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Abstract
We study the problem of Online Convex Optimization (OCO) with memory, which allows loss
functions to depend on past decisions and thus captures temporal effects of learning problems. In
this paper, we introduce dynamic policy regret as the performance measure to design algorithms
robust to non-stationary environments, which competes algorithms’ decisions with a sequence of
changing comparators. We propose a novel algorithm for OCO with memory that provably enjoys
an optimal dynamic policy regret. The key technical challenge is how to control the switching cost,
the cumulative movements of player’s decisions, which is neatly addressed by a novel decomposi-
tion of dynamic policy regret and an appropriate meta-expert structure. Furthermore, we apply the
results to the problem of online non-stochastic control, i.e., controlling a linear dynamical system
with adversarial disturbance and convex loss functions. We derive a novel gradient-based controller
with dynamic policy regret guarantees, which is the first controller competitive to a sequence of
changing policies.

1. Introduction

Online Convex Optimization (OCO) (Shalev-Shwartz, 2012; Hazan, 2016) is a versatile model of
learning in adversarial environments, which can be regarded as a sequential game between a player
and an adversary (environments). At each round, the player makes a prediction from a convex set
wt ∈ W ⊆ Rd, the adversary simultaneously selects a convex loss ft : W 7→ R, and the player
incurs a loss ft(wt). The goal of the player is to minimize the cumulative loss. The framework is
found useful in a variety of disciplines including learning theory, game theory, optimization, and
time series analysis, etc (Cesa-Bianchi and Lugosi, 2006).

The standard OCO framework considers only memoryless adversary, in the sense that the re-
sulting loss is only determined by the player’s current prediction without involving past ones. In
real-world applications, particularly those related to online decision making, it is often the case that
past predictions/decisions would also contribute to the current loss, which makes the standard OCO
framework not viable. To remedy this issue, Online Convex Optimization with Memory (OCO with
Memory) was proposed as a simplified and elegant model to capture the temporal effects of learning
problems (Merhav et al., 2002; Anava et al., 2015). Specifically, at each round, the player makes a
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prediction wt ∈ W , the adversary chooses a loss function ft :Wm+1 7→ R, and the player will then
suffer a loss ft(wt−m, . . . ,wt). Notably, now the loss function depends on both current and past
predictions. The parameter m is the memory length, and evidently the OCO with memory model
reduces to the standard memoryless OCO when setting m = 0. The performance measure for OCO
with memory is the policy regret (Dekel et al., 2012), defined as

S-RegretT =

T∑
t=1

ft(wt−m, . . . ,wt)− min
v∈W

T∑
t=1

ft(v, . . . ,v). (1)

We start the index from 1 for convenience. Recent studies apply online learners with provably
low policy regret to a variety of related problems (Chen et al., 2018; Agarwal et al., 2019; Daniely
and Mansour, 2019; Chen et al., 2020). However, the policy regret (1) only measures the perfor-
mance versus a fixed comparator and is thus not suitable for learning in non-stationary environ-
ments (Sugiyama and Kawanabe, 2012; Gama et al., 2014; Zhao et al., 2021). For instance, in the
recommendation system, the users’ interest may change when looking through the product pages;
in the traffic flow scheduling, the traffic network pattern changes throughout the day. Therefore, it
is necessary to design online decision-making algorithms with robustness to non-stationary envi-
ronments. To this purpose, we introduce the dynamic policy regret to guide the algorithmic design,
measuring the competitive performance against a arbitrary sequence of time-varying comparators
v1, . . . ,vT ∈ X (shorthanded as v1:T ),

D-RegretT (v1:T ) =
T∑
t=1

ft(wt−m, . . . ,wt)−
T∑
t=1

ft(vt−m, . . . ,vt). (2)

The upper bound of D-RegretT (v1:T ) should be a function of the comparator sequence v1:T , while
the algorithm is agnostic to the choice of comparators. The proposed measure is very general—it
subsumes static policy regret (1) as a special case when comparators become the best predictor in
hindsight, i.e., v1:T = v∗ ∈ arg minv∈W

∑T
t=1 ft(v, . . . ,v). Therefore, dynamic policy regret is a

stringent measure and algorithms that optimize it are more adaptive to non-stationary environments.
The fundamental challenge of dynamic policy regret optimization is how to simultaneously

compete with all comparator sequences with vastly different level of non-stationarity. Our approach
builds upon recent advance of non-stationary online learning (Daniely et al., 2015; Zhang et al.,
2018a) to hedge the uncertainty via meta-expert aggregation, along with several new ingredients
specifically designed for the OCO with memory setting. In particular, it is essential to control
the switching cost for OCO with memory, the cumulative movement of player’s predictions. The
amount is relatively easy to control in static policy regret (Anava et al., 2015), yet becomes much
thorny in dynamic policy regret and could even scale linearly due to the meta-expert structure. Intu-
itively, for dynamic online algorithms, it is necessary to keep some probability of aggressive move-
ment in order to catch up with the potential changes of the non-stationary environments, which
results in tensions between the dynamic regret and switching cost. We elegantly address the diffi-
culty by proposing a novel meta-expert decomposition and a switching-cost-regularized surrogate
loss, which avoids explicitly handling switching cost all together and renders a unified design by
online mirror descent for both meta- and expert-algorithms. We prove that our proposed algorithm
enjoys an optimalO(

√
T (1 + PT )) dynamic policy regret, where PT =

∑T
t=2‖vt−1−vt‖2 denotes

the unknown path-length of the comparators.
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We further apply the method to the problem of online non-stochastic control, i.e., controlling a
linear dynamical system with adversarial (non-stochastic) disturbance and adversarial convex cost
functions (Agarwal et al., 2019; Hazan et al., 2020). As the disturbances and cost functions both
change adversarially, the optimal controller of each round would also change over iterations. There-
fore, it is natural and necessary to investigate the dynamic policy regret to compete the controller’s
performance with time-varying benchmark controllers. By adopting the “disturbance-action” pol-
icy parameterization (Agarwal et al., 2019), online non-stochastic control is reduced to OCO with
memory, and thus its dynamic policy regret can be optimized by a similar meta-expert structure
as developed before. Our designed controller attains an Õ(

√
T (1 + PT )) dynamic policy regret,

where PT measures the fluctuation of compared controllers and Õ-notation hides the logarithmic
dependence on time horizon T . To the best of our knowledge, this is the first controller competitive
to a sequence of changing “disturbance-action” policies.

This paper is organized as follows. In Section 3 problem setup and preliminaries are introduced.
Section 2 discusses some related work. Section 4 and Section 5 present the results for OCO with
memory and online non-stochastic control, respectively. Section 6 reports the empirical evaluations.
Section 7 concludes the paper. All the proofs are deferred to the appendices.

2. Related Work

In this section we present more discussions on the related work, including OCO with memory,
online non-stochastic control, as well as dynamic regret minimization for online learning.

Online Convex Optimization with Memory. OCO with memory is initiated by Merhav et al.
(2002), who prove an O(T 2/3) policy regret for convex and Lipschitz functions by a blocking
technique. Later, for Lipschitz functions, Anava et al. (2015) propose a simple gradient-based
algorithm that provably achievesO(

√
T ) andO(log T ) policy regret for convex and strongly convex

functions, respectively. Recent study discloses that the policy regret of OCO with memory over
exp-concave functions is at least Ω(T 1/3) (Simchowit, 2020, Theorem 2.3). Online learning with
memory is also studied in the prediction with expert advice setting (Geulen et al., 2010; György and
Neu, 2014; Altschuler and Talwar, 2018; Cesa-Bianchi et al., 2013; Altschuler and Talwar, 2018)
and bandit settings (Dekel et al., 2012, 2014; Altschuler and Talwar, 2018; Arora et al., 2019).
One of the key concepts of OCO with memory is the switching cost, cumulative movement of the
decisions, which is also concerned in smoothed online learning (Chen et al., 2018; Goel et al., 2019)
and competitive online learning (Daniely and Mansour, 2019).

Online Non-stochastic Control. Recently, there is a surge of interest to apply modern statistical
and algorithmic techniques to the control problem. We focus on the online non-stochastic control
setting proposed by Agarwal et al. (2019), where the regret is chosen as the performance measure
and the disturbance is allowed to be adversarially chosen. Under conditions of convex and Lip-
schitz cost functions as well as adversarial disturbance, Agarwal et al. (2019) obtain an O(

√
T )

policy regret for known linear dynamical system by introducing the DAC parameterization and re-
ducing the problem to OCO with memory. Hazan et al. (2020) show an O(T 2/3) policy regret for
unknown system via system identification. In addition, Foster and Simchowitz (2020) propose the
online learning with advantages techniques and obtain logarithmic regret for known system with
quadratic cost and adversarial disturbance, and the results are strengthened by Simchowit (2020)
to accommodate arbitrary, changing costs. All mentioned results are developed for fully observed
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system, and Simchowitz et al. (2020) present a clear picture for non-stochastic control with partially
observed system. We are still witnessing a variety of recent advances, for example, non-stochastic
control with bandit feedback (Gradu et al., 2020a; Cassel and Koren, 2020), adaptive regret mini-
mization (Gradu et al., 2020b; Zhang et al., 2021), etc. At the end of this section, we will present
more thorough discussions on the relationship between the two works for adaptive regret minimiza-
tion (Gradu et al., 2020b; Zhang et al., 2021) and our work for dynamic regret minimization. There
are other related works studying non-stationary online control from the lens of competitive ratio (Shi
et al., 2020) and robust control (Goel and Hassibi).

Dynamic Regret. Benchmarking regret in term of changing comparators can date back to early
development of prediction with expert advice (Herbster and Warmuth, 1998, 2001). In the OCO
setting, Zinkevich (2003) pioneers the dynamic regret against any comparator sequence and shows
that OGD can attain an O(

√
T (1 + PT )) dynamic regret. It is revealed by Zhang et al. (2018b) that

the result is not tight, who establish an Ω(
√
T (1 + PT )) minimax lower bound for convex functions

and close the gap by proposing an algorithm with optimal O(
√
T (1 + PT )) rate. Recent improve-

ment achieves problem-dependent dynamic regret by further exploiting the smoothness (Zhao et al.,
2020b). Dynamic regret of bandit convex optimization is studies in (Zhao et al., 2020a). We fi-
nally emphasize that the dynamic regret measure studied in this paper is also called the universal
dynamic regret, in that the guarantee holds universally against any comparator sequence in the do-
main. Another special form called the worst-case dynamic regret is also frequently investigated in
the literature (Besbes et al., 2015; Jadbabaie et al., 2015; Mokhtari et al., 2016; Zhang et al., 2017;
Baby and Wang, 2019; Zhang et al., 2020; Zhao and Zhang, 2021), which specifies comparators as
the optimizers of online functions. The worst-case dynamic regret is less general than the universal
one, and the reader is referred to the work of Zhang et al. (2018a) for more discussions.

More Discussions. In addition to OCO with memory, switching cost is also studies in smoothed
OCO, particularly there are some recently efforts devoted to dynamic regret of smoothed OCO (Chen
et al., 2018, Section 5). We remark that the settings of two problems are different: smoothed
OCO requires to observe the cost ft first and then choose the decision wt ∈ W; while OCO with
memory decides wt without the knowledge of ft. Besides, the dynamic regret bound of smoothed
OCO (Chen et al., 2018, Corollary 11) needs prior knowledge of path-length, and our techniques
might be useful for removing this undesired requirement.

Online non-stochastic control in non-stationary environments is also recently studied via the
measure of adaptive regret (Hazan and Seshadhri, 2009) — the regret compared to the best policy
on any interval in time horizon. Gradu et al. (2020b) propose the first controller with an Õ(

√
T ) ex-

pected adaptive regret on any interval in the total horizon. The result is strengthened in a recent work
(concurrent to our paper) (Zhang et al., 2021), which presents a strongly adaptive controller with
an Õ(

√
|I|) deterministic adaptive regret on any interval I ⊆ [T ]. The two papers and our work

all study non-stationary online control, however, the concerned measures and used techniques are
completely different. (1) Measures: dynamic regret studies the global behavior to ensure a compet-
itive performance with time-varying compared polices, whereas adaptive regret focuses on the local
behavior with respect to a fixed strategy. To the best of our knowledge, dynamic regret and adap-
tive regret reflect different perspectives of environments, and their relationship is still unclear even
for the standard OCO setting (Zhang, 2020, Sec 5. Open Problems). (2) Techniques: optimizing
either dynamic regret or adaptive regret requires the meta-expert structure to deal with uncertainty
of the non-stationary environments. However, the specific techniques, especially the way to control
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switching cost, exhibit significant difference. Gradu et al. (2020b) follow the Follow-the-Leading
History framework (Hazan and Seshadhri, 2009) with a shrinking technique (Geulen et al., 2010) to
keep previous experts with a certain probability in order to reduce the switching cost, and thus their
Õ(
√
T ) adaptive regret guarantee holds in expectation only. The improved result of O(

√
|I|) de-

terministic bound (Zhang et al., 2021) is achieved by a very different framework (Cutkosky, 2020)
drawn inspirations from parameter-free online learning. By contrast, the key ingredients of our
approach are the novel meta-expert decomposition and the switching-cost-regularized loss, which
avoid explicitly handling the switching cost of final decisions but directly control the switching cost
of meta-algorithm and individual expert-algorithm. These mechanisms finally lead to a determinis-
tic dynamic policy regret guarantee for our proposed controller.

3. Problem Setup and Preliminaries

In this section, we formalize the problem setup and introduce preliminaries for OCO with memory.

3.1 Problem Setup

Online Convex Optimization (OCO) with memory is a variant of standard OCO framework to cap-
ture the long-term effects of past decisions. The protocol is shown as follows.

1: for t = m+ 1, . . . , T do
2: the player chooses a decision wt ∈ W;
3: the adversary reveals the loss ft :Wm+1 7→ R that applies to last m+ 1 decisions;
4: the player suffers a loss of ft(wt−m, . . . ,wt);
5: end for

In above,m is the memory length, and ft :Wm+1 7→ R is convex in memory, which means its unary
function f̃t(w) = ft(w, . . . ,w) is convex in w. Clearly, OCO with memory recovers the standard
memoryless OCO when m = 0. The standard measure in the literature is policy regret (Dekel et al.,
2012) defined in (1). This paper investigates the dynamic policy regret, a strengthened measure to
compete with changing comparators as defined in (2). As mentioned previously, algorithms that
optimize the dynamic regret are more adaptive to non-stationary environments, whereas the gain is
accompanied with challenge on how to tackle the uncertainty of the environmental non-stationarity.

We conclude this part by introducing several standard assumptions used in the analysis (Agarwal
et al., 2019; Hazan et al., 2020). For simplicity we focus on the `2-norm and the extension to general
primal-dual norms is straightforward.

Assumption 1 (coordinate-wise Lipschitzness). The function ft : Wm+1 7→ R is L-coordinate-
wise Lipschitz, i.e., |ft(x0, . . . ,xm)− ft(y0, . . . ,ym)| ≤ L

∑m
i=0‖xi − yi‖2.

Assumption 2 (bounded gradient). The gradient norm of the unary loss is at most G, i.e., for all
w ∈ W and t ∈ [T ], ‖∇f̃t(w)‖2 ≤ G.

Assumption 3 (bounded domain). The domainW is convex, closed, and satisfies ‖w−w′‖2 ≤ D
for any w,w′ ∈ W . For convenience of analysis, we further assume 0 ∈ W .

3.2 Static Policy Regret of OCO with Memory

Before presenting dynamic policy regret of OCO with memory, we review the result of static policy
regret. Anava et al. (2015) propose a simple approach based on the gradient descent, whose crucial
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observation is that when online functions are coordinate-wise Lipschitz, the policy regret can be
upper bounded by the switching cost and the vanilla regret over the unary loss, formally,

T∑
t=1

ft(wt−m:t)− min
v∈W

T∑
t=1

f̃t(v) ≤ λ
T∑
t=2

‖wt −wt−1‖2 +

T∑
t=1

f̃t(wt)− min
v∈W

T∑
t=1

f̃t(v), (3)

where λ = m2L. The first term is the switching cost measuring the cumulative movement of
decisions w1:T and the remaining term is the standard regret of memoryless OCO. Consequently, it
is natural to perform Online Gradient Descent (OGD) (Zinkevich, 2003) over the unary loss f̃t, i.e.,
wt+1 = ΠW [wt − η∇f̃t(wt)], where η > 0 is the step size and ΠW [·] denotes the projection onto
the nearest point inW . It is well-known that with an appropriate step size OGD enjoys an O(

√
T )

regret in memoryless OCO. Further, Anava et al. (2015) show that the produced decisions move
sufficiently slowly. Indeed, switching cost satisfies

∑T
t=2‖wt −wt−1‖2 ≤ O(ηT ), which will not

affect the final regret order by choosing η = O(1/
√
T ). Combining both facts yields an O(

√
T )

static policy regret.

Theorem 1 (Theorem 3.1 of Anava et al. (2015)). Under Assumptions 1–3, running OGD over the
unary loss achieves

∑T
t=1 ft(wt−m:t)−minv∈W

∑T
t=1 f̃t(v) ≤ (G2 +m2LG)ηT + 2D2

η . Setting

the step size optimally as η = η∗ =
√

2D2

(G2+m2LG)T
, we attain an O(

√
T ) static policy regret.

4. Online Convex Optimization with Memory

This section presents dynamic policy regret of OCO with memory. We begin with the gentle case
when the path-length is known, and then handle the general case when it is unknown. We elucidate
the challenge of controlling switching cost in the non-stationary OCO with memory, next show how
to resolve it by novel algorithmic ingredients, and finally present dynamic policy regret analysis.

4.1 A Gentle Start: known path-length PT
We generalize Theorem 1 by showing that OGD also enjoys the dynamic policy regret.

Theorem 2. Under Assumptions 1–3, running OGD over unary loss ensures D-RegretT (v1:T ) ≤
(G2 + m2LG)ηT + 1

2η (D2 + 2DPT ) + m2LPT for any comparator sequence v1, . . . ,vT ∈ W ,

where PT =
∑T

t=2‖vt − vt−1‖2 is the path-length that measures the fluctuation of comparators.

Suppose the path-length PT were known for a moment, we could obtain an O(
√
T (1 + PT ))

dynamic policy regret by simply setting the step size as η =
√

D2+2DPT
(G2+m2LG)T

, which would then

match the Ω(
√
T (1 + PT )) lower bound of memoryless OCO (Zhang et al., 2018a). However,

this step size tuning is not realistic in that it requires the knowledge of PT a priori. In fact,
the comparator sequence v1, . . . ,vT can be arbitrarily selected by the environments, and thus
PT =

∑T
t=2‖vt−1 − vt‖2 reflects the environmental non-stationarity and is unknown to the player.

