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Abstract

This paper investigates the problem of non-stationary linear bandits, where the
unknown regression parameter is evolving over time. Existing studies develop var-

ious algorithms and show that they enjoy an Õ(T 2/3P
1/3
T ) dynamic regret, where

T is the time horizon and PT is the path-length that measures the fluctuation of
the evolving unknown parameter. In this paper, we discover that a serious tech-
nical flaw makes their results ungrounded, and then present a fix, which gives an

Õ(T 3/4P
1/4
T ) dynamic regret without modifying original algorithms. Furthermore,

we demonstrate that instead of using sophisticated mechanisms, such as sliding win-
dow or weighted penalty, a simple restarted strategy is sufficient to attain the same
regret guarantee. Specifically, we design an UCB-type algorithm to balance ex-
ploitation and exploration, and restart it periodically to handle the drift of unknown

parameters. Our approach enjoys an Õ(T 3/4P
1/4
T ) dynamic regret. Note that to

achieve this bound, the algorithm requires an oracle knowledge of the path-length
PT . Combining the bandits-over-bandits mechanism by treating our algorithm as
the base learner, we can further achieve the same regret bound in a parameter-free
way. Empirical studies also validate the effectiveness of our approach.

1 Introduction

Multi-Armed Bandits (MAB) [Robbins, 1952] models the sequential decision-making
with partial information, where the player requires to choose one of the K slot machines
at each iteration in order to maximize the cumulative reward. MAB is a paradigmatic
instance of the exploration versus exploitation trade-offs, which is fundamental in many
areas of artificial intelligence, such as reinforcement learning [Sutton and Barto, 2018]
and evolutionary algorithms [Crepinsek et al., 2013].

In many real-world decision-making problems, each arm is usually associated with
certain side information. Therefore, researchers start to formulate structured bandits
in which the reward distributions of each arm are connected by a common but un-
known parameter. Particularly, Stochastic Linear Bandits (SLB) has received much
attention [Auer, 2002, Dani et al., 2007, Chu et al., 2011, Abbasi-Yadkori et al., 2011,
Li et al., 2019]. In SLB, at iteration t, the player makes a decision Xt from a feasible
set X ⊆ Rd, and then observes the reward rt satisfying

E[rt|Xt] = X>t θ∗, (1)
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where θ∗ is an unknown regression parameter. The goal of the player is to minimize the
(pseudo) regret,

RegretT = T max
x∈X

x>θ∗ −
T∑
t=1

X>t θ∗. (2)

The stochastic linear bandits problem is well-studied in literatures. By exploiting
the tool of upper confidence bounds, various approaches demonstrate an Õ(d

√
T ) re-

gret [Dani et al., 2007, Abbasi-Yadkori et al., 2011],1 which matches the Ω(d
√
T ) lower

bound established by Dani et al. [2007], up to log T factors.
However, the observation model (1) assumes that the regression parameter θ∗ is

fixed, which is unfortunately hard to satisfy in real-life applications, because data are
usually collected in non-stationary environments. For instance, in recommender systems
the regression parameter models customers’ interests, which could vary over time when
customers look through product pages. Therefore, it is crucial to facilitate stochastic
linear bandits with capability of handling non-stationarity.

To address above issue, Cheung et al. [2019a] proposed the non-stationary linear
bandits model, which assumes the reward rt satisfies

E[rt|Xt] = X>t θt,

where θt is the unknown regression parameter at iteration t. Different from the standard
SLB setting in (1), non-stationary linear bandits allow the unknown parameter to vary
over time, whose evolution is often called the path-length defined as PT =

∑T
t=2‖θt−1−

θt‖2, which naturally measures the non-stationarity of environments. The player’s goal
is to minimize the following (pseudo) dynamic regret,

D-RegretT =

T∑
t=1

max
x∈X

x>θt −
T∑
t=1

X>t θt, (3)

namely, the cumulative regret against the optimal strategy that has full information of
unknown parameters.

Recently, Cheung et al. [2019a] first established an Ω(d2/3T 2/3P
1/3
T ) minimax lower

bound for the non-stationary linear bandits problem. On the upper bound side, Che-
ung et al. [2019a] proposed an online UCB-type algorithm called WindowUCB, which
is based on the sliding window least square estimator to track the evolving parame-
ters. Subsequently, Russac et al. [2019] developed the WeightUCB algorithm, which
adopted the weighted least square estimator for parameter estimation. The authors

prove an Õ(d2/3T 2/3P
1/3
T ) dynamic regret guarantee for their algorithms, matching the

aforementioned lower bound up to log T factors. However, we exhibit that a serious
technical flaw makes their arguments and regret guarantees ungrounded. We revisit
the analysis and demonstrate that it is actually impossible to upper bound the crucial
term in their argument by the desired quantity as they expected. Further, we present
a fix. Without modifying original algorithms, we prove that their algorithms attain an

Õ(d7/8T 3/4P
1/4
T ) dynamic regret. This is the first contribution of this paper.

1We adopt the notation of Õ(·) to suppress logarithmic factors in the time horizon T .
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Furthermore, although these two strategies [Cheung et al., 2019a, Russac et al., 2019]
attain nice dynamic regret guarantees (after fixing the technical flaws), their algorithms
and analyses are fairly complicated. Instead, we discover that a quite simple algorithm
based on the restarted strategy (simply running an UCB-style algorithm and restarting
it periodically), surprisingly, achieves the same dynamic regret guarantee and is more
efficient. This is the second contribution of this paper. Indeed, our proposed algorithm
enjoys the following three advantages compared with previous studies.

• The proposed algorithm for non-stationary linear bandits is very simple and thus
easy to analyze its dynamic regret, only exploiting the standard self-normalized
concentration inequality for classical stochastic linear bandits.

• Compared with WindowUCB, the sliding window least square based approach [Che-
ung et al., 2019a], our approach supports online update and enjoys a one-pass
manner without storing historical data. Meanwhile, WindowUCB demands an
O(w) memory where w is the window length; by contrast, our approach only
requires a constant memory.

• Compared with WeightUCB, the weighted least square based approach [Russac
et al., 2019], our approach and analysis are much simpler, without involving other
complicated deviation results. Additionally, WeightUCB maintains and manipu-
lates the covariance matrix and its variant, and thus takes a longer running time.

Overall, our approach is more friendly to the resource-constrained learning scenarios
due to its simplicity. In the following, we start with a brief review of related work in
Section 2. Then, Section 3 presents our proposed approach and the theoretical results.
Section 4 provides the analysis. We further supply the empirical studies in Section 5
and finally conclude the paper in Section 6. Appendix A supplements technical lemmas.

2 Related Work

Online learning in non-stationary environments has drawn considerable attention re-
cently, in both full-information and bandits settings. We focus on related work in the
bandits setting.

Non-stationary multi-armed bandits problem with abrupt changes was first studied
by Auer [2002]. Denoted by K the number of arms and by L the number of distri-
bution changes, Auer [2002] proposed Exp3.S, a variant of Exp3, which achieves an
Õ(
√
KLT ) regret bound when L is known. The rate is minimax optimal up to log T

factors. Later studies demonstrated that Õ(
√
KLT ) regret is attainable by sliding

window and weighted penalty strategies [Garivier and Moulines, 2011], as well as the
restarted strategy [Allesiardo et al., 2017]. All these algorithms require the number of
changes L as the input parameter, which is undesired in practice. Recently, Auer et al.
[2019] achieved a near-optimal rate Õ(

√
KLT ) without knowing prior knowledge of L.

On the other hand, Besbes et al. [2019] studied the non-stationary MAB with slowly

changing distributions, and proved an Õ((K logK)1/3V
1/3
T T 2/3) dynamic regret, where

VT =
∑T

t=2‖µt − µt−1‖∞ is the total variation of changes in reward distributions.
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Non-stationary linear bandits problem was first studied by Cheung et al. [2019a].

