𝑂
©«
√√√
(E[𝑑1] + log𝑇 ) · (𝑉𝑇 +

𝑇∑︁
𝑡=1

𝜖𝑡 )
ª®®¬ ,

where 𝑉𝑇 =
∑𝑇

𝑡=2 max𝑗∈[𝑁𝑇 ] ∥w∗
𝑡 −w∗

𝑡− 𝑗 ∥22 measures the rate of the distribution change, which is the
sum of the maximum difference of the current best model w∗

𝑡 and previous best model w∗
𝑡− 𝑗 | 𝑗∈[𝑁𝑇 ]

over all timestamps. If 𝑉𝑇 is large, it means that the underlying best model at current timestamp is
very different from one within the previous 𝑁𝑇 timestamp, which indicates that the distribution is
changing rapidly. Here 𝜖𝑡 = max𝑗∈[𝑁𝑇 ] ∥w𝑡− 𝑗 −w∗

𝑡− 𝑗 ∥22 is the inaccuracy of the base model w𝑡− 𝑗 .

Remark 2. In Corollary 2, term𝑉𝑇 measures the rate of the distribution change, i.e., small𝑉𝑡 means
low distribution change while large 𝑉𝑡 means rapid distribution change, which is at most 𝑂 (𝑇 ).
It could be much smaller in a stationary environment. As a benefit, mining instant information
in our algorithm safeguards previous worst-case regret bound 𝑂 (

√︁
E[𝑑1]𝑇 ) [20] and meanwhile

achieves great improvement in easier environments when the underlying distribution shifts slowly.
We give more empirical evidence as support in Section 7. Besides, compared with previous online
learning with optimistic methods [8, 33, 56] which are too general to mine the structure of the
asynchronous data streams, we focus on designing efficient hint sequences to practically tackle the
asynchronicity issue and enjoy a tighter regret in benign environments.

As discussed in Section 4.3, we add efficient model pool management mechanisms into Algo-
rithm 1 to deal with the asynchronous labels more effectively when the storage budget is limited.
These mechanisms have good empirical performance and enjoy the following theoretical guarantee.
As shown below, Corollary 3 shows that the proposed efficient model pool management method
enjoys a sound performance guarantee.
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Corollary 3. Let 𝐾 be the budget of base models, under the assumptions in Theorem 1, the regret of
Algorithm 1 after 𝑇 time steps satisfies

𝑅𝑇 ≤ 𝑂
©«
√√√
𝐾

𝑇∑︁
𝑡=1

∥∇ℓ𝑡 (w𝑡 ) − h𝑡 ∥22 +
𝑇∑︁
𝑡=1

1{𝑑𝑡 > 𝐾}
ª®®¬ .

Corollary 3 illustrates that our method still enjoys theoretical guarantee even when the budget
of the base model pool is limited and we have to drop some base models, which validates the
effectiveness of our proposed efficient model pool management mechanisms.

6 PROOF
In this section, we provide detailed proof of our main theoretical results.

6.1 Preliminary
We first introduce several technical lemmas used in the proofs. The following projection lemma is
commonly used to analyze gradient descent algorithms.

Lemma 2 (Projection Lemma). Let W be a closed convex set. Then, any update of the form w𝑡+1 =
ΠW [w𝑡 − ∇] satisfies the following inequality

⟨w𝑡+1 −w∗,∇⟩ ≤ 1
2
∥w𝑡 −w∗∥22 −

1
2
∥w𝑡+1 −w∗∥22 −

1
2
∥w𝑡+1 −w𝑡 ∥22

for any w∗ ∈ W.

We then introduce the Bregman proximal inequality (Chen and Teboulle [7], Lemma 3.2), which
is essential to the analysis of first-order optimization methods based on Bregman divergence.

Lemma 3 (Bregman Proximal Inequality). Let W be a convex set and 𝑓 : W ↦→ R be a convex
function onW. Given a convex regularizer𝜓 : W ↦→ R, we denote its induced Bregman divergence
as D𝜓 (x, y) = 𝜓 (x) −𝜓 (y) − ⟨∇𝜓 (y), x − y⟩. Then, any update of the form

w𝑘 = argmin
w∈W

{
𝑓 (w) + D𝜓 (w,w𝑘−1)

}
satisfies the following inequality

𝑓 (w𝑘 ) − 𝑓 (u) ≤ D𝜓 (u,w𝑘−1) − D𝜓 (u,w𝑘 ) − D𝜓 (w𝑘 ,w𝑘−1)
for any u ∈ W.

Furthermore, we analyze the online mirror descent frameworks using the following stability
lemma (Chiang et al. [8], Proposition 7).

Lemma 4 (Stability Lemma). Let W be a closed convex set. Consider the following two updates:
w∗ = arg minw∈W ⟨a,w⟩+D𝜓 (w, c) andw′

∗ = arg minw∈W ⟨a′,w⟩+D𝜓 (w, c). When the regularizer
𝜓 : W ↦→ R is 1-strongly convex with respect to the norm ∥ · ∥, we havew∗ −w′

∗
 ≤ ∥(∇𝜓 (c) − a) − (∇𝜓 (c) − a′)∥∗ = ∥a − a′∥∗ .

By choosing the regularizer as 𝜓 (w) = ∥w∥22, it is easy to verify that the induced Bregman
divergence is D𝜓 (w,w′) = ∥w −w′∥22, and therefore we can employ Lemma 3 and Lemma 4 to
analysis our online learning algorithm.
Besides the above technical lemmas, we introduce the following decomposable monotone loss

for theoretical analysis.
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Definition 1 (DecomposableMonotone Loss). We say a loss function ℓ : R×R ↦→ R is decomposable
monotone if its gradient can be represented as

∇wℓ (𝑓 (w; x), 𝑦) = 𝑔(𝑦) · ∇w 𝑓 (w; x),
where 𝑔(·) is a monotone function respect to 𝑦.

Notice that the decomposable monotone property holds for most of the common loss functions,
including the square loss, logistic loss, hinge loss, cross-entropy loss, and most other loss functions.
We provide some examples with discussions here.

Example 1. For square loss ℓ (𝑓 (w; x), 𝑦) = (𝑓 (w; x) − 𝑦)2, we have
∇wℓ (𝑓 (w; x), 𝑦) = 2(𝑓 (w; x) − 𝑦) · ∇w 𝑓 (w; x) = 𝑔(𝑦) · ∇w 𝑓 (w; x),

where 𝑔(𝑦) = 2(𝑓 (w; x) − 𝑦) is a monotone function with respect to 𝑦 for 𝑦 ∈ R.