The similar challenge also emerges in recent studies of memoryless OCO (Zhang et al., 2018a; Zhao
et al., 2020b), inspired by which we employ the by-now-standard meta-expert framework to hedge
the non-stationarity. In Section 4.2, we will elucidate the challenge of applying this framework to
OCO with memory, mainly due to the tension between dynamic regret and switching cost. Sec-
tion 4.3 demonstrates how to resolve the issue to have a good balance, by designing several novel
and necessary algorithmic ingredients.
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4.2 Challenge: switching cost of meta-expert structure

In the development of dynamic regret of memoryless OCO, the meta-expert framework is proposed
to address the unknown path-length emerging in the optimal step size tuning (Zhang et al., 2018a;
Zhao et al., 2020b). Below we briefly review the framework and clarify the challenge of its appli-
cation in OCO with memory.

Meta-expert framework. The framework is essentially an online ensemble method consisting of
three components: the pool of candidate step sizes, the expert-algorithm, and the meta-algorithm.
We first need to design an appropriate pool of candidate step sizesH = {η1, . . . , ηN} and ensure the
existence of a step size ηi∗ that approximates the optimal step size η∗ well. Then, multiple experts
E1, . . . , EN are maintained where each performs OGD with a step size ηi ∈ H and generates the
decision sequence w1,i,w2,i, . . . ,wT,i where wt+1,i = ΠW [wt,i − ηi∇f̃t(wt,i)]. Finally, a meta-
algorithm, supposed to be able to track the best expert-algorithm, is used to combine all intermediate
results of experts to produce the final decisions w1,w2, . . . ,wT , where wt =

∑N
i=1 pt,iwt,i.

Similar to static policy regret analysis (3), dynamic policy regret (2) is also upper bounded by
switching cost and dynamic regret of memoryless OCO over the unary loss f̃t, specifically,

D-RegretT (v1:T ) ≤ λ
T∑
t=2

‖wt −wt−1‖2 + λ
T∑
t=2

‖vt − vt−1‖2 +
T∑
t=1

f̃t(wt)−
T∑
t=1

f̃t(vt). (4)

The second term is the path-length of the comparators v1, . . . ,vT , and is of orderO(PT ). Moreover,
applying existing dynamic regret bound of memoryless OCO (Zhang et al., 2018a) easily ensures∑T

t=1 f̃t(wt)−
∑T

t=1 f̃t(vt) ≤ O(
√
T (1 + PT )). Thus, the key is the first term, switching cost of

final decisions. However, below we show that the existing meta-expert method (Zhang et al., 2018a)
may move too fast to achieve a sublinear switching cost, which necessitates some novel algorithmic
ingredients to better balance the dynamic regret and switching cost.

Switching cost. The switching cost is the pivot of the analysis for OCO with memory. Anava
et al. (2015) demonstrate that many popular OCO algorithms for static regret minimization naturally
produce slow-moving decisions, however, it becomes much thorny in dynamic regret. Intuitively,
for dynamic online algorithms, it is necessary to keep some probability of aggressive movement
in order to catch up with the potential changes of non-stationary environments, which results in
tensions between dynamic regret and switching cost. Formally, suppose we adopt the meta-expert
structure to yield the decision wt =

∑N
i=1 pt,iwt,i, then the switching cost can be bounded by (proof

is in Appendix B.2)

T∑
t=2

‖wt −wt−1‖2 ≤ D
T∑
t=2

‖pt − pt−1‖1 +

T∑
t=2

N∑
i=1

pt,i‖wt,i −wt−1,i‖2. (5)

The first term is the switching cost of the meta-algorithm, which is at most O(
√
T ). However,

the second term becomes the main barrier as it could be very large and even grow linearly with
iterations. Specifically, the switching cost of expert-algorithm Ei (OGD with step size ηi) isO(ηiT );
additionally, to ensure a coverage of the optimal step size, the pool of candidate step sizes is usually
set as H = {ηi = O(2i · T−

1
2 ), i ∈ [N ]} such that η1 = O(T−

1
2 ) and ηN = O(1). Therefore,

experts with larger step sizes would incur unacceptable switching cost, for instance, the switching
cost of expert EN could grow linearly, of order O(T ). As a result, the second term, a weighted
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combination of experts’ switching cost, could be enlarged by experts whose step sizes are too large
and therefore become difficult to control. In Section 6, empirical evaluations also valid that the
standard meta-expert method will incur large switching cost, almost growing linearly with iterations.

4.3 Algorithmically Enforcing Low Switching Cost: a new meta-expert decomposition

As indicated in the last part, it is actually challenging to control the switching cost in dynamic
regret. Our idea is to avoid directly controlling the switching cost of the final predictions, instead,
we propose the following new meta-expert decomposition for the dynamic policy regret.

T∑
t=1

f̃t(wt)−
T∑
t=1

f̃t(vt) + λ
T∑
t=2

‖wt −wt−1‖2

(5)
≤

T∑
t=1

〈∇f̃t(wt),wt − vt〉+ λD
T∑
t=2

‖pt − pt−1‖1 + λ
T∑
t=2

N∑
i=1

pt,i‖wt,i −wt−1,i‖2

=
T∑
t=1

(
〈pt, `t〉 − `t,i

)
+ λD

T∑
t=2

‖pt − pt−1‖1︸ ︷︷ ︸
meta-regret

+
T∑
t=1

(
gt(wt,i)− gt(vt)

)
+ λ

T∑
t=2

‖wt,i −wt−1,i‖2︸ ︷︷ ︸
expert-regret

.

The first inequality follows from the convexity of the unary function and the switching cost decom-
position (5), and for convenience we introduce the notation of linearized loss gt(w) = 〈∇f̃t(wt),w〉.
The second equation is the crucial step, in which the key ingredient is the introduced switching-cost-
regularized surrogate loss `t ∈ RN for the meta-algorithm, defined as

`t,i = gt(wt,i) + λ‖wt,i −wt−1,i‖2. (6)

Indeed, the equation essentially decomposes the dynamic policy regret in a novel way by incorpo-
rating a switching-cost regularizer into the meta-expert decomposition. As a result, we have the
following observations on the requirements of the meta- and expert- regret optimization:

• expert-algorithm needs to achieve low dynamic regret over unary functions and meanwhile
tolerate the switching cost of its own local decisions

∑T
t=2‖wt,i −wt−1,i‖2;

• meta-algorithm needs to optimize the switching-cost-regularized loss to impose more penalty
on experts with larger switching cost, and tolerate the switching cost

∑T
t=2‖pt − pt−1‖1.

Consequently, it is not necessary to explicitly handle switching cost all together (i.e.,
∑T

t=2‖wt −
wt−1‖2). Instead, we only need to tackle the switching cost of each individual expert-algorithm
(i.e.,

∑T
t=2‖wt,i−wt−1,i‖2) and that of meta-algorithm (i.e.,

∑T
t=2‖pt− pt−1‖1), which turns out

to be much easier to control. In the following, we specify the expert-algorithm and meta-algorithm.
We first consider the expert-algorithm. Actually, Theorem 2 proves that OGD over unary func-

tions enjoys the dynamic policy regret guarantee, so we can simply choose the expert-algorithm as
OGD over linearized loss {gt}t=1:T and then the switching cost of its local decisions can be safely
controlled. More specifically, there areN experts denoted by E1, . . . , EN and the expert Ei performs

wt+1,i = ΠW [wt,i − ηi∇gt(wt,i)] = ΠW [wt,i − ηi∇f̃t(wt)], (7)
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where ηi is a certain step size selected from the pool of candidate step sizesH. Note that the second
equation in the above update exhibits the advantage of using the linearized loss: although multiple
experts are performed simultaneously, all of them use the same gradient and thus we require only
one gradient per iteration, rather than N gradients as was anticipated (N is the number of experts).

On the other hand, noting that the meta-regret
∑T

t=1

(
〈pt, `t〉 − `t,i

)
+ λD

∑T
t=2‖pt − pt−1‖1

is essentially the static regret with switching cost, we can thus simply choose the meta-algorithm as
Hedge (Freund and Schapire, 1997), which can optimize the regret and naturally produce a sequence
of slow-moving decisions. Concretely, the meta-algorithm performs the multiplicative update over
the switching-cost-regularized loss, i.e., updating the weight pt+1 ∈ ∆N according to pt+1,i ∝
pt,i exp(−ε`t,i), where `t ∈ RN is the surrogate loss defined in (6) and the learning rate is set as
ε = O(

√
1/T ). For technical reasons, we adopt a non-uniform initialization by setting p1 ∈ ∆N

with p1,i ∝ 1/(i2 + i). Note that the dependence of learning rate on T can be removed by either a
time-varying tuning or the doubling trick (Cesa-Bianchi et al., 1997).

We finally remark that expert-algorithm (OGD) and meta-algorithm (Hedge) can be understood
in a unified view from the aspect of Online Mirror Descent (OMD) (Shalev-Shwartz, 2012; Srebro
et al., 2011). OMD is a powerful online method accommodating general geometries and both OGD
and Hedge are its special instances. We can generalize the dynamic policy regret of Theorem 2 from
OGD to OMD actually, and then the meta-regret (static regret and switching cost of Hedge) can be
easily derived when setting a fixed comparator and negative-entropy regularizer. More descriptions
are supplied in Appendix B.3.

Overall Algorithm. Combining all above ingredients, we propose the Switching-Cost-Regularized
meta-Expert Aggregation for OCO with Memory (SCREAM) algorithm, which is based on the on-
line mirror descent algorithm and admits a structure of meta-expert aggregation. Specifically, we
initiate N =

⌈
1
2 log2(1 + T )

⌉
+ 1 = O(log T ) experts, with the step size pool set as

H =

{
ηi

∣∣∣ ηi = 2i−1 ·

√
D2

(λG+G2)T
, i ∈ [N ]

}
. (8)

Algorithm 1 presents the overall procedures. Each expert performs OGD with its corresponding
step size as shown in Line 8; the meta-algorithm combines local decisions and updates the weight
according to the switching-cost-regularized loss as described in Lines 3–7. Our algorithm provably
enjoys an optimal dynamic policy regret, striking a good balance between regret and switching cost.

Theorem 3. Under Assumptions 1–3, by setting the learning rate optimally of meta-algorithm as
ε =

√
2/((2m2L+G)(m2L+G)D2T ) and the step size pool H as (8), the proposed SCREAM

algorithm ensures
∑T

t=1 ft(wt−m:t) −
∑T

t=1 ft(vt−m:t) ≤ O
(√

T (1 + PT )
)

for any comparator
sequence v1, . . . ,vT ∈ W , where PT =

∑T
t=2‖vt−1 − vt‖2 is the path-length of the comparators.

Remark 1. First, since the dynamic policy regret holds for any comparator sequence, by simply
setting comparators as the fixed best decision in hindsight (and now PT = 0), our dynamic policy
regret implies the O(

√
T ) static regret in Theorem 1. Second, the attained dynamic policy regret

is minimax optimal in terms of the dependence on time horizon T and the path-length PT , be-
cause an Ω(

√
T (1 + PT )) lower bound has been established for the dynamic regret of memoryless

OCO (Zhang et al., 2018a).
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Algorithm 1 SCREAM: Switching-Cost-Regularized meta-Expert Aggregation for OCOwMemory
Input: time horizon T , step size poolH = {η1, . . . , ηN}, learning rate of meta-algorithm ε
1: Initialization: w1:m ∈ W , wm,i ∈ W , ∀i ∈ [N ]; pm ∈ ∆N with pm,i ∝ 1/(i2 + i), ∀i ∈ [N ]
2: for t = m+ 1 to T do
3: Receive wt,i from expert Ei for i ∈ [N ]

4: Submit the decision wt =
∑N

i=1 pt,iwt,i

5: Observe the online function ft :Wm+1 7→ R that applies to last m+ 1 decisions
6: Suffer a loss of ft(wt−m, . . . ,wt)
7: Construct the switching-cost-regularized loss `t ∈ RN : `t,i = gt(wt,i) + λ‖wt,i−wt−1,i‖2
8: Update the weight pt+1 ∈ ∆N according to pt+1,i ∝ pt,i exp(−ε`t,i)
9: Expert-algorithm Ei updates local decision by wt+1,i = ΠW [wt,i − ηi∇f̃t(wt)], ∀i ∈ [N ]

10: end for

Remark 2. The regret order does not highlight the memory dependence, in that the memory length
is typically chosen in the order of m = O(log T ) (for instance, when it is applied to online non-
stochastic control). However, if we scrutinize this dependence, our attained dynamic policy regret
exhibits a squared memory dependence, whereas the static policy regret has a linear dependence
only (Anava et al., 2015) (note that their paper presents anO(m3/4

√
T ) static regret actually (Anava

et al., 2015, Theorem 3.1), since their Lipschitzness assumption is slightly stronger than ours; and
actually their bound would become linear in m under Assumption 1 as used in this paper). The
difficulty mainly arises from the range of the meta surrogate loss (6), which scales quadratically
with the memory length. It remains unclear whether it is possible to and how to improve this
dependence in dynamic policy regret, which is left as future work for investigation. We present
more discussions in Appendix B.5.

5. Online Non-stochastic Control

In this section we present the results on dynamic policy regret of online non-stochastic control.

5.1 Problem Statement and Performance Measure

Problem Setting. We study the online control of the linear dynamical system (LDS) governed by

xt+1 = Axt +But + wt, (9)

where at iteration t, the controller provides the control ut upon the observed dynamical state xt and
suffers a cost ct(xt, ut) with convex function ct : Rdx×Rdu 7→ R. Following the notational conven-
tion of previous works, throughout the section we will use unbold fonts to denote vectors (including
control signal, state, disturbance, etc.). In this paper, we focus on the online non-stochastic control
setting (Agarwal et al., 2019; Hazan et al., 2020). Specifically, the disturbance can be generated ar-
bitrarily and no statistical assumption is imposed on its distribution; additionally, cost functions can
be chosen adversarially. The adversarial nature of the disturbance hinders an a priori computation
of the optimal policy as in settings of classical control theory (Kalman, 1960). We will leverage
recent advance in online control (Agarwal et al., 2019; Hazan et al., 2020) and results of OCO with
memory presented in the last section to address the issue.
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Policy Regret. The standard measure for online non-stochastic control is the policy regret (Agar-
wal et al., 2019; Hazan et al., 2020),

RegretT = JT (A)−min
π∈Π

JT (π) =

T∑
t=1

ct(xt, ut)−min
π∈Π

T∑
t=1

ct(x
π
t , u

π
t ), (10)

the difference between cumulative loss of the designed controller A and that of the compared con-
troller π ∈ Π, in which the comparator could be chosen with complete foreknowledge of the distur-
bance and loss functions within the compared policy class Π. A variety of control algorithms have
been proposed to optimize the measure under different settings (Agarwal et al., 2019; Hazan et al.,
2020; Simchowitz et al., 2020; Cassel and Koren, 2020; Gradu et al., 2020a; Foster and Simchowitz,
2020). However, we argue that competing with a fixed controller may be not appropriate, especially
because the unknown disturbance and cost functions can change arbitrarily in the non-stochastic
control setting so that the optimal controller of each round would also change accordingly. There-
fore, it is necessary to facilitate the online controller with capability of competing with time-varying
controllers to adapt to those changes. To this end, we generalize the standard measure (10) to the
dynamic policy regret,

D-RegretT = JT (A)− JT (π1, . . . , πT ) =
T∑
t=1

ct(xt, ut)−
T∑
t=1

ct(x
πt
t , u

πt
t ), (11)

to benchmark the algorithm with a sequence of time-varying controllers π1, . . . , πT from a certain
controller class Π. The measure subsumes static policy regret (10) when choosing compared con-
trollers as a fixed one. In this work, the benchmark set Π is chosen as the class of the disturbance-
action controllers (DAC) (cf. Definition 1), which encompasses many controllers of interest.

5.2 Reduction to OCO with Memory

Following the pioneering work (Agarwal et al., 2019), we will work on the Disturbance-Action
Controller (DAC) class, which parametrizes the executed action as a linear function of the past
disturbances. By doing so, we can reduce the online non-stochastic control to OCO with memory
so that the results of Section 4 can be leveraged to design robust controllers with provably dynamic
policy regret guarantees.

Definition 1 (Disturbance-Action Controller, DAC). A disturbance-action controller π(K,M) with
memory H is specified by a fixed matrix K (required to be strongly stable) and parameters M =
(M [1], . . . ,M [H]). At each iteration t, π(K,M) chooses the action as a linear map of past distur-
bances with an offset linear controller, formally, ut = −Kxt +

∑H
i−1M

[i]wt−i.

For convenience, we define wi = 0 for i < 0. The DAC policy can be implemented because the
disturbance can be perfectly recovered by wt = xt+1−Axt−But as system dynamicsA andB are
supposed to be known. Moreover, the dynamical state obtained by executing any DAC controller
can be represented by a linear function of the parameters of the policy (Agarwal et al., 2019).

Proposition 4. Suppose the initial state is x0 = 0 and one chooses the DAC controller π(K,Mt)
at iteration t, the reaching state and the corresponding DAC control are

xKt (M0:t−1) =

H+t−1∑
i=0

ΨK,t−1
t−1,i (M0:t−1)wt−1−i,

11



uKt (M0:t) = −KxKt (M0:t−1) +
H∑
i=1

M
[i−1]
t wt−i,

where ÃK = A−BK and

ΨK,h
t,i (Mt−h:t) = ÃiK1i≤h +

h∑
j=0

ÃjKBM
[i−j−1]
t−j 11≤i−j≤H .

Evidently, both state xt and control signal ut are linear functions of DAC parametersM0, . . . ,Mt,
so the cost ct(xKt (M0:t−1), uKt (M0:t)) as a function of M0:t is convex. The problem is reminiscent
of online convex optimization with memory (Anava et al., 2015). However, there is one big caveat
in applying the technique—the current memory length is not fixed but growing with time, which is
not feasible in the OCO with memory setting. A truncated method is proposed by Agarwal et al.
(2019) to address the issue, which truncates the state with a fixed memory length H and thereby
defines the truncated loss.

Definition 2 (Truncated Loss). The truncated loss ft :MH+2 7→ R is defined as

ft(Mt−1−H:t) = ct(y
K
t (Mt−1−H:t−1), vKt (Mt−1−H:t)), (12)

where truncated state yt and truncated DAC control vt are

yKt+1(Mt−H:t) =
2H∑
i=0

ΨK,H
t,i (Mt−H:t)wt−i,

vKt+1(Mt−H:t+1) = −Kyt+1(Mt−H:t) +
H∑
i=1

M
[i−1]
t+1 wt+1−i.

The truncated loss ft is then fed to the OCO with memory framework with a memory length of
H + 2. Besides, the error introduced by the truncation (the gap between ft and ct) can be precisely
controlled. As a result, we finish the reduction from online non-stochastic control to OCO with
memory.

