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Abstract—In plenty of real-life tasks, strongly supervised information is hard to obtain, and thus weakly supervised learning has drawn
considerable attention recently. This paper investigates the problem of learning from incomplete and inaccurate supervision, where only a
limited subset of training data is labeled but potentially with noise. This setting is challenging and of great importance but rarely studied in
the literature. We notice that in many applications, the limited labeled data are with certain structures, which paves us a way to design
effective methods. Specifically, we observe that labeled data are usually with one-sided noise such as the bug detection task, where the
identified buggy codes are indeed with defects, while codes checked many times or newly fixed may still have other flaws. Furthermore,
when there occurs two-sided noise in the labeled data, we exploit the class-prior information of unlabeled data, which is typically available
in practical tasks. We propose novel approaches for the incomplete and inaccurate supervision learning tasks and effectively alleviate the
negative influence of label noise with the help of a vast number of unlabeled data. Both theoretical analysis and extensive experiments
justify and validate the effectiveness of the proposed approaches.

Index Terms—weakly supervised learning, semi-supervised learning, noisy label learning.
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1 INTRODUCTION

Machine learning has achieved great success in many
real-world tasks, especially in supervised learning sce-

narios. These techniques, such as deep learning [1], typically
require a vast number of training data with accurate labels to
obtain good performance. However, such strong supervision
is not easy to obtain since the labeling process requires
human effort expertise. Therefore, it is desired to facilitate the
learning system with the capability of preserving satisfactory
performance with weak supervision [2].

In this paper, we consider the problem of learning from
incomplete and inaccurate supervision. Specifically, only a small
subset of training data is observed with labels while the
others remain unlabeled, and meanwhile, the observed labels
might be inaccurate. This setting is crucial because it occurs
in a variety of real-world applications. For instance, consider
the task of medical images annotation in the hospital, there
exist amounts of medical images without labels, since the
number of doctors is usually limited. Even for those labeled
images, they could be wrongly annotated by doctors due to
their difficulties. Similar situations also occur in building the
learning system from biology data: supervised information of
each molecule is not always correct due to limitations of the
equipment capability, and the number of labeled molecules is
also limited since it is usually too costly to conduct biological
experiments for collecting labels.

Learning from incomplete supervision or inaccurate
supervision has been studied in the area of Semi-Supervised
Learning (SSL) [3], [4] and Noisy Label Learning (NLL) [5],
[6], separately. From incomplete supervision, SSL approaches
use a vast number of unlabeled data as well as the limited
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labeled data to construct the model. However, when labeled
data are inaccurate, the learning system could be seriously
deceived. Under inaccurate supervision, NLL approaches
manage to recover the underlying noise-free distribution
with noisy labels, in order to learn the predictor which
resists the noise. Nevertheless, they typically require a large
amount of labeled data and cannot exploit unlabeled data.
Therefore, it is very desired to design approaches that can
learn from incomplete and inaccurate supervision simultaneously.
More precisely, we need effective algorithms to handle the
task where there are only a limited number of potentially
noisy labeled data, and a vast number of unlabeled data.

The problem turns out quite challenging, and it is non-
trivial to combine advantages of SSL and NLL approaches to
address this problem. For conventional noisy label learning
approaches, on the one hand, labeled data are insufficient
to estimate the underlying noise-free distribution; on the
other hand, these approaches are not able to access label
information from unlabeled data, and thus cannot leverage
the incomplete supervision to alleviate the label noise. For
traditional semi-supervised learning approaches, to handle a
vast number of unlabeled data, an underlying assumption is
that supervision information should be reliable. Otherwise,
these noisy labels can significantly mislead the learning
system. For example, in graph-based SSL, if labeled data
are not trustworthy, the algorithm probably converges to an
arbitrary result because the predicted labels of unlabeled
data are propagated depends on these labeled data.

With only noisy labeled data and unlabeled data, it
is almost impossible to learn from such incomplete and
inaccurate supervision, particularly when limited labeled
data are arbitrarily corrupted. Fortunately, in many real-
world tasks, we have some certain side information on the
structure of the observed labeled data. Specifically, we are
concerned with the circumstance where the limited labeled
data are with one-sided instance-dependent noise. Namely, only
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labels in one category may flip into the other category with
an unknown, instance-dependent noise rate while the other
category is clean. Such a scenario is quite common in real-
world tasks. For example, in the bug detection task, we aim
to identify the buggy code from a large number of code files.
The codes reported with bug issues by the senior engineers
are surely buggy (clean label). Nevertheless, some codes that
have been check many times or fixed recently could remain
with bugs (noisy label) due to the complexity of the software
system. Moreover, plenty of codes are not labeled since it is
hard to check them one-by-one entirely (unlabeled).

Besides the one-sided label noise, we further consider
the case where the label noise simultaneously occur on both
positive and negative sides. This is evidently much more
challenging than the one-sided label noise scenario, because
there is no reliable label information. To overcome the diffi-
culty caused by two-sided label noise, we exploit additional
statistical information of the incomplete supervisions for this
learning task, that is, we leverage the power of unlabeled
data with class-priors as the side statistical information.
Recall the aforementioned example of primary screening
scenario, when the equipment is of low quality, it may cause
misdiagnosis on both healthy and ill people, which leads
to the label noise occurring on both positive and negative
sides (two-sided noisy label). Since the data of residents
(unlabeled) usually come from different communities, our
proposal is to exploit some official statistics, e.g., the class-
priors, which associate with these communities as the side
information. Therefore, we can leverage unlabeled data with
side information to cope with the two-sided label noise.

This paper extends our preliminary study [7]. In this
paper, we investigate a popular but challenging learning
problem, namely, the Learning from Incomplete and Inaccurate
SuPervision (LIISP), which accommodates a variety of real-
world applications. We propose a novel semi-supervised
learning method, leveraging the incomplete supervision to
alleviate the negative effect caused by inaccurate supervi-
sion, and thus step towards learning from incomplete and
inaccurate supervision simultaneously. The main idea is to
rewrite the true risk of the underlying noise-free distribution
in the importance weighting form. Enlightened by the recent
advance of positive-unlabeled learning [8], [9], [10], we
use the marginal distribution extracted from the incomplete
supervision (unlabeled data) along with accurate labels to
estimate the weights, and thus construct the risk minimizer
for the incomplete and one-sided inaccurate supervision.
Furthermore, for the more challenging scenario where the
label noise occurs on both positive and negative sides, we
additionally exploit the class-priors of two discrepant unla-
beled datasets to resist the two-sided label noise. Inspired
by the unlabeled-unlabeled learning [11], [12], we expand
our method to handle the inaccurate supervision with the
help of discrepant incomplete supervisions. Both theoretical
justifications and empirical studies demonstrate the benefit
of unlabeled data and noisy labeled data, and thereby we
can obtain the optimal convergence rate and remarkable
performance improvement.

We summarize our main contributions as follows.

(1) We introduce and investigate the problem of Learning
from Incomplete and Inaccurate SuPervision (LIISP),

which accommodates many real-world applications
but is rarely considered in the literature.

(2) We propose novel learning algorithms, which alleviate
the noisy labeled data with the help of unlabeled data.
We theoretically justify the effectiveness of unlabeled
and noisy data via the excess risk analysis.

(3) We conduct extensive empirical evaluations on syn-
thetic, benchmark datasets, and real-world applica-
tions to demonstrate the superiority and robustness
of our proposed methods.

In the following, we first briefly review related work in
Section 2. Then, we introduce some preliminary background
knowledge in Section 3. Next, we provide a detailed descrip-
tion of our proposed methods in Section 4 and Section 5, with
detailed proofs in the supplemental material. Experimental
results on synthetic, benchmark, and real-world datasets are
in Section 6. Finally, we conclude the paper in Section 7.

2 RELATED WORK

Starting from the pioneering work of learning with noisy la-
bels [13], a variety of studies on inaccurate supervision have
been proposed in the theoretical community. For instance,
Aslam et al. [14] studied the learnability of noise tolerant
learning in finite VC-dimension. Apart from theoretical
findings, various practical approaches are also proposed
to avoid the drawback caused by inaccurate supervision, for
example, perceptron algorithms [15], [16], robust loss [17],
[18], unbiased loss [5], [19], importance-reweighting on
training samples [20], [21], etc. Following the line of noisy
label learning, instance-independent noise is firstly investi-
gated [5], [20]. These primary studies provide guarantees
for risk minimization under random classification noise in
the general setting of convex surrogates. In practice, instance-
dependent noise [6], [22], [23] is much closer to the realistic
situation, where label noise depends on the intrinsic nature
of instances. This setting is arguably more complicated than
the instance-independent label noise scenario. Preliminary
research shows that the optimal classifiers can be recovered
from the noisy distribution under certain assumptions [6].
However, noisy label learning mainly focuses on supervised
learning field, how to deal with limited labeled data and large
amounts of unlabeled data has not yet been well studied.

To take advantage of incomplete supervision, semi-
supervised learning algorithms are proposed to utilize
unlabeled data along with limited labeled data to construct
the predictor. Theoretical analysis shows that, provided with
a reasonable assumption on unlabeled data, like the cluster
assumption or the manifold assumption [24], [25], unlabeled
data can be used to regularize the hypothesis space and
thus reduce the searching complexity. Plenty of practical
approaches have been proposed over the decades, e.g., graph-
based methods [4], [26], S3VMs [3], and disagreement-based
methods [27], [28]. In recent years, due to the powerful
feature representation ability of deep neural networks [29],
some deep-SSL approaches have also been proposed [30],
[31]. In traditional SSL, the supervision information should
be accurate, which usually does not hold in practice.

A different point of view in semi-supervised learning
is formulated as Positive-Unlabeled Learning (PU Learn-
ing) [8], [32]. Different from using unlabeled data as the
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regularizer of hypothesis space, PU learning assumes the
unlabeled data are generated from the same joint distribution
as labeled data, but their labels cannot be observed. To deal
with the semi-supervised learning task, they linearly combine
PU and NU (Negative-Unlabeled) and give theoretical
analysis [10]. Nevertheless, PU learning requires sufficient
positive data to simulate the effect of the negative part
along with unlabeled data, which cannot be satisfied under
incomplete supervision. A recent breakthrough in semi-
supervised learning shows that with necessary statistical
information, the optimal classifier can be obtained by two
unlabeled datasets with different class priors [11], [12].
However, they do not exploit the labeled data, which usually
contain considerably important supervised information.