Example 2. For hinge loss ℓ (𝑓 (w; x), 𝑦) = max(1 − 𝑦𝑓 (w; x), 0), we have

∇wℓ (𝑓 (w; x), 𝑦) =
{
−𝑦 · ∇w 𝑓 (x,w), 𝑦𝑓 (w; x) < 1
0, else

=
(
𝑦 · 1{𝑦 · 𝑓 (w; x) < 1}

)
· ∇w 𝑓 (w; x) = 𝑔(𝑦) · ∇w 𝑓 (w; x),

where 𝑔(𝑦) = 𝑦 · 1{𝑦 · 𝑓 (w; x) < 1} is a monotone function with respect to 𝑦 for 𝑦 ∈ [−1, 1] and
𝑓 (w; x) ∈ [−1, 1].

Example 3. For cross-entropy loss ℓ (𝑓 (w; x), 𝑦) = 𝑦 log(𝑓 (w; x)) + (1 − 𝑦) log(1 − 𝑓 (w; x)),

∇wℓ (𝑓 (w; x), 𝑦) = (𝑦 − 𝑓 (w; x))
(1 − 𝑓 (w; x)) 𝑓 (w; x) ∇w 𝑓 (w; x) = 𝑔(𝑦) · ∇w 𝑓 (w; x),

where 𝑔(𝑦) = (𝑦−𝑓 (w;x) )
(1−𝑓 (w;x) ) 𝑓 (w;x) is a monotone function with respect to 𝑦 for 𝑦 ∈ [0, 1].

The above examples demonstrate that the decomposable monotone property holds for square
losses, hinge losses, cross-entropy losses. Other loss functions can be analyzed in a similar manner.

6.2 Proof of Lemma 1
We prove Lemma 1 based on the main techniques proposed by Joulani et al. [20]. We denote by
𝑀𝑡 =

∑𝑡−1
𝑠=1 1 {𝑠 + 𝑑𝑠 ≥ 𝑡} the total number of missing features or labels when the forecaster is

making a prediction at time 𝑡 , then we have

𝑁𝑇 = max
1≤𝑡≤𝑇

(𝑀𝑡 ) + 1.

With a probability of at least 1 − 1/𝑇 , the following inequality holds,

max
1≤𝑡≤𝑛

𝑀𝑡 ≤ E[𝑑1] + 2 log𝑇 +
√︁
4E[𝑑1] log𝑇 .

Taking into account that max1≤𝑡≤𝑇 𝑀𝑡 ≤ 𝑇 , we have the following inequality

E

[
max
1≤𝑡≤𝑇

(𝑀𝑡 )
]
≤ E[𝑑1] + 2 log𝑇 +

√︁
4𝑑 log𝑇 + 1 = 𝐵𝑇 + 1.

We define 𝐵𝑇 B E[𝑑1] + 2 log𝑇 +
√︁
4E[𝑑1] log𝑇 . Therefore,

E[𝑁𝑇 ] = E
[
max
1≤𝑡≤𝑇

(𝑀𝑡 )
]
+ 1 ≤ E[𝑑1] + 2 log𝑇 +

√︁
4E[𝑑1] log𝑇 + 2 = 𝐵𝑇 + 2.

Thus, we complete the proof of Lemma 1. □
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6.3 Proof of Theorem 1
As a starting point, we first analyze the regret guarantee for each model, and then combine them
to analyze the whole algorithm. Following the scheduling algorithm described in Algorithm 1, the
𝑖-th base model is handling the following non-asynchronous subsequence

T𝑖 = {𝑖, 𝑖 + 𝑑1𝑖 , 𝑖 + 𝑑2𝑖 , 𝑖 + 𝑑3𝑖 , . . .}.

Without loss of generality, we assume that at time 𝑡 + 𝑑𝑡 , we receive the delayed label 𝑦𝑡 . We first
decompose the instantaneous regret at time 𝑡 for the 𝑖-th base model as follows

ℓ𝑡 (w𝑡 ) − ℓ𝑡 (w∗) ≤ ⟨∇ℓ𝑡 (w𝑡 ),w𝑡 −w∗⟩
=

〈
∇ℓ𝑡 (w𝑡 ) − h𝑡 ,w𝑡 − ŵ𝑡+𝑑𝑡

〉︸                              ︷︷                              ︸
term (a)

+
〈
h𝑡 ,w𝑡 − ŵ𝑡+𝑑𝑡

〉︸               ︷︷               ︸
term (b)

+
〈
∇ℓ𝑡 (w𝑡 ), ŵ𝑡+𝑑𝑡 −w∗〉︸                       ︷︷                       ︸

term (c)

.

We individually bound these three terms. Specifically, we use Lemma 4 to bound term (a) and
appeal to Lemma 3 to bound term (b) and (c). In the following, we present the precise arguments.

We firstly bound term (a). Following Lemma 4 which implies
w𝑡 − ŵ𝑡+𝑑𝑡


2 ≤ [ ∥∇ℓ𝑡 (w𝑡 ) − h𝑡 ∥2,

we have the following inequality,

term (a) =
〈
∇ℓ𝑡 (w𝑡 ) − h𝑡 ,w𝑡 − ŵ𝑡+𝑑𝑡

〉
≤ ∥∇ℓ𝑡 (w𝑡 ) − h𝑡 ∥2

w𝑡 − ŵ𝑡+𝑑𝑡

2 ≤ [ ∥∇ℓ𝑡 (w𝑡 ) − h𝑡 ∥22 .

We then bound term (b) and (c). Based on Lemma 3 and the first update step in (1), we have

term (b) =
〈
h𝑡 ,w𝑡 − ŵ𝑡+𝑑𝑡

〉
≤ 1
[

[ ŵ𝑡+𝑑𝑡 − ŵ𝑡

2
2 −

ŵ𝑡+𝑑𝑡 −w𝑡

2
2 − ∥w𝑡 − ŵ𝑡 ∥22

]
.

For the second update step in (1), we have

term (c) =
〈
∇ℓ𝑡 (w𝑡 ), ŵ𝑡+𝑑𝑡 −w∗〉 ≤ 1

[

[
∥w∗ − ŵ𝑡 ∥22 −

w∗ − ŵ𝑡+𝑑𝑡
2
2 −

ŵ𝑡+𝑑𝑡 − ŵ𝑡

2
2
]
.

By combining the three inequalities, we have

ℓ𝑡 (w𝑡 )−ℓ𝑡 (w∗) ≤ [∥∇ℓ𝑡 (w𝑡 )−h𝑡 ∥22+
1
[

[
∥w∗−ŵ𝑡 ∥22−∥w∗−ŵ𝑡+𝑑𝑡 ∥22−∥ŵ𝑡+𝑑𝑡 −w𝑡 ∥22−∥w𝑡 −ŵ𝑡 ∥22

]
.