5.3 Dynamic Policy Regret of Online Non-stochastic Control

The above reduction enables us to leverage results in Section 4 to design online controllers com-
petitive with time-varying compared policies. Our SCREAM.CONTROL algorithm combines the
following two ideas:

(1) DAC parameterization for reduction: using DAC control ut = π(K,Mt) to parametrize the
space and define the unary loss of the truncated loss, i.e., f̃t : M 7→ R with f̃t(M) =
ft(M, . . . ,M), defined in Definition 2.

(2) Meta-expert aggregation for OCO with memory: performing SCREAM algorithm of Section 4
over the unary loss f̃t, and combining intermediate parameters Mt,1, . . . ,Mt,N from all ex-
perts E1, . . . , EN to produce the final parameter Mt by the meta-algorithm.

12



Algorithm 2 SCREAM.CONTROL

Input: time horizon T , step size pool H = {η1, . . . , ηN}; learning rate of meta-algorithm ε;
memory length H; linear controller K; feasible setM

1: Initialization: M1,M2, . . . ,Mm ∈M and Mm,i ∈M, ∀i ∈ [N ]; non-uniform weight pm+1 ∈
∆N with pm+1,i ∝ 1/(i2 + i), ∀i ∈ [N ]

2: for t = H + 1 to T do
3: Receive Mt,i from expert Ei for i ∈ [N ]

4: Obtain the parameter Mt =
∑N

i=1 pt,iMt,i

5: Output the DAC control ut = −Kxt +
∑H

i=1M
[i−1]
t wt−i

6: Observe the cost function ct : Rdx × Rdu 7→ R and suffer a loss of ct(xt, ut)
7: Construct the truncated state, truncated DAC control, and truncated loss via (12)
8: Compute the switching-cost-regularized loss `t ∈ RN : `t,i = λ‖Mt,i−Mt−1,i‖F + gt(Mt,i)
9: Update the weight pt+1 ∈ ∆N according to pt+1,i ∝ pt,i exp(−ε`t,i)

10: Expert-algorithm Ei updates the local parameter byMt+1,i = ΠM[Mt,i−ηi∇f̃t(Mt)], where
ΠM[·] denotes the Euclidean projection

11: Observe the new state xt+1 and calculate the disturbance wt = xt+1 −Axt −But
12: end for

The descriptions of the SCREAM.CONTROL algorithm are summarized in Algorithm 2. Next,
we introduce several common assumptions used in the literature (Agarwal et al., 2019; Hazan et al.,
2020; Gradu et al., 2020a) and then present the dynamic policy regret guarantee of our proposed
algorithm as well as several corollaries.

Assumption 4. The system matrices are bounded, i.e., ‖A‖op ≤ κA and ‖B‖op ≤ κB . Besides,
the disturbance wt is bounded by W , i.e., ‖wt‖ ≤W holds for any t ∈ [T ].

Assumption 5. The cost ct(x, u) is convex. Further, as long as it is guaranteed that ‖x‖, ‖u‖ ≤ D,
it holds that |ct(x, u)| ≤ βD2, and ‖∇xct(x, u)‖, ‖∇uct(x, u)‖ ≤ GcD.

Assumption 6. The DAC controller π(K,M) satisfies:

(1) K is (κ, γ)-strongly stable, whose precise definition is in Definition 3 of Appendix A.2;

(2) M ∈M,M = {M = (M [1], . . . ,M [H]) | ‖M [i]‖op ≤ κBκ3(1− γ)i}.

Theorem 5. Under Assumptions 4–6, we set learning rate optimally and the step size poolH as

H =

{
ηi

∣∣∣ ηi = 2i−1 ·

√√√√ D2
f

(λGf +G2
f )T

, i ∈ [N ]

}
, (13)

where N =
⌈

1
2 log2(1 + T )

⌉
+ 1 = O(log T ) is the number of experts, and λ = (H + 2)2Lf .

The parameters Lf , Gf , Df are defined in Lemma 26 and only depend on the natural parameters of
the linear dynamical system and the hyperparameter H . By choosing the truncated memory length
H = Θ(log T ), our SCREAM.CONTROL algorithm enjoys

T∑
t=1

ct(xt, ut)−
T∑
t=1

ct(x
πt
t , u

πt
t ) ≤ Õ

(√
T (1 + PT )

)
, (14)
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where π1, . . . , πT ∈ Π is any comparator sequence from the compared DAC policy class Π =
{π(K,M) | M ∈ M}. The path-length PT is the cumulative variation of compared policies,
defined as PT =

∑T
t=2‖Mt−1 −Mt‖F. The Õ(·)-notation hides poly-logarithmic factors in T .

By using the system identification via random inputs developed by Hazan et al. (2020), the result
can be extended to the case of unknown systems that are strongly controllable (cf. Definition 4 in
Appendix C.3), with an Õ(T 2/3) regret overhead due to the identification.

Corollary 6. Under the same assumptions of Theorem 5 except that system matrices A and B
are now unknown, and suppose the systems are strongly controllable and the time horizon T is
sufficiently large, SCREAM.CONTROL with system identification (Hazan et al., 2020, Algorithm 2)
ensures that

∑T
t=1 ct(xt, ut)−

∑T
t=1 ct(x

πt
t , u

πt
t ) ≤ Õ(

√
T (1 + PT )+T 2/3) with high probability,

where π1, . . . , πT ∈ Π is any comparator sequence from the compared DAC policy class.

Finally, we note that our obtained dynamic policy regret bounds can recover the Õ(
√
T ) static

policy regret guarantee for non-stochastic control with known systems (Agarwal et al., 2019) as
well as the Õ(T 2/3) high-probability static policy regret for non-stochastic control with unknown
systems (Hazan et al., 2020).

Corollary 7. For known systems, under the same assumptions of Theorem 5, SCREAM.CONTROL en-
sures that the static policy regret is at most

∑T
t=1 ct(xt, ut)−minπ∈Π

∑T
t=1 ct(x

π
t , u

π
t ) ≤ Õ(

√
T ).

For unknown systems, under the same assumptions of Corollary 6, SCREAM.CONTROL with system
identification ensures an Õ(T 2/3) high-probability guarantee. In above, the comparator set Π can
be chosen as either the set of DAC policies or the set of strongly linear controllers.

6. Empirical Studies

Although our paper mostly focuses on the theoretical investigation, in this section we further present
some empirical studies to support our proposed algorithm. We focus on the OCO with memory
setting. The standard way to tackle OCO with memory is by optimizing the upper bound of the
policy regret, which consists of the vanilla regret over the unary functions and the switching cost, as
explained in (3) for static policy regret and (4) for dynamic policy regret. In the empirical studies, we
directly investigate the performance of different algorithms in optimizing this upper bound, i.e., the
unary regret with switching cost. More specifically, we consider the following OCO with switching
cost problem: at each round, the player makes a prediction wt ∈ W and the environments choose
the loss function ft :W 7→ R. The player will then suffer a loss of ft(wt) as well as switching cost
of ‖wt − wt−1‖2, and thus the overall loss is ft(wt) + λ‖wt − wt−1‖2 with some λ > 0 as the
trade-off parameter.

Settings. We simulate the online learning scenario by the following setting: the player sequen-
tially receives the feature of data item and then predicts its label. The data item of each round is
denoted by (xt, yt) ∈ X × Y , where X is a d-dimensional ball with diameter Γ and Y ∈ R is the
space of real values. The time horizon is set as T = 20000 and the dimension is set as d = 10.
To simulate the distribution changes, we generate the output according to yt = xT

t w
∗
t + εt, where

w∗t ∈ Rd is the underlying model and εt ∈ [0, 0.1] is the random noise. The underlying model w∗t
will change every 2000 rounds, randomly sampled from a d-dimensional ball with diameter D/2,
so there are in total S = 10 changes. We choose the loss function as the square loss, defined as
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ft(w) = 1
2(wTxt − yt)2 and thus the gradient is ∇ft(w) = (wTxt − yt) · xt. The feasible setW

is also set as d-dimensional ball with diameter D/2, and thus from all above settings, we know that
‖xt‖2 ≤ Γ, ‖w‖2 ≤ D/2, and ‖∇ft(w)‖2 ≤ DΓ2. We set Γ = 1 and D = 2, so the gradient norm
is upper bounded by G = DΓ2 = 2.

Contenders and Measure. We benchmark our proposed SCREAM algorithm with the following
two algorithms: (1) OGD (Zinkevich, 2003), is the online gradient descent algorithm. The work
of Anava et al. (2015) proves that this simple static regret minimization algorithm also enjoys a low
switching cost when choosing the step size as η = O(1/

√
T ). (2) Ader (Zhang et al., 2018a), is

the online algorithm designed in non-stationary online convex optimization. Ader is also in a meta-
expert structure to optimize the dynamic regret, but the algorithm does not consider the switching
cost and thus its switching cost might be very large (as analyzed in Section 4.2). We examine
the performance via three measures: the overall cost

∑T
t=1 ft(wt) + λ

∑T
t=2‖wt − wt−1‖2, the

cumulative loss
∑T

t=1 ft(wt), and the switching cost λ
∑T

t=2‖wt − wt−1‖2. Here, we set the
regularizer coefficient λ = αG, where G is the gradient norm upper bound, with the purpose of
matching the magnitude of cumulative loss and the switching cost. We consider three situations
with different regularizer coefficients:

(i) small regularizer (α = 0.1): in this case the switching cost is small so that optimizing the
dynamic regret would dominate the performance;

(ii) medium regularizer (α = 0.5): in this case the algorithm needs to have a good balance of
dynamic regret and switching cost in order to behave well;

(iii) large regularizer (α = 1): in this case dynamic regret is small so that optimizing the switching
cost would dominate the performance.

We conduct experiments for five times and report mean and standard variance of different algorithms
with respect to three performance measures (overall loss, cumulative loss, and switching cost).

Results. Figure 1 plots performance comparisons of three algorithms (OGD, Ader, SCREAM) un-
der different regularizer coefficients. There are in total nine sub-figures, where each row presents
the performance under a particular setting of regularizer coefficient (α = 0.1, 0.5, 1) and each
column reports the performance in terms of a specific measure (overall loss, cumulative loss, and
switching cost). For instance, Figure 1(d) plots the overall loss under the setting of λ = αG with
α = 0.5. Let us first focus on the measure of overall loss. From the results of overall loss (Fig-
ures 1(a), 1(d), 1(g)), we can see that under the case of small regularizer (α = 0.1), Ader achieves
the best, and SCREAM is comparable, while the performance of OGD is not desired; under the case
of medium regularizer (α = 0.5), SCREAM evidently ranks the first, whereas Ader and OGD are
not well-behaved; under the case of large regularizer (α = 1), OGD performs surprisingly well,
and SCREAM is comparable, whereas the performance of Ader is not desired. The results actually
accord to our theory well, especially after a further examination of corresponding cumulative loss
(Figures 1(b), 1(e), 1(h)) and switching cost (Figures 1(c), 1(f), 1(i)). Indeed, we can observe that
Ader focuses on optimizing the dynamic regret (i.e., cumulative loss) but fails to control the switch-
ing cost; and OGD indeed yields a sequence slow-moving decisions but it fails to optimize the
dynamic regret. Consequently, under the case of small regularizer, one can optimize the overall loss
by simply forgetting about the switching cost, and this is why Ader could behave well in this setting.
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(h) cumulative loss (α = 1)
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Figure 1: Performance comparisons of OGD, Ader, SCREAM, under different regularizer coeffi-
cients (λ = αG, G is the gradient norm upper bound). The performance is evaluated by
three different measures: overall loss, cumulative loss, and switching cost.

Moreover, under the case of large regularizer, the switching cost plays a more important role in the
overall loss, therefore, the algorithm can optimize the overall loss by simply producing a sequence
of slow-moving decisions regardless of the regret minimization, and this is why OGD could achieve
a surprisingly good performance in this setting. However, under the non-degenerate settings (for
example, the setting of medium regularizer in our experiments), the two compared methods behave
worse and SCREAM achieves the best one. This is due to the fact that our SCREAM algorithm strikes
a good balance between minimizing the dynamic regret and controlling the switching cost, owing
to the novel meta-expert structure via the introduced switching-cost-regularized loss.
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7. Conclusion

In this paper, we investigate the dynamic policy regret of online convex optimization with memory
and online non-stochastic control. For OCO with memory, we propose the SCREAM algorithm and
prove an optimalO(

√
T (1 + PT )) dynamic policy regret, where PT is the path-length of compara-

tors that reflects the environmental non-stationarity. Our approach admits a structure of meta-expert
aggregation to deal with the unknown environments, and introduces a novel meta-expert decompo-
sition via switching-cost regularized surrogate loss to algorithmically address the tension between
dynamic regret and switching cost. The approach is further used to design robust controllers for
online non-stochastic control, where the underlying disturbance and cost functions could be chosen
adversarially. We adopt the DAC parameterization and design the SCREAM.CONTROL controller
that provably achieves an Õ(

√
T (1 + PT )) dynamic policy regret, where PT is the path-length of

compared controllers. Minimizing dynamic policy regret facilitates our controller with more robust-
ness, since it can compete with any sequence of time-varying controllers instead of a fixed one.

In the future, we will explore the possibility of extension to bandit feedback, where the only
feedback to the controller is the loss value (Cassel and Koren, 2020; Gradu et al., 2020a). Moreover,
it would be also intriguing to investigate whether dynamic policy regret can be improved when the
cost functions are strongly convex (Foster and Simchowitz, 2020; Baby and Wang, 2021).
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A. Preliminaries

In this section, we present the preliminaries, including the dynamic regret results of memoryless
online convex optimization, additional notions, and some technical lemmas.

A.1 Dynamic Regret of Memoryless OCO

In this part we present the dynamic regret analysis of the online gradient descent (OGD) algorithm
for memoryless online convex optimization (Zinkevich, 2003; Zhang et al., 2018a).

We first specify the problem settings and notations of memoryless online convex optimization.
Specifically, the player iteratively selects a decision w ∈ W from a convex setW ⊆ Rd and then
suffers a loss of ft(wt), in which the loss function ft :W 7→ R is assumed to be convex and chosen
adversarially by the environments. The performance measure we are concerned with is the dynamic
regret, defined as

D-RegretT (v1, . . . ,vT ) =
T∑
t=1

ft(wt)−
T∑
t=1

ft(vt),

where v1, . . . ,vT ∈ W is the comparator sequence arbitrarily chosen in the domain by the environ-
ments. The critical advantage of the above measure is that it supports to compete with a sequence
of time-varying comparators, instead of a fixed one as specified in the standard (static) regret.

In the development of dynamic regret of memoryless OCO, one of the most crucial building
blocks is the well-known Online Gradient Descent (OGD) algorithm (Zinkevich, 2003), which starts
from any w1 ∈ W and performs the following update,

wt+1 = ΠW [wt − η∇ft(wt)]. (15)

Here, η > 0 is the step size and ΠW [·] denotes the Euclidean projection onto the nearest point in the
feasible domainW . The standard textbooks of online convex optimization (Shalev-Shwartz, 2012;
Hazan, 2016) show that OGD can achieves an optimal O(

√
T ) static regret for convex functions,

providing with appropriate step size settings. Furthermore, such a simple algorithm actually also
enjoys the following dynamic regret guarantee (Zinkevich, 2003, Theorem 2), and we supply the
proof for self-containedness.

Theorem 8. Let W ∈ Rd be a bounded convex and compact set in Euclidean space, and we
denote by D an upper bound of the diameter of the domain, i.e., ‖w − w′‖2 ≤ D holds for any
w,w′ ∈ W . Suppose the gradient norm of ft overW is bounded by G, i.e., ‖∇ft(w)‖2 ≤ G holds
for any w ∈ W and t ∈ [T ]. Then, OGD (15) enjoys the following dynamic regret,

D-RegretT (v1, . . . ,vT ) ≤ η

2
G2T +

1

2η
(D2 + 2DPT ),

which holds for any comparator sequence v1, . . . ,vT ∈ W , and PT =
∑T

t=2‖vt−1 − vt‖2 is the
path-length that measures the cumulative movements of the comparator sequence.

Proof [of Theorem 8] Since the online functions are convex, we have

D-RegretT (v1, . . . ,vT ) =

T∑
t=1

ft(wt)−
T∑
t=1

ft(vt) ≤
T∑
t=1

〈∇ft(wt),wt − vt〉.
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Thus, it suffices to bound the sum of 〈∇ft(wt),wt − vt〉 over iterations. Note that from the
update rule in (42),

‖wt+1 − vt‖22 = ‖ΠX [wt − η∇ft(wt)]− vt‖22
≤ ‖wt − η∇ft(wt)− vt‖22
= η2‖∇ft(wt)‖22 − 2η〈∇ft(wt),wt − vt〉+ ‖wt − vt‖22

The inequality holds due to Pythagorean theorem (Hazan, 2016, Theorem 2.1). After rearranging,
we obtain

〈∇ft(wt),wt − vt〉 ≤
η

2
‖∇ft(wt)‖22 +

1

2η

(
‖wt − vt‖22 − ‖wt+1 − vt‖22

)
.

Summing the above inequality from t = 1 to T yields,

D-RegretT (v1, . . . ,vT ) ≤ η

2

T∑
t=1

‖∇ft(wt)‖22 +
1

2η

T∑
t=1

(
‖wt − vt‖22 − ‖wt+1 − vt‖22

)
.

We further provide an upper bound for the second term in the right hand side. Indeed,

T∑
t=1

(
‖wt − vt‖22 − ‖wt+1 − vt‖22

)
≤

T∑
t=1

‖wt − vt‖22 −
T∑
t=2

‖wt − vt−1‖22

≤ ‖w1 − v1‖22 +

T∑
t=2

(
‖wt − vt‖22 − ‖wt − vt−1‖22

)
= ‖w1 − v1‖22 +

T∑
t=2

〈vt−1 − vt, 2wt − vt−1 − vt〉

≤ D2 + 2D

T∑
t=2

‖vt−1 − vt‖2.

Combining all above inequalities, we have

D-RegretT (v1, . . . ,vT ) ≤ η

2

T∑
t=1

‖∇ft(wt)‖22 +
1

2η

(
D2 + 2D

T∑
t=2

‖vt−1 − vt‖2

)

≤ η

2
G2T +

1

2η
(D2 + 2DPT ).

Hence, we complete the proof.

A.2 Additional Notions

We introduce the formal definition of strongly stable linear controllers (Cohen et al., 2018; Agarwal
et al., 2019). Indeed, the stable condition can guarantee the convergence, but nothing can be ensured
about the rate of convergence. While working on the class of strongly stable controllers, we can
establish the non-asymptotic convergence rate.
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Definition 3. A linear controller K is (κ, γ)-strongly stable if there exist matrices L,H satisfying
A−BK = HLH−1, such that the following two conditions are satisfied:

(1) The spectral norm of L satisfies ‖L‖ ≤ 1− γ.