The authors established an Ω(d2/3T 2/3P
1/3
T ) minimax lower bound, and then proposed

the WindowUCB algorithm based on the sliding window least square, achieving an

Õ(d7/8T 3/4P
1/4
T ) dynamic regret (after fixing the technical gap). Nevertheless, to im-

plement the sliding window least square, WindowUCB needs to store historical data in
a buffer. A natural replacement is the weighted least square, which supports online up-
date and enjoys both nice empirical performance and sound theoretical guarantee [Guo
et al., 1993, Zhao et al., 2021]. Based on the idea, Russac et al. [2019] proposed the
WeightUCB algorithm and proved that the approach attains the same dynamic regret.
Nevertheless, both algorithmic design and regret analysis of WeightUCB are fairly com-
plicated. Besides, WeightUCB needs to maintain and manipulate covariance matrix
and its variant (in the same scale), which leads to an evidently longer running time.
Finally, both WindowUCB and WeightUCB require the unknown quantity PT as an in-
put. To avoid the limitation, Cheung et al. [2019a] developed the bandits-over-bandits

mechanism as a meta algorithm and finally obtained an Õ(d7/8T 3/4P
1/4
T ) parameter-free

dynamic regret guarantee.
In this work, we first revisit the analysis of two existing algorithms designed for

non-stationary linear bandits in the literature [Cheung et al., 2019a, Russac et al.,
2019]. We demonstrate that there exists a technical flaw in the analysis, making the
claimed dynamic regret guarantee ungrounded. We present a new analysis to fix the
technical gap. Next, we propose a simple algorithm based on the restarted strategy for
non-stationary linear bandits and show that the simple algorithm can achieve the same
dynamic regret guarantee as existing methods. We note that using the restarted strategy
for non-stationary environments is not new, which has been applied in various scenarios,
including non-stationary online convex optimization [Besbes et al., 2015], MAB with
abrupt changes [Allesiardo et al., 2017], and MAB with gradual changes [Besbes et al.,
2019]. However, to the best of our knowledge, our work is the first time to apply the
restarted strategy to non-stationary linear bandits.

3 Our Results

We first introduce the formal problem setup and then present our approach.

3.1 Problem Setup

Setting. In non-stationary (infinite-armed) linear bandits, at each iteration t, let
Xt ∈ X ⊆ Rd denote the contextual information of the chosen arm and rt denote its
associated reward, and the model is assumed to be linearly parameterized, i.e.,

rt = X>t θt + ηt, (4)

where θt ∈ Rd is the unknown parameter and ηt is the noise satisfying certain tail
condition specified below. As mentioned earlier, to guide the algorithmic design of non-
stationary linear bandits, it is natural to employ the following (pseudo) dynamic regret
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as the performance measure:

D-RegretT =

T∑
t=1

max
x∈X

x>θt −
T∑
t=1

X>t θt,

which is the cumulative regret against the optimal strategy that has full information of
unknown parameters.

Assumptions. We assume the noise ηt be conditionally R-sub-Gaussian with a fixed
constant R > 0. That is, E[ηt | X1:t, η1:t−1] = 0, and for any λ ∈ R,

E[exp(ληt) | X1:t, η1:t−1] ≤ exp

(
λ2R2

2

)
,

The feasible set and unknown parameters are assumed to be bounded, i.e., ∀x ∈ X ,
‖x‖2 ≤ L, and ‖θt‖2 ≤ S holds for all t ∈ [T ]. For convenience, we further assume
〈x, θt〉 ≤ 1, but we will keep the dependence in L and S for better comprehension of
the results.

3.2 RestartUCB Algorithm

RestartUCB algorithm has two key ingredients: upper confidence bounds for trading
off the exploration and exploitation, and the restarted strategy for handling the non-
stationarity of environments. Specifically, our proposed RestartUCB algorithm proceeds
in epochs. At each iteration, we first estimate the unknown regression parameter from
historical data within the epoch, and then construct upper confidence bounds of the
expected reward for selecting the arm. Finally, we periodically restart the algorithm to
be resilient to the drift of underlying parameter θt.

In the following, we first specify the estimator used in the RestartUCB algorithm,
then investigate its estimate error to construct upper confidence bounds, and finally
describe the restarted strategy.

Estimator. At iteration t, we adopt the regularized least square estimator by only
exploiting data in the current epoch. More precisely, the estimator θ̂t is the solution of
the following problem:

min
θ

λ‖θ‖22 +

t−1∑
s=t0

(X>s θ − rs)2, (5)

where t0 is the starting point of the current epoch, and λ > 0 is the regularization
coefficient. Clearly, θ̂t admits a closed-form solution as

θ̂t = V −1
t−1

(
t−1∑
s=t0

rsXs

)
, (6)

where Vt−1 = λI +
∑t−1

s=t0
XsX

>
s . We remark that the estimator (6) (essentially, both

the terms of Vt−1 and
∑t−1

s=t0
rsXs) can be updated online without storing historical data

in the memory owing to the restarted strategy. Furthermore, it is known that (5) can
be exactly solved by the recursive least square algorithm, whose solution is provably
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equivalent to the closed-form expression (6). This feature can further accelerate our
approach in that it saves the computation of the inverse of covariance matrix Vt−1,
which is arguably the most time-consuming step at each iteration.

By contrast, Cheung et al. [2019a] adopted the following sliding window least square
estimator,

θ̂sw
t = (V sw

t−1)−1

(
t−1∑

s=1∨(t−w)

rsXs

)
, (7)

where V sw
t−1 = λI+

∑t−1
s=1∨(t−w)XsX

>
s is the covariance matrix formed by historical data

in the sliding window and w > 0 is the window length. For online update, WindowUCB
will remove the oldest data item in the window and then add the new item. So it
requires to store the nearest w data items in the memory for future update, resulting in
an O(w) space complexity which cannot be regarded as a constant because the setting
of w depends on the time horizon T .

Upper Confidence Bounds. Based on the estimator θ̂t in (6), we further construct
upper confidence bounds for the expected reward. To this end, it is required to investi-
gate the estimate error. Inspired by the analysis of WindowUCB [Cheung et al., 2019a],
we have the following result.

Lemma 1. For any t ∈ [T ] and δ ∈ (0, 1), with probability at least 1− δ, the following
holds for all x ∈ X ,

|x>(θt − θ̂t)| ≤ L2

√
dH

λ

t−1∑
p=t0

‖θp − θp+1‖2 + βt‖x‖V −1
t−1
, (8)

where H > 0 is the restarting period (or epoch size), and βt is the radius of confidence
region,

βt =
√
λS +R

√
2 log

1

δ
+ d log

(
1 +

(t− t0)L2

λd

)
. (9)

Remark 1. The analysis of estimate error serves as the foundation of designing the
UCB-type algorithms. In fact, the pioneering study [Cheung et al., 2019a] has studied
the estimate error of sliding window least square estimator for non-stationary linear
bandits, however, the technical reasoning suffers from some gaps and makes the esti-

mate error bound and the claimed Õ(T 2/3P
1/3
T ) dynamic regret guarantee ungrounded.