Note that disagreement-based SSL approaches also ex-
ploit pseudo-labels of unlabeled data [28], and to handle
misleading pseudo-labels, some strategies such as data
editing [33] or one-sided noisy label learning [34] have been
incorporated. These can be seen as early studies considering
both incomplete supervision and inaccurate supervision,
though the inaccurate supervision was generated during
the SSL procedure, rather than the label noise in the initial
training data. Some recent studies about Safe-SSL [35], [36],
[37] also have inherent mechanisms to handle the label noise,
though these mechanisms are implicit. In recent years, there
are some other studies [38], [39], [40], which tried to improve
the robustness of SSL, but they were mostly heuristic and
did not consider structural properties.

3 PRELIMINARY

In this section, we first review the notations for learning
from complete and accurate supervision, namely, conven-
tional supervised learning. Then, we introduce preliminary
knowledge for learning from incomplete supervision, which
is one of the typical scenarios in weakly supervised learning.

3.1 Learning from Complete and Accurate Supervision
In this scenario, we observe the ground-truth label for each
instance. Let D be the underlying true distribution from
which the training data (x, y) ∈ X × Y are independently
and identically sampled, where X ⊂ Rd and Y = {−1,+1}.
Given nP positive data {(xi,+1)}i=1,...,nP

and nN negative
data {(xj ,−1)}j=1,...,nN

, our purpose is to learn a well-
generalized decision function g : X 7→ R over the underlying
distribution D for the binary classification task.

Denote by ` : R × Y 7→ R+ a non-negative Lipschitz-
continuous loss function, whose risk over the underlying
true distribution D is

R(g) = E(x,y)∼D[`(g(x), y)]

= πPEP [`(g(x),+1)] + πNEN [`(g(x),−1)],
(1)

where πP is the class-prior of positive data Pr[y = +1] and
πN of negative data Pr[y = −1] with πP + πN = 1. Besides,
EP and EN denote the expectation of conditional probability
Pr[x|y = +1] and Pr[x|y = −1], respectively.

As only the sampled data are accessible in practice, we
approximate the risk by the empirical one,

R̂(g) =
πP
nP

nP∑
i=1

`(g(xi),+1) +
πN
nN

nN∑
j=1

`(g(xj),−1).

Given a family of decision functions G, in which each
function g : X 7→ R, we denote g∗ as the optimal decision
function, with ĝ as its empirical version,

g∗ = arg min
g∈G

R(g), ĝ = arg min
g∈G

R̂(g).

3.2 Learning from Incomplete Supervision
In this part, we consider the scenario of learning from
incomplete supervision. It is extremely hard to learn with
only unlabeled data on hand, so that we assume that we can
obtain some prior knowledge for the learning task.

Learning from Positive-Unlabeled Data. As aforemen-
tioned in the introduction, we first consider the scenario
where the prior knowledge is a handful of data with
their ground-truth labels from one category. We assume with-
out loss of generality that there are nP positive data
{(xi,+1)}i=1,...,nP

and nU unlabeled data {xk}k=1,...,nU
.

Our purpose is still to learn a real-valued function g with
small generalization error for the binary classification task.

As the negative data are not available in this scenario, thus
the partial risk πNEN [`(g(x),−1)] in (1) cannot be directly
estimated. Fortunately, based on the seminal work [8], the
risk R(g) can be recovered in an unbiased manner by only
using the accurate positive (or negative) and unlabeled data.
In the following, we suppose that the loss function ` satisfies
the symmetric condition,

`(g(x),+1) + `(g(x),−1) = 1. (2)

The symmetric condition is met by using a scaled ramp loss
as the surrogate loss, which is classification-calibrated [9].
Based on the symmetric condition, we retrieve the partial
risk πNEN [`(g(x),−1)] by regarding the unlabeled data as
negative data, and write the risk EU [`(g(x),−1)] as

πPEP [`(g(x),−1)] + πNEN [`(g(x),−1)]

= πPEP [1− `(g(x),+1)] + πNEN [`(g(x),−1)]

= − πPEP [`(g(x),+1)] + πNEN [`(g(x),−1)] + πP .

Therefore, let ` be a non-negative Lipschitz-continuous
loss function and satisfies the symmetric condition in (2),
then the risk can be rewritten in in unbiased manner as

R(g) = 2πPEP [`(g(x),+1)] + EU [`(g(x),−1)]− πP .

Approximating the risk R(g) by empirical data, we obtain,

R̂PU (g) =
2πP
nP

nP∑
i=1

`(g(xi),+1) +
1

nU

nU∑
k=1

`(g(xk),−1).

(3)
For a given family of decision functions G, we denote ĝPU

as the minimizer of (3), that is,

ĝPU = arg min
g∈G

R̂PU (g).

Learning from Unlabeled-Unlabeled Data. We then con-
sider another scenario in the incomplete supervision learning,
in which only the prior knowledge of class-priors is acces-
sible. We suppose that we have two discrepant unlabeled
datasets with necessary known class-priors. Let PrU1(x, y)
and PrU2(x, y) be two marginal densities where these two
discrepant unlabeled datasets are generated. We denote by
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θP and θ′P ( 6= θP ) the two class-priors for the positive data
of two unlabeled datasets, so that

PrU1
(x, y) = θP Pr(x|y = +1) + θN Pr(x|y = −1),

PrU2
(x, y) = θ′P Pr(x|y = +1) + θ′N Pr(x|y = −1),

where θP + θN = 1 and θ′P + θ′N = 1. Here Pr(x|y = ±1)
are the class conditional densities from which the posi-
tive/negative data are generated.

Since both positive and negative data are not available
in this scenario, we construct an unbiased estimation of the
underlying true risk with discrepant incomplete supervisions.
Following the work of [11], we rewrite R(g) in the form that

R(g) = EU1
(¯̀(g(x),+1)) + EU2

(¯̀(g(x),−1)),

where EU1
and EU2

are the exception over the marginal
distributions of these two discrepant unlabeled datasets,
¯̀(·,+1) = a`(·,+1) + b`(·,−1) and ¯̀(·,−1) = c`(·,+1) +
d`(·,−1) are the corrected loss functions for incomplete
supervisions, respectively. Then, we can write

R(g) = EU1
[¯̀U1

(g(x),+1)] + EU2
[¯̀U2

(g(x),−1)]

= θPEP [a · `(g(x),+1) + b · `(g(x),−1)]

+ (1− θP )EN [a · `(g(x),+1) + b · `(g(x),−1)]

+ θ′PEP [c · `(g(x),−1) + d · `(g(x),+1)]

+ (1− θ′P )EN [c · `(g(x),−1) + d · `(g(x),+1)]

= (a · θP + d · θ′P )EP [`(g(x),+1)]

+ (b · θP + c · θ′P )EP [`(g(x),−1)]

+ [a · (1− θP ) + d · (1− θ′P )]EN [`(g(x),+1)]

+ [b · (1− θP ) + c · (1− θ′P )]EN [`(g(x),−1)].

By setting the coefficients of terms EP [`(g(x),−1)] and
EN [`(g(x),+1)] to zero and letting a · θP + d · θ′P = πP ,
b · (1− θP ) + c · (1− θ′P ) = πN , we immediately retrieve the
risk R(g), with four coefficients

a =
(1− θ′P )πP
θP − θ′P

, b = −θ
′
P (1− πP )

θP − θ′P
,

c =
θP (1− πP )

θP − θ′P
, d = − (1− θP )πP

θP − θ′P
,

and R(g) is rewritten in an unbiased manner as

R(g) = α · EU1
[`(g(x),+1)] + α′ · EU2

[`(g(x),−1)]

− θ′(1− πP ) + (1− θ)πP
θ − θ′

,

where α = (θ′ + πP − 2θ′πP )/(θ − θ′) and α′ = (θ + πP −
2θπP )/(θ − θ′).

Given two discrepant unlabeled datasets of size nU1
and

nU2
, the empirical estimator can be approximated by

R̂UU (g) =
1

nU1

nU1∑
i=1

α`(g(xi),+1) +
1

nU2

nU2∑
j=1

α′`(g(xi),−1)

− θ′(1− πP ) + (1− θ)πP
θ − θ′

.

(4)
Let ĝUU ∈ G denote the minimizer of the risk estimated

by the two unlabeled datasets with known class-priors πP ,
θP and θ′P in (4), that is,

ĝUU = arg min
g∈G

R̂UU (g).

4 LEARNING FROM INCOMPLETE AND ONE-SIDED
INACCURATE SUPERVISION

In this section, we present our approach to leverage incom-
plete supervision to help learning with one-sided inaccurate
supervision, in particular, instances with one-sided instance-
dependent noisy labels. We demonstrate that the incomplete
supervision plays a significant role in learning from the one-
sided inaccurate supervision, especially when these noisy
labeled data are scarce.

To deal with the instances with one-sided noisy labels,
we first rewrite the risk of the underlying true distribution,
in which weights σ+ and σ− for each noisy labeled instance
play crucial roles. Then, we proceed to estimate these two
weights with the help of a vast number of unlabeled data.
Finally, we provide our learning algorithm for incomplete
and one-sided inaccurate supervision.

4.1 Learning from one-sided Inaccurate Supervision
In the one-sided inaccurate supervision, without loss of
generality, we suppose positive data are clean and negative
data are with instance-dependent label noise.

Notations and Settings. Suppose that we have nP̃ clean
positive data P̃ = {(xi,+1)}i=1,...,nP̃

1 and nÑ noisy nega-
tive data Ñ = {(xj ,−1)}j=1,...,n

Ñ
. For each instance x, let

its true label be y and the observed label be ŷ. Evidently,
we have y = ŷ for clean data, while it does not hold for
the noisy data. Meanwhile, let πP̃ be the class-prior of the
observed positive label Pr[ŷ = +1] and πÑ be Pr[ŷ = −1]
with πP̃ + πÑ = 1.