(2) The controller and transforming matrices are bounded, i.e., ‖K‖ ≤ κ and ‖H‖, ‖H−1‖ ≤ κ.

A.3 Technical Lemmas

The following lemma plays an important role in analyzing algorithms based on the mirror descent.

Lemma 9 (Lemma 3.2 of Chen and Teboulle (1993)). Let X be a convex set in a Banach space B.
Let f : X 7→ R be a closed proper convex function on X . Given a convex regularizer ψ : X 7→ R,
we denote its induced Bregman divergence by Dψ(·, ·). Then, any update of the form

xk = arg min
x∈X

{f(x) +Dψ(x,xk−1)}

satisfies the following inequality

f(xk)− f(u) ≤ Dψ(u,xk−1)−Dψ(u,xk)−Dψ(xk,xk−1)

for any u ∈ X .

Lemma 10. If the regularizer ψ : X 7→ R is λ-strongly convex with respect to a norm ‖ · ‖, then we
have the following lower bound for the induced Bregman divergence: Dψ(x,y) ≥ 1

2‖x− y‖.

The following concentration inequality is used in analyzing dynamic policy regret for non-
stochastic control with unknown systems.

Lemma 11 (Azuma-Hoeffding’s Inequality for Vectors (Hayes, 2005, Theorem 1.8)). Suppose that
Sm =

∑m
t=1Xt is a martingale where X1, . . . , Xm take values in Rn and are such that E[Xt] = 0

and ‖Xt‖2 ≤ D for all t, for t > 0. Then for every ε > 0,

Pr[‖Sm‖2 ≥ ε] ≤ 2e2e−
ε2

2mD2 .

B. Omitted Details for Section 4 (OCO with Memory)

In this section, we present omitted details for Section 4 OCO with memory, including proofs of
Theorem 2 (in Section B.1) and Theorem 3 (in Section B.4). Moreover, we provide the proof of
the switching cost decomposition (5) in Section B.2 and supply more details for the online mirror
descent in Section B.3.

B.1 Proof of Theorem 2

Proof The coordinate-Lipschitz continuity of ft (Assumption 1) implies that

|ft(wt−m, . . . ,wt)− f̃t(wt)| ≤ L ·
m∑
i=1

‖wt −wt−i‖2 ≤ mL
m∑
i=1

‖wt−i+1 −wt−i‖2
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Therefore, we have

T∑
t=m

ft(wt−m, . . . ,wt)−
T∑
t=m

f̃t(wt) ≤ m2L
T∑
t=m

‖wt −wt−1‖2, (16)

and the dynamic policy regret can be thus upper bounded by

D-RegretT (v1, . . . ,vT ) =

T∑
t=1

ft(wt−m, . . . ,wt)−
T∑
t=1

ft(vt−m, . . . ,vt)

(16)
≤

T∑
t=1

f̃t(wt)−
T∑
t=1

f̃t(vt)︸ ︷︷ ︸
dynamic regret over unary loss

+ λ

T∑
t=1

‖wt −wt−1‖2︸ ︷︷ ︸
switching cost of decisions

+ λ

T∑
t=1

‖vt − vt−1‖2︸ ︷︷ ︸
switching cost of comparators

,
(17)

where we define λ := m2L for notational convenience. Note that the first term is the dynamic regret
over the unary loss, which is optimized by OGD over the unary loss. Since the sequence of unary
loss {f̃t}Tt=1 is convex and memoryless, from the standard dynamic regret analysis (Zinkevich, 2003;
Zhang et al., 2018a), as shown in Theorem 8, we know that

T∑
t=1

f̃t(wt)−
T∑
t=1

f̃t(vt) ≤
η

2
G2T +

1

2η
(D2 + 2DPT ), (18)

where PT =
∑T

t=2‖vt − vt−1‖2 is the path-length measuring the fluctuation of the comparator
sequence v1,v2, . . . ,vT . Next, the last term of (17) is the switching cost of the comparators, which
is exactly the path-length λPT .

So we only need to further examine the switching cost of the decisions, i.e.,
∑T

t=2‖wt−1−wt‖2,
as well as the dynamic regret over the unary loss, i.e.,

∑T
t=1 f̃t(wt)− f̃t(vt). By the non-expansive

property of the projection operator, we can derive an upper bound for the switching cost:

T∑
t=1

‖wt −wt−1‖2 =
T∑
t=1

‖ΠW [wt−1 − ηgt−1]−wt−1‖2 ≤ η
T∑
t=1

‖gt−1‖2 ≤ ηGT. (19)

Combining above two inequalities (19) and (18) yields

T∑
t=1

ft(wt−m, . . . ,wt)−
T∑
t=1

ft(vt−m, . . . ,vt) ≤
η

2
(G2 + 2λG)T +

1

2η
(D2 + 2DPT ) + λPT ,

with λ = m2L. We thus compete the proof.

B.2 Proof of Switching Cost Decomposition

The following lemma restates the switching cost decomposition presented in (5) of the main paper.

Lemma 12. The switching cost of meta-expert outputs can be upper bounded in the following way:

T∑
t=2

‖wt −wt−1‖2 ≤ D
T∑
t=2

‖pt − pt−1‖1 +

T∑
t=2

N∑
i=1

pt,i‖wt,i −wt−1,i‖2.
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Proof [of Lemma 12] By the meta-expert structure, the final decision of each round is wt =∑N
i=1 pt,iwt,i. Therefore, we can expand the switching cost of the final prediction sequence as

‖wt −wt−1‖2 =

∥∥∥∥∥
N∑
i=1

pt,iwt,i −
N∑
i=1

pt−1,iwt−1,i

∥∥∥∥∥
2

≤

∥∥∥∥∥
N∑
i=1

pt,iwt,i −
N∑
i=1

pt,iwt−1,i

∥∥∥∥∥
2

+

∥∥∥∥∥
N∑
i=1

pt,iwt−1,i −
N∑
i=1

pt−1,iwt−1,i

∥∥∥∥∥
2

≤
N∑
i=1

pt,i‖wt,i −wt−1,i‖2 +D

N∑
i=1

|pt,i − pt−1,i|

=
N∑
i=1

pt,i‖wt,i −wt−1,i‖2 +D‖pt − pt−1‖1, (20)

where the first inequality holds due to the triangle inequality and the second inequality is true owing
to the boundedness of the feasible domain (Assumption 3). Hence, we complete the proof.

B.3 Additional Results for Online Mirror Descent

In this section, we present additional results and descriptions for Online Mirror Descent (OMD),
which enables a unified view for algorithmic design of both meta-algorithm and expert-algorithm.

Consider the standard online convex optimization setting, and the sequence of online convex
functions are {ht}t=1,...,T with ht : W 7→ R. Online mirror descent starts from any w1 ∈ W , and
at iteration t, the algorithm performs the following update:

wt+1 = arg min
w∈W

η〈∇ht(wt),w〉+Dψ(w,wt), (21)

where η > 0 is the step size. The regularizer ψ :W 7→ R is a differentiable convex function defined
onW and is assumed (without loss of generality) to be 1-strongly convex w.r.t. some norm ‖·‖ over
W . The induced Bregman divergenceDψ is defined byDψ(x,y) = ψ(x)−ψ(y)−〈∇ψ(y),x−y〉.

The following generic result gives an upper bound of dynamic regret with switching cost of
OMD, which can be regarded as a generalization of Theorem 2 from gradient descent (for Euclidean
norm) to mirror descent (for general primal-dual norm).

Theorem 13. Online Mirror Descent (21) satisfies that

T∑
t=1

ht(wt)−
T∑
t=1

ht(vt) + λ

T∑
t=2

‖wt −wt−1‖ ≤
1

η

(
R2 + γPT

)
+ η(λG+G2)T, (22)

provided that Dψ(x, z) − Dψ(y, z) ≤ γ‖x − y‖ holds for any x,y, z ∈ W . In above, R2 =
supx,y∈W Dψ(x,y), and G = supw∈W,t∈[T ]‖∇ht(w)‖∗. Note that the above result holds for any
comparator sequence v1, . . . ,vT ∈ W .

Remark 3. The dynamic regret of Theorem 13 holds against any comparator sequence in the do-
main, in particular, we can set comparators as the best fixed decision in hindsight and thus ob-
tain static regret with switching cost,

∑T
t=1 ht(wt) −

∑T
t=1 ht(w

∗) + λ
∑T

t=2‖wt − wt−1‖ ≤
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R2/η + η(λG + G2)T , that holds for any w∗ ∈ W . A technical caveat is that when deriving the
static regret, the Bregman divergence is not required to satisfy the Lipschitz condition.

Theorem 13 exhibits general dynamic regret analysis for OMD algorithm. By flexibly choos-
ing the regularizer ψ and comparator sequence v1, . . . ,vT , we can obtain the following two im-
plications, which corresponds to expert-regret (dynamic regret with switching cost of OGD) and
meta-regret (static regret with switching cost of Hedge).

Before presenting the proof of Theorem 13, we first analyze the switching cost of the online
mirror descent, as demonstrated in the following stability lemma.

Lemma 14. For Online Mirror Descent (21), the instantaneous switching cost is at most

‖wt −wt+1‖ ≤ η‖∇ht(wt)‖∗. (23)

Proof [Proof of Lemma 14] From the update procedure of OMD (21) and Lemma 9, we know that

〈wt+1 −wt, η∇ht(wt)〉 ≤ Dψ(wt,wt)−Dψ(wt,wt+1)−Dψ(wt+1,wt),

which implies

Dψ(wt,wt+1) +Dψ(wt+1,wt) ≤ 〈wt −wt+1, η∇ht(wt)〉.

Since the regularizer ψ is chosen as a 1-strongly convex function with respect to the norm ‖ · ‖, by
Lemma 10 we have

Dψ(wt,wt+1) +Dψ(wt+1,wt) ≥ ‖wt −wt+1‖2.

Combining above two inequalities and further applying the Hölder’s inequality, we obtain that

‖wt −wt+1‖2 ≤ 〈wt −wt+1, η∇ht(wt)〉 ≤ ‖wt −wt+1‖‖η∇ht(wt)‖∗.

Therefore, we conclude that ‖wt −wt+1‖ ≤ η‖∇ht(wt)‖∗ and finish the proof.

Based on the above stability lemma, we can now prove Theorem 13 regarding dynamic regret
with switching cost for OMD.
Proof [of Theorem 13] Notice that the dynamic regret can be decomposed in the following way:

T∑
t=1

ht(wt)−
T∑
t=1

ht(vt) ≤
T∑
t=1

〈∇ht(wt),wt − vt〉

=

T∑
t=1

〈∇ht(wt),wt −wt+1〉︸ ︷︷ ︸
term (a)

+

T∑
t=1

〈∇ht(wt),wt+1 − vt〉︸ ︷︷ ︸
term (b)

.

From Lemma 14 and Hölder’s inequality, we have

term (a) ≤
T∑
t=1

‖∇ht(wt)‖∗‖wt −wt+1‖ ≤ η
T∑
t=1

‖∇ht(wt)‖2∗. (24)
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Next, we investigate the term (b):

term (b) ≤ 1

η

T∑
t=1

(Dψ(vt,wt)−Dψ(vt,wt+1)−Dψ(wt+1,wt))

≤ 1

η

T∑
t=2

(Dψ(vt,wt)−Dψ(vt−1,wt)) +Dψ(v1,w1)

≤ γ

η

T∑
t=2

‖vt − vt−1‖+
1

η
R2, (25)

where the first inequality holds due to Lemma 9, and the second inequality makes uses of the non-
negativity of the Bregman divergence. The last inequality holds due to the assumption of Lipschitz
property that Dψ(x, z)−Dψ(y, z) ≤ γ‖x− y‖ holds for any x,y, z ∈ W .

Furthermore, the switching cost can be bounded by Lemma 14,

T∑
t=2

‖wt −wt−1‖ ≤ η
T∑
t=2

‖∇ht−1(wt−1)‖∗. (26)

Combining (24), (25), and (26), we can attain that

λ

T∑
t=2

‖wt −wt−1‖+

T∑
t=1

ht(wt)−
T∑
t=1

ht(vt)

≤ 1

η
(R2 + γPT ) + η

T∑
t=1

(λ‖∇ht(wt)‖∗ + ‖∇ht−1(wt−1)‖2∗)

≤ 1

η
(R2 + γPT ) + η(λG+G2)T,

which finishes the proof.

As we mentioned earlier, Theorem 2 can be regarded as a corollary of Theorem 13, by specifying
the Euclidean norm and ψ(w) = 1

2‖w‖
2
2. We give a formal statement in the following corollary.

Corollary 15. Setting the `2 regularizer ψ(w) = 1
2‖w‖

2
2 and step size η > 0 for OMD, suppose

‖∇f̃t(w)‖2 ≤ G and ‖w −w′‖2 ≤ D hold for all winW and t ∈ [T ], then we have

λ
T∑
t=2

‖wt −wt−1‖2 +
T∑
t=1

f̃t(wt)−
T∑
t=1

f̃t(vt) ≤ (G2 + λG)ηT +
1

2η
(D2 + 2DPT ), (27)

which holds for any comparator sequence v1, . . . ,vT ∈ W , and PT =
∑T

t=2‖vt−1 − vt‖2 is the
path-length that measures the cumulative movements of the comparator sequence.

Further, we present a corollary regarding the static regret with switching cost for the meta-
algorithm, which is essentially a specialization of OMD algorithm by setting the negative-entropy
regularizer.
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Corollary 16. Setting the negative-entropy regularizer ψ(p) =
∑N

i=1 pi log pi and learning rate
ε > 0 for OMD, suppose ‖`t‖∞ ≤ G holds for any t ∈ [T ] and the algorithm starts from the initial
weight p1 ∈ ∆N , then we have

λ

T∑
t=2

‖pt − pt−1‖1 +

T∑
t=1

〈pt, `t〉 −
T∑
t=1

`t,i ≤
ln(1/p1,i)

ε
+ ε(λG+G2)T. (28)

Proof [Proof of Corollary 16] From the proof of Theorem 13, we can easily obtain that

λ

T∑
t=2

‖pt − pt−1‖1 +

T∑
t=1

〈pt, `t〉 −
T∑
t=1

`t,i ≤
Dψ(ei,p1)

ε
+ ε(λG+G2)T.

When choosing the negative-entropy regularizer, the induced Bregman divergence becomes Kullback-
Leibler divergence, i.e., Dψ(q,p) = KL(q,p) =

∑N
i=1 qi ln(qi/pi). Therefore, Dψ(ei,p1) =

ln(1/p1,i), which implies the desired result.

B.4 Proof of Theorem 3

Proof As indicated in (17), the dynamic policy regret can be upper bounded by three terms, in-
cluding dynamic regret over the unary regret, switching cost of decisions, and switching cost of
comparators. The third term is essentially the path-length of the comparators, and we focus on the
first two terms.

T∑
t=1

f̃t(wt)−
T∑
t=1

f̃t(vt) + λ
T∑
t=2

‖wt −wt−1‖2

(5)
≤

T∑
t=1

〈∇f̃t(wt),wt − vt〉+ λD
T∑
t=2

‖pt − pt−1‖1 + λ
T∑
t=2

N∑
i=1

pt,i‖wt,i −wt−1,i‖2

=

T∑
t=1

N∑
i=1

pt,i

(
〈∇f̃t(wt),wt,i〉+ λ‖wt,i −wt−1,i‖2

)
−

T∑
t=1

(
〈∇f̃t(wt),wt,i〉+ λ‖wt,i −wt−1,i‖2

)
+ λD

T∑
t=2

‖pt − pt−1‖1 +
T∑
t=1

(
〈∇f̃t(wt),wt,i〉 − 〈∇f̃t(wt),vt〉

)
+ λ

T∑
t=2

‖wt,i −wt−1,i‖2

=
T∑
t=1

(
〈pt, `t〉 − `t,i

)
+ λD

T∑
t=2

‖pt − pt−1‖1︸ ︷︷ ︸
meta-regret

+

T∑
t=1

(
gt(wt,i)− gt(vt)

)
+ λ

T∑
t=2

‖wt,i −wt−1,i‖2︸ ︷︷ ︸
expert-regret

.

where the last step uses the convexity of f̃t and the definition of linearized loss gt(w) = 〈∇f̃t(wt),w〉.
We will formally prove that our proposed algorithm optimizes the right hand side.

Bounding meta-regret. Denote by ei the i-th standard basis of RN -space and by λ′ = λD for
simplicity. Since the meta-algorithm actually performs Hedge over the switching-cost-regularized
loss `t ∈ RN , Corollary 16 implies that for any i ∈ [N ],

T∑
t=1

〈pt, `t〉 −
T∑
t=1

`t,i + λ′
T∑
t=2

‖pt − pt−1‖1 ≤ ε(λ′Gmeta +G2
meta)T +

Dψ(ei,p1)

ε
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= ε(2λ+G)(λ+G)D2T +
ln(1/p1,i)

ε

≤ ε(2λ+G)(λ+G)D2T +
2 ln(i+ 1)

ε
.

It can be verified that Gmeta = maxt∈[T ]‖`t‖∞ ≤ (λ+G)D. Moreover, the last step holds because
we adopt a non-uniform weight initialization with the initial weight p1 ∈ ∆N set as p1,i = 1

i(i+1) ·
N+1
N for any i ∈ [N ]. By choosing the learning rate as ε = ε∗ =

√
2

(2λ+G)(λ+G)D2T
, we can obtain

the following upper bound for the meta-regret,

T∑
t=1

〈pt, `t〉 −
T∑
t=1

`t,i + λ′
T∑
t=2

‖pt − pt−1‖1 ≤ D
√

2(2λ+G)(λ+G)T (1 + ln(i+ 1)). (29)

Note that the dependence of learning rate tuning on T can be removed by either a time-varying
tuning or doubling trick.

Bounding expert-regret. As specified by our algorithm, there are multiple experts, each perform-
ing OGD over the linearized loss with a particular step size ηi ∈ H for expert Ei:

wt+1,i = ΠW [wt,i − ηi∇gt(wt,i)] = ΠW [wt,i − ηi∇f̃t(wt)].

As a result, Theorem 13 implies that the expert-regret satisfies that

T∑
t=1

(
gt(wt,i)− gt(vt)

)
+ λ

T∑
t=2

‖wt,i −wt−1,i‖2 ≤ (G2 + λG)ηiT +
1

2ηi
(D2 + 2DPT ), (30)

which holds for any comparator sequence v1, . . . ,vT ∈ W as well as any expert i ∈ [N ].