As each base model is handling a non-delayed sequence T𝑖 , using a telescoping summation,∑︁
𝑡 ∈T𝑖

(
∥w∗ − ŵ𝑡 ∥22 −

w∗ − ŵ𝑡+𝑑𝑡
2
2

)
= ∥w∗ − ŵ𝑖 ∥22 − ∥w∗ − ŵ𝑇 ∥22 ≤ 𝐷2,

where 𝐷 is the diameter of the domain W. As a result, for the 𝑖-th base model, we have that its
regret 𝑅𝑖

𝑇
is bounded as

𝑅𝑖𝑇 ≤ [
∑︁
𝑡 ∈T𝑖

∥∇ℓ𝑡 (w𝑡 ) − h𝑡 ∥22 +
1
[

(
𝐷2 −

∑︁
𝑡 ∈T𝑖

(ŵ𝑡+𝑑𝑡 −w𝑡

2
2 + ∥w𝑡 − ŵ𝑡 ∥22

))
≤ [

∑︁
𝑡 ∈T𝑖

∥∇ℓ𝑡 (w𝑡 ) − h𝑡 ∥22 +
1
[
𝐷2 . (7)

Since there are a total of 𝑁𝑇 base models, the overall regret is then the summation of all models,

𝑅𝑇 =

𝑁𝑇∑︁
𝑖=1

𝑅𝑖𝑇 ≤ [
𝑇∑︁
𝑡=1

∥∇ℓ𝑡 (w𝑡 ) − h𝑡 ∥22 + 𝑁𝑇

𝐷2

[
.
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The expected regret is upper bounded by

E[𝑅𝑇 ] ≤ E
[
[

𝑇∑︁
𝑡=1

∥∇ℓ𝑡 (w𝑡 ) − h𝑡 ∥22 +
𝐷2𝑁𝑇

[

]
= [

𝑇∑︁
𝑡=1

∥∇ℓ𝑡 (w𝑡 ) − h𝑡 ∥22 + E [𝑁𝑇 ]
𝐷2

[

≤ [
𝑇∑︁
𝑡=1

∥∇ℓ𝑡 (w𝑡 ) − h𝑡 ∥22 + (𝐵𝑇 + 2)𝐷
2

[
,

where𝐵𝑇 = 𝑑+2 log𝑇+
√︁
4𝑑 log𝑇 , the last inequality comes from Lemma 1. By setting an appropriate

learning rate with [ =

√︃
(𝐵𝑇 + 2)𝐷2/∑𝑇

𝑡=1 ∥∇ℓ𝑡 (w𝑡 ) − h𝑡 ∥22, we have

E[𝑅𝑇 ] ≤ 2

√√√
(𝐵𝑇 + 2)𝐷2

𝑇∑︁
𝑡=1

∥∇ℓ𝑡 (w𝑡 ) − h𝑡 ∥22 = 𝑂
©«
√√√(
E[𝑑1] + log𝑇

) 𝑇∑︁
𝑡=1

∥∇ℓ𝑡 (w𝑡 ) − h𝑡 ∥22
ª®®¬ .

Therefore, we complete the proof of Theorem 1. □

6.4 Proof of Corollary 2
Corollary 2 illustrates that our approach achieves lower regret when the underlying distribution of
the stream changes slowly, which is proved as follows. Under Assumption 3, when the loss function
is 𝐿-smooth with respect to w and using online ensemble to estimate the missing labels, we have

∥∇ℓ𝑡 (w𝑡 ) − h𝑡 ∥22
=

∇ℓ (𝑓 (w𝑡 ; x𝑡 ), 𝑦𝑡 ) − ∇ℓ
(
𝑓 (ŵ𝑡 ; x𝑡 ), 𝑦𝑡

)2
2

≤ ∥∇ℓ
(
𝑓 (w𝑡 ; x𝑡 ), 𝑦𝑡

)
− ∇ℓ

(
𝑓 (ŵ𝑡 ; x𝑡 ), 𝑦𝑡

)
+ ∇ℓ

(
𝑓 (ŵ𝑡 ; x𝑡 ), 𝑦𝑡

)
− ∇ℓ

(
𝑓 (ŵ𝑡 ; x𝑡 ), 𝑦𝑡

)
∥22

≤ 2
∇ℓ (𝑓 (w𝑡 ; x𝑡 ), 𝑦𝑡 ) − ∇ℓ

(
𝑓 (ŵ𝑡 ; x𝑡 ), 𝑦𝑡

)2
2 + 2∥∇ℓ

(
𝑓 (ŵ𝑡 ; x𝑡 ), 𝑦𝑡

)
− ∇ℓ

(
𝑓 (ŵ𝑡 ; x𝑡 ), 𝑦𝑡

)
∥22

= 2 ∥∇ℓ𝑡 (w𝑡 ) − ∇ℓ𝑡 (ŵ𝑡 )∥22 + 2∥∇ℓ
(
𝑓 (ŵ𝑡 ; x𝑡 ), 𝑦𝑡

)
− ∇ℓ

(
𝑓 (ŵ𝑡 ; x𝑡 ), 𝑦𝑡

)
∥22

≤ 2𝐿2∥w𝑡 − ŵ𝑡 ∥22 + 2
∇ℓ (𝑓 (ŵ𝑡 ; x𝑡 ), 𝑦𝑡

)
− ∇ℓ

(
𝑓 (ŵ𝑡 ; x𝑡 ), 𝑦𝑡

)2
2 . (by 𝐿-Smoothness)

Then we further upper bound the second term using the property of decomposable monotone loss
defined in Definition 1. Assume that the gradient of hypothesis function 𝑓 is upper bounded by 𝐹 ,
i.e., ∥∇𝑓 (w; x)∥22 ≤ 𝐹 for any w ∈ W and x ∈ X, the monotone function 𝑔 is Lipschitz continuous
with a constant 𝐿𝑔, and the hypothesis function 𝑓 is Lipschitz continuous with a constant 𝐿𝑓 ,
therefore the composition of 𝑔 and 𝑓 is Lipschitz continuous with a constant 𝐿𝑔 · 𝐿𝑓 . Then, we have

∥∇ℓ (𝑓 (ŵ𝑡 ; x𝑡 ), 𝑦𝑡 ) − ∇ℓ (𝑓 (ŵ𝑡 ; x𝑡 ), 𝑦𝑡 )∥22
= ∥𝑔(𝑦𝑡 )∇𝑓 (ŵ𝑡 ; x𝑡 ) − 𝑔(𝑦𝑡 )∇𝑓 (ŵ𝑡 ; x𝑡 )∥22 (by decomposable monotone loss)