The flaw appears in a key technical lemma [Cheung et al., 2019b, Lemma 3], and is
unfortunately inherited by the later studies including WeightUCB [Russac et al., 2019,
Theorem 2], the early version of this paper [Zhao et al., 2020b, Lemma 3], and pertur-
bation based method [Kim and Tewari, 2020, Theorem 7]. In this version, we correct
the previous results, at the price of another

√
dH factor appearing in front of the path-

length term comparing to the original result (see Lemma 1 in the early version of our
work [Zhao et al., 2020b]). The additional

√
dH factor in the estimation error will lead

to an Õ(T 3/4P
1/4
T ) dynamic regret, which is slightly worse than the original Õ(T 2/3P

1/3
T )

rate. We present more technical discussions in Section 4.3.
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Algorithm 1 RestartUCB

Input: time horizon T , restarting period H, confidence δ, regularizer λ, scaling pa-
rameters S and L

1: Set epoch counter j = 1
2: while j ≤ dT/He do
3: Set τ = (j − 1)H
4: Initialize Xτ ∈ X
5: Vτ = λId
6: for t = τ + 1, . . . , τ +H − 1 do
7: Compute θ̂t = V −1

t−1St−1

8: Compute βt by (9) with t0 = τ
9: Select Xt = arg maxx∈X {〈x, θ̂t〉+ βt‖x‖V −1

t−1
}

10: Receive the reward rt
11: Update Vt = Vt−1 +XtX

>
t and St = St−1 + rtXt

12: end for
13: Set j = j + 1
14: end while

The estimate error (8) essentially suggests an upper confidence bound of the expected
reward x>θt. Hence, we adopt the principle of optimism in the face of uncertainty [Auer,
2002] and choose the arm that maximizes its upper confidence bound,

Xt = arg max
x∈X

{
〈x, θ̂t〉+ L2

√
dH

λ

t−1∑
p=t0

‖θp − θp+1‖2 + βt‖x‖V −1
t

}
= arg max

x∈X

{
〈x, θ̂t〉+ βt‖x‖V −1

t

}
.

(10)

So at iteration t, the algorithm first solves the estimator based on (6), then obtains
the confidence radius βt by (9), and finally pulls the arm Xt according to the selection
criteria (10).

Restarted Strategy. To handle the changes of unknown regression parameters,
RestartUCB algorithm proceeds in epochs and restarts the procedure everyH iterations,
as illustrated in Figure 1. We call the variable H as the restarting period or epoch size,
which is the key parameter to trade off between the stability and non-stationarity. In
each epoch, RestartUCB performs the UCB-style algorithm as described in the last
part. We summarize overall procedures in Algorithm 1.

epoch 1
...

UCB

epoch 2 epoch K

UCB UCB

Figure 1: Illustration of RestartUCB algorithm.

We will show in the next subsection that a fixed length is sufficient to achieve the
same theoretical guarantees as previous works [Cheung et al., 2019a, Russac et al.,
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2019]. Nevertheless, since the regret guarantee is not optimal, it would be interesting
to see whether an adaptive epoch length with a certain statistical detection will give an
improved regret guarantee.

3.3 Theoretical Guarantees

We show that notwithstanding its simplicity RestartUCB algorithm enjoys the same
dynamic regret guarantee as the existing methods for non-stationary linear bandits,
including WindowUCB [Cheung et al., 2019a] and WeightUCB [Russac et al., 2019].

In the following, we first analyze the regret within each epoch (Theorem 1), and
then sum over epochs to obtain the guarantee of the whole time horizon (Theorem 2).

Theorem 1. For each epoch E whose size is H and any δ ∈ (0, 1), with probability at
least 1− 2δ, the dynamic regret within the epoch is upper bounded by

D-Regret(E) ,
∑
t∈E

max
x∈X

x>θt −
∑
t∈E

X>t θt

≤ 2L2

√
d

λ
·H

3
2P(E) + 2βH

√
2dH log

(
1 +

L2H

λd

)
,

where βH =
√
λS + R

√
2 log(1/δ) + d log

(
1 + HL2

λd

)
is the confidence radius of the

epoch, and P(E) denotes the path-length within epoch E, i.e., P(E) =
∑

t∈E‖θt−1− θt‖2.

By summing the dynamic regret over epochs, we can therefore obtain dynamic regret
over of the whole time horizon.

Theorem 2. With probability at least 1 − 1/T , the dynamic regret of RestartUCB
(Algorithm 1) over the whole time horizon is upper bounded by

D-RegretT =
T∑
t=1

max
x∈X

x>θt −
T∑
t=1

X>t θt ≤ Õ
(
d

1
2H

3
2PT + dT/

√
H
)
, (11)

where PT =
∑T

t=2‖θt−1 − θt‖2 is the path-length, and H is the restarting period.
Furthermore, by setting the restarting period optimally as

H = min{H∗, T} = min

{
bd

1
4T

1
2P
− 1

2
T c, T

}
, (12)

RestartUCB achieves the following dynamic regret,

D-RegretT ≤

Õ
(
d

7
8T

3
4P

1
4
T

)
when PT ≥

√
d/T,

Õ(d
√
T ) when PT <

√
d/T.

(13)

Remark 2. As shown in Theorem 2, the setting of optimal restarting period H∗ in (12)
requires the prior information of path-length PT , which is generally unavailable. We
will discuss how to remove the undesired dependence in the next subsection.

8



…

…

Figure 2: Illustration of Bandits-over-Bandits mechanism [Cheung et al., 2019b] with
application to our proposed RestartUCB algorithm. The overall algorithm is in two-
layer meta-base structure: the algorithm treats RestartUCB as the base-learner to
handle non-stationary linear bandits with a given restarting period, and employs Exp3
as the meta-learner to adaptively choose the optimal restarting period H.

3.4 Adapting to Unknown Non-stationarity

As mentioned earlier, the restarting period H plays a key role in dealing with the non-
stationarity of environments. Intuitively, a small restarting period should be employed
when the environments change very dramatically, and a large one should be used when
the environments are relatively stable. Our theoretical result also validates the intuition.
As one can see in Theorem 2, the restarting period H trades off between the path-
length term PT and the total horizon T , which necessitates an appropriate balance.
Nevertheless, the optimal configuration of restarting period, as shown in (12), requires
the prior knowledge of path-length PT , which essentially measures the non-stationarity
of underlying environments and is thus generally unavailable.

To compensate the lack of this information of environmental non-stationarity, we
design an online ensemble method [Zhou, 2012] by employing the meta-base framework,
which is recently used in full-information non-stationarity online learning [Daniely et al.,
2015, Jun et al., 2017, Zhang et al., 2018, Zheng et al., 2019, Zhang et al., 2020a,b,
Zhao et al., 2020c] and non-stationary bandit online learning [Agarwal et al., 2017,
Cheung et al., 2019a, Zhao et al., 2020a]. In this paper, to deal with the issue for non-
stationary linear bandits, we employ the Bandits-over-Bandits (BOB) mechanism, pro-
posed by Cheung et al. [2019a] in designing parameter-free algorithm for non-stationary
linear bandits based on sliding window least square estimator.

In the following, we describe how to apply the BOB mechanism to eliminate the
requirement of the unknown path-length in RestartUCB. The essential idea is to use
the RestartUCB algorithm as the base-learner to handle non-stationary linear ban-
dits with a given restarting period, and on top of that we will employ a second-layer
bandits algorithm as the meta-learner to adaptively learn the optimal restarting pe-
riod. We name the RestartUCB algorithm with Bandits-over-Bandits mechanism as
“RestartUCB-BOB”. Figure 2 illustrates the meta-base structure of RestartUCB-BOB
algorithm. To be more concrete, although the exact value of the optimal restarting pe-
riod H∗ (or equivalently, the path-length PT ) is unknown, we can make some guess of its
possible value, as the PT is always bounded. Then, we can use a certain meta-algorithm
to adaptively track the best restarting period. To achieve this goal, RestartUCB-BOB
first requires to examine the performance of base-learner with different restarting pe-
riod. Therefore, RestartUCB-BOB will perform in several episodes, and in each episode
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RestartUCB-BOB employs the base-algorithm RestartUCB with a particular restart-
ing period and receives the returned cumulative reward over the episode as the reward
feedback. We denote by ∆ ∈ [T ] the episode length. The restarting period will be
adaptively adjusted by employing Exp3 [Auer et al., 2002] as the meta-algorithm. In
the configuration of RestartUCB-BOB, the episode length is set ∆ = dd

√
T e. Further,

the pool of candidate restarting periods H is configured as follows:

H =
{
Hi = bd

1
4S−

1
2 · 2i−1c | i ∈ [N ]

}
, (14)

where N = d1
2 log2(ST )e + 1 is the number of candidate restarting periods and recall

that S is the upper bound of the norm of underlying regression parameters as specified
in Section 3.1. Let Hmin (Hmax) be the minimal (maximal) restarting period in the pool
H, then it is evident to verify that

Hmin = bd
1
4S−

1
2 c, Hmax = bd

1
4

√
T c ≤ ∆. (15)

To conclude, RestartUCB-BOB is in a two-layer meta-base structure and will perform in
episodes. In each episode, the base-learner is RestartUCB associated with a particular
restarting period in the candidate pool determined by the meta-learner Exp3; besides,
the cumulative reward of the base-learner within the episode is fed to the meta-learner
as the feedback to adaptively choose a better restarting period. We refer the reader to
Section 7 of Cheung et al. [2019b] for more descriptions of algorithmic details.