Bounding overall dynamic regret. Due to the boundedness of the path-length, we know that
the optimal step size η∗ provably lies in the range of [η1, ηN ]. Furthermore, by the construction
of the pool of candidate step sizes, we can confirm that there exists an index i∗ ∈ [N ] ensuring
ηi∗ ≤ η∗ ≤ ηi∗+1 = 2ηi∗ . Therefore, we know that

i∗ ≤
⌈1

2
log2

(
1 +

2PT
D

)⌉
+ 1. (31)

Notice that the meta-expert decomposition at the beginning of the proof holds for any expert index
i ∈ [N ]. Thus, in particular, we can choose the index i∗ and achieve the following result by using
the upper bounds of meta-regret (29) and expert-regret (30).

T∑
t=1

f̃t(wt)−
T∑
t=1

f̃t(vt) + λ

T∑
t=2

‖wt −wt−1‖2

≤
T∑
t=1

(
〈pt, `t〉 − `t,i∗

)
+ λD

T∑
t=2

‖pt − pt−1‖1︸ ︷︷ ︸
meta-regret

+
T∑
t=1

(
gt(wt,i∗)− gt(vt)

)
+ λ

T∑
t=2

‖wt,i∗ −wt−1,i‖2︸ ︷︷ ︸
expert-regret

≤ D
√

2(2λ+G)(λ+G)T (1 + ln(i∗ + 1)) + (G2 + λG)ηi∗T +
1

2ηi∗
(D2 + 2DPT )
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≤ D
√

2(2λ+G)(λ+G)T (1 + ln(i∗ + 1)) + (G2 + λG)η∗T +
1

η∗
(D2 + 2DPT )

≤ 2D(λ+G)
√
T
(

1 + ln
(⌈

log2(1 + 2PT /D)
⌉

+ 2
))

︸ ︷︷ ︸
≤O(
√
T (1+log logPT ))

+ 2
√

2
√

(G2 + λG)(D2 + 2DPT )T︸ ︷︷ ︸
≤O(
√
T (1+PT ))

≤ O(
√
T (1 + PT )).

Combining the upper bound of the dynamic policy regret exhibited in (4), we can achieve that

D-RegretT (v1:T ) ≤ λ
T∑
t=2

‖wt −wt−1‖2 + λ

T∑
t=2

‖vt − vt−1‖2 +

T∑
t=1

f̃t(wt)−
T∑
t=1

f̃t(vt)

≤ O(
√
T (1 + PT )) +O(PT ) = O(

√
T (1 + PT )),

where the last step holds as PT ≤ DT due to the boundedness of the domain. We hence complete
the proof of Theorem 3.

B.5 Discussion on Memory Dependence

In this part, we supplement the comparison of static regret bounds of Anava et al. (2015) and ours
(Theorem 1), particularly in terms of the memory dependence.

In the work of Anava et al. (2015), the Lipschitz continuity assumption is different from ours
(Assumption 1), whose formal statement is presented below.

Assumption 7 (Lipschitzness of Anava et al. (2015)). The function ft :Wm+1 7→ R is L̄-Lipschitz,

i.e., |ft(x0, . . . ,xm)−ft(y0, . . . ,ym)| ≤ L̄‖(x0, . . . ,xm)−(y0, . . . ,ym)‖2 = L̄
√∑m

i=0‖xi − yi‖22.

We compare this definition of Lipschitzness with the version used in our paper, namely, the
coordinate-wise Lipschitzness defined in Assumption 1. Actually, their definition imposes a stronger
requirement on the function than ours. Clearly, when the online function ft satisfies L̄-Lipschitz
assumption as specified in Assumption 7, it is also L̄-coordinate-wise Lipschitz due to the simple

fact that
√∑m

i=0‖xi − yi‖22 ≤
∑m

i=0‖xi − yi‖2. On the other hand, when the online function ft
is L-coordinate-wise Lipschitz as required by Assumption 1, we can conclude that it is Lipschitz in
the sense of Assumption 7 with the Lipschitz coefficient L̄ =

√
mL, due to the following inequality

(by Cauchy-Schwarz inequality) L
∑m

i=0‖xi − yi‖2 ≤ L
√
m
√∑m

i=0‖xi − yi‖2.
In the following, we restate the static regret bound of Anava et al. (2015) under Assumption 7.

We adapt their results to our notations to ease the understanding.

Theorem 17 (Theorem 3.1 of Anava et al. (2015)). Under Assumptions 2, 3, and the assumption
that the online functions are L̄-Lipschitz (Assumption 7), running OGD over the unary loss achieves

T∑
t=1

ft(wt−m:t)− min
v∈W

T∑
t=1

f̃t(v) ≤ 2ηG2T +
2D2

η
+ 2L̄m

3
2 ηGT. (32)

Setting the step size optimally yields an O(L̄1/2m3/4
√
T ) static policy regret.
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Therefore, when the online functions are only L-coordinate-wise Lipschitz as considered in this
paper, applying above theorem immediately obtains anO(L̄1/2m3/4

√
T ) = O((

√
mL)1/2m3/4

√
T ) =

O(L1/2m
√
T ), which is exactly the same with the static regret result presented in Theorem 1 even

in terms of the dependence in the memory length.

C. Omitted Details for Section 5 (Online Non-stochastic Control)

In this section, we present omitted details for Section 5 online non-stochastic control, including the
proofs of Proposition 4, Theorem 5, and Corollary 7.

C.1 Proof of Proposition 4 (DAC Parametrization)

We will prove the following statement that gives the state recurrence for any h ≤ t, which is
essentially a strengthened result of Proposition 4.

Proposition 18. Suppose one chooses the DAC controller π(Mt,K) at iteration t, the reaching
state is

xt+1 = Ãh+1
K xt−h +

H+h∑
i=0

ΨK,h
t,i (Mt−h:t)wt−i, (33)

where ÃK = A−BK, and ΨK,h
t,i (Mt−h:t) is the transfer matrix defined as

ΨK,h
t,i (Mt−h:t) = ÃiK1i≤h +

h∑
j=0

ÃjKBM
[i−j−1]
t−j 11≤i−j≤H . (34)

The evolving equation holds for any h ∈ {0, . . . , t}.

Proof [of Proposition 18] First, by substituting the DAC policy into the dynamics equation, we have

xt+1 = Axt +But + wt = (A−BK)xt +

H∑
i=1

BM
[i−1]
t wt−i + wt

= Ãh+1
K xt−h +

h∑
j=0

ÃjK

(
H∑
i=1

BM
[i−1]
t−j wt−j−i + wt−j

)

= Ãh+1
K xt−h +

h∑
j=0

H∑
i=1

ÃjKBM
[i−1]
t−j wt−j−i +

h∑
j=0

ÃjKwt−j .

Exchanging the summation index yields,

h∑
j=0

H∑
i=1

ÃjKBM
[i−1]
t−j wt−j−i =

H∑
i=1

i+h∑
k=i

Ãk−iK BM
[i−1]
t−k+iwt−k (35)

=

H+h∑
k=1

k∑
i=k−h

Ãk−iK BM
[i−1]
t−k+iwt−k1{1≤i≤H} (36)
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=

H+h∑
k=1

h∑
l=0

Ãh−lK BM
[l+k−h−1]
t+l−h wt−k1{1≤l+(k−h)≤H} (37)

=
H+h∑
k=1

h∑
m=0

ÃmKBM
[k−m−1]
t−m wt−k1{1≤k−m≤H} (38)

=
H+h∑
i=1

h∑
j=0

ÃjKBM
[i−j−1]
t−j wt−i1{1≤i−j≤H}, (39)

where (35) holds by defining a third variable k = j + i, and (36) is obtained by exchanging the
summation index i and k and the new range of i is from inequality i ≤ k ≤ i + h. Moreover, (37)
is obtained by another change of variable l = i− k + h, (38) is obtained by replacing l by h−m,
and (39) is true by setting i = k, j = m. Therefore, we can obtain that

xt+1 = Ãh+1
K xt−h +

h∑
j=0

H∑
i=1

ÃjKBM
[i−1]
t−j wt−j−i +

h∑
j=0

ÃjKwt−j

= Ãh+1
K xt−h +

H+h∑
i=0

h∑
j=0

ÃjKBM
[i−j−1]
t−j wt−i1{1≤i−j≤H} +

h∑
i=0

ÃiKwt−i

= Ãh+1
K xt−h +

H+h∑
i=0

ÃiK1{i≤h} +

h∑
j=0

ÃjKBM
[i−j−1]
t−j 1{1≤i−j≤H}

wt−i

and hence complete the proof.

C.2 Proof of Theorem 5

To prove the dynamic policy regret of online non-stochastic control (Theorem 5), we will first
present theoretical analysis of the reduction to OCO with memory in Section C.2.1, then give the
dynamic regret analysis over theM-space in Section C.2.2, and finally present the overall proof of
Theorem 5 in Section C.2.3.

C.2.1 REDUCTION TO OCO WITH MEMORY & APPROXIMATION THEOREMS

In Section 5.2 of the main paper, we have presented how to reduce from online non-stochastic con-
trol to OCO with memory, by employing the DAC parameterization and introducing the truncated
loss functions. In this part, we introduce the following approximation theorem that discloses that
the truncation loss ft approximates the original cost function ct well.

Theorem 19 (Theorem 5.3 of Agarwal et al. (2019)). Suppose the disturbance are bounded by
W . For any (κ, γ)-strongly stable linear controller K, and any τ > 0 such that the sequence of
M1, . . . ,MT satisfies ‖M [i]

t ‖op ≤ τ(1 − γ)i, the approximation error between original loss and
truncated loss is at most∣∣∣∣∣

T∑
t=1

ct(x
K
t (M0:t−1), uKt (M0:t))−

T∑
t=1

ft(Mt−1−H:t)

∣∣∣∣∣ ≤ 2TGcD
2κ3(1− γ)H+1, (40)
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where

D :=
Wκ3(1 +HκBτ)

γ(1− κ2(1− γ)H+1)
+
Wτ

γ
. (41)

Proof [Proof of Theorem 19] By Lipschitzness and definition of the truncated loss, we get that

ct(x
K
t (M0:t−1), uKt (M0:t))− ft(Mt−H−1:t)

= ct(x
K
t (M0:t−1), uKt (M0:t))− ct(yKt (Mt−H−1:t−1), vKt (Mt−H−1:t))

≤ GcD
(
‖xKt (M0:t−1)− yKt (Mt−H−1:t−1)‖+ ‖uKt (M0:t)− vKt (Mt−H−1:t)‖

)
≤ GcD(κ2(1− γ)H+1D + κ3(1− γ)H+1D)

≤ 2GcD
2κ3(1− γ)H+1,

where the last two inequalities use the Lipschitzness and the boundedness presented in Lemma 25.
We complete the proof by summing over the iterations from t = 1, . . . , T .

C.2.2 DYNAMIC REGRET ANALYSIS OVERM-SPACE

In previous sections, we have analyzed the dynamic regret of OGD over the Rd-space. However,
after reducing online non-stochastic control to OCO with memory, we need to apply their results
to theM-space and thus require to generalize the arguments of previous sections from Euclidean
norm for Rd-space to Frobenius norm forM-space. For completeness, we present the proof here.

At the first place, we analyze the dynamic regret of the online gradient descent (OGD) algorithm
over the Rd-space. OGD begins with any M1 ∈M and performs the following update procedure,

Mt+1 = ΠM[Mt − η∇M f̃t(Mt)] (42)

where η > 0 is the step size and ΠM[·] denotes the projection onto the nearest point in the feasible
setM. We have the following dynamic regret regarding its dynamic regret.

Theorem 20. Suppose the function f̃ : M 7→ R is convex; the gradient norm ‖∇M f̃t(M)‖F ≤
Gf holds for any M ∈ M and t ∈ [T ]; and the Euclidean diameter of M is at most Df , i.e.,
supM,M ′∈M‖M −M ′‖F ≤ Df . Then, OGD with a step size η > 0 as shown in (42) satisfies that

λ
T∑
t=2

‖Mt−1−Mt‖F +
T∑
t=1

f̃t(Mt)−
T∑
t=1

f̃t(M
∗
t ) ≤ η

2
(G2

f + 2λGf )T +
1

2η
(D2

f + 2DfPT ), (43)

which holds for any comparator sequence M1, . . . ,MT ∈ M. Besides, the path-length PT =∑T
t=2‖M∗t−1 −M∗t ‖F measures the non-stationarity of the comparator sequence.

Proof [of Theorem 20] Denote the gradient byGt = ∇M f̃t(Mt). The convexity of online surrogate
loss functions implies that

T∑
t=1

f̃t(Mt)−
T∑
t=1

f̃t(M
∗
t ) ≤

T∑
t=1

〈Gt,Mt −M∗t 〉.
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Thus, it suffices to bound the sum of 〈Gt,Mt − M∗t 〉. From the OGD update rule and the
non-expensive property, we have

‖Mt+1 −M∗t ‖2F = ‖ΠM[Mt − ηGt]−M∗t ‖
2
F ≤ ‖Mt − ηGt −M∗t ‖2F

= η2‖Gt‖2F − 2η〈Gt,Mt −M∗t 〉+ ‖Mt −M∗t ‖2F

After rearranging, we obtain

〈Gt,Mt −M∗t 〉 ≤
η

2
‖Gt‖2F +

1

2η

(
‖Mt −M∗t ‖2F − ‖Mt+1 −M∗t ‖2F

)
.

Next, we turn to analyze the second term in the right hand side. Indeed,

T∑
t=1

(
‖Mt −M∗t ‖2F − ‖Mt+1 −M∗t ‖2F

)
≤

T∑
t=1

‖Mt −M∗t ‖2F −
T∑
t=2

‖Mt −M∗t−1‖2F

≤ ‖M1 −M∗1 ‖2F +
T∑
t=2

(
‖Mt −M∗t ‖2F − ‖Mt −M∗t−1‖2F

)
= ‖M1 −M∗1 ‖2F +

T∑
t=2

〈M∗t−1 −M∗t , 2Mt −M∗t−1 −M∗t 〉

≤ D2
f + 2Df

T∑
t=2

‖M∗t−1 −M∗t ‖F.

Hence, combining all above inequalities, we have

T∑
t=1

f̃t(Mt)−
T∑
t=1

f̃t(M
∗
t ) ≤ η

2

T∑
t=1

‖Gt‖2F +
1

2η

(
D2
f + 2Df

T∑
t=2

‖M∗t−1 −M∗t ‖F

)

≤ η

2
G2
fT +

1

2η
(D2

f + 2DfPT ).

On the other hand, the switching cost can be bounded by

T∑
t=2

‖Mt −Mt−1‖F = ‖ΠM[Mt−1 − ηGt−1]−Mt−1‖2F

≤ ‖Mt−1 − ηGt−1 −Mt−1‖F ≤ ηGfT,

which together with the previous dynamic regret bound yields the desired result.
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C.2.3 PROOF OF THEOREM 5

Proof We begin with the following dynamic policy regret decomposition,

T∑
t=1

ct(xt, ut)−
T∑
t=1

ct(x
πt
t , u

πt
t )

=

T∑
t=1

ct(x
K
t (M0:t−1), uKt (M0:t))−

T∑
t=1

ct(x
K
t (M∗0:t−1), uKt (M∗0:t))

=
T∑
t=1

ct(x
K
t (M0:t−1), uKt (M0:t))−

T∑
t=1

ft(Mt−1−H:t)︸ ︷︷ ︸
:=AT

+

T∑
t=1

ft(Mt−1−H:t)−
T∑
t=1

ft(M
∗
t−1−H:t)︸ ︷︷ ︸

:=BT

+

T∑
t=1

ft(M
∗
t−1−H:t)−

T∑
t=1

ct(x
K
t (M∗0:t−1), uKt (M∗0:t))︸ ︷︷ ︸

:=CT

.

(44)

Notice that both AT and CT essentially represent the approximation error introduced by the trun-
cated loss, so we can apply Theorem 19 and obtain that

AT + CT ≤ 4TGcD
2κ3(1− γ)H+1. (45)

We now focus on the quantity BT , which is the dynamic policy regret over the truncated loss func-
tions {ft}t=1,...,T . Indeed,

BT =
T∑
t=1

ft(Mt−1−H:t)−
T∑
t=1

ft(M
∗
t−1−H:t)

≤
T∑
t=1

f̃t(Mt)−
T∑
t=1

f̃t(M
∗
t ) + λ

T∑
t=2

‖Mt−1 −Mt‖F + λ
T∑
t=2

‖M∗t−1 −M∗t ‖F

≤
T∑
t=1

〈∇M f̃t(Mt),Mt −M∗t 〉+ λ
T∑
t=2

‖Mt−1 −Mt‖F + λ
T∑
t=2

‖M∗t−1 −M∗t ‖F

=

T∑
t=1

gt(Mt)−
T∑
t=1

gt(M
∗
t ) + λ

T∑
t=2

‖Mt−1 −Mt‖F + λ

T∑
t=2

‖M∗t−1 −M∗t ‖F, (46)

where λ = (H + 2)2Lf and gt(M) = 〈∇M f̃t(Mt),M〉 is the surrogate linearized loss. As a con-
sequence, we are reduced to proving an dynamic regret over the sequence of functions {gt}t=1,...,T

with switching cost, namely, the first three terms in the right hand side. We thus make use of the
techniques developed in Section B.4 (dynamic policy regret minimization for OCO with memory)
to decompose the terms into meta-regret and expert-regret:

T∑
t=1

gt(Mt)−
T∑
t=1

gt(M
∗
t ) + λ

T∑
t=2

‖Mt−1 −Mt‖F
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=

(
λ

T∑
t=2

‖Mt−1 −Mt‖F +
T∑
t=1

gt(Mt)

)
−

(
λ

T∑
t=2

‖Mt−1,i −Mt,i‖F +
T∑
t=1

gt(Mt,i)

)
︸ ︷︷ ︸

meta-regret

+

(
λ

T∑
t=2

‖Mt−1,i −Mt,i‖F +
T∑
t=1

gt(Mt,i)−
T∑
t=1

gt(M
∗
t )

)
︸ ︷︷ ︸

expert-regret

.

We remark that the regret decomposition holds for any expert index i ∈ [N ]. We now provide
the upper bounds for the meta-regret and expert-regret, respectively. First, Theorem 20 ensures the
expert-regret satisfies that

expert-regret ≤ ηi
2

(G2
f + 2λGf )T +

1

2ηi
(D2

f + 2DfPT ),

where PT =
∑T

t=2‖M∗t−1 −M∗t ‖F is the path-length of the comparator sequence. On the other
hand, similar to Lemma 12 of Section B.2, we can show that the meta-regret satisfies that

meta-regret ≤ λ′
T∑
t=2

‖pt−1 − pt‖1 +

T∑
t=1

〈pt, `t〉 −
T∑
t=1

`t,i,

where the surrogate loss vector `t ∈ ∆N of the meta-algorithm is defined as

`t,i = λ‖Mt−1,i −Mt,i‖F + gt(Mt,i), for i ∈ [N ].