=

𝑔(𝑦𝑡 )∇𝑓 (ŵ𝑡 ; x𝑡 ) − 𝑔
( 𝑁𝑇∑︁
𝑗=1

𝛽 𝑗𝑦 𝑗

)
∇𝑓 (ŵ𝑡 ; x𝑡 )

2
2

≤ max
𝑗∈[𝑁𝑇 ]

∥𝑔(𝑦𝑡 )∇𝑓 (ŵ𝑡 ; x𝑡 ) − 𝑔(𝑦 𝑗 )∇𝑓 (ŵ𝑡 ; x𝑡 )∥22 (by convexity with respect to 𝑦 𝑗 )

≤ max
𝑗∈[𝑁𝑇 ]

∥𝑔(𝑦𝑡 )∇𝑓 (ŵ𝑡 ; x𝑡 ) − 𝑔(𝑦 𝑗 )∇𝑓 (ŵ𝑡 ; x𝑡 ) + 𝑔(𝑦 𝑗 )∇𝑓 (ŵ𝑡 ; x𝑡 ) − 𝑔(𝑦 𝑗 )∇𝑓 (ŵ𝑡 ; x𝑡 )∥22

≤ 2𝐹 · 𝐿𝑓 · 𝐿𝑔 max
𝑗∈[𝑁𝑇 ]

∥w∗
𝑡 −w∗

𝑡− 𝑗 ∥22 + 2𝐹 · 𝐿𝑓 · 𝐿𝑔 max
𝑗∈[𝑁𝑇 ]

∥w𝑡− 𝑗 −w∗
𝑡− 𝑗 ∥22
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Therefore, substituting the above equation back to (7), we set [ ≤ 1/(
√
2𝐹 · 𝐿𝑓 · 𝐿𝑔) to cancel the

term
∑𝑇

𝑡=1 2𝐿2∥w𝑡 − ŵ𝑡 ∥22, sum over 𝑇 , we have:

𝑇∑︁
𝑡=1

∥∇ℓ (w𝑡 , x𝑡 , 𝑦𝑡 ) − h𝑡 ∥22 ≤ 𝑂
(
𝑉𝑇 +

𝑇∑︁
𝑡=1

𝜖𝑡

)
, (8)

in the above inequality, the first term 𝑉𝑇 =
∑𝑇

𝑡=2 max𝑗∈[𝑁𝑇 ] ∥w∗
𝑡 −w∗

𝑡− 𝑗 ∥22 measures the rate of the
distribution change, which is the sum of the maximum difference of the current best model w∗

𝑡 and
previous best model w∗

𝑡− 𝑗 | 𝑗∈[𝑁𝑇 ] over all timestamps. If 𝑉𝑇 is large, it means that the underlying
best model at current timestamp is very different from one within the previous 𝑁𝑇 timestamp,
which indicates that the distribution is changing rapidly. In addition to this, the second term
𝜖𝑡 = max𝑗∈[𝑁𝑇 ] ∥w𝑡− 𝑗 − w∗

𝑡− 𝑗 ∥22 is the inaccuracy of the base model w𝑡− 𝑗 . The above inequality
comes from (𝑎 + 𝑏)2 ≤ 2𝑎2 + 2𝑏2. Consequently, substituting (8) back to Theorem 1 yields

E[𝑅𝑇 ] ≤ 𝑂
©«
√√√(
E[𝑑1] + log𝑇

) (
𝑉𝑇 +

𝑇∑︁
𝑡=1

𝜖𝑡
)ª®®¬ .

This ends the proof of Corollary 2. □

6.5 Proof of Corollary 3
Corollary 3 illustrates that our algorithm still enjoys sound theoretical guarantee when the storage
budget is limited. Specifically, we add the base model management mechanisms as described in
Section 4.3 into Algorithm 1. At time 𝑡 , when an instance x𝑡 or 𝑦𝑡 has waited for 𝐾 time intervals in
a base model, we delete this oldest base model and reinitialize a new base model with the same w,
and put this new base model in the Qready. This results in that an extra loss will be suffered every
time when the number of missing labels or features𝑀𝑡 =

∑𝑡−1
𝑠=1 1{𝑠 + 𝑑𝑠 ≥ 𝑡} is more than model

buffer 𝐾 , and the regret guarantee will depend on the storage buffer 𝐾 .
To prove Corollary 3, our main idea is to upper bound 𝑀𝑡 , the number of missing labels or

features in the asynchronous streams at time 𝑡 . By rewriting𝑀𝑡

𝑀𝑡 =

𝑡−1∑︁
𝑠=1

1{𝑠 + 𝑑𝑠 ≥ 𝑡} =
𝑡−1∑︁
𝑖=1

1{𝑑𝑖 ≥ 𝑖} =
𝑘∑︁
𝑖=1

1 {𝑑𝑖 ≥ 𝑖} +
𝑡−1∑︁
𝑖=𝑘+1

1{𝑑𝑖 ≥ 𝑖}

≤ 𝐾 +
𝑡−1∑︁
𝑖=𝑘+1

1{𝑑𝑖 > 𝐾} ≤ 𝐾 +
𝑡∑︁
𝑖=1

1{𝑑𝑖 > 𝐾}.

Therefore, for all 𝑡 ∈ [𝑇 ], we have the following upper bound of𝑀𝑇 with respect to 𝐾

𝑀𝑡 − 𝐾 ≤
𝑡∑︁
𝑖=1

1{𝑑𝑖 > 𝐾}.

As mentioned above, we will suffer a constant loss ℓ𝑡 (w𝑡 ) ≤ 𝐺𝐷 everytime when the feature or the
label is missing, where 𝐺 is the gradient upper bound of as described in Assumption 2, 𝐷 is the
diameter ofW as described in Assumption 1. We can get the overall regret:

𝑅𝑇 ≤ [
𝑇∑︁
𝑡=1

∥∇ℓ𝑡 (w𝑡 ) − h𝑡 ∥22 + 𝐾
𝐷2

[
+

𝑇∑︁
𝑖=1

1{𝑑𝑖 > 𝐾}𝐺𝐷.
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By setting an appropriate learning rate with the value of [ =

√︃
𝐾𝐷/∑𝑇

𝑡=1 ∥∇ℓ𝑡 (w𝑡 ) − h𝑡 ∥22, we have

𝑅𝑇 ≤ 2

√√√
𝐾𝐷2

𝑇∑︁
𝑡=1

∥∇ℓ𝑡 (w𝑡 ) − h𝑡 ∥22 +
𝑇∑︁
𝑡=1

1{𝑑𝑡 > 𝐾}𝐺𝐷

= 𝑂
©«
√√√
𝐾

𝑇∑︁
𝑡=1

∥∇ℓ𝑡 (w𝑡 ) − h𝑡 ∥22 +
𝑇∑︁
𝑡=1

1{𝑑𝑡 > 𝐾}
ª®®¬ .