The following theorem presents the dynamic regret guarantee for RestartUCB-BOB.
Note that the algorithm does not require the prior knowledge of the path-length PT .

Theorem 3. RestartUCB together with Bandits-over-Bandits mechanism satisfies

D-RegretT =

T∑
t=1

max
x∈X

x>θt −
T∑
t=1

X>t θt ≤ Õ
(
d

7
8T

3
4P

1
4
T

)
, (16)

without requiring the path-length PT ahead of time.

Remark 3. From the theorem, we can observe that RestartUCB-BOB enjoys the same
dynamic regret bound as RestartUCB with an oracle tuning (13) shown in Theorem 2,
while RestartUCB-BOB now requires no prior knowledge on the environmental non-
stationarity measure PT . Nevertheless, the attained dynamic regret upper bound still

exhibits a certain gap to the Ω(d2/3T 2/3P
1/3
T ) minimax lower bound of non-stationary

linear bandits [Cheung et al., 2019a]. Therefore, it remains open on how to obtain
rate-optimal and parameter-free dynamic regret. Indeed, even with an oracle tuning,
RestartUCB still cannot achieve optimal dynamic regret. We are not sure whether this
is due to the limitation of the regret analysis or the algorithm itself. Finally, we note
that recent studies achieve near-optimal dynamic regret without prior information for
multi-armed bandits [Auer et al., 2018, 2019] and contextual bandits [Chen et al., 2019]
by means of change detection. These studies could be useful in designing parameter-free
algorithms for non-stationary linear bandits, which will be investigated in the future.

4 Analysis

In this section, we provide proofs of theoretical results presented in the previous section.
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4.1 Proof of Lemma 1

Proof. From the model assumption (4) and the estimator (6), we can verify that the
estimate error can be decomposed as,

θ̂t − θt = V −1
t−1

(
t−1∑
s=t0

XsX
>
s (θs − θt) +

t−1∑
s=t0

ηsXs − λθt

)
.

Therefore, by Cauchy-Schwarz inequality, we know that for any x ∈ X ,

|x>(θ̂t − θt)| ≤ ‖x‖2 ·At + ‖x‖V −1
t−1
·Bt, (17)

where

At =

∥∥∥∥∥V −1
t−1

(
t−1∑
s=t0

XsX
>
s (θs − θt)

)∥∥∥∥∥
2

, and Bt =

∥∥∥∥∥
t−1∑
s=t0

ηsXs − λθt

∥∥∥∥∥
V −1
t−1

.

We will give upper bounds for these two terms separately, as summarized in the
following two lemmas.

Lemma 2. For any t ∈ [T ], we have∥∥∥∥∥V −1
t−1

( t−1∑
s=t0

XsX
>
s (θs − θt)

)∥∥∥∥∥
2

≤ L
√
dH

λ

t−1∑
p=t0

‖θp − θp+1‖2. (18)

Lemma 3. For any t ∈ [T ], we have∥∥∥∥∥
t−1∑
s=t0

ηsXs − λθt

∥∥∥∥∥
V −1
t−1

≤
√
λS +R

√
2 log

1

δ
+ d log

(
1 +

(t− t0)L2

λd

)
, (19)

where βt ,
√
λS + R

√
2 log 1

δ + d log
(

1 + (t−t0)L2

λd

)
is the confidence radius used in

RestartUCB.

Based on the inequality (17), Lemma 2, Lemma 3, and the boundedness of the
feasible set, we have for any x ∈ X ,

|x>(θt − θ̂t)| ≤ L2

√
dH

λ

t−1∑
p=t0

‖θp − θp+1‖2 + βt‖x‖V −1
t−1
,

which competes the proof.

We proceed to prove Lemma 2 and Lemma 3. It is noteworthy mentioning that
previous works in non-stationary linear bandits [Cheung et al., 2019b, Russac et al.,
2019, Zhao et al., 2020b] also need to upper bound some quantities similar to At, while
their results are general invalid due to a serious technical flaw that will be explicitly
stated in Section 4.3. Lemma 2 serves as the key component to fix existing results.
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Proof of Lemma 2. Notice that∥∥∥∥∥V −1
t−1

( t−1∑
s=t0

XsX
>
s (θs − θt)

)∥∥∥∥∥
2

=

∥∥∥∥∥V −1
t−1

( t−1∑
s=t0

XsX
>
s

( t−1∑
p=s

(θp − θp+1)
))∥∥∥∥∥

2

=

∥∥∥∥∥V −1
t−1

( t−1∑
p=t0

( p∑
s=t0

XsX
>
s (θp − θp+1)

))∥∥∥∥∥
2

≤
t−1∑
p=t0

∥∥∥∥∥V −1
t−1

( p∑
s=t0

XsX
>
s

)
(θp − θp+1)

∥∥∥∥∥
2

≤
t−1∑
p=t0

∥∥∥∥∥V −1
t−1

( p∑
s=t0

XsX
>
s

)∥∥∥∥∥
2

‖θp − θp+1‖2.

We now derive the upper bound for the term ‖V −1
t−1(

∑p
s=t0

XsX
>
s )‖2. Denote by

S(1) = {x | ‖x‖2 = 1} the unit sphere.∥∥∥∥∥V −1
t−1

( p∑
s=t0

XsX
>
s

)∥∥∥∥∥
2

= sup
z∈S(1)

sup
z̃∈S(1)

∣∣∣∣∣z>V −1
t−1

( p∑
s=t0

XsX
>
s

)
z̃

∣∣∣∣∣
=

∣∣∣∣∣z>∗ V −1
t−1

( p∑
s=t0

XsX
>
s

)
z̃∗

∣∣∣∣∣
≤ ‖z∗‖V −1

t−1

∥∥∥∥∥
p∑

s=t0

Xs(X
>
s z̃∗)

∥∥∥∥∥
V −1
t−1

≤ ‖z∗‖V −1
t−1

∥∥∥∥∥
p∑

s=t0

Xs‖Xs‖2‖z̃∗‖2

∥∥∥∥∥
V −1
t−1

≤ L√
λ

∥∥∥∥∥
p∑

s=t0

Xs

∥∥∥∥∥
V −1
t−1

≤ L√
λ

p∑
s=t0

‖Xs‖V −1
t−1

≤ L√
λ

√
H

√√√√ p∑
s=t0

‖Xs‖2V −1
t−1

≤ L
√
dH

λ
.

In above, the first equation makes use of the property of the matrix 2-norm: for a matrix
M ∈ Rm×n, ‖M‖2 = sup‖x‖2=1 sup‖y‖2=1|x>My|, whose proof can be found from the
book [Meyer, 2000, Chapter 5, Eq. (5.2.9)] and also Lemma 6 for self-containedness.
Further, (z∗, z̃∗) denotes the optimizer of the right hand side optimization problem in
the first line. In the proof, we use the fact that for any x, we have ‖x‖V −1

t−1
≤ ‖x‖2/

√
λ

12



as Vt−1 � λI. The second last step holds by the Cauchy-Schwarz inequality. Besides,
the last step follows from the fact: for any p ∈ {t0, . . . , t− 1},

p∑
s=t0

‖Xs‖2V −1
t−1

=

p∑
s=t0

Tr(X>s V
−1
t−1Xs)

= Tr

(
V −1
t−1

p∑
s=t0

XsX
>
s

)

≤ Tr

(
V −1
t−1

p∑
s=t0

XsX
>
s

)
+

t−1∑
s=p+1

X>s V
−1
t−1Xs + λ

d∑
i=1

e>i V
−1
t−1ei

= Tr

(
V −1
t−1

p∑
s=t0

XsX
>
s

)
+ Tr

V −1
t−1

t−1∑
s=p+1

XsX
>
s

+ Tr

(
V −1
t−1λ

d∑
i=1

eie
>
i

)
= Tr(Id) = d.

