

Universal Online Learning with Gradient-Variation Regret

Peng Zhao

School of AI, Nanjing University Dec. 18th @ UCSB

Outline

MANILY C UNIT

- Background
- Motivation
- Our Approach
- Conclusion

Outline

MANILY C UNIT

- Background
- Motivation
- Our Approach
- Conclusion

Machine Learning

- NANI-1760 UTUTU
- Machine Learning has achieved great success in recent years.

image recognition

search engine

voice assistant

recommendation

AlphaGo Games

automatic driving

medical diagnosis

Machine Learning

• A standard pipeline for machine learning deployments.

• Learning as optimization: using ERM to learn the model

$$\min_{\mathbf{x}\in\mathcal{X}}\sum_{i=1}^m \ell(\mathbf{x}; z_i)$$

learning the model based on the (offline) training dataset $S = \{z_1, \ldots, z_m\}$

Peng Zhao (Nanjing University)

Online Learning

- In many applications, data are coming in an *online* fashion
 - species monitoring summer winter winter species monitoring summer winter winter summer summer
- Online learning/optimization
 - update the model in an iterated optimization fashion
 - need to have guarantees for the online update

Online Convex Optimization (OCO)

• View online learning as a game between *learner* and *environment*.

At each round $t = 1, 2, \ldots, T$:

- the learner submits $\mathbf{x}_t \in \mathcal{X} \subseteq \mathbb{R}^d$
- at the same time, environments decide a convex loss function f_t
- the learner suffers $f_t(\mathbf{x}_t)$ and receives gradient information
- **Regret**: online prediction as good as the best offline model

$$\operatorname{Reg}_{T} = \sum_{t=1}^{T} f_{t}(\mathbf{x}_{t}) - \min_{\mathbf{x} \in \mathcal{X}} \sum_{t=1}^{T} f_{t}(\mathbf{x})$$

The learner's excess loss compared to the best offline model in hindsight.

Online Convex Optimization (OCO)

• **Regret**: online prediction as good as the best offline model

$$\operatorname{Reg}_{T} = \sum_{t=1}^{T} f_{t}(\mathbf{x}_{t}) - \min_{\mathbf{x} \in \mathcal{X}} \sum_{t=1}^{T} f_{t}(\mathbf{x})$$

• There are plenty of prior efforts for regret minimization.

Online Gradient Descent (OGD)

$$\mathbf{x}_{t+1} = \Pi_{\mathcal{X}} \left[\mathbf{x}_t - \eta_t \nabla f_t(\mathbf{x}_t) \right]$$

where $\Pi_{\mathcal{X}}[\cdot]$ denotes the Euclidean projection onto feasible domain \mathcal{X} .

Other frameworks include online mirror descent and FTRL.

Outline

• Background

Motivation

• Our Approach

Conclusion

OCO: classic methods

• Classic Methods: require knowing the *function curvature* and obtain *worst-case* regret guarantees

Function type	Algorithm	Regret
convex	Online Gradient Descent with $\eta_t \approx \frac{1}{\sqrt{t}}$	$\mathcal{O}(\sqrt{T})$
λ -strongly convex	Online Gradient Descent with $\eta_t = \frac{1}{\lambda t}$	$\mathcal{O}(\log T)$
α -exp-concave	Online Newton Step with α	$\mathcal{O}(d\log T)$

Recent studies explore two levels of adaptivity.

- High-Level: adaptive to *unknown function curvatures*
- Low-Level: adaptive to *unknown niceness of environments*

OCO: high-level adaptivity

• High-Level: adaptive to *unknown function curvatures*

Universal method aims to develop a single algorithm for different families:(i) agnostic to the specific function curvature;

(ii) while achieving the same regret as if they were known.

An algorithm achieves $\mathcal{O}(\sqrt{T})$, $\mathcal{O}(d \log T)$, and $\mathcal{O}(\log T)$ regret for convex/ exp-concave/str. convex functions, respectively.