Therefore, we complete the proof of Corollary 3. Note that this regret bound also matches Theorem 1
by setting 𝐾 = 𝐵𝑇 + 2. □

7 EXPERIMENT
In this section, we examine the performance of the proposed LACH algorithm on synthetic ex-
amples, benchmark datasets and real-world applications. Specifically, we evaluate our learning
asynchronous labels with hint algorithm in the following three aspects:
(1) Validation on synthetic data.We provide intuitive illustrations of the advantages in exploring
instant features and labels to deal with the challenge in asynchronous learning, compared with
general delayed online learning methods in various non-stationary environments;

(2) Comparison on benchmark data. We compare the proposed approach with various con-
tenders on benchmark datasets to demonstrate the superiority of our method;

(3) Experiment on real-world applications. We examine the proposed LACH algorithm on two
real-world streaming learning tasks with asynchronous labels: IoT monitoring which aims to
predict whether an IoT device is functioning properly based on network data, and a loan credit
prediction task where the goal is to predict whether the loaner will be overdue.

7.1 Validation on Synthetic Data
We first illustrate the advantage of mining instant information with hints by a synthetic example
in various non-stationary environments. We generate a classification example, each instance x𝑡
is generated from a standard Gaussian distribution. The potential optimal decision w∗

𝑡 changes
overtime with a random Gaussian shift, i.e.,w∗

𝑡+1 = w∗
𝑡 +𝝂 , where 𝝂 ∼ N(0,V) is a random Gaussian

noise vector. The ground-truth label is assigned by𝑦𝑡 = sgn(⟨w∗
𝑡 , x𝑡 ⟩) and we use cross-entropy loss.

To simulate data streams with asynchronous labels, we reveal label or feature of each instance with a
random delay. Delay lengths are i.i.d. sampled from a uniform distribution𝑈 (E[𝑑1] −10,E[𝑑1] +10),
where E[𝑑1] is the expectation of the delay lengths. We set the total iteration𝑇 = 1200. The learning
rate for each method is set as the optimal value according to Theorem 1.

Implementation Details.We set different norms of V to simulate distribution change, specifically,
∥V∥2 = 0.01, 0.05 for slow and fast distribution changing rate, respectively. We compare the regret
of our proposed algorithm on synthetic data with three contenders, including two baseline methods
DOGD [20] and DEnsemble [32] that do not explore the instant feature or labels; and the LastHint
method which takes the last received gradient as a hint. For the synthetic data, at every iteration 𝑡 ,
we receive a mini-batch data of size 8. We choose the linear model as the classifier and control the
diameter of the domain 𝐷 = 1. We set the learning rate for each method is set as the optimal value
according to Theorem 1, i.e., [ =

√︁
𝐷2/(2𝑇𝐺2) =

√︁
12/(2 × 1200 × 8 × 22) ≈ 0.003 for DOGD; and

[ =

√︃
(𝐵𝑇 + 2)𝐷2/∑𝑇

𝑡=1 ∥∇ℓ𝑡 (w𝑡 ) − h𝑡 ∥22 ≈
√︁
20 × 12/(1200 × 8 × 0.01 × 2) ≈ 0.3 for our proposed

LACH. We use 1×Nvidia GeForce RTX 3090 and train for about 10 minutes per task.
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Fig. 5. (a) & (b) Results of regret comparison on synthetic data with different distribution changing rates.
We compare our LACH with two baseline methods only considering general delayed feedback: DOGD and
DEnsemble; LastHint is a simplified version of our proposal that sets the last gradient as a hint. (c) Heat map
of accumulated regrets of the left (DOGD) and right (LACH) concerning different expected delay lengths
E[𝑑1] and different distribution changing rates.

Comparison Results. We report the comparison results in Figure 5. The performance of our
algorithm and its simplified version (LastHint) is better than the DOGD and DEnsemble, which
validates the effectiveness of exploring instant data to estimate its ground-truth gradient. Besides,
compared with LastHint method, our method is better than a simple reuse of the last model’s
gradient, because the cumulative discounted loss can better adapt to the changing environment
than just reusing the last gradient. These results further validate our method’s effectiveness for
exploiting instant information of asynchronous data.

Discussion on Hints Quality. Note that our performance will become better when distribution
changes slowly, as shown in Figure 5 (a) and (b), which matches the theoretical result in Corollary 2.
The reason is that when distribution changes slowly, our designed hint sequence will become more
accurate and LACH will enjoy a better performance.
On the other side, when the distribution changes dramatically, our hint sequence will become

less accurate and suffers a performance drop, but still outperforms the methods that do not exploit
instant information, which further validates Theorem 1 that our algorithm still has a performance
guarantee in the worst-case scenario.

LACH LACH w/o yt LACH w/o mt
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Fig. 6. Ablation study of our proposed method,
we compare LACH with its variants: (i) LACH w/o
𝑦𝑡 , which does not explore the unlabeled feature
by employing online ensemble; and (ii) LACH w/o
m𝑡 , which does not use the label sketch to esti-
mate the missing feature.

We further show a heat map of the accumulated
regret of the DOGD and our approach concerning
different expected delay lengths and different dis-
tribution changing rates in Figure 5 (c). Our LACH
significantly improves the performance compared to
the DOGD method in cases where the delay length
is short and distribution changes slowly. The phe-
nomenon also matches our theoretical results and
validates the proposedmethod’s effectiveness.When
the distribution changes slowly, the cumulative dis-
counted loss can correctly indicate the accuracy of
each model on the current unlabeled data and the
label sketches can better estimate the missing label
or feature, hence we can estimate current gradients
more accurately, while the DOGD method cannot
exploit such properties as it does not explore the
instant data in asynchronous streams.
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Ablation Studies. To validate the effectiveness of exploring instant features and labels respectively,
we quantitatively evaluate our proposed LACH and its variants: (i) LACH w/o 𝑦𝑡 , which does not
explore the unlabeled feature by online ensemble; and (ii) LACH w/o m𝑡 , which does not use the
label sketch to estimate the missing feature. As shown in Figure 6, the feature and label exploration
both make the regret lower, which indicates our proposed method exploits the instant information
to better estimate the gradient and improve the performance.