Hence, we complete the proof.

Proof of Lemma 3. From the self-normalized concentration inequality [Abbasi-Yadkori
et al., 2011, Theorem 1], restated in Theorem 5 of Section A, we know that∥∥∥∥∥

t−1∑
s=t0

ηsXs

∥∥∥∥∥
V −1
t−1

(38)

≤

√
2R2 log

(
det(Vt−1)1/2 det(λI)−1/2

δ

)

≤ R

√
2 log

1

δ
+ d log

(
1 +

(t− t0)L2

d

)
,

where the last inequality is obtained from the analysis of the determinant, as shown in
the proof of Lemma 4. Meanwhile, since Vt−1 � λI, we know that

‖λθt‖2V −1
t−1
≤1/λmin(Vt−1)‖λθt‖22 ≤

1

λ
‖λθt‖22 ≤ λS2.

Therefore, the upper bound of Bt can be immediately obtained by combining the above
inequalities.

4.2 Proof of Theorems 1 and 2

Proof of Theorem 1. Due to Lemma 1 and the fact that X∗t , Xt ∈ X , each of the fol-
lowing holds with probability at least 1− δ,

〈X∗t , θt〉 ≤ 〈X∗t , θ̂t〉+ L2

√
dH

λ

t−1∑
p=t0

‖θp − θp+1‖2 + βt‖X∗t ‖V −1
t−1
,

〈Xt, θt〉 ≥ 〈Xt, θ̂t〉 − L2

√
dH

λ

t−1∑
p=t0

‖θp − θp+1‖2 − βt‖Xt‖V −1
t−1
.

13



By the union bound, the following holds with probability at least 1− 2δ,

〈X∗t , θt〉 − 〈Xt, θt〉

≤ 〈X∗t , θ̂t〉 − 〈Xt, θ̂t〉+ 2L2

√
dH

λ

t−1∑
p=t0

‖θp − θp+1‖2 + βt(‖X∗t ‖V −1
t−1

+ ‖Xt‖V −1
t−1

)

≤ 2L2

√
dH

λ

t−1∑
p=t0

‖θp − θp+1‖2 + 2βt‖Xt‖V −1
t−1
,

where the last step comes from the following implication of the arm selection criteria (10)
such that 〈X∗t , θ̂t〉+ βt‖X∗t ‖V −1

t−1
≤ 〈Xt, θ̂t〉+ βt‖Xt‖V −1

t−1
.

Hence, dynamic regret within epoch E is bounded by,

D-Regret(E) ≤
∑
t∈E

2L2

√
dH

λ

t−1∑
p=t0

‖θp − θp+1‖2 + 2βt‖Xt‖V −1
t−1

≤ 2L2

√
d

λ
H

3
2P(E) + 2βH

√
2dH log

(
1 +

L2H

λd

)
,

where the last inequality holds due to the standard elliptical potential lemma (Lemma 4),
whose statement and proof are presented in Section A.

Proof of Theorem 2. By taking the union bound over the dynamic regret of all dT/He
epochs, we know that the following holds with probability at least 1− 2/T ,

D-RegretT =

dT/He∑
s=1

D-Regret(Es) ≤ 2L2

√
d

λ
H

3
2PT + 2T β̃H

√
2d

H
log

(
1 +

L2H

λd

)
,

where β̃H =
√
λS +R

√
2 log(T d TH e) + d log

(
1 + HL2

λd

)
. Ignoring logarithmic factors in

time horizon T , we finally obtain that

D-RegretT ≤ Õ
(
d

1
2H

3
2PT + dT/

√
H
)
.

When PT <
√
d/T (which corresponds a small amount of non-stationarity), we simply

set the restarting period as T and achieve an Õ(d
√
T ) regret bound. Note that under

such a configuration, our algorithm actually performs no restart and thereby recovers the
standard LinUCB algorithm for the stationary stochastic linear bandits [Abbasi-Yadkori
et al., 2011]. Besides, when coming to the non-degenerated case of PT ≥

√
d/T , we set

the restarting period optimally as H = bd1/4T 1/2P
−1/2
T c and attain an Õ(d

7
8T

3
4P

1
4
T )

dynamic regret bound. This ends the proof.

4.3 Revisiting Existing Results

Previous studies show an Õ(T 2/3P
1/3
T ) dynamic regret for non-stationary linear bandits,

however, the technical reasoning suffers from some gaps and makes the overall regret

14



guarantee ungrounded. In the following, we first spot the flaws of their original proofs
and then discuss the key component of our new analysis.

Indeed, the flaw appears in a key technical lemma for regret analysis of WindowUCB,
the pioneering study of non-stationary linear bandits [Cheung et al., 2019b, Lemma 3].
The flaw is unfortunately inherited by the later studies, including WeightUCB [Russac
et al., 2019, Theorem 2], the early version of this paper [Zhao et al., 2020b, Lemma
3], and perturbation based method [Kim and Tewari, 2020, Theorem 7]. To be more
concrete, Lemma 3 of Cheung et al. [2019b] (also see Lemma 3 of Zhao et al. [2020b])
claims that for any t ∈ [T ],∥∥∥∥∥V −1

t−1

( t−1∑
s=t0

XsX
>
s (θs − θt)

)∥∥∥∥∥
2

≤
t−1∑
p=t0

‖θp − θp+1‖2. (20)

Actually, the quantity ‖V −1
t−1(

∑t−1
s=t0

XsX
>
s (θs − θt))‖2 is of great importance for the

regret analysis of non-stationary linear bandits algorithms, because it will be finally
converted to the path-length of unknown regression parameters. Our Lemma 2 gives an

upper bound of L
√

dH
λ

∑t−1
p=t0
‖θp − θp+1‖2, which has a worse dependence in terms of

dimension d and restarting period H compared to (20). However, we will demonstrate
that the proof of the above claim (20) suffers serious technical flaws, which makes the
result ungrounded. We restate their proof [Cheung et al., 2019b, Appendix B] as follows:∥∥∥∥∥V −1

t−1

( t−1∑
s=t0

XsX
>
s (θs − θt)

)∥∥∥∥∥
2

=

∥∥∥∥∥V −1
t−1

( t−1∑
s=t0

XsX
>
s

( t−1∑
p=s

(θp − θp+1)
))∥∥∥∥∥

2

=

∥∥∥∥∥V −1
t−1

( t−1∑
p=t0

( p∑
s=t0

XsX
>
s (θp − θp+1)

))∥∥∥∥∥
2

≤
t−1∑
p=t0

∥∥∥∥∥V −1
t−1

( p∑
s=t0

XsX
>
s

)
(θp − θp+1)

∥∥∥∥∥
2

≤
t−1∑
p=t0

σmax

(
V −1
t−1

( p∑
s=t0

XsX
>
s

))
‖θp − θp+1‖2

≤
t−1∑
p=t0

‖θp − θp+1‖2, (21)

where σmax(·) is the largest singular value. The key is the last step (21) but its proof
is questionable: they need to show the following results holds universally for all p ∈
{t0, . . . , t− 1},

σmax

(
V −1
t−1

( p∑
s=t0

XsX
>
s

))
≤ 1. (22)

To this end, denoted by A =
∑p

s=t0
XsX

>
s , the authors show that V −1

t−1A shares the

same characteristics polynomial with V
−1/2
t−1 AV

−1/2
t−1 , namely, det(ηI−V −1

t−1A) = det(ηI−

15



V
−1/2
t−1 AV

−1/2
t−1 ) holds for any η. Since V

−1/2
t−1 AV

−1/2
t−1 is clearly symmetric positive semi-

definite, they claim that
z>V −1

t−1Az ≥ 0 (23)

also holds for z ∈ S(1) = {x | ‖x‖2 = 1}, which is crucial for their remaining proof.

