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Machine Learning
• Machine Learning has achieved great success in recent years.

automatic drivingAlphaGo Games

recommendationimage recognition search engine voice assistant

large language modelmedical diagnosis
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Machine Learning
• A standard pipeline for machine learning deployments.

training data learning algorithm model

• Learning as optimization: using ERM to learn the model

learning the model based on the (offline)

training dataset      
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Online Learning
• In many applications, data are coming in an online fashion

species monitoring
summer

winter

urban computing route planning

• Online learning/optimization

- update the model in an iterated optimization fashion
- need to have guarantees for the online update
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Online Convex Optimization (OCO)
• View online learning as a game between learner and environment.

• Regret: online prediction as good as the best offline model

The learner’s excess loss compared to the best offline model in hindsight.
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Online Convex Optimization (OCO)
• Regret: online prediction as good as the best offline model

• There are plenty of prior efforts for regret minimization.

 Online Gradient Descent (OGD) 

 Other frameworks include online mirror descent and FTRL.



9Peng Zhao (Nanjing University)

Outline
• Background

• Motivation

• Our Approach

• Conclusion



10Peng Zhao (Nanjing University)

OCO: classic methods
• Classic Methods: require knowing the function curvature and 

obtain worst-case regret guarantees

Recent studies explore two levels of adaptivity.
• High-Level: adaptive to unknown function curvatures

• Low-Level: adaptive to unknown niceness of environments
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OCO: high-level adaptivity
• High-Level: adaptive to unknown function curvatures

universal algorithm

strongly 
convex

exp-
concaveconvex

Universal method aims to develop a single algorithm for different families: 
(i) agnostic to the specific function curvature; 
(ii) while achieving the same regret as if they were known.
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OCO: low-level adaptivity
• Low-Level: adaptive to unknown niceness of environments

Problem-dependent method aims to develop more adaptive bounds: 
(i) regret guarantee can be substantially improved for easy environments；
(ii) while can simultaneously safeguard the worst-case minimax rate.

measure the cumulative variations in gradients

Gradient variation:
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Guiding Question

Is it possible to design an algorithm with two-level adaptivity? 

i.e., universal to function curvature, and adaptive to gradient variations
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Main Result
• We provide an affirmative answer by providing the following result.

A single algorithm with simultaneously near-optimal gradient-variation 
regret bounds for convex/exp-concave/strongly convex functions.
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Why Gradient Variation?
• Importance in Theory and Practice:

• Exploiting the niceness of environments, while safeguarding the minimax rate

• Implications in Games & Stochastic Optimization
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Implications: Games
• Gradient Variation in Games: 

Example:

Rock Scissors Paper
Rock (0,0) (1,−1) (−1,1)

Scissors (−1,1) (0,0) (−1,1)
Paper (1,−1) (−1,1) (0,0)

Game matrix 𝑨𝑨

𝑥𝑥-player decision 𝐱𝐱𝑡𝑡 =
0
⁄1 2
⁄1 2

𝑦𝑦-player decision 𝐲𝐲𝑡𝑡 = ⁄1 2 ⁄1 2 0 ⊤

[Syrgkanis et al., NIPS'15]
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Implications: Games
• Gradient Variation in Games:

Gradient-variation online learning plays an important role in games.

Online Game Protocol

[Syrgkanis et al., NIPS'15]
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Implications: Games
Deploying gradient-variation algorithm (e.g., online mirror descent with last-round gradient) attains: 

negative stabilitygradient variation

Deploying gradient-variation algorithm (e.g., online mirror descent with last-round gradient) attains: 

negative stabilitygradient variation

Regret summation is usually related to some global performance measures 
in games, such as Nash equilibrium regret and duality gap.
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Implications: Games
Deploying gradient-variation algorithm (e.g., online mirror descent with last-round gradient) attains: 

negative stabilitygradient variation

Deploying gradient-variation algorithm (e.g., online mirror descent with last-round gradient) attains: 

negative stabilitygradient variation

which is essential for the             fast rate in games.
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Implications: Stochastic Opt. 

How is loss function
𝑓𝑓𝑡𝑡 generated?

stochastic optimization

adversarial optimization

 The studies on these two fields are previously separate.