We suppose that the observed noisy data are with
instance-dependent label noise [6], [22]. Specifically, for any
(underlying, true) positive example x (whose true label
y = +1), it is observed as a negative example (ŷ = −1)
based on its feature. We define this probability as the hardness,
formally, hP : X → [0, 1], with,

hP (x) = Pr[ŷ = −1|x, y = +1].

As the observed positive data are always accurate, we
have for any x ∈ P̃ ,

Pr[y = +1|x, ŷ = +1] = 1.

Now we are ready to retrieve the risk of underlying
distribution under one-sided inaccurate supervision.

Rewrite True Risk. In the inaccurate supervision learning
scenario, if we simply treat all observed data as accurate
ones and directly adopt the risk in (1), both empirical and
theoretical performance will suffer from the label noise
heavily. In order to obtain the optimal classifier, it is necessary
to rewrite the true risk. In the following, we propose the
oInAS risk for the one-sided InAccurate Supervision, and
show that it provably retrieves the true risk.

Definition 1 (Risk for one-sided InAccurate Supervision
(oInAS Risk)). For any function g ∈ G, its oInAS risk RIA

os(g)
is defined as,

RIA
os(g) = πP̃EP̃ [σ+(x) · `(g(x),+1)]

+ πÑEÑ [σ−(x) · `(g(x),−1)],

1. We use P̃ instead of P since there are some true positive data are
not revealed, which are observed as negative data.
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where weights σ+(x) and σ−(x) are defined as

σ+(x) = 1/Pr[ŷ = +1|x, y = +1],

σ−(x) = Pr[y = −1|x, ŷ = −1].
(5)

Then we show that the oInAS risk equals to the true risk
over the underlying distribution D.

Theorem 1. The oInAS risk equals to the true risk (the risk over
the true data distribution), that is,

RIA
os(g) = R(g).

Proof. The true risk R(g) is the sum of πPEP [`(g(x),+1)]
and πNEN [`(g(x),−1)]. For the expectation over the margin
distribution of negative data, we have

EN [`(g(x),−1)]

=

∫
`(g(x),−1) Pr[x|ŷ = −1]

Pr[x|y = −1]

Pr[x|ŷ = −1]
dx

=

∫
`(g(x),−1) Pr[x|ŷ = −1]

Pr[ŷ = −1]

Pr[y = −1]
σ−(x) dx

=
πÑ
πN

EÑ [σ−(x)`(g(x),−1)].

The second equation holds due to a simple observation that
all the true negative data are essentially observed as negative,
and all observed positive data are indeed true positive.

Therefore, we have
Pr[x|y = −1]
Pr[x|ŷ = −1] =

Pr[ŷ = −1]
Pr[y = −1] ·

Pr[x, y = −1]
Pr[x, ŷ = −1]

=
Pr[ŷ = −1]
Pr[y = −1] ·

Pr[x, y = −1, ŷ = −1] +
=0︷ ︸︸ ︷

Pr[x, y = −1, ŷ = +1]

Pr[x, ŷ = −1]

=
Pr[ŷ = −1]
Pr[y = −1] · σ−(x).

A similar result can be obtained for the positive side by an
analogous argument. To this end, we complete the proof of
Theorem 1.

Remark 1. Theorem 1 justifies the usefulness of noisy
negative data. Instead of discarding noisy data or regarding
them as the unlabeled data, a more efficient method should
consider the noisy negative data, since they can be used to
recover the underlying noise-free distribution, along with
clean positive data.

As the underlying distribution of the positive and the
noisy negative data is not available, we approximate the risk
by the empirical oInAS risk, defined as follows.

Definition 2 (Empirical Risk for one-sided InAccurate Super-
vision, Empirical oInAS Risk). For any function g ∈ G, its
empirical oInAS risk R̂IA

os(g) is defined as,

R̂IA
os(g) =

πP̃
nP̃

nP̃∑
i=1

σ+(xi) · `(g(xi),+1)

+
πÑ
nÑ

n
Ñ∑

j=1

σ−(xj) · `(g(xj),−1),

where the weights σ+(x) and σ−(x) are defined in (5).

Denote by ĝIA
os the minimizer of Empirical oInAS Risk, we

introduce the following excess risk bound, showing that the

risk of ĝIA
os converges to that of the optimal decision function

in the function family G.

Theorem 2 (Excess risk of learning from one-sided inaccurate
supervision). Assume that the loss function ` is non-negative
and L-Lipschitz continuous. With hardness hP (x) ∈ [0, h], then,
for any δ > 0, with probability at least 1− δ, we have

R(ĝIA
os)−R(g∗) ≤

4πP̃L

1− hP
RnP̃

(G) + 4πÑLRn
Ñ

(G)

+ 2πP̃

√
ln(4/δ)

2nP̃
+ 2πÑ

√
ln(4/δ)

2nÑ
,

where RnP̃
(G) is Rademacher complexity of G for the sample

of size nP̃ from p+ = Pr[x|ŷ = +1] and Rn
Ñ

(G) follows a
similar definition over the observed negative data. Detailed proofs
are presented in the supplemental material.

Remark 2. In Theorem 2, the uniform boundedness of
hardness is necessary; otherwise, the excess risk can be
unbounded. When the hardness hP is very close to 1, there
exist some instances whose true labels are positive but are
regarded as negative with probability close to 1. As only P̃
instead of the original set P is accessible, we cannot recover
the information of those extremely hard examples.

Remark 3. When it degenerates to the instance-independent
label noise scenario, namely, there exists a constant noise
rate hP = Pr[ŷ = −1|x, y = +1] = Pr[ŷ = −1|y = +1],
our algorithm recovers the importance reweighting method
proposed in [20]. Specifically, we set the instance-dependent
label noise as a constant, and thereby recover their method.

4.2 Estimating σ+ and σ− via Incomplete Supervision

In the oInAS risk, it is crucial to estimate the weights σ+
and σ− defined in (5). A direct weighting technique for
inaccurate supervision is also adopted in [20], but their
method only handles instance-independent label noise and
is not able to utilize unlabeled data. However, in the semi-
supervised learning scenario, labeled data are limited, while
unlabeled data are comparatively sufficient. It is very desired
to exploit unlabeled data when we only have scarce noisy
labeled data on hand. In this paragraph, we estimate the
weights σ+/− with the help of incomplete supervision.

As shown in [9], positive-unlabeled learning is provably
better than supervised learning in terms of risk bounds when
infinite unlabeled data are available. Therefore, provided
with sufficient unlabeled data, the classifier learned from
positive and unlabeled data also has a good capability in esti-
mating the underlying noise-free distribution. Consequently,
we employ ĝPU , the minimizer of empirical PU risk in (3),
to produce pseudo labels for the noisy negative data and
unlabeled data, which are used to estimate the weights σ+/−.

Estimating Weights σ+/−. Firstly, we rewrite the weights
σ+(x) and σ−(x) defined in (5) as follows,

σ+(x) =
Pr[x, y = +1]

Pr[x, y = +1, ŷ = +1] + Pr[x, y = −1, ŷ = +1]︸ ︷︷ ︸
=0

=
πP Pr[x|y = +1]

πP̃ Pr[x|ŷ = +1]
=
πP
πP̃

σ′+(x),
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σ−(x) =
Pr[x, y = −1, ŷ = −1] +

=0︷ ︸︸ ︷
Pr[x, y = −1, ŷ = +1]

Pr[x, ŷ = −1]

=
πN Pr[x|y = −1]

πÑ Pr[x|ŷ = −1]
=
πN
πÑ

σ′−(x),

where πP̃ /Ñ and πP/N are class-priors of (noisy) posi-
tive/negative data and σ′+/−(x) denote the remaining density
ratio terms, which are defined as

σ′+(x) = Pr[x|y = +1]/Pr[x|ŷ = +1],

σ′−(x) = Pr[x|y = −1]/Pr[x|ŷ = −1].

In the following, we provide the estimation procedure of
σ+(x), and the estimator of σ−(x) can be similarly obtained.
Based on the law of large numbers, πP and πP̃ can be
estimated by the ratio of the number of samples as

π̂P =
nyPU=+1

nP̃ + nÑ
, π̂P̃ =

nŷ=+1

nP̃ + nÑ
,

in which nyPU=+1 denotes the number of positive data esti-
mated by empirical PU classifier ĝPU while nŷ=+1 denotes
the number of observed positive data.

Then, in the incomplete and one-sided inaccurate supervi-
sion learning scenario, we estimate ratio σ′+ with the help of
the learned classifier ĝPU over unlabeled data. We measure
the discrepancy between estimated ratio and the true ratio
by the Bregman divergence, defined as follows.

Definition 3 (Bregman divergence of ratio models [41]).
Assume that the function f : R 7→ R is differentiable and
strictly convex. Let ∇f(x) denote the subgradient of f(x),
the Bregman divergence associated with f from the true
density ratio σ′+ to the estimated ratio σ̂′+ is defined as,

Bf (σ′+‖σ̂′+) =

∫
Pr[x|ŷ = +1]∇f(σ̂′+(x))σ̂′+(x) dx

−
∫

Pr[x|ŷ = +1]f(σ̂′+(x)) dx

−
∫

Pr[x|y = +1]∇f(σ̂′+(x)) dx.

Denote by PPU = {(xi, ĝPU (xi) = +1)}i=1,...,m the
set of instances that are labeled as +1 by ĝPU of size m,
which approximates the sampled instances generated from
Pr[x|y = 1]. As P̃ is directly sampled from Pr[x|ŷ = 1], we
estimate the empirical Bregman divergence B̂PU

f (σ′+‖σ̂′+) of
estimated ratio and the true ratio by

B̂PU
f (σ′+‖σ̂′+) =

1

nP̃

nP̃∑
i=1

∇f(σ̂′+(xi))σ̂
′
+(xi)

− 1

nP̃

nP̃∑
i=1

f(σ̂′+(xi))−
1

m

m∑
j=1

∇f(σ̂′+(xj)).