OCO: low-level adaptivity

• Low-Level: adaptive to *unknown niceness of environments*

Problem-dependent method aims to develop more adaptive bounds:

- (i) regret guarantee can be substantially improved for easy environments;
- (ii) while can simultaneously safeguard the worst-case minimax rate.

Improved regret of $\mathcal{O}(\sqrt{V_T})$, $\mathcal{O}(d \log V_T)$, and $\mathcal{O}(\log V_T)$ can be attained for convex/ exp-concave/str. convex functions, respectively (using different algorithms).

Guiding Question

Is it possible to design an algorithm with two-level adaptivity?

i.e., universal to function curvature, and adaptive to gradient variations

OCO: high-level adaptivity

• High-Level: adaptive to unknown function curvatures

Universal method aims to develop a single algorithm for different families:

- (i) agnostic to the specific function curvature;
- (ii) while achieving the same regret as if they were known.

OCO: low-level adaptivity

• Low-Level: adaptive to unknown niceness of environments

Problem-dependent method aims to develop more adaptive bounds:

- (i) regret guarantee can be substantially improved for easy environments;
- (ii) while can simultaneously safeguard the worst-case minimax rate.

Peng Zhao (Nanjing University)

Peng Zhao (Nanjing University)

11

Main Result

• We provide an affirmative answer by providing the following result.

Theorem 1 (Yan-Z-Zhou; NeurIPS 2023). *Under standard assumptions, our algorithm ensures that*

- *it achieves* $O(\log V_T)$ *regret for strongly convex functions;*
- *it achieves* $O(d \log V_T)$ *regret for exp-concave functions;*
- *it achieves* $\widehat{\mathcal{O}}(\sqrt{V_T})$ *regret for convex functions.*

Here, $V_T = \sum_{t=2}^T \sup_{\mathbf{x} \in \mathcal{X}} \|\nabla f_t(\mathbf{x}) - \nabla f_{t-1}(\mathbf{x})\|^2$ is gradient variation and $\widehat{\mathcal{O}}(\cdot)$ omits $\log V_T$ factors.

A single algorithm with simultaneously near-optimal gradient-variation regret bounds for convex/exp-concave/strongly convex functions.

Why Gradient Variation?

• Importance in Theory and Practice:

- Exploiting the niceness of environments, while safeguarding the minimax rate
 - V_T denotes the variation in gradients that can be much smaller than $\mathcal{O}(T)$.
 - Gradient-variation regret bounds $\mathcal{O}(\log V_T)$, $\mathcal{O}(d \log V_T)$, and $\mathcal{O}(\sqrt{V_T})$ can recover the minimax rate of $\mathcal{O}(\log T)$, $\mathcal{O}(d \log T)$, and $\mathcal{O}(\sqrt{T})$.
- Implications in Games & Stochastic Optimization
 - Gradient variation bounds are essential for obtaining fast rates in games.
 - Gradient variation can bridge stochastic and adversarial optimization.

• Gradient Variation in Games: [Syrgkanis et al., NIPS'15]

• Gradient Variation in Games: [Syrgkanis et al., NIPS'15]

Online Game Protocol

The environments decide a payoff matrix \boldsymbol{A}

At each round $t = 1, 2, \ldots, T$:

- *x*-player submits $\mathbf{x}_t \in \Delta_d$ and *y*-player submits $\mathbf{y}_t \in \Delta_d$

- the *x*-player suffers loss $\mathbf{x}_t^{\top} A \mathbf{y}_t$ and receives gradient $A \mathbf{y}_t$, the *y*-player receives reward $\mathbf{x}_t^{\top} A \mathbf{y}_t$ and receives gradient $A \mathbf{x}_t$

Gradient-variation online learning plays an important role in games.