• Gradient Variation in Stochastic/Adversarial Optimization :
[Sachs et al., NeurIPS'22]

 Recent works reveal the essential role of gradient variation, which provides 
an important interpolation between stochastic and adversarial optimization.
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• SEA (Stochastically Extended Adversarial) model 

Implications: Stochastic Opt. 
[Sachs et al., NeurIPS'22]

Two crucial complexity measures:

stochastic change adversarial change
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• SEA (Stochastically Extended Adversarial) model 

Implications: Stochastic Opt. 
[Sachs et al., NeurIPS'22]

stochastic change stochastic changeadversarial changegradient variation
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• Basic idea: Online Ensemble

Universal Online Learning

Meta Learner

Base Learners
for convex
function

for exp-concave
function

for strongly convex 
function

also used in non-stationary online learning (for dynamic/adaptive regret minimization)
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Universal Online Learning
• Regret decomposition: how to control meta-regret in two layers

meta regret base regret

(second-order bound, 
e.g., Adapt-ML-Prod) 

[Gaillard et al, COLT’14]

• Key idea: exploiting the second-order regret bound on the meta level
[Zhang et al., ICML’22]
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Universal Online Learning
• Regret decomposition: how to control meta-regret in two layers

meta regret base regret

• Key idea: exploiting the second-order regret bound on the meta level

e.g., exp-concave
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Universal Online Learning
• Regret decomposition: how to control meta-regret in two layers

meta regret base regret

• Key idea: exploiting the second-order regret bound on the meta level

e.g., strongly convex
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Universal Online Learning
• Regret decomposition: how to control meta-regret in two layers

meta regret base regret

• Key idea: exploiting the second-order regret bound on the meta level

e.g., convex
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• Multi-layer Online Ensemble

Our Approach

 Top layer & Middle layer: 

a two-layer meta learner

 Bottom layer: 

basic online ensemble ideaBottom Layer

Top Layer

Middle Layer

Why three layers? (mostly due to the technical reasons)
Technically, this is due to the simultaneous requirements of second-order bound (for universality) 
and negative terms (for gradient variation). So we have to use a two-layer online algorithm 
(MsMwC over MsMwC) [Chen-Wei-Luo, COLT’21] as the meta-learner.
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• Ingredient I: novel optimism to reuse historical gradients universally

Key Ingredients

To obtain gradient-variation bounds, we need to reuse historical data, 
i.e., optimistic online learning.

[Wei et al., NIPS’16] optimism
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• Ingredient I: novel optimism to reuse historical gradients universally

Key Ingredients

different parameters 
for different functions 

(not universal)

Challenge: can only use separate parameters to act as the optimism 

convex

exp-
concave

strongly
convex
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• Ingredient I: novel optimism to reuse historical gradients universally

Key Ingredients

algorithm stability

Our solution: convex

exp-
concave

strongly
convex

one parameter for different functions (universal)

universal parameter
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• Ingredient II: collaboration in multiple layers to handle the stability

Key Ingredients

meta stability

Two layers:
[Zhao et al, 2021]

- meta stability: handled by negative terms in meta regret
- weighted stability: collaboration among layers, penalizing unstable base learners

weighted combination of base stability
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• Ingredient II: collaboration in multiple layers to handle the stability

Key Ingredients

A principled way to control algorithmic stability in multi-layer structures.

Three layers:
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Algorithm
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Main Result
• The first universal algorithm with near-optimal gradient-variation regret.

Immediate implications to game theory and SEA model.
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• Stochastically Extended Adversarial (SEA) [Sachs et al., NeurIPS'22]

Result for SEA

Interpolation between stochastic and adversarial online convex optimization

Two crucial complexity measures:

stochastic change adversarial change
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• Min-Max Optimization 

Result for Games

Consider two aspects: 

(i)

(ii) honest: all players run the same algo; dishonest: otherwise (some may disobey)
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Conclusion
• Consider two-level adaptivity for online convex optimization.
• Universal online learning with Gradient-Variation Regret

• deploying a single algorithm to achieve multiple (near-)optimal guarantees for 
different function families

• using multi-layer online ensemble with carefully designed optimism and corrections 
to achieve the desired gradient-variation regret

• Gradient-variation regret is useful for game theory and stochastic opt.

• Open problems
• Is the three-layer ensembling structure necessary? 
• How to achieve the strictly optimal result for convex functions?
• How to extend to more challenging adaptive/dynamic regret minimization? 
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Collaborators

Zhi-Hua Zhou (NJU)Yu-Hu Yan (NJU) Lijun Zhang (NJU)Yu-Jie Zhang (U Tokyo)

Yu-Jie is actively finding the postdoc opportunity! 

Thanks!
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