7.2 Benchmark Datasets
We examine the performance of the proposed LACH algorithm on real-world applications with
other contenders to show its superiority.

Datasets. We conduct the empirical comparisons on four datasets in two applications: the human
activity recognition task (UCI-HAR, UCI-HHAR, WISDM-AR) and the online gender recognition
task (Portraits) as follows.

• UCI-HAR (Human Activity Recognition dataset) [1]. This dataset has been collected from 30
subjects performing six different activities (Walking, Walking Upstairs, Walking Downstairs,
Sitting, Standing, Laying). It contains over 1,600 data items and has 128 features. It consists
of inertial sensor data that was collected using a smartphone carrier. Our goal is to classify
what a person does based on a stream of sensor data.

• UCI-HHAR (Heterogeneity Human Activity Recognition dataset) [38]. A dataset devised to
benchmark human activity recognition in real-world contexts, which has more diversity than
HAR. Specifically, the dataset is gathered with a variety of different device models and use
scenarios, in order to reflect sensing heterogeneities to be expected in real deployments. It
contains over 37,000 data items and has 128 features for each data item. The goal is to classify
the action of the subject.

• WISDM (WIreless Sensor Data Mining Action Recognition dataset) [24]. Wisdm uses a
smartphone-based application to collect a total of 33 participants’ accelerometer data. Using
its embedded accelerometer and gyroscope sensor data, this dataset contains 3-axial linear
acceleration and 3-axial angular velocity at a constant rate of 50Hz. It contains over 1,200
data items and has 315 features. The goal is to infer what a person is doing based on a stream
of sensor data.

• Portraits [11]. We take another benchmark dataset named Portraits, which comprises photos
of high school seniors taken across the 1900s-2010s. The dataset contains 37,921 frontal-facing
American student photos with 3,072 features that allow us to glimpse into historical visual
records. The fashions and habits change over time, and thus it is a distribution-changing
stream. The goal is to classify the gender of each portrait.

Contenders.We compare LACH with seven contenders, including four previous methods designed
for online learning with delayed loss, a self-training approach, a distributed machine learning
approach, a recent advanced causal-based method, and a simplified version of our approach that
directly uses the last gradient as hint.

• DOGD [32] aims to deal with the delayed label issue, which directly applies online gradient
descent to update the model when receiving a delayed loss feedback;

• DEnsemble [20] splits the time horizon into sub-sequences and uses a set of non-delayed
base online algorithms to handle each sub-sequence;

• FF [30] uses forgetting factors to handle the delayed labels in the data stream;
• Dual [34] handles label delays with a dual learning algorithm that alternatively optimizes a
predictor and a bias estimator that estimates the model’s performance for the unlabeled data;
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Table 2. Comparisons on benchmark datasets. On each dataset, 5 test runs were conducted, and the average
as well as standard deviation of accuracy and AUC score are presented. The best one is emphasized in bold.

Method Measure UCI-HAR WISDM UCI-HHAR Portraits
E[𝑑] = 200 E[𝑑] = 300 E[𝑑] = 200 E[𝑑] = 300 E[𝑑] = 200 E[𝑑] = 300 E[𝑑] = 200 E[𝑑] = 300

OGD ACC 65.44 ± 5.99 57.48 ± 4.88 56.33 ± 7.57 50.58 ± 8.47 44.47 ± 8.15 37.79 ± 7.54 62.19 ± 2.77 61.53 ± 2.57
AUC 85.14 ± 2.91 78.15 ± 2.40 75.61 ± 3.05 70.85 ± 3.25 72.44 ± 5.53 66.54 ± 5.06 62.62 ± 4.36 60.82 ± 4.00

DEnsemble ACC 64.17 ± 4.43 58.24 ± 3.64 48.25 ± 6.26 41.88 ± 7.03 43.66 ± 5.80 37.15 ± 6.07 58.09 ± 4.53 57.47 ± 4.58
AUC 80.85 ± 2.43 76.31 ± 1.92 77.68 ± 4.73 73.37 ± 3.93 70.66 ± 4.65 65.74 ± 5.52 59.07 ± 4.76 58.13 ± 4.26

Self-Train ACC 68.90 ± 5.70 61.13 ± 4.57 57.33 ± 8.04 50.94 ± 7.85 45.33 ± 6.82 38.52 ± 6.30 61.20 ± 2.04 61.29 ± 1.84
AUC 85.35 ± 3.07 79.41 ± 2.62 76.21 ± 2.97 71.63 ± 3.35 72.73 ± 4.81 66.24 ± 4.08 63.03 ± 4.27 61.31 ± 3.83

FF ACC 69.64 ± 6.12 57.77 ± 6.67 57.13 ± 7.82 50.56 ± 7.63 44.58 ± 6.51 37.86 ± 5.77 61.11 ± 2.11 60.13 ± 2.45
AUC 85.45 ± 3.44 82.37 ± 3.91 76.35 ± 3.14 71.75 ± 3.53 72.04 ± 4.10 65.72 ± 3.58 62.94 ± 4.29 61.19 ± 3.81

Dual ACC 67.23 ± 3.15 60.25 ± 3.15 56.21 ± 4.36 50.15 ± 6.26 43.87 ± 5.12 36.25 ± 4.15 60.35 ± 1.29 61.11 ± 1.41
AUC 85.12 ± 2.11 79.34 ± 1.74 75.97 ± 2.16 70.01 ± 2.15 71.42 ± 3.25 66.98 ± 5.51 62.10 ± 4.15 59.36 ± 3.26

AdaDelay ACC 66.59 ± 6.49 59.23 ± 5.32 55.93 ± 7.56 50.25 ± 8.44 43.37 ± 8.32 35.32 ± 7.64 61.87 ± 1.32 60.13 ± 2.45
AUC 84.05 ± 2.90 78.21 ± 2.37 75.73 ± 3.07 70.95 ± 3.29 71.57 ± 5.65 65.85 ± 5.07 62.34 ± 4.21 58.39 ± 3.75

GrangerCausal ACC 66.14 ± 3.12 59.51 ± 4.98 56.15 ± 4.26 50.13 ± 7.05 43.91 ± 6.67 35.44 ± 6.25 61.15 ± 1.98 60.52 ± 2.78
AUC 83.36 ± 1.16 78.98 ± 2.25 75.87 ± 3.25 70.88 ± 2.98 72.01 ± 5.28 65.98 ± 4.15 61.93 ± 3.75 59.05 ± 2.18