Deploying *gradient-variation algorithm* (e.g., online mirror descent with last-round gradient) attains:

$$\begin{aligned} f_t^x(\mathbf{x}) &\triangleq \mathbf{x}^\top A \mathbf{y}_t \\ f_{t-1}^x(\mathbf{x}) &\triangleq \mathbf{x}^\top A \mathbf{y}_{t-1} \end{aligned} \qquad & \operatorname{Reg}_T^x \lesssim 1 + \sum_{t=2}^T \|A\mathbf{y}_t - A\mathbf{y}_{t-1}\|_{\infty}^2 - \sum_{t=2}^T \|\mathbf{x}_t - \mathbf{x}_{t-1}\|_{1}^2 \\ & -\sum_{t=2}^T \|\mathbf{y}_t - \mathbf{y}_{t-1}\|_{1}^2 \\ & -\sum_{t=2}^T \|\mathbf{$$

Regret summation is usually related to some global performance measures in games, such as Nash equilibrium regret and duality gap.

Deploying *gradient-variation algorithm* (e.g., online mirror descent with last-round gradient) attains:

$$\begin{aligned} f_t^x(\mathbf{x}) &\triangleq \mathbf{x}^\top A \mathbf{y}_t \\ f_{t-1}^x(\mathbf{x}) &\triangleq \mathbf{x}^\top A \mathbf{y}_{t-1} \end{aligned} \qquad & \operatorname{Reg}_T^x \lesssim 1 + \sum_{t=2}^T \|A\mathbf{y}_t - A\mathbf{y}_{t-1}\|_{\infty}^2 - \sum_{t=2}^T \|\mathbf{x}_t - \mathbf{x}_{t-1}\|_{1}^2 \\ & \text{gradient variation negative stability} \end{aligned}$$

$$\begin{aligned} & \operatorname{Deploying gradient-variation algorithm}_{t-1}(\mathbf{e.g.}, \text{ online mirror descent with last-round gradient) attains:} \\ & f_t^y(\mathbf{y}) \triangleq \mathbf{x}_t^\top A \mathbf{y} \\ & f_{t-1}^y(\mathbf{y}) \triangleq \mathbf{x}_{t-1}^\top A \mathbf{y} \end{aligned} \qquad & \operatorname{Reg}_T^y \lesssim 1 + \sum_{t=2}^T \|\mathbf{x}_t^\top A - \mathbf{x}_{t-1}^\top A\|_{\infty}^2 - \sum_{t=2}^T \|\mathbf{y}_t - \mathbf{y}_{t-1}\|_{1}^2 \\ & - \sum_{t=2}^T \|\mathbf{y}_t - \mathbf{y}_{t-1}\|_{1}^2 \\ & \text{gradient variation negative stability} \end{aligned}$$

 $\implies \operatorname{Reg}_T^x + \operatorname{Reg}_T^y \leq \mathcal{O}(1)$ which is essential for the $\mathcal{O}\left(\frac{1}{T}\right)$ fast rate in games.

Implications: Stochastic Opt.

• Gradient Variation in Stochastic/Adversarial Optimization : [Sachs et al., NeurIPS'22]

- > The studies on these two fields are previously *separate*.
- Recent works reveal the essential role of *gradient variation*, which provides an important interpolation between stochastic and adversarial optimization.

Implications: Stochastic Opt.

• SEA (Stochastically Extended Adversarial) model [Sachs et al., NeurIPS'22]

Setup: at round $t \in [T]$, SEA optimizes $\min_{\mathbf{x} \in \mathcal{X}} f_t(\mathbf{x})$

 f_t is the *randomized function* sampled from underlying distribution \mathcal{D}_t : $f_t \sim \mathcal{D}_t$

 F_t is the expected function of $f_t: F_t(\cdot) \triangleq \mathbb{E}_{f_t \sim \mathcal{D}_t}[f_t(\cdot)]$

Implications: Stochastic Opt.

• SEA (Stochastically Extended Adversarial) model [Sachs et al., NeurIPS'22]

Setup: at round $t \in [T]$, SEA optimizes $\min_{\mathbf{x} \in \mathcal{X}} f_t(\mathbf{x})$

 f_t is the *randomized function* sampled from underlying distribution \mathcal{D}_t : $f_t \sim \mathcal{D}_t$

 F_t is the expected function of $f_t: F_t(\cdot) \triangleq \mathbb{E}_{f_t \sim \mathcal{D}_t}[f_t(\cdot)]$

 \implies SEA model can be solved by deploying gradient-variation algorithm over the randomized function $\{f_t\}_{t=1}^T$.