σmax

(
V −1
t−1

( p∑
s=t0

XsX
>
s

))
= sup

z∈S(1)
z>V −1

t−1

(
p∑

s=t0

XsX
>
s

)
z (24)

(23)

≤ sup
z∈S(1)

z>V −1
t−1

( p∑
s=t0

XsX
>
s

)
z + z>V −1

t−1

( t−1∑
s=p+1

XsX
>
s

)
z + λz>V −1

t−1z

 (25)

= sup
z∈S(1)

z>V −1
t−1Vt−1z = 1.

However, we identify that there are two issues in the above arguments. First, the step
in (24) doubtful. For a matrix M ∈ Rm×n, we have ‖M‖2 = sup‖x‖2=1 sup‖y‖2=1|y>Mx|
(see for Lemma 6), while it is not warranted that ‖M‖2 = sup‖z‖2=1|z>Mz| which is
seemingly important for the following arguments. Regardless of this first issue, the
second issue about the claim (23) and the result in (25). We discover that the claim (23)
is even more severe. We discover that the claim (23) is ungrounded (at least its current
proof cannot stand for the correctness). The big caveat is that V −1

t−1A ∈ Rd×d is not
guaranteed to be symmetric. The logic behind the claim is that, suppose P,Q ∈ Rd×d
are with the same characteristics polynomial, i.e., det(ηI −Q) = det(ηI − P ) holds for
any η, and meanwhile P is symmetric positive semi-definite (which guarantees z>Pz ≥ 0
for any z ∈ Rd), then we can also have z>Qz ≥ 0 for any z ∈ Rd. Unfortunately, the
reasoning is not correct, and we give a simple counterexample. Let P be the 2-dim
identity matrix [1, 0; 0, 1], and Q = [1,−10; 0, 1] is an asymmetric matrix, then clearly
det(ηI − P ) = det(ηI − Q) = (η − 1)2 is true for any η; however, z>Qz ≥ 0 does not
hold in general, for example, z>Qz = −8 < 0 when z = (1, 1)>.

Fixing the gap. The term in the left hand of (20) is crucial for the dynamic re-
gret analysis of non-stationary linear bandits, which is expected to be converted to the
path-length indicating the non-stationarity of environments. In the proof of Cheung
et al. [2019a], as shown in (21) and (22), the authors aim to upper bound the crucial
quantity σmax

(
V −1
t−1

(∑p
s=t0

XsX
>
s

))
by some constant. However, the technical reason-

ing is wrong. We avoid this issue and provide a new analysis as exhibited in the proof
of Lemma 2, which serves as the key component in our fix. Following our analysis
of Lemma 2, it is not hard to give a similar estimator error analysis for the sliding
window least square estimator [Cheung et al., 2019a] and the weighted least square

estimator [Russac et al., 2019], which will fix their results from Õ(d2/3T 2/3P
1/3
T ) to

Õ(d7/8T 3/4P
1/4
T ). Also see related discussions in Remark 1.

Impossibility result. In the following, we further prove that the desirable claim
in (22) is actually impossible. Specifically, we construct a hard problem instance to show
that the key quantity σmax

(
V −1
t−1

(∑p
s=t0

XsX
>
s

))
cannot be universally upper bounded

by any constant without square-root dependence on H. For notational convenience, we
focus on the first restarting epoch, so the starting index t0 = 1.
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Theorem 4. Let L = 1 and λ = 1. We construct the feature as

X1 = . . . = Xp =

[
1
√
p
,

√
p− 1
√
p

]>
, and

Xp+1 = . . . = XH =

[
1√

H − p
,

√
H − p− 1√
H − p

]>
.

(26)

Denote by A =
∑p

s=1XsX
>
s and B =

∑H
s=p+1XsX

>
s , then the covariance matrix is

Vt−1 = A+B+Id. Under such cases, considering the checkpoint of p = bH/3c, we have

‖V −1
t−1A‖2 = σmax(V −1

t−1A) ≥ 0.0564
√
H. (27)

Proof. For simplicity of notation, let y =
√
p− 1 and z =

√
H − p− 1. By the con-

structed example in (26), we have

A =

p∑
s=1

XsX
>
s =

[
1 y
y y2

]
and B =

H∑
s=p+1

XsX
>
s =

[
1 z
z z2

]
.

For convenience, we will write the covariance matrix Vt simply V when no confusion
can arise. So the concerned matrix V −1A can be calculated as

V −1A =

[
2 + λ y + z
y + z y2 + z2 + λ

]−1 [
1 y
y y2

]
=

1

(2 + λ)(y2 + z2 + λ)− (y + z)2
·
[
y2 + z2 + λ −(y + z)
−(y + z) 2 + λ

] [
1 y
y y2

]
=

1

(1 + λ)(y2 + z2)− 2yz + (2 + λ)λ
·
[
z2 − yz + λ yz2 − y2z + λy
(1 + λ)y − z (1 + λ)y2 − yz

]
.

Denote by s = (1 +λ)(y2 + z2)− 2yz+ (2 +λ)λ, α = z2− yz+λ, and β = (1 +λ)y− z,
we then have

V −1A(V −1A)> =
1 + y2

s2

[
α2 αβ
αβ β2

]
.

The eigenvalues (we denote them by λ̄, to distinguish the notation with the regularizer
coefficient λ) of matrix [α2, αβ;αβ, β2] should satisfy (α2 − λ̄)(β2 − λ̄)− α2β2 = 0. By
solving the equation, we can obtain that

λ̄max = α2 + β2 = (z2 − yz + λ)2 + ((1 + λ)y − z)2 ≥ (z2 − yz + λ)2.

When λ = 1 and p = aH (here we assume aH is an integer for simplicity), we have

λ̄max ≥ (z2 − yz + λ)2

=
(

(1− a)p− 1−
√
p− 1

√
(1− a)p− 1 + 1

)2

≥
(

(1− a)H −
√
a(1− a)H

)2
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= (1− a)(
√

1− a−
√
a)2H2. (28)

Note that the condition of a ∈ (0, 1/2) is required to make the second inequality hold.
On the other hand, we have

1 + y2

s2
=

p

(2(y2 + z2)− 2yz + 3)2
≥ p

(2(y2 + z2) + 4)2
=

a

4H
. (29)

Combining (28) and (29), we have

σmax(V −1A) =
√
λmax (V −1A(V −1A)>) ≥

√
λ̄max ·

1 + y2

s2
≥
√
a′

4
·
√
H,

where a′ = (1 − a)a(
√

1− a −
√
a)2 is a universal constant. When choosing a = 1/3

as selected in the main paper, a′ = 0.0127 and the lower bound is σmax(V −1A) ≥
0.0564

√
H.

Moreover, we report some numerical results for validation: whenH = 3000, σmax(V −1
t−1A) =

5.852 and the theoretical lower bound is 0.0564
√
H = 3.087; whenH = 30000, σmax(V −1

t−1A) =

18.474 and the theoretical lower bound is 0.0564
√
H = 9.763.

4.4 Proof of Theorem 3

Proof. We begin with the following decomposition of the dynamic regret.