Therefore, provided with two sets of instances sampled
from the observed positive data and the pseudo positive data,
namely P̃ and PPU , we are able to approximate the true den-
sity ratio by minimizing the empirical Bregman divergence.
We denote by σ̂′PU+ the minimizer of the empirical Bregman
divergence of function family {σ̂′+}, that is,

σ̂′PU+ = arg min
σ̂′
+∈{σ̂′

+}
B̂PU
f (σ′+(x)‖σ̂′+(x)).

We provide the following bound to show that the esti-
mated ratio converges to the optimal density ratio in the
function family {σ̂′+}.

Theorem 3. Assume that σ′+(x) is bounded. Then, for any δ > 0,
the following bound holds with probability at least 1− δ,

Bf (σ′+‖σ̂′PU+ ) ≤ 2CR({σ̂′+}) + b

√
log(4/δ)

2nP̃
,

where R({σ̂′+}) is the Rademacher complexity of ratio model set,
in the order of O(1/

√
nP̃ ); C and b are constants. Detailed proofs

are provided in the supplemental material.

Theorem 3 guarantees that our estimated weights σ+/−
converge to the optimal one in the hypothesis space, in the
order of O(1/

√
nP̃ ). This analysis accords to the intuition

that the estimator will be more accurate with more clean
positive data available.

4.3 Our Approach

In order to learn from incomplete and one-sided inaccurate
supervision, we minimize the weighted combination of
oInAS risk and PU risk (which we denoted by RIC

os(g)),

γRIA
os(g) + (1− γ)RIC

os(g)

=γπP̃EP̃ [σ+(x)`(g(x),+1)] + γπÑEÑ [σ−(x)`(g(x),−1)]

+ 2(1− γ)πPEP [`(g(x),+1)] + (1− γ)EU [`(g(x),−1)],

where γ ∈ [0, 1] is the trade-off coefficient. As the classifier
ĝPU is required to provide pseudo-labels for negative and
unlabeled data, we split the positive data P̃ into two disjoint
sets P̃1 and P̃2 of size nP̃1

and nP̃2
, which are respectively

adopted in the (empirical) oInAS and PU risk,

R̂os(g) =
γπ̂P̃

nP̃1

n
P̃1∑

i=1

σ+(xi)`(g(xi),+1) +
γπ̂Ñ

nÑ

n
Ñ∑

j=1

σ−(xj)`(g(xj),−1)

+
2(1− γ)π̂P

nP̃2

n
P̃2∑

i=1

`(g(xi),+1) +
(1− γ)
nU

nU∑
k=1

`(g(xk),−1).

(6)

Denote by ĝos the minimizer of empirical risk of incom-
plete and one-sided inaccurate supervision in (6). For the
learned decision function, we have the following excess risk
bound, demonstrating that the risk of ĝos converges to that
of optimal decision function in G.

Corollary 1 (Excess Risk of LIISP(os)). Assume that the
loss function ` is bounded, non-negative and L-Lipschitz con-
tinuous. Suppose the hardness hP (x) ≤ h holds uniformly
for each instance, and there is a constant CG > 0 such that
Rn(G) ≤ CG/

√
n for positive/noisy negative and unlabeled data

(with n = nP̃ /nÑ/nU ). Then for any δ > 0, with probability at
least 1− δ, we have

R(ĝos)−R(g∗) ≤ O(1/
√
nP̃ + 1/

√
nÑ + 1/

√
nU ).

Remark 4. Corollary 1 implies the usefulness of leveraging
unlabeled data to alleviate the instance-dependent label noise.
As we can see, the risk bound is tighter with an increasing
number of unlabeled data. The above risk bound is in optimal
convergence rate without any additional assumption [42].



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, XXXX 20XX 7

5 LEARNING FROM INCOMPLETE AND INACCU-
RATE SUPERVISION WITH CLASS-PRIORS

In real-world applications, both positive and negative data
could be polluted by the instance-dependent label noise. In
such a learning scenario, it is extremely hard to retrieve the
underly true risk and design an algorithm with theoretical
guarantee since there are no reliable label information. There-
fore, we proactively collect additional class-prior information
of the unlabeled data, namely, we have two discrepant un-
labeled datasets with all necessarily known class-priors. We
demonstrate that these discrepant incomplete supervisions
could help to resist the two-sided label noise.

To deal with the two-sided noisy labels, we also rewrite
the expect risk in the importance weighting form, and then
estimate these weights with the help of the discrepant unla-
beled datasets. Finally, we provide our learning algorithm
for incomplete and inaccurate supervision with class-priors.

5.1 Learning from Inaccurate Supervision with Class-
Priors

Notations and Settings. Throughout this section, we assume
that we have nP̃ noisy positive data which is denoted by
P̃ = {(xi,+1)}i=1,...,nP̃

and nÑ noisy negative data denoted
by Ñ = {(xj ,−1)}j=1,...,n

Ñ
. Let πP̃ be the class-prior of the

observed positive labels Pr[ŷ = +1] and πÑ be the one of
observed negative labels Pr[ŷ = −1] with πP̃ + πÑ = 1. We
denote by πP and πN the class-priors of underlying true data,
which are known ahead in this scenario.

As previously assumed, we suppose that the observed
data are with instance-dependent label noise. Following the
definition of hP , we define the hardness hN on underlying
true negative data, formally, hN : X 7→ [0, 1], with,

hN (x) = Pr[ŷ = +1|x, y = −1].

Rewrite True Risk. When both positive and negative data
are with instance-dependent noisy labels, we propose the
InAS Risk for the InAccurate Supervision, and show that it is
provably equal to the underlying true risk.

Definition 4 (Risk for InAccurate Supervision (InAS Risk)).
For any function g ∈ G, given the class-priors πP and πN , its
InAS risk RIA

ts(g) is defined as,

RIA
ts(g) = πPEP̃

[
σ′+(x)`(g(x),+1)

]
+ πNEÑ

[
σ′−(x)`(g(x),−1)

]
,

where weights σ′+(x) and σ′−(x) are defined as

σ′+(x) = Pr[x|y = +1]/Pr[x|ŷ = +1],

σ′−(x) = Pr[x|y = −1]/Pr[x|ŷ = −1].
(7)

Then, we demonstrate that the InAS risk equals to the
true risk over the underlying distribution D.

Theorem 4. The InAS risk equals to the true risk (the risk over
the true data distribution), that is,

RIA
ts(g) = R(g).

Proof. For the expectation over the marginal distribution of
the clean positive data, we rewrite it as

EP [`(g(x),+1)]

=

∫
`(g(x),+1) Pr[x|y = +1] dx

=

∫
`(g(x),+1) Pr[x|ŷ = +1]

Pr[x|y = +1]

Pr[x|ŷ = +1]
dx

= EP̃
[
σ′+(x)`(g(x),+1)

]
.

While for the negative data, a similar result can be obtained
by an analogous argument. �

Remark 5. Theorem 4 demonstrates that the true risk can be
retrieved by assigning proper weights to each noisy instance.
Therefore, a well-generalized classifier can be obtained by
estimating these weights and then minimizing the weighted
empirical risk. However, as defined in (7), we should
approximate the underlying true conditional distribution
like the Pr[x|y = +1]. There is no hope to learn a good
estimation for these weights when the noisy data are scarce
and occur arbitrarily. This observation motivates us to handle
this task with the help of unlabeled data, which is often with
a large amount and rather easy to obtain.

As we only have the sampled data, we approximate the
true risk by the empirical InAS risk, which is defined as

Definition 5 (Empirical Risk for InAccurate Supervision,
Empirical InAS Risk). For any function g ∈ G, its empirical
InAS risk R̂IA

ts(g) is defined as

R̂IA
ts(g) =

πP
nP̃

nP̃∑
i=1

σ′+(xi) · `(g(xi),+1)

+
πN
nÑ

n
Ñ∑

j=1

σ′−(xj) · `(g(xj),−1),

where the weights σ′+(x) and σ′−(x) are defined in (7).

Denote by ĝIA
ts the minimizer of above empirical InAS

risk, we then show that this obtained classifier enjoys the
following excess risk bound.

Theorem 5 (Risk of learning from Inaccurate Supervision).
Assume that the loss function ` is non-negative and L-Lipschitz
continuous. Suppose that the hardness hP (x) ∈ [0, hP ] and
hN (x) ∈ [0, hN ], for any δ > 0, with probability at least 1− δ,
we have

R(ĝIA
ts)−R(g∗) ≤ 4πPL

1− hP
RnP̃

(G) +
4πNL

1− hN
Rn

Ñ
(G)

+ 2πP

√
ln(4/δ)

2nP̃
+ 2πN

√
ln(4/δ)

2nÑ
,

where RnP̃
(G) is Rademacher complexity of function family G

for the sampling of size nP̃ from Pr[x|ŷ = +1] and Rn
Ñ

(G)
follows a similar definition. Detailed proofs are presented in the
supplemental material.

5.2 Estimating σ′+ and σ′− by Discrepant Incomplete
Supervisions
We proceed to estimate the weights σ′+ and σ′− defined in (7)
with the help of incomplete supervisions. As shown in [11],
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the risk of underlying true distribution can be retrieved by
discrepant unlabeled datasets, when their corresponding
class-priors θP and θ′P and the class-prior πP of the joint
unlabeled datasets are known in advance. Therefore, with
sufficient unlabeled data on hand, the classifier learned from
the discrepant unlabeled datasets is valuable in estimating
the underlying noise-free distribution. Accordingly, we em-
ploy ĝUU , the minimizer of empirical UU risk in (4), to
produce pseudo labels, which are then used to estimate the
weights σ′+/−(x). In the following, we propose the estimation
of σ′+(x), while σ′−(x) can be similarly obtained.