 $\frac{\nabla f_t(\mathbf{x}) - \nabla f_{t-1}(\mathbf{x})}{gradient \ variation} = \begin{bmatrix} \nabla f_t(\mathbf{x}) - \nabla F_t(\mathbf{x}) \end{bmatrix} + \begin{bmatrix} \nabla F_t(\mathbf{x}) - \nabla F_{t-1}(\mathbf{x}) \end{bmatrix} + \begin{bmatrix} \nabla F_{t-1}(\mathbf{x}) - \nabla f_{t-1}(\mathbf{x}) \end{bmatrix}$ $\frac{\nabla f_t(\mathbf{x}) - \nabla f_{t-1}(\mathbf{x})}{gradient \ variation} = \frac{stochastic \ change}{stochastic \ change} = \frac{stochastic \ change}{stochastic \ change}$ $Approximately \ V_T \approx \sigma_{1:T}^2 + \Sigma_{1:T}^2.$ For stochastic optimization, $\sigma_{1:T}^2 = \sigma^2 T$ and $\Sigma_{1:T}^2 = 0.$ For adversarial optimization, $\sigma_{1:T}^2 = 0$ and $\Sigma_{1:T}^2 = V_T.$

Outline

• Background

Motivation

• Our Approach

Conclusion

- Basic idea: Online Ensemble $\mathbf{x}_t = \sum_{i=1}^N p_{t,i} \mathbf{x}_{t,i}$
 - $\boldsymbol{p}_t = [p_{t,1}, \dots, p_{t,N}]^\top$ is the meta weight;
 - $\{\mathbf{x}_{t,i}\}_{t=1}^T$ is the base decisions of the *i*-th base learners, $i \in [N]$.

also used in non-stationary online learning (for dynamic/adaptive regret minimization)

• **Regret decomposition:** how to control meta-regret in two layers

$$\operatorname{REG}_{T} = \begin{bmatrix} T \\ \sum_{t=1}^{T} f_{t}(\mathbf{x}_{t}) - \sum_{t=1}^{T} f_{t}(\mathbf{x}_{t,i^{\star}}) \end{bmatrix} + \begin{bmatrix} T \\ \sum_{t=1}^{T} f_{t}(\mathbf{x}_{t,i^{\star}}) - \min_{\mathbf{x} \in \mathcal{X}} \sum_{t=1}^{T} f_{t}(\mathbf{x}) \end{bmatrix}$$

$$meta \ regret \qquad base \ regret$$

• Key idea: exploiting the *second-order regret bound* on the meta level

$$\sum_{t=1}^{T} \langle p_t, \ell_t \rangle - \sum_{t=1}^{T} \ell_{t,i} \leq \mathcal{O}\left(\sqrt{\sum_{t=1}^{T} r_{t,i}^2}\right) \xrightarrow{(second-order bound, e.g., Adapt-ML-Prod)}_{[Gaillard et al, COLT'14]}$$

$$\sum_{t=1}^{T} \ell_{t,i} \triangleq \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_{t,i} \rangle \qquad \sum_{t=1}^{T} \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}_{t,i^*} \rangle \lesssim \sqrt{\sum_{t=1}^{T} \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}_{t,i^*} \rangle^2}$$

• **Regret decomposition:** how to control meta-regret in two layers

$$\operatorname{REG}_{T} = \begin{bmatrix} T \\ \sum_{t=1}^{T} f_{t}(\mathbf{x}_{t}) - \sum_{t=1}^{T} f_{t}(\mathbf{x}_{t,i^{\star}}) \end{bmatrix} + \begin{bmatrix} T \\ \sum_{t=1}^{T} f_{t}(\mathbf{x}_{t,i^{\star}}) - \min_{\mathbf{x} \in \mathcal{X}} \sum_{t=1}^{T} f_{t}(\mathbf{x}) \end{bmatrix}$$

meta regret base regret

• Key idea: exploiting the *second-order regret bound* on the meta level

e.g., exp-concave

$$\sum_{t=1}^{T} f_t(\mathbf{x}_t) - \sum_{t=1}^{T} f_t(\mathbf{x}_{t,i^*}) \leq \sum_{t=1}^{T} \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}_{t,i^*} \rangle - \sum_{t=1}^{T} \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}_{t,i^*} \rangle^2 \leq \mathcal{O}(1)$$