T∑
t=1

〈X∗t , θt〉 − 〈Xt, θt〉 =
T∑
t=1

〈X∗t , θt〉 −
dT/∆e∑
i=1

i∆∑
t=(i−1)∆+1

〈Xt(H
†), θt〉︸ ︷︷ ︸

base-regret

+

dT/∆e∑
i=1

i∆∑
t=(i−1)∆+1

〈Xt(H
†), θt〉 − 〈Xt(Hi), θt〉︸ ︷︷ ︸

meta-regret

,

where H† is the best restarting period to approximate the optimal restarting period
H∗ in the pool H, and H∗ = b(dT/(PT )2/3c. The first term is the dynamic regret of
RestartUCB with the best restarting period in the candidate pool H, and hence called
base-regret. The second term is the regret overhead of meta-algorithm due to adaptive
exploration of unknown optimal restarting period, and is thus called the meta-regret.
We bound the two terms respectively.

We first consider the base-regret. Indeed, from the construction of candidate restart-
ing periods pool H, we confirm that there exists an restarting period H† ∈ H such that
H† ≤ H∗ ≤ 2H†. Therefore, employing the dynamic regret bound (11) in Theorem 2,
we have the following upper bound for the base-regret:

base-regret ≤
dT/∆e∑
i=1

Õ
(
d

1
2H†

3
2Pi +

d∆√
H†

)
(30)
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= Õ
(
d

1
2H†

3
2PT +

dT√
H†

)
(31)

≤ Õ
(
d

1
2H∗

3
2PT +

dT√
2H∗

)
(32)

= Õ
(
d

7
8T

3
4P

1
4
T

)
, (33)

where (30) is due to Theorem 2 and Pi denotes the path-length in the i-th episode of
the meta-learner’s update. (31) follows by summing over all update episodes, and the
inequality (32) holds since the optimal restarting period H∗ is provably in the range of
[Hmin, Hmax] and satisfies H† ≤ H∗ ≤ 2H†.

Next, we give an upper bound for the meta-regret. The analysis follows the proof
argument in the sliding window based approach [Cheung et al., 2019b, Proposition 1].
Note that the definition of the meta-regret is defined over the expected reward (namely,
E[rt(X)] = X>θt), whereas the actual returned feedback is the noisy one (i.e., rt(X) =
X>θt + ηt) which might be unbounded due to the additive sub-Gaussian noise. For-
tunately, the light-tail property enables us to continue the use of adversarial MAB
algorithms, e.g., Exp3 [Auer et al., 2002]. Specifically, by the concentration inequal-
ity endowed by the sub-Gaussian noise, we know that the received reward lies in the
bounded region with high probability, which is presented in Lemma 7. Denote by E the
event that Lemma 7 holds, and denote by Ri ,

∑i∆
t=(i−1)∆+1〈Xt(H

†), θt〉 − 〈Xt(Hi), θt〉
the instantaneous regret of the meta learner. The meta-regret follows

meta-regret = E

dT/∆e∑
i=1

Ri


= E

dT/∆e∑
i=1

Ri

∣∣∣ E
 · Pr[E ] + E

dT/∆e∑
i=1

Ri

∣∣∣ E
 · Pr[E ]

≤ O

(
Lmax

√
T

∆
N

)
·
(

1− 2

T

)
+O(T ) · 2

T

= O(∆NT ) ≤ Õ(d1/2T 3/4), (34)

where Lmax , maxLi for i ∈ [dT/∆e] denotes the maximum cumulative loss in all
episodes. The first equation is by definition, and the second one is by the law of total
expectation. The next inequality follows from the following two aspects: the quantity
is bounded according to the standard regret guarantee of Exp3 [Auer et al., 2002] when
the event E holds; and it is trivially upper bounded when the event E does not happen.
The failing probability is controlled by Lemma 7. The final equation is true by checking
the parameters that the episode length is ∆ = dd

√
T e, and the number of candidate

restarting periods N is of order O(log T ), hence be omitted in the Õ(·)-notation.
Combining the upper bounds of base-regret (33) and meta-regret (34), we obtain

that the expected dynamic regret of RestartUCB-BOB is bounded by Õ(d
7
8T

3
4P

1
4
T ),

which completes the proof of Theorem 3.
It is also worthy noting that the base-regret is actually with high-probability guar-

antees, while the meta-regret in our analysis only holds in expectation. Actually, we can
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boost the result to the high-probability version by employing advanced meta-algorithms
such as Exp3.IX [Neu, 2015] that can achieve a high-probability regret bound for ad-
versarial MAB problems, as well as using the union bound in the analysis.

5 Experiments

Despite the focus of this paper is on the theoretical aspect, we present empirical studies
to further evaluate the proposed approach.

Contenders. We study two kinds of non-stationary environments: the underlying
parameter is abruptly changing or gradually changing. We will simulate both environ-
ments and details can be found in the next paragraph. We compare RestartUCB to
(a) WindowUCB, based on the sliding window least square [Cheung et al., 2019a]; (b)
WeightUCB, based on the weighted least square [Russac et al., 2019]; (c) StaticUCB,
the algorithm designed for stationary linear bandits [Abbasi-Yadkori et al., 2011]. In
the scenario of abrupt change, we additionally compare with OracleRestartUCB, which
knows the exact information of change points a priori and restarts the algorithm when
reaching a change point. Evidently, OracleRestartUCB is not a practical algorithm,
which actually serves as the skyline of all the approaches.

Settings. In abruptly-changing environments, the unknown regression parameter
θt is periodically set as [1, 0], [−1, 0], [0, 1], [0,−1] in the first half of iterations, and
[1, 0] for the remaining iterations. In gradually-changing environments, the unknown
regression parameter θt is moved from [1, 0] to [−1, 0] on the unit circle continuously.
In both scenarios, we set T = 50, 000 and number of arms n = 20. The feature is
sampled from normal distribution N (0, 1) and rescaled such that L = 1. The random
noise is generated according to N (0, 0.1). Since the path-length PT is available in
the synthetic datasets, we set the weight γ = 1 − 1/τ for WeightUCB, the window
size w = τ for WindowUCB, and the restarting period H = τ for RestartUCB, here

τ = 10 ∗ bd1/4T 1/2P
−1/2
T c is set as suggested by the theory. The simulation is repeated

for 50 times, and we report the average and standard deviation.

Results. Figure 3 shows performance comparisons of different approaches for non-
stationary linear bandits. The performance is measured by the (pseudo-) dynamic re-
gret, which is plotted the in y-axis in the logarithmic scale. In the abruptly-changing en-
vironments, OracleRestartUCB is definitely the best one as was expected since it knows
exact information of change points a priori, and StaticUCB ranks the last as it does
not take the non-stationarity issue into consideration. RestartUCB and WindowUCB
have comparable performance, better than WeightUCB. Actually, RestartUCB is even
slightly better than WindowUCB. We note that RestartUCB has an additional advan-
tage over WindowUCB in terms of the computational issue: RestartUCB supports the
one-pass update without storing historical data, whereas WindowUCB has to maintain
a buffer and thus needs to scan data multiple times owing to the sliding window strat-
egy. In the gradually-changing environments, WeightUCB ranks the first, followed by
WindowUCB and RestartUCB. Nevertheless, as will be shown later, WeightUCB takes
a significantly longer running time than our approach.

Figure 4 reports the running time including both mean and standard deviation. We
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Figure 3: Comparisons of different approaches in terms of dynamic regret. Note that
the y-axis is plotted in the logarithmic scale.
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Figure 4: Comparisons of different approaches in terms of running time.

can see that the time costs of RestartUCB, WindowUCB and StaticUCB are almost the
same. By contrast, WeightUCB requires a significantly longer running time, nearly twice
the cost of other contenders. The reason lies in the fact that WeightUCB algorithm
involves the computation of inverse of covariance matrix Vt ∈ Rd×d and its variant
Ṽt ∈ Rd×d, while other three methods maintain and manipulate only one covariance
matrix. It is worthy to note that our approach can be further accelerated by the
recursive least square. This will save the inverse computation of the covariance matrix,
which will be particularly desired in high-dimensional problems.