Then, we can make use the static regret with switching cost of online mirror descent for the
prediction with expert advice setting (c.f. Corollary 16 in Section B.3) and obtain that

meta-regret ≤ ε(2λ+Gf )(λf +Gf )D2
fT +

ln(1/p1,i)

ε

= Df

√
2(2λ+Gf )(λ+Gf )T

(
1 + ln(1 + i)

)
,

where the equation can be obtained by an appropriate setting of the learning rate ε.
Since the above decomposition and the upper bounds of meta-regret and expert-regret all hold

for any expert index i ∈ [N ], we will choose the best index denoted by i∗ to make the regret bound
tightest possible. Specifically, from the construction of the step size pool, we can ensure that there
exists a step size ηi∗ such that the optimal step size provably satisfies ηi∗ ≤ η∗ ≤ 2ηi∗ . As a result,
we have

T∑
t=1

gt(Mt)−
T∑
t=1

gt(M
∗
t ) + λ

T∑
t=2

‖Mt−1 −Mt‖F

≤ ηi∗

2
(G2

f + 2λGf )T +
1

2ηi∗
(D2

f + 2DfPT ) +Df

√
2(2λ+Gf )(λ+Gf )T

(
1 + ln(1 + i)

)
≤ η∗

2
(G2

f + 2λGf )T +
1

η∗
(D2

f + 2DfPT ) +Df

√
2(2λ+Gf )(λ+Gf )T

(
1 + ln(1 + i)

)
≤ 3

2

√
(G2

f + 2λGf )(D2
f + 2DfPT )T +Df

√
2(2λ+Gf )(λ+Gf )T (1 + ln(dlog2(1 + 2PT /D)e+ 2)) .
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Algorithm 3 System Identification via Random Inputs (Hazan et al., 2020)
Input: rounds of exploration T0.
1: for t = 1, . . . , T0 do
2: Execute the control ut = −Kxt + ũt with ũt ∼i.i.d. {±1}du
3: Record the observed state xt+1

4: end for
5: Declare Nj = 1

T0−k
∑T0−k−1

t=0 xt+j+1ũ
T
t , for all j ∈ [k]

6: Define Ĉ0 = [N0, . . . , Nk−1] , Ĉ1 = [N1, . . . , Nk] and return estimation Â, B̂ as

B̂ = N0, ÂK := Ĉ1Ĉ
T
0

(
Ĉ0Ĉ

T
0

)−1
, Â = ÂK + B̂K.

Combining this result with the regret decomposition (44) and the upper bounds (45), (46), we have

T∑
t=1

ct(xt, ut)−
T∑
t=1

ct(x
πt
t , u

πt
t )

≤ 4TGcD
2κ3(1− γ)H+1 +

3

2

√
(G2

f + 2λGf )(D2
f + 2DfPT )T

+Df

√
2(2λ+Gf )(λ+Gf )T (1 + ln(dlog2(1 + 2PT /D)e+ 2)) + λPT .

The specific values ofD,Lf , Gf , Df can be found in Lemma 26. By settingH = O(log T ), we can
ensure the final dynamic policy regret is at most Õ(

√
T (1 + PT )) and hence complete the proof.

C.3 Proofs of Corollary 6 and Corollary 7

This part we present the proofs of two corollaries of the main results, that is, Corollary 6 (dynamic
regret guarantees for unknown systems), and Corollary 7 (implications for static regret).

C.3.1 PROOF OF COROLLARY 6

In this part, we first add the omitted algorithmic details for non-stochastic control with unknown
systems, and then present the proof of Corollary 6.

When the system is unknown, i.e., A and B are not known in advance, we follow the explore-
then-commit method of Hazan et al. (2020) to identify the underlying dynamics and then deploy the
control algorithm based on the estimated system dynamics. The algorithmic descriptions are sum-
marized in Algorithm 3. In the exploration phase, the identification algorithm (Hazan et al., 2020,
Algorithm 2) uses some random inputs to approximately recover the system dynamics. Specif-
ically, given an estimation budget T0 < T , in the first T0 rounds, we input the control signal
ut = −Kxt + ũt with the random inputs ũt ∼ {±1}du and then observe the corresponding state
xt+1. Then, by the estimation method presented in Line 6 of Algorithm 3, we can show that the
estimation regret overhead is Õ(T 2/3) when choosing T0 = Θ(T 2/3).

To give the formal regret analysis, we need the following definitions and notations.
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Definition 4 (Strong Controllability). For a linear dynamical system (A,B, {w}) and a strongly
stable linear controller K, for k ≥ 1, define a matrix Ck ∈ Rdx×kdu as

Ck =
[
B, ÃKB, . . . , Ã

k−1
K B

]
, (47)

where ÃK = A−BK. A linear dynamical system (A,B, {w}) is controllable with controllability
index k if Ck has full row-rank. In addition, such a system is also (k, κc)-strongly controllable if
‖
(
CkC

T
k

)−1‖ ≤ κc.

To ensure finite-sample convergence rate, we need the following assumption of strong control-
lability following the work of Hazan et al. (2020).

Assumption 8 (Strong Controllability). The dynamical system (9) is (k, κc)-strongly controllable.

Notations. We further define some notations for convenience. Define εw an upper bound for the
gap between the true disturbance wt and the estimated one ŵt, i.e., ‖wt − ŵt‖2 ≤ εw, and define
a universal upper bound W0 for εw and disturbance bound W (cf. Assumption 4) as W, εw ≤ W0.
We also define dmin = min{dx, du}, ÃK = A−BK, ÂK = Â− B̂K for notational convenience.

Proof [of Corollary 6] The overall dynamic regret is at most

D-RegretT ≤
T0∑
t=1

ct(xt, ut)︸ ︷︷ ︸
term (A)

+

T∑
t=T0+1

ct(xt, ut)−
T∑

t=T0+1

ct(x
πt
t , u

πt
t )︸ ︷︷ ︸

term (B)

,

where term (A) is the cumulative cost during the system identification procedure and term (B) is the
dynamic regret caused by SCREAM.CONTROL algorithm over the rest rounds. Note that term (A)
enjoys a trivial upper bound of O(T0), and term (B) can be decomposed into two parts:

term (B) =
T∑

t=T0+1

ct(xt, ut)−
T∑

t=T0+1

ct(x
πt
t (Ŝ), uπtt (Ŝ))︸ ︷︷ ︸

term (b-1)

+

T∑
t=T0+1

ct(x
πt
t (Ŝ), uπtt (Ŝ))−

T∑
t=T0+1

ct (xπtt (S), uπtt (S))︸ ︷︷ ︸
term (b-2)

.

Here, (xπtt (S), uπtt (S)) is the state-action pair produced by the policy πt on the true system S =
(A,B, {w}), whereas (xπtt (Ŝ), uπtt (Ŝ)) is the state-action pair produced by the policy πt on the
estimated system Ŝ = (Â, B̂, {ŵ}). Summarizing, term (b-1) is the dynamic regret on the estimated
system and term (b-2) is the gap between the cumulative cost of the true system and that of the
estimated system. From Theorem 5, it holds that term (b-1) ≤ Õ(

√
T (1 + PT )). From Lemma 22,

we can bound term (b-2) as term (b-2) ≤ O(εA,BT ). Overall, with probability at least 1 − δ, the
total dynamic regret is at most

D-RegretT ≤ O(T0) + Õ(
√
T (1 + PT )) +O(εA,BT )
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= O(ε−2
A,B + εA,BT ) + Õ(

√
T (1 + PT ))

≤ O(T 2/3) + Õ(
√
T (1 + PT )).

The second step makes use of the relationship between the system identification rounds T0 and the
estimation error ‖Â−A‖op, ‖B̂−B‖op ≤ εA,B , as demonstrated in Lemma 21. The last step holds
by setting the rounds of exploration to ensure εA,B = min{10−3κ−10γ2, T−1/3}, which is realized
when total time horizon is large enough, i.e., T ≥ 109κ30γ−6.

The above proof relies on the two key lemmas (Lemma 21 and Lemma 22). In the following,
we provide the formal statements and corresponding proofs.

Lemma 21 establishes the relationship between the estimation accuracy εA,B and the number
of estimation rounds T0. This lemma is firstly due to Hazan et al. (2020) and is restated here for
self-containedness.

Lemma 21 (System Recovery). Under Assumptions 4, 6, 8, when Algorithm 3 runs for T0 rounds, if
the output pair (Â, B̂) satisfies, with probability at least 1−δ, that ‖Â−A‖op, ‖B̂−B‖op ≤ εA,B ,
then it holds that T0 = O(ε−2

A,B).

Proof [of Lemma 21] Based on the observation, we have the following two equations:

ÃKCk = (ÃKCk), ÂKĈ0 = Ĉ1.

Using Lemma 33, it holds that

‖ÃK − ÂK‖op ≤
‖ÃKCk − Ĉ1‖op + ‖Ck − Ĉ0‖op‖ÃK‖op

σmin(Ck)− ‖Ck − Ĉ0‖op

. (48)

By Lemma 23, we know that with probability at least 1− δ, it holds that ‖Nj− ÃjKB‖F ≤ ε, where

ε := 3κBκ
2duWγ−1

√
2dmin log (2e2kδ−1)

T0 − k
. (49)

Owing to the benign high-probability guarantee, we only need to focus on the successful event, that
is, under the case when ‖Nj − ÃjKB‖F ≤ ε is true. We then try to bound ‖Ck − C0‖op, ‖ÃKCk −
C1‖op,

‖Ck − Ĉ0‖op ≤ ‖Ck − Ĉ0‖F =
∥∥∥[N0 −B, . . . , Nk−1 − Ãk−1

K B
]∥∥∥

F

=

√√√√k−1∑
i=0

‖Ni − ÃiKB‖2F ≤
√
kε2 = ε

√
k,

(50)

‖ÃKCk − Ĉ1‖op ≤ ‖ÃKCk − Ĉ1‖F =
∥∥∥[N1 − ÃKB, . . . , Nk − ÃkKB

]∥∥∥
F

=

√√√√ k∑
i=1

‖Ni − ÃiKB‖2F ≤
√
kε2 = ε

√
k.

(51)
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Using Lemma 31 to give an upper bound of σmin(Ck), and plugging (50) and (51) into (48), we
have

‖ÃK − ÂK‖op ≤
ε
√
k + ε

√
k · κ2(1− γ)

1/
√
κc − ε

√
k

.

The gap between A and Â can be bounded as

‖A− Â‖op = ‖ÃK +BK − ÂK − B̂K‖op

≤ ‖ÃK − ÂK‖op + ‖K‖op‖B − B̂‖op

≤ ε
√
k + ε

√
k · κ2(1− γ)

1/
√
κc − ε

√
k

+ κε ≤ 3εκ5/2√
1/κc − ε

√
κ
.

If we want ‖Â−A‖F, ‖B̂ −B‖F ≤ εA,B , the following equations should hold:

‖Â−A‖F ≤
√
dx‖Â−A‖op ≤

√
dx

(
3εκ5/2√

1/κc − ε
√
κ

)
:= εA ≤ εA,B,

‖B̂ −B‖F ≤
√
dmin‖B̂ −B‖op ≤

√
dminε := εB ≤ εA,B.

(52)

Besides, it is easy to see that εB =
√
dminε ≤

√
dxε ≤ εA, thus conditions in (52) can be simplified

as εA ≤ εA,B . Finally, combining the above inequality with the value of ε (c.f. (49)), we can obtain
that T0 = O(ε−2

A,B).

Lemma 22 measures the difference of the cumulative costs of a policy between the true system
and the estimated one. This result holds for both strongly stable linear controllers and non-stationary
DAC policy and here we only give a proof of the latter, for the former result, we refer readers to
Hazan et al. (2020, Lemma 16).

Lemma 22 (Identification Accuracy). Under Assumptions 4-6, suppose ‖Â−A‖op, ‖B̂ −B‖op ≤
εA,B ≤ 0.25κ−3γ and let K be any (κ, γ)-strongly stable linear controller with respect to (A,B).
Then for any non-stationary DAC policy π1:T parameterized via M1:T , it holds that∣∣∣∣∣∣

T∑
t=T0+1

ct

(
xπtt (Ŝ), uπtt (Ŝ)

)
−

T∑
t=T0+1

ct (xπtt (S), uπtt (S))

∣∣∣∣∣∣ ≤ O (εA,BT + ε2
A,BT

)
,

where (xπtt (S), uπtt (S)) is the state-action pair produced by policy πt on the true system S =
(A,B, {w}) and (xπtt (Ŝ), uπtt (Ŝ)) is produced on the estimated system Ŝ = (Â, B̂, {ŵ}).

Proof [of Lemma 22] If the policy is a non-stationary DAC policy parameterized via M1:T , in
system (A,B, {w}), it holds that

‖xπtt+1(S)‖2 ≤W
H+t∑
i=0

‖ΨK,t
t,i (M0:t)‖op

= W

H+t∑
i=0

‖ÃiK1{i≤t} +

t∑
j=0

ÃjKBM
[i−j−1]
t−j 1{1≤i−j≤H}‖op
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≤W

κ2
H+t∑
i=0

(1− γ)i + κ2
Bκ

3
H+t∑
i=0

t∑
j=0

‖ÃjK1{1≤i−j≤H}‖op


≤W

κ2γ−1 + κ2
Bκ

3
H+t∑
i=0

i−1∑
j=i−H

‖ÃjK‖op1{0≤j≤t}


≤W

κ2γ−1 + κ2
Bκ

5
H+t∑
i=0

i−1∑
j=i−H

(1− γ)j1{0≤j≤t}


≤W

(
κ2γ−1 + κ2

Bκ
5H

t∑
i=0

(1− γ)i

)
≤W

(
κ2γ−1 + κ2

Bκ
5Hγ−1

)
≤ 2Wκ2

Bκ
5γ−1H.

By Lemma 29, a linear controller K is
(
κ, γ − 2κ3εA,B

)
-strongly stable with respect to the esti-

mated system Ŝ = (Â, B̂, {ŵ}) if it is (κ, γ)-strongly stable for the true system S = (A,B, {w}).
Thus it can be easily verified that

1− γ + 2κ3εA,B ≤ 1− γ + 2κ3 · 0.25κ−3γ = 1− γ/2.

For simplicity, we can say that linear controller K is (κ, γ/2)-strongly stable for the estimated
system Ŝ. Further, let ‖B̂‖op ≤ κB̂ , it holds that

κ
B̂

= ‖B̂‖op = ‖(B̂ −B) +B‖op ≤ εA,B + κB ≤ 2κB.

As a result, we can bound ‖xπtt+1(Ŝ)‖2 as

‖xπtt+1(Ŝ)‖2 ≤ 2(εw +W )(2κB)2κ5(γ/2)−1H = 32W0κ
2
Bκ

5γ−1H.

As for the action uπtt (Ŝ), we can bound it as

‖uπtt (Ŝ)‖2 ≤ ‖−Kxπtt (Ŝ)‖2 +

∥∥∥∥∥
H∑
i=1

M
[i−1]
t ŵt−i

∥∥∥∥∥
2

≤ 32W0κ
2
Bκ

6γ−1H + 2W0κBκ
3γ−1

≤ 34W0κ
2
Bκ

6γ−1H.

Thus, the diameter of the state-action domain in the estimated system, denoted as D̂, is at most
D̂ := maxt∈[T ] max{‖xt(Ŝ)‖2, ‖ut(Ŝ)‖2} = 34W0κ

2
Bκ

6γ−1H . The gap of the cumulative costs
between the true system and the estimated system can be bounded as∣∣∣∣∣∣

T∑
t=T0+1

ct

(
xπtt (Ŝ), uπtt (Ŝ)

)
−

T∑
t=T0+1

ct (xπtt (S), uπtt (S))

∣∣∣∣∣∣
≤ GcD̂

T∑
t=1

‖xπtt (Ŝ)− xπtt (S)‖2 +GcD̂
T∑
t=1

‖uπtt (Ŝ)− uπtt (S)‖2.

(53)
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We start by analyzing ‖uπtt (Ŝ)− uπtt (S)‖2:

‖uπtt (Ŝ)− uπtt (S)‖2 =

∥∥∥∥∥
(
−Kxπtt (Ŝ) +

H∑
i=1

M
[i−1]
t ŵt−i

)
−

(
−Kxπtt (S) +

H∑
i=1

M
[i−1]
t wt−i

)∥∥∥∥∥
2

≤ κ‖xπtt (Ŝ)− xπtt (S)‖2 +

H∑
i=1

‖M [i−1]
t (ŵt−i − wt−i)‖

≤ κ‖xπtt (Ŝ)− xπtt (S)‖2 + εwκBκ
3
H∑
i=1

(1− γ)i

≤ κ‖xπtt (Ŝ)− xπtt (S)‖2 + εwκBκ
3γ−1.

(54)
Plugging (54) into (53), it holds that∣∣∣∣∣∣

T∑
t=T0+1

ct

(
xπtt (Ŝ), uπtt (Ŝ)

)
−

T∑
t=T0+1

ct (xπtt (S), uπtt (S))

∣∣∣∣∣∣
≤ 2κGcD̂

T∑
t=1

‖xπtt (Ŝ)− xπtt (S)‖2 +GcD̂εwκBκ
3γ−1T.

(55)

This motivates the need to analyze ‖xπtt (Ŝ)−xπtt (S)‖2. To begin with, we define Ψ̂K,h
t,i (Mt−h:t) =

ÂiK1i≤h+
∑h

j=0 Â
j
KB̂M

[i−j−1]
t−j 11≤i−j≤H , where ÂK := Â−B̂K. Expanding xπtt (Ŝ) and xπtt (S)

using Proposition 4, it holds that

‖xπtt (Ŝ)− xπtt (S)‖2

= ‖
H+t∑
i=0

ΨK,t
t,i (M1:t)wt−i −

H+t∑
i=0

Ψ̂K,t
t,i (M1:t)ŵt−i‖2

≤ ‖
H+t∑
i=0

ΨK,t
t,i (M1:t)wt−i −

H+t∑
i=0

ΨK,t
t,i (M1:t)ŵt−i‖2︸ ︷︷ ︸

term (i)

+ ‖
H+t∑
i=0

ΨK,t
t,i (M1:t)ŵt−i −

H+t∑
i=0

Ψ̂K,t
t,i (M1:t)ŵt−i‖2︸ ︷︷ ︸

term (ii)

.

(56)

First, we analyze term (i):

term (i) ≤ εw
H+t∑
i=0

‖ΨK,t
t,i (M1:t)‖op ≤ 2εwκ

2
Bκ

5γ−1H. (57)
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Second, we investigate term (ii):

term (ii) ≤ (W + εw)
H+t∑
i=0

∥∥∥ΨK,t
t,i (M1:t)− Ψ̂K,t

t,i (M1:t)
∥∥∥

op

≤ 2W0

H+t∑
i=0

∥∥∥(ÃiK − ÂiK)1{i≤t}∥∥∥
op

+ κBκ
3

t∑
j=0

‖ÃjKB − Â
j
KB̂‖op1{1≤i−j≤H}


≤ 2W0κ

2
t∑
i=0

‖Li − L̂i‖op︸ ︷︷ ︸
term (a)

+2W0κBκ
3
H+t∑
i=0

t∑
j=0

‖ÃjKB − Â
j
KB̂‖op1{1≤i−j≤H}︸ ︷︷ ︸

term (b)

.