LastHint ACC 66.86 ± 4.84 60.94 ± 2.79 48.86 ± 8.31 41.47 ± 4.85 42.24 ± 6.45 37.22 ± 5.24 62.33 ± 6.02 60.64 ± 6.77
AUC 79.55 ± 5.56 76.05 ± 4.74 77.96 ± 2.38 72.95 ± 1.86 69.60 ± 6.20 66.29 ± 4.93 64.88 ± 6.42 63.52 ± 6.52

LACH ACC 69.92 ± 3.88 61.98 ± 3.03 57.53 ± 8.08 52.07 ± 8.91 44.90 ± 4.46 38.57 ± 4.11 62.59 ± 6.59 61.87 ± 4.35
AUC 87.33 ± 4.66 79.61 ± 3.19 74.34 ± 4.07 71.19 ± 3.60 73.95 ± 5.21 70.23 ± 3.50 66.29 ± 6.93 64.97 ± 7.14

• Self-Train [23] is a weakly supervised method that randomly initializes a model, then repeat-
edly minimizes empirical risks based on pseudo labels generated by the last classifier;

• AdaDelay [37] is an asynchronous distributed machine learning method that adds a penalty
to the learning rate of delayed gradients;

• GrangerCausal [49] is a causal inference-based method that designs a Granger-causal regu-
larization mechanism to identify the most appropriate historical model for prediction;

• Lasthint is a simplified version of our proposal that directly applies the last gradient as hint.

Implementation Details. In the following, we provide the details for the implementation of the
proposed learning asynchronous labels with hint algorithm. For the human activity recognition
datasets, we choose the dense network with a 1D-convolution feature extractor as base model. The
learning rate and the batch size are set as 0.003 and 128 respectively, and we train 500 iterations for
each data batch. For the Portraits dataset, we choose the dense network with a 2D-convolution
feature extractor. The learning rate and the batch size are set as 0.0003 and 128 respectively, and
we train 500 iterations for each data batch.

For all the experiments, we set the discounted factor 𝛾ft = 0.8 in online ensemble (2) and 𝛾lb = 0.5
in label sketch (5) without careful tuning. We formulate a data stream with 𝑇 = 10 for all the
datasets, where at each iteration 𝑡 a batch of data (about 100 data items) arrives. We conduct
empirical experiments on cases of E[𝑑] = 200 and E[𝑑] = 300.

Comparison Results.We report the comparison results on four benchmark datasets in Table 2.
Specifically, we perform five test runs on each benchmark dataset and compare the accuracy and
AUC scores. Our LACH achieves the highest average accuracy on three out of four datasets, which
indicates that our approach outperforms contenders in various streaming learning tasks with
asynchronous labels. DOGD and DEnsemble methods do not perform well, providing evidence that
it is crucial to explore instant data in asynchronous label streaming learning tasks. A simplified
version of our proposed approach also performs better than DEnsemble, further validating the
effectiveness of exploring the instant data.

Compared with FF and AdaDelay method which exploit delayed gradient with weighted combi-
nation, our method shows superiority in most cases because our hints generated by online ensemble
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Table 3. Quantitative analysis on real-world IoT Monitoring dataset. For each method, 5 test runs were
conducted, and we present the average as well as the standard deviation of accuracy (ACC) and AUC score.
The best one is emphasized in bold.

Method DOGD DEnsemble FF Dual Self-Train AdaDelay LastHint GrangerCausal LACH (Ours)

ACC 68.51 ± 2.8 67.14 ± 2.6 69.29 ± 1.4 73.53 ± 2.3 68.94 ± 2.1 71.13 ± 2.6 74.37 ± 2.1 73.41 ± 3.1 76.30 ± 2.3
AUC 77.54 ± 0.8 75.06 ± 0.9 77.78 ± 1.2 81.28 ± 1.0 79.34 ± 1.4 80.16 ± 0.7 81.50 ± 1.1 80.85 ± 1.3 83.68 ± 0.9

and label sketch are more effective and closer to the true gradient. Additionally, our proposed LACH
method outperforms the Dual method as it not only explores the instant unlabeled data, but also
explores the instant labels, thereby enhancing its effectiveness in asynchronous label learning tasks.
Furthermore, compared with GrangerCausal which employs causal-based method to identify the
most appropriate historical model, our method also outperforms it in most cases because we explore
the instant data to reuse historical models more accurately. Our LACH algorithm also outperforms
the Self-Train approach as it uses a novel scheduling algorithm to deal with the asynchronous
labels, which exploits the structure of the delayed sequence to bridge the gap between the time of
receiving delayed gradient and the current timestamp.

7.3 Real-world Applications
In this section, we further validate the performance of our proposed method on two real-world
applications, IoT monitoring and a loan credit prediction task.

Dataset. The IoT Monitoring Data [27] contains public IoT traffic traces captured in the IoT
environment DS2OS. This dataset addresses the lack of public botnet datasets, especially for the IoT.
It suggests real traffic data gathered from 9 commercial IoT devices authentically infected by Mirai
and BASHLITE. The dataset contains 7,062,606 entries and 113 variables, including timestamps,
network communications of different IoT devices (feature) and the normality (label). Our goal is to
predict whether the IoT device is running normally. We use logistic regression as base models. The
delays are determined by the network latency.

Besides, we also investigate the performance of our proposed method on a real-world Loan data.
The LendingClub Loan Data1 is collected from LendingClub, which contains complete loan data
for all loans issued through 2007 to 2018, a total of 139 months. The dataset contains about 1,300
thousand entries and 78 variables, including the current loan status (Fully Paid, Charged Off) and the
latest payment information. Features include credit scores, number of finance inquiries, addresses
including zip codes and state, and collections. Each data contains a delayed label feedback because
the loan has a term (36 months or 60 months), and we can not receive the overdue information
until the term has finished, therefore there exists the asynchronous labels issue in this application.
Our goal is to predict whether the loaner will be overdue.

Implementation Details. We use a three-layer dense neural network as the base model, and
split the dataset into 100 time intervals (i.e., 𝑇 = 100). The delays are determined by the latency
of network traces. We compare results of LACH with seven contenders, DOGD, DEnsemble, FF,
Self-Train, Dual learning method, AdaDelay and LastHint methods. The learning rate is set to be
0.05, the batchsize is set as 128, and we train 200 iterations for each data batch.

Comparison Results.We first report the average and standard deviation of the accuracy score
and AUC score on IoT datasets in Table 3, which shows that our approach has a promising
performance compared to the other seven comparative methods. We compare the results of our

1The dataset can be downloaded from https://www.kaggle.com/wordsforthewise/lending-club

https://www.kaggle.com/wordsforthewise/lending-club
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Table 4. Quantitative analysis on real-world loan credit prediction task. For each method, 5 test runs were
conducted, and we present the average as well as the standard deviation of accuracy (ACC) and AUC score.
The best one is emphasized in bold.