Estimating Weights σ′+/−. Again we adopt the ratio match-
ing method proposed in [41] to estimate weights for observed
labeled data. Let PUU = {(xi, ĝUU (xi) = +1)}i=1,...,nU+

be the set of instances labeled as +1 by ĝUU of size nU+

in training data, which used to approximate the instances
sampled from Pr[x|y = 1]. We approximate the Bregman
divergence between estimated ratio and the true ratio by the
empirical one, namely,

B̂UU
f (σ′+‖σ̂′+) =

1

nP̃

nP̃∑
i=1

∇f(σ̂′+(xi))σ̂
′

+(xi)

− 1

nP̃

nP̃∑
i=1

f(σ̂′+(xi))−
1

nU+

nU+∑
j=1

∇f(σ̂′+(xj)).

With two sets of instances sampled from the observed
positive data and the pseudo positive data, namely P̃ and
PUU , we are able to approximate the true density ratio by
minimizing the empirical Bregman divergence. Let σ̂′UU+ be
the minimizer of the above empirical Bregman divergence,
we provide the following bound to show that the estimated
ratio converges to the optimal one in {σ̂′+}.

Theorem 6. Assume that σ′+(x) is bounded. Let n =
min {nP̃ , nÑ , nU1

, nU2
}, for any δ > 0, the following bound

holds with probability at least 1− δ,

Bf (σ′+‖σ̂′UU+ ) ≤ 2CR({σ̂′+}) + b

√
log(4/δ)

2n
,

where R({σ̂′+}) is the Rademacher complexity of ratio model set,
in the order of O(1/

√
n); C and b are constants. Detailed proofs

are provided in the supplemental material.

Theorem 6 guarantees that our estimated weights σ′+/−
converge to the optimal one in the hypothesis space, in the
order of O(1/

√
n). This analysis accords to the intuition that

the estimator will be more accurate with more data available.

5.3 Our Approach

To exploit noisy data and unlabeled data simultaneously, we
introduce the weighted combination of the InAS risk and
the UU risk (which we denoted by RIC

ts(g)), to learn from
the incomplete and inaccurate supervision with class-priors,
namely,

γRIA
ts(g) + (1− γ)RIC

ts(g)

= γ(πPEP̃ [σ′+(x)`(g(x),+1)] + πNEÑ [σ′−(x)`(g(x),−1)])

+ (1− γ)(EU1 [¯̀U1(g(x),+1)] + EU2 [¯̀U2(g(x),−1)]),

where γ ∈ [0, 1] is the trade-off coefficient. The empirical
version R̂cp(g) is defined as

R̂cp(g) = γR̂IA
ts(g) + (1− γ)R̂UU (g)

=
γπP

nP̃

n
P̃∑

i=1

σ′+(xi)`(g(xi),+1) +
γπN

nÑ

n
Ñ∑

j=1

σ′−(xj)`(g(xj),−1)

+
1− γ
nU1

nU1∑
i=1

α`(g(xi),+1) +
1− γ
nU2

nU2∑
j=1

α′`(g(xi),−1),

where α = (θ′ + πP − 2θ′πP )/(θ − θ′) and α′ = (θ + πP −
2θπP )/(θ − θ′).

Let ĝcp be the minimizer of the weighted combination risk
R̂cp(g) in the function family G, we have the following excess
risk bound, demonstrating that the risk of ĝcp converges to
that of optimal decision function in G.

Corollary 2 (Excess Risk of LIISP(cp)). Assume that the
bounded loss function ` is non-negative and L-Lipschitz contin-
uous. Suppose the hardness hP (x), hN (x) ≤ h holds uniformly
for each instance, and there is a constant CG > 0 such that
Rn(G) ≤ CG/

√
n for positive/noisy negative and unlabeled data

(with n = nP̃ /nÑ/nU ). Then for any δ > 0, with probability at
least 1− δ, we have

R(ĝcp)−R(g∗) ≤ O(1/
√
nP̃ + 1/

√
nÑ + 1/

√
nU ).

6 EXPERIMENT

In this section, we examine the performance of the proposed
LIISP(os) and LIISP(cp) algorithms on both benchmark
datasets and real-world tasks. Specifically, we evaluate our
algorithms in the following three aspects:

(i) Comparisons on Synthetic Datasets: we provide
intuitive illustrations on the advantage of our ap-
proaches against traditional algorithms designed for
only incomplete or only inaccurate supervision;

(ii) Comparisons on Benchmark Datasets: we compare
the LIISP algorithms with robust SSL methods on
benchmark datasets, to demonstrate the superiority
of the LIISP algorithms in exploiting incomplete and
inaccurate supervision, and the usefulness of noisy
labeled data and the unlabeled data;

(iii) Bug Detection Task: we validate the effectiveness of
the LIISP(os) algorithm on the bug detection task,
which aims at detecting defects in software systems.

In order to simulate the instance-dependent label noise, we
first pre-train a SVM classifier on clean data and flip 20%
positive data into negative according to their confidence. For
the LIISP(cp) algorithm, we additionally flip 20% negative
data into positive to imitate the two-sided label noise. We
perform experiments 10 times on various splits of datasets,
and present the average as well as the standard deviation
of the results. We also conduct 10-fold cross validation to
choose a proper trade-off coefficient γ.

6.1 Comparisons on Synthetic Datasets

We first numerically illustrate the effectiveness of the LIISP
algorithms under incomplete and inaccurate supervision. We
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(b) Decision boundaries and error bounds of NLL, SSL and LIISP(cp)

Fig. 1: Comparisons with Noisy Label Learning (NLL) algorithm and Semi-Supervised Learning (SSL) algorithm on the
synthetic dataset generated by two-dimensional Normal distributions with instance-dependent label noise.

first generate a synthetic dataset as underlying true distri-
bution from two class-conditional distributions, with each
instance (x, y) generated from standard two-dimensional
Normal distribution Nx according to

Pr[x|y = −1] = Nx([−1,−1]),Pr[x|y = 1] = Nx([1, 1]).

Then we generate the instance-dependent label noise ac-
cording to their confidence assigned by a pre-trained SVM
model. In the synthetic comparisons, we generate 200 noisy
labeled data. Apart from the noisy data, we also provide
1000 unlabeled data as incomplete supervision. The optimal
boundary is shown in the solid black line. The NLL method
denotes the one that learning only with noisy labeled data,
and here we apply a robust SVM [43]. Similarly, the SSL
approach denotes the method that learning with unlabeled
data, and we apply the PNU algorithm [10] for comparison.

We report the boundaries as well as the error bounds
returned by the LIISP, NLL, SSL algorithms in Figure 1. Both
the NLL and SSL approaches suffer from the scare noisy
labeled data. The green area in Figure 1(a) denotes the
boundary and the error bound of the LIISP(os) algorithm,
which is closest to the optimal boundary. A similar result can
be obtained for the LIISP(cp) algorithm, which is shown in
Figure 1(b). To conclude, our proposed LIISP(os/cp) algo-
rithms could empirically approximate the optimal boundaries
under incomplete and inaccurate supervision.

6.2 Comparisons on Benchmark Datasets
In this part, we examine the performance of the LIISP(os/cp)
algorithms on benchmark datasets and test the usefulness
of both noisy labeled data and unlabeled data. We notice
that the LIISP(os) algorithm and LIISP(cp) algorithm deal
with different learning scenarios, thus they are not directly
comparable. We conduct the benchmark comparisons on the
UCI datasets2 and the LIBSVM datasets3, including diabetes,
breastw, wdbc, house, letter7vs9, ionosphere, australian,
isolet, german, a5a, clean1, mnist7vs9, autavn and rcv1 from
various fields. The number of data items varies from 232
to 20,242 and their dimension varies from 8 to 47,236. We
summarize their brief statistical information in Table 1.

2. The UCI datasets can be downloaded from https://archive.ics.uci.
edu/ml/datasets.php with detailed description for each dataset.

3. The LIBSVM datasets can be downloaded from https://www.csie.
ntu.edu.tw/∼cjlin/libsvmtools/datasets/ with detailed description for
each dataset.

TABLE 1: Brief statistics of benchmark datasets

Dataset # Instance # Dim Dataset # Instance # Dim

diabetes 768 8 isolet 600 51
breastw 683 9 german 1,000 59
wdbc 569 14 a5a 6,414 122
house 232 16 clean1 476 166
letter7vs9 1,528 16 mnist7vs9 14,251 784
ionosphere 351 33 autavn 7,118 20,707
australian 690 42 rcv1 20,242 47,236

We compare the proposed LIISP(os/cp) algorithms with
six contenders, including two supervised learning methods
and four semi-supervised learning algorithms. The two
supervised learning baselines:
• LIBSVM [44] is an SVM baseline.
• IW [20] is a noisy label learning approach which resist

the label noise by importance reweighting technique.
There are other four robust semi-supervised learning algo-
rithms, which consider the noisy labels in SSL,
• LSSC [38] is a sparse coding based SSL method. It

gives a L1-norm formulation of Laplacian regulariza-
tion based on the manifold structure of the data.

• ROSSEL [39] generates a set of pseudo labels for
unlabeled data, and approximates the ground-truth
labels by multiple label kernel learning.

• SIIS [40] is a graph-based SSL algorithm. It em-
phasizes the leading eigenvectors of the Laplacian
matrix associated with small eigenvalues, such that
this method constructs a label noise robust graph and
propagates labels on this graph.

• SAFEW [45] builds the final prediction results by
integrating several weakly supervised learners on
noisy labeled data and makes it never worse than a
simple supervised learning baseline.

In addition, we also include the following two methods into
comparisons, which are direct combinations of the NLL and
SSL approaches, in order to demonstrate the superiority of
our algorithm to these naive combinations.
• PUIW is a direct combination of PU learning and IW,

which first adopts PU learning to generate pseudo
labels for unlabeled data, and then applies IW on
labeled data to alleviate the effect of noisy labels.