6 Conclusion

In this paper, we study the problem of non-stationary linear bandits, where the unknown
regression parameter θt is changing over time. We propose a simple algorithm based
on the restarted strategy, which enjoys strong theoretical guarantees notwithstanding
its simplicity. Concretely, when the path-length of underlying parameters PT is known,

our proposed RestartUCB algorithm enjoys an Õ(d7/8T 3/4P
1/4
T ) dynamic regret, which
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shares the same regret guarantees with previous methods developed in the literature
yet is with more favorable computational advantage. In addition, we show that the
same dynamic regret guarantee is attainable even when PT is unknown by further using
ResatartUCB as the base algorithm and combining the bandits-over-bandits mechanism
as the meta scheduling. Empirical studies validate the efficacy of the proposed approach,
particularly in the abruptly-changing environments.

The current upper bounds do not match the existing lower bound, even when the
path-length term is known. In the future, we would like to investigate how to get rid
of this regret gap and further study how to design algorithms for non-stationary linear
bandits that achieve rate-optimal dynamic regret without prior information.
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A Technical Lemmas

In this section, we provide several technical lemmas that frequently used in the proofs.

Theorem 5 (Self-Normalized Bound for Vector-Valued Martingales [Abbasi-Yadkori
et al., 2011, Theorem 1]). Let {Ft}∞t=0 be a filtration. Let {ηt}∞t=0 be a real-valued
stochastic process such that ηt is Ft-measurable and conditionally R-sub-Gaussian for
some R > 0, namely,

∀λ ∈ R, E[exp(ληt) | Ft−1] ≤ exp

(
λ2R2

2

)
. (35)

Let {Xt}∞t=1 be an Rd-valued stochastic process such that Xt is Ft−1-measurable.
Assume that V is a d× d positive definite matrix. For any t ≥ 0, define

V̄t = V +
t∑

τ=1

XτX
>
τ , St =

t∑
τ=1

ητXτ . (36)

Then, for any δ > 0, with probability at least 1− δ, for all t ≥ 0,

‖St‖2V̄t−1 ≤ 2R2 log

(
det(V̄t)

1/2 det(V )−1/2

δ

)
. (37)

Lemma 4 (Elliptical Potential Lemma). Suppose U0 = λI, Ut = Ut−1 + XtX
>
t , and

‖Xt‖2 ≤ L, then
T∑
t=1

‖U−
1
2

t−1Xt‖2 ≤

√
2dT log

(
1 +

L2T

λd

)
. (38)

Proof. First, we have the following decomposition,

Ut = Ut−1 +XtX
>
t = U

1
2
t−1(I + U

− 1
2

t−1XtX
>
t U
− 1

2
t−1)U

1
2
t−1.

Taking the determinant on both sides, we get

det(Ut) = det(Ut−1) det(I + U
− 1

2
t−1XtX

>
t U
− 1

2
t−1),
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which in conjunction with Lemma 5 yields

det(Ut) = det(Ut−1)(1 + ‖U−
1
2

t−1Xt‖22) ≥ det(Ut−1) exp(‖U−
1
2

t−1Xt‖22/2).

Note that in the first inequality, we utilize the fact that 1 + x ≥ exp(x/2) holds for any
x ∈ [0, 1]. By taking advantage of the telescope structure, we have

T∑
t=1

‖U−
1
2

t−1Xt‖22 ≤ 2 log
det(UT )

det(U0)
≤ 2d log

(
1 +

L2T

λd

)
,

where the last inequality follows from the fact that Tr(UT ) ≤ Tr(U0)+L2T = λd+L2T ,
and thus det(UT ) ≤ (λ+ L2T/d)d. Therefore, Cauchy-Schwarz inequality implies,

T∑
t=1

‖U−
1
2

t−1Xt‖2 ≤

√√√√T
T∑
t=1

‖U−
1
2

t−1Xt‖22 ≤

√
2dT log

(
1 +

L2T

λd

)
.

Lemma 5. For any v ∈ Rd, we have

det(I + vv>) = 1 + ‖v‖22.

Proof. Notice that

(i) (I + vv>)v = (1 + ‖v‖22)v, therefore, v is its eigenvector with (1 + ‖v‖22) as the
eigenvalue;

(ii) (I + vv>)v⊥ = v⊥, therefore, v⊥ ⊥ v is its eigenvector with 1 as the eigenvalue.

Consequently, det(I + vv>) = 1 + ‖v‖22.

Lemma 6 (Property 5.2.9 of Meyer [2000]). For a real matrix A ∈ Rm×n, we have

‖A‖2 = sup
‖x‖2=1

sup
‖y‖2=1

|y>Ax|.

Proof. The proof is from the solution manual of Meyer [2000]. Applying the Cauchy-
Schwarz inequality yields |y>Ax| ≤ ‖y‖2‖Ax‖2, which implies that

sup
‖x‖2=1

sup
‖y‖2=1

|y>Ax| ≤ sup
‖x‖2=1

‖Ax‖2 = ‖A‖2.

Now show that equality is actually attained for some pair x and y on the unit 2-sphere.
To do so, notice that when setting x∗ is a vector of unit length such that

‖Ax∗‖2 = sup
‖x‖=1

‖Ax‖2 = ‖A‖2,

and y∗ is the vector such that

y∗ =
Ax∗
‖Ax∗‖2

=
Ax∗
‖A‖2

,

then

y>∗ Ax∗ =
x>∗ A

>Ax∗
‖A‖2

=
‖Ax∗‖22
‖A‖2

=
‖A‖22
‖A‖2

= ‖A‖2.

Hence we complete the proof.
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Lemma 7. Let N = dT/∆e. Denote by Li the absolute value of cumulative rewards for
episode i, i.e., Li ,

∑i∆
t=(i−1)∆+1 rt(Xt), then

Pr

[
∀i ∈ [N ], Li ≤ LS∆ + 2R

√
∆ ln

T√
∆

]
≥ 1− 2

T
. (39)

Proof. For any episode i, the absolute sum of rewards can be written as∣∣∣∣∣∣
i∆∑

t=(i−1)∆+1

〈Xt, θt〉+ ηt

∣∣∣∣∣∣ ≤
i∆∑

t=(i−1)∆+1

|〈Xt, θt〉|+

∣∣∣∣∣∣
i∆∑

t=(i−1)∆+1

ηt

∣∣∣∣∣∣
≤ ∆LS +

∣∣∣∣∣∣
i∆∑

t=(i−1)∆+1

ηt

∣∣∣∣∣∣ ,
where we have iteratively applied the triangle inequality as well as the fact that |〈Xt, θt〉| ≤
LS for all t.

Further applying the standard concentration result of R-sub-Gaussian random vari-
ables [Rigollet and Hútter, 2019, Corollary 1.7], we get Now by property of the R-sub-
Gaussian, it holds that

Pr

∣∣∣∣∣∣ 1

∆

i∆∑
t=(i−1)∆+1

ηt

∣∣∣∣∣∣ ≥ ε
 ≤ 2 exp

(
−∆ε2

2R2

)
,

which further implies that

Pr

∣∣∣∣∣∣
i∆∑

t=(i−1)∆+1

ηt

∣∣∣∣∣∣ ≥ 2R

√
∆ ln

T√
∆

 ≤ 2∆

T 2
.

So we can ensure a low failing probability, specifically, the probability of the event that
the absolute value of the noise term ηt exceeds 2R

√
lnT for a fixed t is at most 1/T 2.

By union bound, we have

Pr

∃i ∈ [N ] :

∣∣∣∣∣∣
i∆∑

t=(i−1)∆+1

ηt

∣∣∣∣∣∣ ≥ 2R

√
∆ ln

T√
∆


≤
dT/∆e∑
i=1

Pr

∣∣∣∣∣∣
i∆∑

t=(i−1)∆+1

ηt

∣∣∣∣∣∣ ≥ 2R

√
∆ ln

T√
∆

 ≤ 2

T
.

Hence, we finish the proof.
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