(58)

For term (a), using Lemma 32, it holds that

t∑
i=0

‖Li − L̂i‖op ≤ 3γ−2‖L− L̂‖op ≤ 3γ−2 · 2κ3εA,B = 6κ3γ−2εA,B.

For term (b), by inserting an intermediate term, we have

H+t∑
i=0

t∑
j=0

‖ÃjKB − Â
j
KB̂‖op1{1≤i−j≤H}

≤
H+t∑
i=0

t∑
j=0

‖ÃjKB − Ã
j
KB̂‖op1{1≤i−j≤H} +

H+t∑
i=0

t∑
j=0

‖ÃjKB̂ − Â
j
KB̂‖op1{1≤i−j≤H}

≤ εA,B
H+t∑
i=0

t∑
j=0

‖ÃjK‖op1{1≤i−j≤H} + κ
B̂

H+t∑
i=0

t∑
j=0

‖ÃjK − Â
j
K‖op1{1≤i−j≤H}

≤ εA,BHγ−1 + 2κBκ
2H

t∑
i=0

‖Li − L̂i‖op

≤ εA,BHγ−1 + 2κBκ
2H · 6κ3γ−2εA,B.

Plugging term (a) and term (b) into (58), we have

term (ii) ≤ 2W0κ
2 · 6κ3γ−2εA,B + 2W0κBκ

3 · (εA,BHγ−1 + 2κBκ
2H · 6κ3γ−2εA,B)

≤ 38W0κ
2
Bκ

8γ−2HεA,B.

Plugging the bounds of (57) and (58) into (56), we have

‖xπtt (Ŝ)− xπtt (S)‖2 ≤ 2εwκ
2
Bκ

5γ−1H + 38W0κ
2
Bκ

8γ−2HεA,B. (59)

Furthermore, by Lemma 30, we have

W0 ≤ 2
√
duκ

3γ−1W, εw ≤ 42
√
duκ

12γ−3WεA,B
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Plugging W0 and εw into (59), it holds that

‖xπtt (Ŝ)− xπtt (S)‖2 ≤ O(εA,B + ε2
A,B).

Plugging the above bound into (55), we have∣∣∣∣∣∣
T∑

t=T0+1

ct

(
xπtt (Ŝ), uπtt (Ŝ)

)
−

T∑
t=T0+1

ct (xπtt (S), uπtt (S))

∣∣∣∣∣∣ ≤ O (εA,BT + ε2
A,BT

)
,

which finishes the proof.

Lemma 23 gives the high-probability bound, which guarantees the accuracy of our estimation
of the quantity ÃjK = (A−BK)j for j ≥ 0.

Lemma 23 (Moment Recovery). Under Assumption 6, Algorithm 3 satisfies for all j ∈ [k], with
probability at least 1− δ, it holds that

‖Nj − ÃjKB‖F ≤ 3κBκ
2duWγ−1

√
2dmin log (2e2kδ−1)

T0 − k
. (60)

Proof [of Lemma 23] When the control inputs are chosen as ut = −Kxt + ũt, using the transition
equation of linear dynamical systems, it holds that

xt+1 = Axt +But + wt

= Axt +B (−Kxt + ũt) + wt

= ÃKxt +Bũt + wt

= ÃK (Axt−1 +But−1 + wt−1)

= ÃK

(
ÃKxt−1 +Bũt−1 + wt−1

)
+Bũt + wt

= Ã2
Kxt−1 + ÃK (Bũt−1 + wt−1) + (Bũt + wt)

= . . .

=

t∑
i=0

Ãt−iK (Bũi + wi) .

Let Nj,t = xt+j+1ũ
T
t , we can prove that

E [Nj,t] = E
[
xt+j+1ũ

T
t

]
= E

[
t+j∑
i=0

Ãt+j−iK (Bũi + wi) ũ
T
t

]

=

t+j∑
i=0

Ãt+j−iK · E
[
(Bũi + wi) ũ

T
t

]
= ÃjK · E

[
(Bũt + wt) ũ

T
t

]
= ÃjKB · E

[
ũtũ

T
t

]
+ ÃjKwt · E

[
ũT
t

]
= ÃjKB,
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where the second last equation is due to the fact that ũi and ũj are independent when i 6= j,
and the last step is true because Eũt

[
ũtũ

T
t

]
= I,Eũt [ũt] = 0. Consequently, we can prove that

E[Nj ] = 1
T0−k

∑T0−k−1
t=0 E [Nj,t] = ÃjKB. Note that for 0 ≤ t1, t2 ≤ T0− k− 1 and t1 6= t2, Nj,t1

and Nj,t2 are not independent because they contains the same random variables η, so we cannot use
Hoeffding’s inequality here.

For each index j ∈ [k], we can define a sequence of variables Ñj,t := Nj,t − ÃjKB, we can
prove that {Ñj,t}T0−k−1

t=0 is a martingale difference sequence w.r.t. the sequence {ũt}T0−k−1
t=0 :

E
[
Ñj,t|ũ0:t−1

]
= E [Nj,t|ũ0:t−1]− ÃjKB

= E

[
t+j∑
i=0

Ãt+j−iK (Bũi + wi) ũ
T
t |ũ0:t−1

]
− ÃjKB

= E

[
t−1∑
i=0

Ãt+j−iK (Bũi + wi) ũ
T
t |ũ0:t−1

]
+ E

[
t+j∑
i=t

Ãt+j−iK (Bũi + wi) ũ
T
t

]
− ÃjKB

= E
[
ÃjK (Bũt + wt) ũ

T
t

]
− ÃjKB = 0.

For all j ∈ [k], t = 0, . . . , T0 − k − 1, the operator norm of Nj,t can be bounded by

‖Nj,t‖op ≤ ‖xt+j+1‖op‖ũt‖op ≤ ‖xt+j+1‖2‖ũt‖2 ≤ 2κBκ
2
√
duWγ−1 ·

√
du = 2κBκ

2duWγ−1.

Also, for Ñj,t, we can prove that

‖Ñj,t‖op ≤ ‖Nj,t‖op + ‖ÃjKB‖op ≤ 2κBκ
2duWγ−1 + κBκ

2(1− γ)j ≤ 3κBκ
2duWγ−1.

‖Ñj,t‖F ≤
√
dmin‖Ñj,t‖op ≤ 3

√
dminκBκ

2duWγ−1 := DN

Using Lemma 11, we have Pr
[
‖
∑T0−k

t=0 Ñj,t‖F ≥ x
]
≤ 2e2 exp

(
−x2

2(T0−k)D2
N

)
. By substituting

Ñj,t by Nj,t − ÃjKB, it holds that Pr
[
‖Nj − ÃjKB‖F ≥

x
T0−k

]
≤ 2e2 exp

(
−x2

2(T0−k)D2
N

)
. Finally,

let ε = x
T0−k , we have

Pr
[
‖Nj − ÃjKB‖F ≥ ε

]
≤ 2e2 exp

(
−(T0 − k)ε2

2D2
N

)

We set 2e2 exp
(
−(T0−k)ε2

2D2
N

)
= δ

k to make above concentration inequality holds for each j ∈ [k]

with probability at least 1− δ, which implies that

ε = 3κBκ
2duWγ−1

√
2dmin log (2e2kδ−1)

T0 − k
.

Hence, we complete the proof.
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C.3.2 PROOF OF COROLLARY 7

We now present the proof of Corollary 7, i.e., the static policy regret of the controller. Corollary 7
states that when the system dynamics are known, SCREAM.CONTROL enjoys the following static
policy regret,

T∑
t=1

ct(xt, ut)−min
π∈Π

T∑
t=1

ct(x
π
t , u

π
t ) ≤ Õ(

√
T ), (61)

where the comparator set Π can be chosen as either the set of DAC policies or the set of strongly lin-
ear controllers. Let us denote the two comparator sets as ΠDAC and ΠSLC, respectively. Moreover,
when the system dynamics are unknown, using the identification algorithm of Hazan et al. (2020),
we can achieve an Õ(T 2/3) static regret, which also holds for either the set of DAC policies or the
set of strongly linear controllers. Therefore, in the following we will prove the statement for two
comparator sets separately.

Proof [of Corollary 7] When the comparator set Π is chosen as the set of DAC policies, i.e., π ∈
ΠDAC = {π(K,M) | M ∈ M}, the result of (61) can be easily obtained from Theorem 5 by
setting π1 = . . . = πT = π∗ ∈ arg minπ∈Π

∑T
t=1 ct(x

π
t , u

π
t ). Under such a case, the path-length

PT =
∑T

t=2‖Mt−1 −Mt‖F = 0, and thus

T∑
t=1

ct(xt, ut)− min
π∈ΠDAC

T∑
t=1

ct(x
π
t , u

π
t ) ≤ Õ(

√
T ).

On the other hand, when choosing the comparator set Π as ΠSL, i.e., π = K ∈ ΠSL = {K |
K is (κ, γ)-strongly stable}, we will need some efforts to prove the statement.

We show that the statement can be obtained by further incorporating Lemma 28, which demon-
strates that minimizing static policy regret over the DAC class is sufficient to deliver a policy regret
competing with the strongly linear controller class (Agarwal et al., 2019, Lemma 5.2). In fact,
denote by π∗ = K? = arg minK∈ΠSL

∑T
t=1 ct(x

K
t , u

K
t ) , and we have

T∑
t=1

ct(xt, ut)− min
π∈ΠSLC

T∑
t=1

ct(x
π
t , u

π
t )

=

T∑
t=1

ct(xt, ut)− min
π∈ΠDAC

T∑
t=1

ct(x
π
t , u

π
t ) + min

π∈ΠDAC

T∑
t=1

ct(x
π
t , u

π
t )−

T∑
t=1

ct(x
K∗
t , uK

∗
t )

≤ Õ(
√
T ) +

T∑
t=1

ct(x
π(M∆,K)
t , u

π(M∆,K)
t )−

T∑
t=1

ct(x
K∗
t , uK

∗
t )

≤ Õ(
√
T ) + T · 4GcDWHκ2

Bκ
6(1− γ)H−1γ−1

≤ Õ(
√
T ).

The first inequality uses the optimality of arg minπ∈ΠDAC

∑T
t=1 ct(x

π
t , u

π
t ) and π(M∆,K) is a DAC

policy with M∆ = (M
[0]
∆ , . . . ,M

[H−1]
∆ ) defined by M [i]

∆ = (K − K?)(A − BK?)i. The second
inequality holds by Lemma 28, and the final inequality holds by setting H = O(log T ).
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The above arguments hold for the known system setting. On the other hand, when the system
dynamics are unknown, using the system identification yields an additional estimation overhead of
order Õ(T 2/3) no matter which comparator set is chosen. Therefore, the overall regret remains
Õ(T 2/3) for unknown systems. Hence, we complete the proof.

C.4 Supporting Lemmas

In this part, we provide several supporting lemmas used frequently in the analysis of online non-
stochastic control. Most of them are due to the pioneering work of Agarwal et al. (2019), and we
adapt them to our notations and provide the proofs to achieve self-containedness. Specifically,

• Lemma 24 establishes the norm relations between the `1, op norm and Frobenius norm used
in theM-space.

• Lemma 25 checks the boundedness of several variables of interest.

• Lemma 26 shows several properties of the truncated functions {ft} and the feasible setM.

• Lemma 27 provides an upper bound for the norm of transfer matrix.

• Lemma 28 connects the DAC class and the strongly linear controller class.

• Lemmas 29 – 33 are useful for analysis in unknown systems.

Lemma 24 (Norm Relations). For any M = (M [1], . . . ,M [H]) ∈ M ⊆ (Rdu×dx)H , its `1, op
norm and Frobenius norm are defined by

‖M‖`1,op :=

H∑
i=1

‖M [i]‖op, and ‖M‖F :=

√√√√ H∑
i=1

‖M [i]‖2F.

We then have the following inequalities on their relations:

‖M‖`1,op ≤
√
H‖M‖F, and ‖M‖F ≤

√
d‖M‖`1,op, (62)

where d = min{du, dx}.

Proof [Proof of Lemma 24] Recall the matrix norm relations, we know that for any matrix X ∈
Rm×n,

‖X‖op ≤ ‖X‖F ≤
√
d‖X‖op.

Therefore, by definition and Cauchy-Schwarz inequality, we obtain

‖M‖`1,op =
H∑
i=1

‖M [i]‖op ≤
H∑
i=1

‖M [i]‖F ≤
√
H‖M‖F.

On the other hand, we have

‖M‖F =

√√√√ H∑
i=1

‖M [i]‖2F ≤
H∑
i=1

‖M [i]‖F ≤
H∑
i=1

√
d‖M [i]‖op =

√
d‖M‖`1,op.
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We thus complete the proof.

Lemma 25. Suppose K and K? are two (κ, γ)-strongly stable linear controllers (cf. Definition 3).
Define

D :=
W (κ3 +HκBκ

3τ)

γ(1− κ2(1− γ)H+1)
+
Wτ

γ
.

Suppose there exists a τ > 0 such that for every i ∈ {0, . . . ,H − 1} and every t ∈ [T ], ‖M [i]
t ‖F ≤

τ(1− γ)i. Then, we have

• ‖xKt (M0:t−1)‖ ≤ D, ‖yKt (Mt−H−1:t−1)‖ ≤ D, and ‖xK?

t ‖ ≤ D.

• ‖uKt (M0:t)‖ ≤ D, and ‖vKt (Mt−H−1:t)‖ ≤ D.

• ‖xKt (M0:t−1)− yKt (Mt−1−H:t−1)‖ ≤ κ2(1− γ)H+1D.

• ‖uKt (M0:t)− vKt (Mt−1−H:t)‖ ≤ κ3(1− γ)H+1D.

In above, the definitions of state xKt (M0:t−1) and corresponding DAC control uKt (M0:t) can be
found in Proposition 4, and the definitions of truncated state xKt (M0:t−1) and corresponding DAC
control vKt (M0:t) can be found in Definition 2. The definitions of state xK

?

t can be found (and will
be used) in Lemma 28.

Proof [of Lemma 25] We first study the state.

‖xKt (M0:t−1)‖ =

∥∥∥∥∥ÃH+1
K xKt−H−1(M0:t−H−2) +

2H∑
i=0

ΨK,H
t−1,i(Mt−H−1:t−1)wt−1−i

∥∥∥∥∥
≤ κ2(1− γ)H+1‖xKt−H−1(M0:t−H−2)‖+W

2H∑
i=0

‖ΨK,H
t−1,i(Mt−H−1:t−1)‖

≤ κ2(1− γ)H+1‖xKt−H−1(M0:t−H−2)‖+W
2H∑
i=0

(
κ2(1− γ)i +HκBκ

2τ(1− γ)i−1
)

≤ κ2(1− γ)H+1‖xKt−H(M0:t−H−1)‖+W (κ2 +HκBκ
2τ)/γ

≤ W (κ2 +HκBκ
2τ)

γ(1− κ2(1− γ)H+1)
≤ D, (63)

where inequality (63) is a summation of geometric series and the ratio of this series is κ2(1−γ)H+1.
Similarly,

‖yKt (Mt−1−H:t−1)‖ =

∥∥∥∥∥
2H∑
i=0

ΨK,H
t−1,i(Mt−1−H:t−1)wt−1−i

∥∥∥∥∥
≤W

2H∑
i=0

‖ΨK,H
t−1,i(Mt−1−H:t−1)‖
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≤W
2H∑
i=0

(
κ2(1− γ)i +HκBκ

2τ(1− γ)i−1
)

≤W
(
κ2 +HκBκ

2τ

γ

)
≤ D.

Besides,

‖xK?

t ‖ =

∥∥∥∥∥
t−1∑
i=0

ÃiK?wt−1−i

∥∥∥∥∥ ≤W
t−1∑
i=0

κ2(1− γ)i ≤ Wκ2

γ
≤ D.

So the difference can be evaluated as follows:

‖xKt (M0:t−1)− yKt (Mt−H−1:t−1)‖ = ‖ÃH+1
K xKt−H−1(M0:t−H−1)‖ ≤ κ2(1− γ)H+1D.

We now consider the action (or control signal).

‖uKt (M0:t)‖ =

∥∥∥∥∥−KxKt (M0:t−1) +
H∑
i=1

M
[i−1]
t wt−i

∥∥∥∥∥
≤ κ‖xKt (M0:t−1)‖+

H∑
i=1

Wτ(1− γ)i−1

≤ W (κ3 +HκBκ
3τ)

γ(1− κ2(1− γ)H+1)
+
Wτ

γ
≤ D.

Similarly,

‖vKt (Mt−H−1:t)‖ ≤ κ‖yKt (Mt−H−1:t−1)‖+
H∑
i=1

Wτ(1− γ)i−1 ≤ D.

The difference of the actions is

‖uKt (M0:t−1)−vKt (Mt−H−1:t−1)‖ = ‖−K(xKt (M0:t−1)−yKt (Mt−H−1:t−1))‖ ≤ κ3(1−γ)H+1D.

To reduce the online non-stochastic control to OCO with memory, in Definition 2 we define the
truncated loss ft :MH+2 7→ R as

ft(Mt−1−H:t) = ct(y
K
t (Mt−1−H:t−1), vKt (Mt−1−H:t)),

where yKt+1(Mt−H:t) =
∑2H

i=0 ΨK,H
t,i (Mt−H:t)wt−i and vKt+1(Mt−H:t+1) = −Kyt+1(Mt−H:t) +∑H

i=1M
[i−1]
t+1 wt+1−i. In the following lemma, we show several properties of the truncated functions

{ft} and the feasible setM such that we can further apply the results of OCO with memory.

Lemma 26. The truncated loss ft : MH+2 7→ R and the feasible set M satisfy the following
properties. For notational convenience, we first let D be defined the same as (41), and we restate it
below

D :=
Wκ3(1 +HκBτ)

γ(1− κ2(1− γ)H+1)
+
Wτ

γ
.
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(i) The function is Lf -coordinate-wise Lipschitz with respect to the Euclidean (i.e., Frobenius)
norm, namely,

|ft(Mt−H−1, . . . ,Mt−k, . . . ,Mt)|−|ft(Mt−H−1, . . . , M̃t−k, . . . ,Mt)| ≤ Lf‖Mt−k−M̃t−k‖F.

Besides,
Lf ≤ 3

√
HGcDWκBκ

3.

(ii) The gradient norm of surrogate loss f̃t :M 7→ R is bounded byGf , namely, ‖∇M f̃t(M)‖F ≤
Gf holds for any M ∈M and any t ∈ [T ]. Besides,

Gf ≤ 3Hd2GcWκBκ
3γ−1.