• UUIW is a straightforward combination of UU learn-
ing and IW, whose procedures are similar to PUIW

https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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TABLE 2: Performance comparisons on benchmark datasets. On each dataset, 10 test runs were conducted and the average
accuracy as well as standard deviation are presented, with the best one emphasized in bold. Besides, • (◦) indicates our

approach is significantly better (worse) than the compared method (paired t-tests at 95% significance level).
(a) Learning from incomplete and one-sided inaccurate supervision

Dataset LIBSVM IW LSSC ROSSEL SIIS SAFEW PUIW LIISP(os)

diabetes 74.91 ± 1.50 • 60.79 ± 8.81 • 68.45 ± 2.35 • 75.69 ± 2.48 67.92 ± 1.37 • 67.69 ± 0.90 • 75.93 ± 2.35 76.26 ± 1.03
breastw 93.65 ± 1.98 94.71 ± 1.23 96.21 ± 1.29 96.53 ± 0.83 96.49 ± 0.68 96.31 ± 0.49 95.53 ± 1.52 94.85 ± 4.32
wdbc 89.65 ± 2.75 • 77.47 ± 19.3 • 91.97 ± 2.01 • 90.87 ± 2.07 • 92.95 ± 1.32 • 86.46 ± 1.14 • 77.64 ± 12.1 • 95.52 ± 1.08
house 91.90 ± 1.72 • 96.29 ± 1.27 93.49 ± 2.17 • 93.26 ± 1.88 • 88.84 ± 2.70 • 95.47 ± 1.59 94.53 ± 2.80 96.03 ± 0.97
letter7vs9 90.04 ± 3.88 • 95.21 ± 1.72 • 94.23 ± 0.88 • 94.94 ± 1.43 • 78.47 ± 1.39 • 93.97 ± 0.90 • 95.04 ± 1.34 • 98.82 ± 0.95
ionosphere 81.54 ± 3.19 • 83.28 ± 6.51 • 79.26 ± 6.88 • 88.23 ± 4.64 72.11 ± 16.6 • 81.31 ± 3.92 • 85.69 ± 2.56 90.23 ± 7.43
australian 80.20 ± 3.24 • 80.65 ± 12.9 81.87 ± 2.81 • 79.89 ± 6.92 • 72.96 ± 3.50 • 71.77 ± 7.89 • 84.47 ± 3.90 86.19 ± 1.05
isolet 86.50 ± 2.16 • 91.63 ± 2.44 • 96.48 ± 1.25 80.13 ± 2.06 • 98.82 ± 0.48 96.16 ± 2.00 91.74 ± 2.38 • 98.61 ± 1.21
german 64.52 ± 3.89 • 67.45 ± 4.81 • 62.53 ± 1.86 • 73.03 ± 0.96 72.24 ± 1.19 72.73 ± 0.68 68.65 ± 2.21 • 74.37 ± 2.58
a5a 70.91 ± 2.42 • 73.82 ± 4.35 • 68.45 ± 1.69 • 79.36 ± 1.66 • 76.36 ± 0.82 • 78.20 ± 1.58 74.13 ± 2.47 • 83.29 ± 0.47
clean1 72.84 ± 3.81 • 64.52 ± 4.15 • 61.03 ± 1.00 • 77.40 ± 2.37 • 60.89 ± 5.98 • 69.11 ± 1.38 • 71.07 ± 3.92 • 86.16 ± 3.42
mnist7vs9 85.63 ± 2.29 • 90.18 ± 1.62 • 88.76 ± 1.43 • 81.41 ± 1.18 • 92.46 ± 1.73 85.10 ± 7.08 • 91.82 ± 1.53 • 96.19 ± 0.33
autavn 65.46 ± 0.82 • 65.59 ± 6.33 • 76.54 ± 7.68 69.54 ± 0.82 • 65.75 ± 2.20 • 72.76 ± 0.21 68.90 ± 1.57 • 77.72 ± 4.56
rcv1 62.57 ± 3.79 • 61.52 ± 1.20 • 70.92 ± 5.55 68.72 ± 3.59 62.42 ± 0.64 • 70.15 ± 0.88 67.33 ± 2.51 69.93 ± 2.52

LIISP(os) w/ t/ l 13/ 1/ 0 12/ 1/ 1 11/ 1/ 2 10/ 3/ 1 11/ 1/ 2 11/ 1/ 2 10/ 3/ 1 rank first 10/ 14

(b) Learning from incomplete and inaccurate supervision with class-priors

Dataset LIBSVM IW LSSC ROSSEL SIIS SAFEW UUIW LIISP(cp)

diabetes 70.55 ± 2.17 60.21 ± 12.7 • 67.37 ± 2.88 • 70.58 ± 1.89 60.64 ± 10.9 • 69.26 ± 6.25 • 66.17 ± 12.8 • 72.70 ± 4.20
breastw 94.93 ± 0.77 88.45 ± 12.1 • 95.21 ± 1.04 96.62 ± 0.69 96.80 ± 4.60 ◦ 96.29 ± 0.52 93.22 ± 3.09 95.18 ± 0.57
wdbc 88.03 ± 4.45 • 71.37 ± 14.0 • 90.51 ± 3.51 93.41 ± 0.81 94.44 ± 1.05 ◦ 87.95 ± 4.27 69.69 ± 14.9 • 91.93 ± 1.47
house 92.84 ± 3.91 89.25 ± 15.0 • 90.73 ± 1.47 • 93.26 ± 2.62 89.65 ± 2.48 • 92.56 ± 2.86 90.93 ± 3.33 94.49 ± 1.99
letter7vs9 90.72 ± 3.91 • 81.78 ± 20.3 • 92.31 ± 2.40 • 95.16 ± 1.87 77.45 ± 1.68 • 94.40 ± 1.09 85.98 ± 10.7 • 95.18 ± 3.60
ionosphere 78.01 ± 3.19 • 74.39 ± 9.34 • 79.49 ± 4.65 • 88.94 ± 2.81 81.82 ± 7.17 • 77.40 ± 7.90 • 72.98 ± 10.2 • 90.31 ± 4.17
australian 76.38 ± 4.21 • 66.22 ± 16.1 • 79.45 ± 2.81 • 81.53 ± 2.62 • 73.96 ± 5.18 • 83.43 ± 3.08 72.41 ± 9.91 • 83.99 ± 1.85
isolet 73.93 ± 0.59 • 85.83 ± 2.33 • 94.82 ± 0.73 88.47 ± 2.24 • 98.84 ± 0.33 ◦ 97.37 ± 1.03 73.92 ± 18.7 • 95.35 ± 1.76
german 58.33 ± 2.30 • 59.83 ± 8.74 • 61.31 ± 2.28 • 60.24 ± 3.58 • 60.06 ± 10.8 • 63.43 ± 4.27 • 67.77 ± 13.2 • 72.86 ± 3.38
a5a 61.36 ± 3.81 • 66.34 ± 8.74 • 67.72 ± 1.86 • 75.25 ± 3.03 • 69.27 ± 15.9 • 71.81 ± 3.93 • 81.71 ± 4.09 83.13 ± 0.57
clean1 65.67 ± 2.94 • 59.35 ± 6.64 • 60.65 ± 4.16 • 70.89 ± 3.27 54.56 ± 3.29 • 53.95 ± 4.21 • 61.25 ± 11.7 • 75.15 ± 6.94
mnist7vs9 75.84 ± 4.02 • 89.13 ± 1.51 • 87.53 ± 2.18 • 77.47 ± 4.83 • 89.46 ± 1.01 85.39 ± 3.74 • 78.89 ± 20.8 • 93.29 ± 0.46
autavn 70.06 ± 9.32 • 65.49 ± 6.04 • 73.76 ± 5.02 • 73.65 ± 4.29 • 66.87 ± 1.16 • 77.46 ± 9.35 67.09 ± 8.45 • 78.92 ± 8.18
rcv1 69.65 ± 5.26 • 67.60 ± 1.83 • 74.48 ± 8.12 63.35 ± 3.34 • 60.01 ± 5.67 • 68.56 ± 4.54 • 70.64 ± 2.68 • 75.80 ± 3.52

LIISP(cp) w/ t/ l 12/ 2/ 0 14/ 0/ 0 11/ 2/ 1 10/ 2/ 2 11/ 0/ 3 10/ 2/ 2 12/ 2/ 0 rank first 11/ 14

by first using UU learning to generate pseudo labels
for unlabeled data and then applying IW method.

Table 2 shows that the LIISP(os/cp) algorithms solve the
LIISP tasks and outperform other contenders. In the one-
sided label noise scenario, LIISP(os) ranks first in 10 out
of 14 datasets in terms of the average accuracy. Overall, the
LIISP(os) algorithm outperforms both supervised baselines
and robust SSL methods. Compared to the conventional
noisy label learning methods (LIBSVM and IW), LIISP(os)
achieves higher accuracy and better stability. As shown in
Table 2(a), although the IW reweights the noisy label, it is not
always better than the LIBSVM baseline. Besides its decline
in the average accuracy, the large variance makes it hard to
be practical. Such a phenomenon indicates the instability
caused by the limited noisy labeled data, and thereby it is
essential to utilize the unlabeled data.

Compared with the robust semi-supervised learning ap-
proaches, the LIISP(os) algorithm achieves a very promising
performance, as it explores the structure of noisy labeled
data. Notably, the LIISP(os) algorithm outperforms the
ROSSEL approaches, which heavily rely on the performance
of the weak learner(s) generated from noisy labeled data.
This phenomenon also validates the effectiveness of our
approach in utilizing unlabeled data. Compared with the
naive combination of PU and IW approaches (PUIW), the
LIISP(os) algorithm attains higher accuracy on almost all
datasets, which demonstrates that a direct combination of
NLL and SSL approaches is not applicable in practice.

In the two-sided label noise scenario, the LIISP(cp)
algorithm also outperforms both the supervised baselines
and robust SSL methods, which is shown in Table 2(b).
The LIISP(cp) algorithm achieves higher accuracy and lower
variance compared with two supervised learning baselines on
14 datasets, which demonstrates the benefit of utilizing unla-
beled data. We additionally exploit the statistical information
(class priors) of the discrepant unlabeled data, so that we can
solve the LIISP task with theoretical guarantees. Therefore, it
is not surprising that the LIISP(cp) algorithm outperforms
the other four robust SSL approaches. Furthermore, the
LIISP(cp) also shows superiority over the direct combination
of the NLL and SSL methods, namely the UUIW, which
verifies the advantage of the proposed LIISP(cp) algorithm.