Method DOGD DEnsemble FF Dual Self-Train AdaDelay LastHint GrangerCausal LACH (Ours)

ACC 70.16 ± 0.3 70.22 ± 0.7 72.21 ± 1.3 72.15 ± 1.6 71.47 ± 0.4 72.19 ± 1.1 71.08 ± 1.7 73.45 ± 1.7 78.80 ± 1.1
AUC 78.77 ± 0.4 76.19 ± 0.2 79.31 ± 1.5 79.23 ± 1.0 78.84 ± 0.2 79.15 ± 1.4 78.43 ± 0.5 79.25 ± 1.3 82.78 ± 0.6

learning asynchronous labels with hint with seven contenders, the DOGD, DEnsemble, FF, Self-
Train, AdaDelay, Dual and LastHint methods. The DOGD and DEnsemble methods do not perform
well on IoT Data, as they are not able to employ the instant information of the data. The FF and
AdaDelay improved performances by exploring delayed feedback, but they fail to capture the
asynchronous structure of the data stream. Our LACH performs better than the Self-Train method
in this case, as the delayed label problem makes the model can not be updated instantly, and the
error of the model will accumulate over time, hence the pseudo-label provided by self-training will
be inaccurate. Dual method addresses the delayed label problem with a dual learning algorithm,
our method outperforms it because we can explore instant information and update the model to
deal with the delays at both label and feature levels in the asynchronous labels streaming learning
setup. The LastHint method performs poorly in the IoT task. LACH also outperforms the LastHint
method as the exploration of instant data by online ensemble and label sketch mechanisms makes
our hint sequence closer to true gradients while simply reusing the last model’s gradient fails.
Secondly, we report the average and standard deviation of the accuracy score and AUC score

on the loan dataset in Table 4, which shows that our approach has a promising performance
compared to the other eight comparative methods. The DOGD and Ensemble method do not
perform well on Loan Data, as they are not able to employ the instant unlabeled data. Compared
with Dual method, our LACH also show a better performance because it not only explores the
instant unlabeled data, but also explores the instant labels, thereby enhancing its effectiveness in
asynchronous label learning tasks. Furthermore, our method also outperforms the GrangerCausal
which employs causal-based method to identify the most appropriate historical model, because we
explore the instant data to reuse historical models more accurately. Our LACH performs better
than Self-Training method in this case, as the delayed label problem makes the model can not be
updated instantly, and the error of the model will accumulate over time, hence the pseudo-label
provided by self-training will be inaccurate. The LastHint method performs poorly in the loan
forecasting application, as the labels are delayed for a long time period and simply reusing the
last model’s gradient fails. Our LACH also outperforms the LastHint method as the exploration of
unlabeled data by online ensemble strategy makes our hints closer to the true gradients.

Modular Analysis. To better validate the effectiveness of our designed hints generated by mining
instant information. We investigate the accuracy of the hints, i.e., the term ∥∇ℓ𝑡 (w𝑡 ) − h𝑡 ∥ in
Theorem 1. We compare the hinting error of our LACH method with LastHint. As shown in
Figure 7 (a), the hints generated by our proposed LACH method are more accurate as the quantity∑𝑡

𝑖=1 ∥∇ℓ𝑖 (w𝑖 ) − h𝑖 ∥22 of our proposal is lower, which indicates that our method can employ instant
data to hint the future gradient better.
We also visualize the hint vectors through the data stream to show the effectiveness of our

proposed method. As shown in the subfigures in Figure 7 (a), the t-SNE analysis demonstrates
that at the beginning, hints of both methods perform poorly. However, as time grows, the hints
generated by our learning asynchronous labels with hint method are more accurate than the
LastHint method and closer to the true gradient, which means that our proposal successfully hints
the future gradients by carefully mining instant information of the data.
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(a) Modular Analysis
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Fig. 7. (a) Modular analysis in IoT data of our LACH compared with LastHint, which takes the last model’s
gradient as hint. We validate the quality of model reuse by comparing the hinting error

∑𝑡
𝑖=1 ∥∇ℓ𝑖 (w𝑖 )−h𝑖 ∥22.In

addition to this, the t-SNE analyses of hints {h𝑡 } illustrate that LACH can reuse base models to update the
model more accurately. (b) Efficiency comparison by evaluating the accuracy and efficiency (items processed
per second) of different algorithms on the loan dataset. We report the mean and standard deviation over five
runs. An algorithm closer to the top-right corner indicates superior efficiency and performance.

Efficiency Comparison. We also compare the efficiency of different algorithms. Specifically,
we evaluate the efficiency (items processed per second) and accuracy of various algorithms on
the loan credit prediction task. An algorithm that plots closer to the top-right corner indicates
superior efficiency and performance since it achieves a better performance with higher efficiency.
As demonstrated in Figure 7 (b), the DOGD method is the most efficient one, but it yields the
poorest performance as it does not consider to alleviate the asynchronicity issue. Though the
ensemble-based methods, GrangerCausal and FF, exhibit slower speeds, they accomplish superior
performance. Our LACH, albeit with a slight compromise on efficiency because we carefully exploit
the timely arrived information and build an online ensemble structure to adaptively combine
historical models and instances, our method attains the best performance among all the methods.

8 CONCLUSION
In this paper, we initiate the study of stream learning with asynchronous labels, which accommo-
dates a variety of real-world applications but is not thoroughly considered in the literature. We
investigate this challenging problem, where the possible delays of both labels and features in the
data stream can make it difficult for learners to online update and respond quickly. To this end, we
propose a novel online ensemble approach named Learning AsynChronous label with Hint (LACH)
algorithm to handle the asynchronous data, and simultaneously mine the instant arrived feature or
label to alleviate the negative impact of asynchronous feedback and benefit model’s online updating.
Specifically, we first divide the data stream into several non-asynchronous sub-sequences, each
handled by a base model, and then use hint sequence to extract information from instant data to
further benefit the online model updating procedure. The proposed approaches are equipped with
nice theoretical guarantees: by regret analysis, we justify the usefulness of the model ensemble and
mining instant feature or label to handle the asynchronous labels, especially when the underlying
distribution shifts slowly in the data stream. Empirical studies on synthetic examples verify the
advantage of exploring instant data, and extensive experiments on various real-world applications
validate the effectiveness of our algorithm.

In future work, we will investigate the possibility of jointly addressing the asynchronicity and
other challenges in open-environment machine learning [61]. For example, we may consider to
handling the conjunction of the asynchronous issue together with the non-stationary distribution
shift [2, 51] or emerging new classes [28, 31].
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