(iii) The diameter of the feasible set is at most Df , namely, ‖M −M ′‖F ≤ Df holds for any
M,M ′ ∈M. Besides,

Df ≤ 2
√
dκBκ

3γ−1.

Proof [of Lemma 26] We first prove the claim (i), i.e., the Lf -coordinate-wise Lipschitz continuity.
For simplicity, we will make use of the following definitions in the following arguments.

Mt−H−1:t := {Mt−H−1 . . .Mt−k . . .Mt}
Mt−H−1:t−1 := {Mt−H−1 . . .Mt−k . . .Mt−1}

M̃t−H−1:t := {Mt−H−1 . . . M̃t−k . . .Mt}

M̃t−H−1:t−1 := {Mt−H−1 . . . M̃t−k . . .Mt−1}

By representing ft using ct, we have

ft(Mt−H−1:t)− ft(M̃t−H−1:t)

= ct
(
yKt (Mt−H−1:t−1), vKt (Mt−H−1:t)

)
− ct

(
yKt (M̃t−H−1:t−1), vKt (M̃t−H−1:t)

)
≤ GcD‖yKt − ỹKt ‖+GcD‖vKt − ṽKt ‖,

(64)

where for convenience we use the notations yKt := yKt (M̃t−H−1:t−1), ỹKt := yKt (M̃t−H−1:t−1) and
vKt := vKt (Mt−H−1:t, ṽ

K
t := ṽKt (Mt−H−1:t. Besides, the last inequality holds because the norm of

‖yKt ‖, ‖ỹKt ‖, ‖vKt ‖, ‖ṽKt ‖ are all bounded by D, as shown in Lemma 25.
Then we try to bound ‖yKt − ỹKt ‖ and ‖vKt − ṽKt ‖.

‖yKt − ỹKt ‖ =

∥∥∥∥∥
2H∑
i=0

(
ΨK,H
t−1,i(Mt−H−1:t−1)−ΨK,H

t−1,i(M̃t−H−1:t−1)
)
wt−1−i

∥∥∥∥∥
=

∥∥∥∥∥ÃkKB
2H∑
i=0

(
M

[i−k−1]
t−k − M̃ [i−k−1]

t−k

)
1{i−k∈[H]}wt−1−i

∥∥∥∥∥
≤ κBκ2(1− γ)kW

H∑
i=1

‖M [i−1]
t−k − M̃

[i−1]
t−k ‖

≤ κBκ2W‖Mt−k − M̃t−k‖,

(65)
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and we have

‖vKt − ṽKt ‖ =

∥∥∥∥∥−K(yKt − ỹKt ) + 1{k=0}

H∑
i=1

(
M

[i−1]
t−k − M̃

[i−1]
t−k

)∥∥∥∥∥
≤ (κBκ

3W + 1)‖Mt−k − M̃t−k‖

≤ 2κBκ
3W‖Mt−k − M̃t−k‖.

(66)

Combining (64), (65), and (66), we obtain

ft(Mt−H−1:t)− ft(M̃t−H−1:t) ≤ GcD‖yKt − ỹKt ‖+GcD‖vKt − ṽKt ‖

≤ GcDκBκ2W‖Mt−k − M̃t−k‖+GcD2κBκ
3W‖Mt−k − M̃t−k‖

≤ 3GcDκBκ
3W‖Mt−k − M̃t−k‖.

So we have Lf ≤ 3GcDWκBκ
3.

Next, we prove the claim (ii), i.e., the boundedness of the gradient norm. Indeed, we will try to
bound ∇

M
[r]
p,q
f̃t(M) for every p ∈ [du], q ∈ [dx] and r ∈ {0, . . . ,H − 1},

∣∣∣∇
M

[r]
p,q
f̃t(M)

∣∣∣ ≤ Gc
∥∥∥∥∥∂yKt (M)

∂M
[r]
p,q

∥∥∥∥∥
F

+Gc

∥∥∥∥∥∂vKt (M)

∂M
[r]
p,q

∥∥∥∥∥
F

. (67)

So we will bound the two terms of the right hand side respectively.∥∥∥∥∥∂yKt (M)

∂M
[r]
p,q

∥∥∥∥∥
F

≤

∥∥∥∥∥∥
2H∑
i=0

H∑
j=0

[
∂ÃjKBM

[i−j−1]

∂M
[r]
p,q

]
wt−1−i1{i−j∈[H]}

∥∥∥∥∥∥
F

≤
r+H+1∑
i=r+1

∥∥∥∥∥∂Ãi−r−1
K BM [r]

∂M
[r]
p,q

wt−1−i

∥∥∥∥∥
F

≤WκBκ
2

∥∥∥∥∥∂M [r]

∂M
[r]
p,q

∥∥∥∥∥
F

r+H+1∑
i=r+1

(1− γ)i−r−1

≤ WκBκ
2

γ

∥∥∥∥∥∂M [r]

∂M
[r]
p,q

∥∥∥∥∥
F

≤ WκBκ
2

γ

(68)

∥∥∥∥∥∂vKt (M)

∂M
[r]
p,q

∥∥∥∥∥
F

≤ κ

∥∥∥∥∥∂yKt (M)

∂M
[r]
p,q

∥∥∥∥∥
F

+
H∑
i=1

∥∥∥∥∥∂M [i−1]

∂M
[r]
p,q

wt−i

∥∥∥∥∥
F

≤ WκBκ
3

γ
+W

∥∥∥∥∥∂M [r]

∂M
[r]
p,q

∥∥∥∥∥
F

≤W
(
κBκ

3

γ
+ 1

)
(69)
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Combining (67), (68), and (69), we obtain∣∣∣∇
M

[r]
p,q
f̃t(M)

∣∣∣ ≤ GcWκBκ
2

γ
+GcW

(
κBκ

3

γ
+ 1

)
≤ 3GcWκBκ

3γ−1.

Thus, ‖∇M f̃t(M)‖F at most 3Hd2GcWκBκ
3γ−1.

Finally, we prove the claim (iii), i.e., the upper bound of diameter of the feasible set.
Actually, the construction of feasible setM ensures that ∀i, 0 ≤ i ≤ H−1, ‖M‖[i]op ≤ κBκ3(1−

γ)i. Therefore, we have

max
M1,M2∈M

‖M1 −M2‖F
(62)
≤
√
d max
M1,M2∈M

‖M1 −M2‖`1,op

≤
√
d max
M1,M2∈M

(‖M1‖`1,op + ‖M2‖`1,op)

=
√
d max
M1,M2∈M

(
H−1∑
i=0

‖M [i]
1 ‖op + ‖M [i]

2 ‖op

)

≤
√
d max
M1,M2∈M

(
2

H−1∑
i=0

κBκ
3(1− γ)i

)

= 2
√
dκBκ

3
H−1∑
i=0

(1− γ)i

≤ 2
√
dκBκ

3γ−1.

Hence, we finish the proof of all three claims in the statement.

The following lemma provides an upper bound for the norm of transfer matrix.

Lemma 27. Suppose K is (κ, γ)-strongly stable as defined in Definition 3. Suppose there exists a
τ > 0 such that for every i ∈ {0, . . . ,H − 1} and every t ∈ [T ], ‖M [i]

t ‖F ≤ τ(1 − γ)i. Then, we
have

‖ΨK,h
t,i ‖ ≤ κ

2(1− γ)i1{i≤h} +HκBκ
2τ(1− γ)i−1. (70)

Proof [Proof of Lemma 27] We first expand ΨK,h
t,i by its definition (cf. Proposition 4 for its formal

definition):

‖ΨK,h
t,i ‖ =

∥∥∥∥∥∥ÃiK1{i≤h} +
h∑
j=0

ÃjKBM
[i−j−1]
t−j 1{1≤i−j≤H}

∥∥∥∥∥∥
≤ ‖ÃiK‖1{i≤h} +

H∑
j=1

‖ÃjKBM
[i−j−1]
t−j ‖ (71)

≤ κ2(1− γ)i +
H∑
j=1

κ2(1− γ)jκBτ(1− γ)i−j−1
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≤ κ2(1− γ)i + κ2κBτ
H∑
j=1

(1− γ)i−1

= κ2(1− γ)i +Hκ2κBτ(1− γ)i−1,

where inequality (71) has to be emphasized here that no matter what the index i is, once i is fixed,
to satisfy the condition 1 ≤ i − j ≤ H , there is at most H different values which j can take. And
that is why we can take j in range [H] as an upper bound.

In the following lemma, we show that minimizing the static policy regret over the DAC class
is sufficient to deliver a policy regret competing with the strongly linear controller class (Agarwal
et al., 2019, Lemma 5.2).

Lemma 28. WithK,K? chosen as the (κ, γ)-strongly stable linear controllers as defined in Defini-
tion 3 and under Assumption 5, there exists a DAC policy π(M∆,K) withM∆ = (M

[0]
∆ , . . . ,M

[H−1]
∆ )

defined by
M

[i]
∆ = (K −K?)(A−BK?)i (72)

such that

T∑
t=1

ct(x
K
t (M∆), uKt (M∆))−

T∑
t=1

ct(x
K?

t , uK
?

t ) ≤ T · 4GcDWHκ2
Bκ

6(1− γ)H−1γ−1, (73)

where xK
?

t is the state attained by executing a linear controllerK? which chooses the action uK
?

t =
−K?xK

?

t .

Proof [of Lemma 28] The coordinate-wise Lipschitzness of the cost functions implies that

ct
(
xKt (M∆), uKt (M∆)

)
− ct

(
xK

?

t , uK
?

t

)
≤ GcD

∥∥∥xKt (M∆)− xK?

t

∥∥∥+GcD
∥∥∥uKt (M∆)− uK?

t

∥∥∥ .
By the linear dynamical equation (9), we have

xK
?

t+1 =

t∑
i=0

(A−BK?)iwt−i =

t∑
i=0

ÃiK?wt−i (74)

By the property of the DAC policy (Proposition 4), we have

xKt+1(M∆) = Ãh+1
K xKt−h(M∆) +

H+h∑
i=0

ΨK,h
t,i (M∆)wt−i.

Setting h = t and combining the assumption that the starting state x0 = 0, we achieve the following
equation,

xKt+1(M∆) =

H∑
i=0

ΨK,t
t,i (M∆)wt−i +

t∑
i=H+1

ΨK,t
t,i (M∆)wt−i.
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Now we turn to calculate the transfer matrix ΨK,h
t,i (M∆) explicitly. Actually, for any i ∈ {0, . . . ,H},

h ≥ H , i.e., 0 ≤ i ≤ H ≤ h, by definition we have

ΨK,h
t,i (M∆) = ÃiK1{i≤h} +

h∑
j=0

ÃjKBM
[i−j−1]
∆ 1{i−j∈[H]}

= ÃiK +
i∑

k=1

Ãi−kK BM
[k−1]
∆ (75)

= ÃiK +
i∑

k=1

Ãi−kK B(K −K?)Ãk−1
K? (76)

= ÃiK +
i∑

k=1

Ãi−kK (ÃK? − ÃK)Ãk−1
K?

= ÃiK +

i∑
k=1

Ãi−kK ÃkK? − Ãi−k+1
K Ãk−1

K?

= ÃiK + ÃiK? − ÃiK
= ÃiK? ,

where (75) holds by introducing a new index k = i − j and (76) can be obtained by plugging the
construction of M [i]

∆ (72). So we achieve the conclusion that

xKt+1(M∆) =

H∑
i=0

ÃiK?wt−i +

t∑
i=H+1

ΨK,t
t,i (M∆)wt−i. (77)

Combining (74) and (77) yields∥∥∥xK?

t+1 − xKt+1(M∆)
∥∥∥ =

∥∥∥∥∥
t∑

i=H+1

(
ΨK,t
t,i (M∆)− ÃiK?

)
wt−i

∥∥∥∥∥
≤W

(
t∑

i=H+1

‖ΨK,t
t,i (M∆)‖+

t∑
i=H+1

‖ÃiK?‖

)

≤W

(
t∑

i=H+1

(
2κ2(1− γ)i +Hκ2

Bκ
5(1− γ)i−1

))
≤W

(
2κ2(1− γ)H+1γ−1 +Hκ2

Bκ
5(1− γ)Hγ−1

)
≤ κ2W (1− γ)Hγ−1

(
2(1− γ) +Hκ2

Bκ
3
)

≤ Hκ2
Bκ

5W (1− γ)Hγ−1(2(1− γ) + 1)

≤ 2WHκ2
Bκ

5(1− γ)Hγ−1,

where the second inequality makes use of Lemma 25. Next, we investigate the difference between
the control signals,

‖uK?

t+1 − uKt+1(M∆)‖ =

∥∥∥∥∥−K?xK
?

t+1 −

(
−KxKt+1(M∆) +

H∑
i=1

M
[i−1]
∆ wt+1−i

)∥∥∥∥∥
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=

∥∥∥∥∥−K?xK
?

t+1 +KxKt+1(M∆)−
H∑
i=1

(K −K?)Ãi−1
K? wt+1−i

∥∥∥∥∥
=

∥∥∥∥∥−K?

(
xK

?

t+1 −
H−1∑
i=0

ÃiK?wt−i

)
+K

(
xKt+1(M∆)−

H−1∑
i=0

ÃiK?wt−i

)∥∥∥∥∥
=

∥∥∥∥∥−K?
t∑

i=H

ÃiK?wt−i +K

t∑
i=H

ΨK,h
t,i (M∆)wt−i

∥∥∥∥∥
≤ 2WHκ2

Bκ
6(1− γ)H−1γ−1.

Using above inequalities and Lipschitz assumption as well as the boundedness result (Lemma 25),
we complete the proof.

The remaining part of this section lists useful supporting lemmas for studying non-stochastic
control in unknown systems.

Lemma 29 (Preservation of Stability). Under Assumption 6, if K is (κ, γ)-strongly stable for a lin-
ear dynamical system S = (A,B, {w}), i.e.,A−BK = QLQ−1, and ‖A−Â‖F, ‖A−Â‖F ≤ εA,B ,
then the same linear controller K is

(
κ, γ − 2κ3εA,B

)
-strongly stable for the estimated system

Ŝ = (Â, B̂, {ŵ}), i.e., Â− B̂K = QL̂Q−1, where ‖L̂‖ ≤ 1− γ + 2κ3εA,B .

Proof [of Lemma 29] First, we try to express the strong stability of K with respect to (Â, B̂) as

Â− B̂K = A−BK + (Â−A)− (B̂ −B)K

= QLQ−1 + (Â−A)− (B̂ −B)K

= Q
(
L+Q−1

(
(Â−A)− (B̂ −B)K

)
Q
)
Q−1

:= Q̂L̂Q̂−1,

where the last equality is by defining L̂ = L+Q−1((Â−A)− (B̂−B)K)Q. Further, the operator
norm of L̂ can be bounded as

‖L̂‖op = ‖L+Q−1
(

(Â−A)− (B̂ −B)K
)
Q‖op

≤ ‖L‖op + ‖Q−1‖op

(
‖Â−A‖op + ‖K‖op‖B̂ −B‖op

)
‖Q‖op

≤ (1− γ) + κ · (εA,B + κ · εA,B) · κ
≤ 1− γ + 2κ3εA,B.

By definition of strong stability, it holds that K is
(
κ, γ − 2κ3εA,B

)
-strongly stable for the esti-

mated system Ŝ = (Â, B̂, {ŵ}).

Lemma 30 (Bounds of disturbances in the fictitious system (Hazan et al., 2020, Lemma 18)). Under
Assumptions 4, 6, if it holds that εA,B ≤ 10−3κ−10γ2, then for any t ≥ T0 + 1,

‖xt‖2 ≤ 20
√
duκ

11γ−3W, ‖wt− ŵt‖2 ≤ 42
√
duκ

12γ−3WεA,B, ‖ŵt−1‖2 ≤ 2
√
duκ

3γ−1W.
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Lemma 31. Under Assumption 8, it holds that σmin(Ck) ≥ 1/
√
κc, where Ck is defined in (47).

Proof [of Lemma 31] Under Assumption 8, it holds that ‖(CkCT
k )−1‖op ≤ κc, i.e.,

σmax((CkC
T
k )−1) ≤ κc.

It is apparent that
(
(CkC

T
k )−1

)T
=
(
(CkC

T
k )T

)−1
= (CkC

T
k )−1, i.e., (CkC

T
k )−1 is a symmetric

matrix. Then we have

σmax((CkC
T
k )−1) = λmax

(
(CkC

T
k )−1

(
(CkC

T
k )−1

)T)
= λmax

(
(CkC

T
k )−1(CkC

T
k )−1

)
= λ2

max

(
(CkC

T
k )−1

)
≤ κc.

Finally we have σmin(Ck) = λmin(CkC
T
k ) ≥ 1/

√
κc, which finished the proof.

Lemma 32 ((Hazan et al., 2020, Lemma 17)). For any matrix pair L, L̂, such that ‖L‖op, ‖L̂‖op ≤
1− γ, γ ∈ (0, 1), we have

∑∞
t=0‖Lt − L̂t‖op ≤ 3γ−2‖L− L̂‖op.

Lemma 33 (Perturbation Analysis (Hazan et al., 2020, Lemma 22)). Let x? be the solution to linear
systemAx = b, and x̂ be the solution to (A+∆A)x = b+∆b, then if it holds that ‖∆A‖ ≤ σmin(A),
it is true that

‖x? − x̂‖ ≤ ‖∆b‖+ ‖∆A‖‖x?‖
σmin(A)− ‖∆A‖op

.

57


	Introduction
	Related Work
	Problem Setup and Preliminaries
	Problem Setup
	Static Policy Regret of OCO with Memory

	Online Convex Optimization with Memory
	A Gentle Start: known path-length PT
	Challenge: switching cost of meta-expert structure
	Algorithmically Enforcing Low Switching Cost: a new meta-expert decomposition

	Online Non-stochastic Control
	Problem Statement and Performance Measure
	Reduction to OCO with Memory
	Dynamic Policy Regret of Online Non-stochastic Control

	Empirical Studies
	Conclusion
	Preliminaries
	Dynamic Regret of Memoryless OCO
	Additional Notions
	Technical Lemmas

	Omitted Details for Section 4 (OCO with Memory)
	Proof of Theorem 2
	Proof of Switching Cost Decomposition
	Additional Results for Online Mirror Descent
	Proof of Theorem 3
	Discussion on Memory Dependence

	Omitted Details for Section 5 (Online Non-stochastic Control)
	Proof of Proposition 4 (DAC Parametrization)
	Proof of Theorem 5
	Reduction to OCO with Memory & Approximation Theorems
	Dynamic Regret Analysis over M-space
	Proof of Theorem 5

	Proofs of Corollary 6 and Corollary 7
	Proof of Corollary 6
	Proof of Corollary 7

	Supporting Lemmas