Comparison with Incomplete Supervision Algorithms. We
then implement the LIISP(os/cp) algorithms with deep
neural networks and demonstrate their effectiveness. In this
part, we focus on validating the usefulness of noisy labeled
data. In the following, we empirically compare our proposed
algorithms with deep semi-supervised learning approaches
(for incomplete supervision) on two real-world datasets.

• MNIST [46] is a large handwritten digits dataset with
a training set of 60,000 examples, and a test set of
10,000 examples. These handwritten digits vary from
0 to 9 and we set the even and odd digits as the
positive class and negative class, thus construct the
binary classification task.

• SVHN [47] is a house number dataset obtained from
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TABLE 3: Specification of the benchmark datasets, deep
neural network models, and optimization algorithms

Dataset # Train # Test # Feature Model Optimizer

MNIST 60,000 10,000 784 MLP Adam
SVHN 73,257 26,032 150,528 ResNet Adam

Google Street View images. It contains 10 classes from
0 to 9 and we also set the even and odd digits as the
positive class and negative class, respectively.

For the MNIST dataset, we apply a 6-layer multilayer
perceptron (MLP) with ReLU [48] as activation functions
(more specifically, d-300-300-300-300-1, where d is the di-
mension of training data, 300 is width of the layer). Batch
normalization [49] is applied after each fully connected
layer. For the SVHN dataset, we apply an pre-trained deep
residual network ResNet-18 [50] to generate features and
then use a fully connected layer to make the prediction.4 The
architecture of ResNet-18 is: (224×224×3)-C(7×7, 64)-max
pool-[C(3×3, 64)]×2-[C(3×3, 128)]×2-[C(3×3, 256)]×2-
[C(3×3, 512)]×2-average pool-1000-1, where (224×224×3)
is the input RGB data with 3 channels, C(3× 3, 64) means
64 channels of 3× 3 convolutions followed by ReLU, [·]× 2
means there are two such layers, etc. The down sampling of
the volume though the network is achieved by increasing
the stride from 1 to 2. These two models are trained by
Adam [51] with a learning rate of 10−4 and regularization
weight decay 0.005. Table 3 summarizes brief statistics of
datasets and used models.

We compare the LIISP(os/cp) algorithms with deep semi-
supervised learning approaches. For the one-sided label
noise, since noisy data only appear in one category, Positive-
Unlabeled (PU) learning [52] can be directly applied by
discarding the noisy data. While for the two-sided label noise,
as we additionally collect the class-prior information of the
discrepant unlabeled datasets, we could use the Unlabeled-
Unlabeled (UU) learning [11] to obtain the classifier. We also
list the performance of the PNU [10] method, which regards
all the noisy labels as true ones.

We report the average accuracy and standard deviation
on MNIST and SVHN in Figure 2. Among these three
algorithms, the LIISP algorithms converge to the highest
accuracy. Notice that PNU is comparable or more accurate
than the PU/UU methods, although they directly treat the
noisy labels as the correct ones. This phenomenon indicates
that it is necessary to consider the noisy labeled data in the
LIISP scenario, although they are limited.

Comparison with Inaccurate Supervision Algorithms. We
then compare the LIISP algorithms with noisy label learning
approaches (for inaccurate supervision) to validate the
usefulness of unlabeled data. Figure 3 reports the aver-
age accuracy and standard deviation of the LIISP(os/cp),
PUIW/UUIW, and IW algorithms with increasing noise rate.
In general, the proposed LIISP(os/cp) algorithms achieve the
highest accuracy and drop more slowly than PUIW/UUIW
and IW methods, as the proposed algorithms consider
the structure of label noise and the statistical information
(class-priors) of the discrepant unlabeled data. Additionally,
LIISP(os/cp) are always more accurate and stable than

4. https://pytorch.org/hub/pytorch vision resnet/
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Fig. 2: Performance curve (in average accuracy and standard
deviation) of the deep neural network implementation of the
LIISP(os/cp) algorithms with other deep semi-supervised

learning methods on the MNIST and SVHN datasets.
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Fig. 3: Performance curve (in average accuracy and standard
deviation) of the LIISP(os/cp) algorithms and the
contenders with respect to an increasing noise rate.

the IW under fixed noise rate, indicating the robustness
of the proposed LIISP(os/cp) algorithms and usefulness of
unlabeled data on alleviating label noise, particularly when
there are abundant unlabeled data available.

6.3 Bug Detection Task
In this part, we examine the LIISP(os) algorithm in the real-
world application, the bug detection task, where we aim
to predict whether a source code is clean or buggy. Apart
from those surely buggy codes reported by senior engineers
(clean labeled data), those codes checked many times or
newly fixed also potentially conceal bugs (noisy labeled
data). Moreover, there exist a number of source codes that
are never checked (unlabeled data). Therefore, this real-
world application accords to a typical scenario of learning
from incomplete and one-sided inaccurate supervision.

https://pytorch.org/hub/pytorch_vision_resnet/
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Fig. 4: Performance curve w.r.t. an increasing number of predicted potential bugs. The performance is measured by the number of
true bugs in top k predicted data, |(S@k) ∩ B|. The superior the algorithm is, the larger the quantity |(S@k) ∩ B| will be.

TABLE 4: Descriptions of datasets for the bug detection task.

Dataset Positive (Buggy) Negative (Clean) Total # Dim

OrientDB (File) 270 1233 1503 7
OrientDB (Class) 208 1567 1847 102
Elasticsearch (File) 487 2548 3035 7
Elasticsearch (Class) 678 5230 5908 102

Source codes in a software project are usually modified by
engineers. To define the positive and negative data in a bug
detection task, we list the following three versions of each
source code file according to whether it has related issues
committed by engineers during the developing process:

(a) version before the issue is committed;
(b) version after the issue is reported but not yet fixed;
(c) version after the issue is fixed and closed.
After identifying the relations between source codes and

issues, we treat different versions of code files as individual
instances. Specifically, we mark code files in version (a) and
(b) as buggy instances (clean positive), while treat a code file
in version (c) as a clean instance (noisy negative). Meanwhile,
those source codes that are unrelated to any issue are marked
as the unlabeled instances in our scenario.

Experiment Settings. We choose two public bug detection
datasets of Java projects from GitHub [53]: (i) OrientDB5

and (ii) Elasticsearch6, where the former one is a database
engine project and the latter one is a search engine project.
We choose version 2013.12.10 for OrientDB and version
2014.02.03 for Elasticsearch. For each dataset, the feature
of each instance is extracted either from the whole code file
or from the class modules, and thus there are four datasets
in total. Details of these four datasets are listed in Table 4.

We randomly take 50 buggy instances and 50 clean ones as
the labeled data and set the rest code instances as unlabeled.
For all experiments, we perform 10 tests on various splits
of the whole dataset. We use the number of detected true
positive bugs to characterize the performance, namely, the
number of bugs identified by the algorithm are indeed buggy.
More specifically, we denote the set of top k bugs detected
for dataset S by the algorithm as S@k, and the collection of
underlying ground-truth bugs in the test set as B. Then we
define the number of true bugs in the detected k instances
as |(S@k) ∩ B|. Evidently, the better the performance of the
algorithm is, the larger the quantity |(S@k) ∩ B| will be.

Result Analyses. We then study performance of the LI-
ISP(os) algorithm on these four bug detection tasks. We re-

5. https://github.com/orientechnologies/orientdb
6. https://github.com/elasticsearch/elasticsearch

Bug detected later

Current clean ver.

(a) OrientDB Dataset

Bug detected later

Current clean ver.

(b) Elasticsearch Dataset

Fig. 5: Potential bugs detected by the LIISP(os) algorithm on
the OrientDB and Elasticsearch datasets. The username
information is mosaiced in order to protect the privacy.

port the average number of detected bugs and their standard
deviation in Figure 4. To better present the results, we only
choose LSSC and SIIS as comparative methods, as they are
the most competitive ones and outperform other baselines on
benchmark datasets. Figure 4 demonstrates that the LIISP(os)
algorithm has a very promising performance compared with
other two methods, especially on the Elasticsearch dataset,
see Figure 4(c) and 4(d). SIIS also shows a rather comparable
result on the OrientDB dataset but behaves poorly on the
Elasticsearch dataset. The reason may be that SIIS is not
suitable for a relatively large dataset (like Elasticsearch), as
it requires to perform the singular value decomposition on
the Laplacian matrix, which is in the cubic dependence of
the size of the training set.

Furthermore, we demonstrate the ability of the LIISP(os)
algorithm to find out potentially buggy codes in Figure 5. In
the following, we take the results on the OrientDB dataset
as an example. As highlighted in the blue frame, this code
file was fixed and labeled as clean in the current version
(Oct 2, 2013). However, the code file is scored high by

https://github.com/orientechnologies/orientdb
https://github.com/elasticsearch/elasticsearch
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the LIISP(os) algorithm, which is suspected to be buggy
with high probability. After checking their later commit
records, which is highlighted in the orange frame, we find
that this code file is indeed buggy and fixed after three
months, although this concealed bug is not detected in the
2013 version. This strongly supports the effectiveness of our
proposed algorithm.

Overall, these phenomena validate the effectiveness of
the LIISP(os) algorithm, which not only achieves promising
results in benchmark datasets but also succeeds in the real-
world application for the bug detection task.

7 CONCLUSION

In this paper, we study the problem of Learning from
Incomplete and Inaccurate SuPervision (LIISP). We observe
that in many real-world applications, the label noise usually
occurs in a one-side manner, which enables us to exploit
the one-sided accurate label and sufficient unlabeled data to
alleviate the noisy labeled data via the importance weighting
technique. Furthermore, when the noisy labels exist in both
positive and negative data, we additionally exploit the class-
prior information for the discrepant unlabeled data to resist
the label noise. Our proposed approaches are equipped
with nice theoretical guarantees: by excess risk analysis,
we theoretically justify the usefulness of unlabeled data
in defensing instance-dependent label noise. We conduct
extensive experiments on benchmark datasets as well as the
bug detection task, demonstrating the superiority and robust-
ness of our methods compared with contenders from other
categories: semi-supervised learning, noisy label learning,
and robust semi-supervised learning.

In the future, we will consider other weakly supervised
learning tasks in open and dynamic environments [54], [55].
Moreover, in addition to incomplete and inaccurate supervi-
sion, we will further consider other weak supervision, such as
the supervised information from knowledge reasoning [56].

ACKNOWLEDGMENTS

This research was supported by National Science Foundation
of China (61921006) and the Collaborative Innovation Center
of Novel Software Technology and Industrialization.

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016.

[2] Z.-H. Zhou, “A brief introduction to weakly supervised learning,”
National Science Review, vol. 5, no. 1, pp. 44–53, 2017.

[3] K. P. Bennett and A. Demiriz, “Semi-supervised support vector
machines,” in Advances in Neural Information Processing Systems 11
(NIPS), 1998, pp. 368–374.

[4] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learn-
ing using gaussian fields and harmonic functions,” in Proceedings of
the 20th International Conference on Machine Learning (ICML), 2003,
pp. 912–919.

[5] N. Natarajan, I. S. Dhillon, P. K. Ravikumar, and A. Tewari,
“Learning with noisy labels,” in Advances in Neural Information
Processing Systems 26 (NIPS), 2013, pp. 1196–1204.

[6] A. K. Menon, B. van Rooyen, and N. Natarajan, “Learning from
binary labels with instance-dependent noise,” Machine Learning,
vol. 107, no. 8-10, pp. 1561–1595, 2018.

[7] Z.-Y. Zhang, P. Zhao, Y. Jiang, and Z.-H. Zhou, “Learning from
incomplete and inaccurate supervision,” in Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2019, pp. 1017–1025.

[8] M. C. du Plessis, G. Niu, and M. Sugiyama, “Analysis of learning
from positive and unlabeled data,” in Advances in Neural Information
Processing Systems 27 (NIPS), 2014, pp. 703–711.

[9] G. Niu, M. C. du Plessis, T. Sakai, Y. Ma, and M. Sugiyama,
“Theoretical comparisons of positive-unlabeled learning against
positive-negative learning,” in Advances in Neural Information
Processing Systems 29 (NIPS), 2016, pp. 1199–1207.

[10] T. Sakai, M. C. Plessis, G. Niu, and M. Sugiyama, “Semi-supervised
classification based on classification from positive and unlabeled
data,” in Proceedings of the 34th International Conference on Machine
Learning (ICML), 2017, pp. 2998–3006.

[11] N. Lu, G. Niu, A. K. Menon, and M. Sugiyama, “On the minimal
supervision for training any binary classifier from only unlabeled
data,” in Proceedings of the 7th International Conference on Learning
Representations (ICLR), 2019.

[12] N. Lu, T. Zhang, G. Niu, and M. Sugiyama, “Mitigating overfitting
in supervised classification from two unlabeled datasets: A consis-
tent risk correction approach,” in Proceedings of the 23rd International
Conference on Artificial Intelligence and Statistics (AISTATS), 2020, pp.
1115–1125.

[13] D. Angluin and P. Laird, “Learning from noisy examples,” Machine
Learning, vol. 2, no. 4, pp. 343–370, 1988.

[14] J. A. Aslam and S. E. Decatur, “On the sample complexity of noise-
tolerant learning.” Information Processing Letters, vol. 57, no. 4, pp.
189–195, 1996.

[15] A. B. Novikoff, “On convergence proofs for perceptrons,” Tech.
Rep., 1963.

[16] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer,
“Online passive-aggressive algorithms,” Journal of Machine Learning
Research, vol. 7, no. Mar, pp. 551–585, 2006.

[17] L. Xu, K. Crammer, and D. Schuurmans, “Robust support vector
machine training via convex outlier ablation,” in Proceedings of
the 21st AAAI Conference on Artificial Intelligence (AAAI), 2006, pp.
536–542.

[18] V. S. Denchev, N. Ding, S. Vishwanathan, and H. Neven, “Robust
classification with adiabatic quantum optimization,” in Proceedings
of the 29th International Conference on Machine Learning (ICML), 2012,
pp. 1003–1010.

[19] W. Gao, L. Wang, Z.-H. Zhou et al., “Risk minimization in the
presence of label noise,” in Proceedings of the 30th AAAI Conference
on Artificial Intelligence (AAAI), 2016.

[20] T. Liu and D. Tao, “Classification with noisy labels by importance
reweighting,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 38, no. 3, pp. 447–461, 2016.

[21] R. Wang, T. Liu, and D. Tao, “Multiclass learning with partially
corrupted labels,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 29, no. 6, pp. 2568–2580, 2017.

[22] A. Ghosh, N. Manwani, and P. Sastry, “Making risk minimization
tolerant to label noise,” Neurocomputing, vol. 160, pp. 93–107, 2015.

[23] P. Awasthi, M.-F. Balcan, N. Haghtalab, and R. Urner, “Efficient
learning of linear separators under bounded noise,” in Proceedings
of the 28th Annual Conference on Learning Theory (COLT), 2015, pp.
167–190.

[24] M.-F. Balcan and A. Blum, “A pac-style model for learning from
labeled and unlabeled data,” in Proceedings of the 18th Annual
Conference on Learning Theory (COLT), 2005, pp. 111–126.

[25] P. Niyogi, “Manifold regularization and semi-supervised learning:
Some theoretical analyses,” Journal of Machine Learning Research,
vol. 14, no. 1, pp. 1229–1250, 2013.

[26] M. Culp and G. Michailidis, “Graph-based semisupervised learn-
ing,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 30, no. 1, pp. 174–179, 2007.

[27] W. Wang and Z.-H. Zhou, “A new analysis of co-training,” in
Proceedings of the 27th International Conference on Machine Learning
(ICML), 2010, pp. 1135–1142.

[28] Z.-H. Zhou and M. Li, “Semi-supervised learning by disagreement,”
Knowledge and Information Systems, vol. 24, no. 3, pp. 415–439, 2010.

[29] Z.-H. Zhou, “Why over-parameterization of deep neural networks
does not overfit?” Science China Information Sciences, vol. 64, no. 1,
p. 116101, 2021.

[30] A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and T. Raiko,
“Semi-supervised learning with ladder networks,” in Advances in
Neural Information Processing Systems 28 (NIPS), 2015, pp. 3546–
3554.

[31] D.-D. Chen, W. Wang, W. Gao, and Z.-H. Zhou, “Tri-net for semi-
supervised deep learning,” in Proceedings of the 27th International
Joint Conference on Artificial Intelligence (IJCAI), 2018, pp. 2014–2020.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, XXXX 20XX 14

[32] E. Sansone, F. G. De Natale, and Z.-H. Zhou, “Efficient training for
positive unlabeled learning,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 41, no. 11, pp. 2584–2598, 2019.

[33] M. Li and Z.-H. Zhou, “Setred: Self-training with editing,” in
Proceedings of the 9th Pacific-Asia Conference on Advances in Knowledge
Discovery and Data Mining, 2005, pp. 611–621.

[34] Z.-H. Zhou and M. Li, “Tri-training: Exploiting unlabeled data
using three classifiers,” IEEE Transactions on Knowledge and Data
Engineering, vol. 17, no. 11, pp. 1529–1541, 2005.

[35] Y.-F. Li and Z.-H. Zhou, “Towards making unlabeled data never
hurt,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 37, no. 1, pp. 175–188, 2015.

[36] Y.-F. Li, L.-Z. Guo, and Z.-H. Zhou, “Towards safe weakly super-
vised learning,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 43, no. 1, pp. 334–346, 2021.

[37] Y.-F. Li and D.-M. Liang, “Safe semi-supervised learning: a brief
introduction,” Frontiers of Computer Science, vol. 13, no. 4, pp. 669–
676, 2019.

[38] Z. Lu, X. Gao, L. Wang, J.-R. Wen, and S. Huang, “Noise-
robust semi-supervised learning by large-scale sparse coding,”
in Proceedings of the 29th AAAI Conference on Artificial Intelligence
(AAAI), 2015, pp. 2828–2834.

[39] Y. Yan, Z. Xu, I. W. Tsang, G. Long, and Y. Yang, “Robust semi-
supervised learning through label aggregation,” in Proceedings of
the 30th AAAI Conference on Artificial Intelligence (AAAI), 2016, pp.
2244–2250.

[40] C. Gong, H. Zhang, J. Yang, and D. Tao, “Learning with inadequate
and incorrect supervision,” in Proceedings of the 17th International
Conference on Data Mining (ICDM), 2017, pp. 889–894.

[41] M. Sugiyama, T. Suzuki, and T. Kanamori, “Density ratio estima-
tion: A comprehensive review,” 2010.

[42] V. N. Vapnik, “An overview of statistical learning theory,” IEEE
Transactions on Neural Networks, vol. 10, no. 5, pp. 988–999, 1999.

[43] R. Collobert, F. Sinz, J. Weston, and L. Bottou, “Trading convexity
for scalability,” in Proceedings of the 23rd International Conference on
Machine Learning (ICML), 2006, pp. 201–208.

[44] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, no. 3, p. 27, 2011.

[45] L.-Z. Guo and Y.-F. Li, “A general formulation for safely exploiting
weakly supervised data.” in Proceedings of the 32rd AAAI Conference
on Artificial Intelligence (AAAI), 2018, pp. 3126–3133.

[46] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[47] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.
Ng, “Reading digits in natural images with unsupervised feature
learning,” in NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, 2011.

[48] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proceedings of the 14th International Conference on
Artificial Intelligence and Statistics (AISTATS), 2011, pp. 315–323.

[49] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proceed-
ings of the 32rd International Conference on Machine Learning (ICML),
2015, pp. 448–456.

[50] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[51] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” 2015.

[52] R. Kiryo, G. Niu, M. C. du Plessis, and M. Sugiyama, “Positive-
unlabeled learning with non-negative risk estimator,” in Advances
in Neural Information Processing Systems 30 (NIPS), 2017, pp. 1675–
1685.
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