• **Regret decomposition:** how to control meta-regret in two layers

$$\operatorname{REG}_{T} = \begin{bmatrix} T \\ \sum_{t=1}^{T} f_{t}(\mathbf{x}_{t}) - \sum_{t=1}^{T} f_{t}(\mathbf{x}_{t,i^{\star}}) \end{bmatrix} + \begin{bmatrix} T \\ \sum_{t=1}^{T} f_{t}(\mathbf{x}_{t,i^{\star}}) - \min_{\mathbf{x} \in \mathcal{X}} \sum_{t=1}^{T} f_{t}(\mathbf{x}) \end{bmatrix}$$

meta regret base regret

• Key idea: exploiting the *second-order regret bound* on the meta level

e.g., strongly convex

$$\implies \sum_{t=1}^{T} f_t(\mathbf{x}_t) - \sum_{t=1}^{T} f_t(\mathbf{x}_{t,i^\star}) \le \sum_{t=1}^{T} \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}_{t,i^\star} \rangle - \sum_{t=1}^{T} \|\mathbf{x}_t - \mathbf{x}_{t,i^\star}\|^2 \le \mathcal{O}(1)$$

• **Regret decomposition:** how to control meta-regret in two layers

$$\operatorname{REG}_{T} = \begin{bmatrix} T \\ \sum_{t=1}^{T} f_{t}(\mathbf{x}_{t}) - \sum_{t=1}^{T} f_{t}(\mathbf{x}_{t,i^{\star}}) \end{bmatrix} + \begin{bmatrix} T \\ \sum_{t=1}^{T} f_{t}(\mathbf{x}_{t,i^{\star}}) - \min_{\mathbf{x} \in \mathcal{X}} \sum_{t=1}^{T} f_{t}(\mathbf{x}) \end{bmatrix}$$

meta regret base regret

• Key idea: exploiting the *second-order regret bound* on the meta level

e.g., convex

$$\implies \sum_{t=1}^{T} f_t(\mathbf{x}_t) - \sum_{t=1}^{T} f_t(\mathbf{x}_{t,i^\star}) \le \sum_{t=1}^{T} \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}_{t,i^\star} \rangle \lesssim \sqrt{\sum_{t=1}^{T} \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}_{t,i^\star} \rangle^2}$$

Our Approach

• Multi-layer Online Ensemble

Top layer & Middle layer:
 a *two-layer meta learner* Bottom layer:
 basic online ensemble idea

Why three layers? (mostly due to the technical reasons)

Technically, this is due to the *simultaneous requirements of second-order bound (for universality)* and negative terms (for gradient variation). So we have to use a two-layer online algorithm (MsMwC over MsMwC) [Chen-Wei-Luo, COLT'21] as the meta-learner.

• Ingredient I: novel *optimism* to reuse historical gradients *universally*

To obtain gradient-variation bounds, we need to reuse historical data, i.e., optimistic online learning.

Recall meta regret:
$$\sum_{t=1}^{T} f_t(\mathbf{x}_t) - \sum_{t=1}^{T} f_t(\mathbf{x}_{t,i^*})$$

we optimize the linearized regret: $\sum_{t=1}^{T} r_{t,i^*} \triangleq \sum_{t=1}^{T} \langle \nabla f_t(\mathbf{x}_t), \mathbf{x}_t - \mathbf{x}_{t,i^*} \rangle$
Optimistic-Adapt-ML-Prod: $\sum_{t=1}^{T} r_{t,i^*} \leq \mathcal{O}\left(\sqrt{\sum_{t=1}^{T} (r_{t,i^*} - m_{t,i^*})^2 optimism}\right)$

• Ingredient I: novel *optimism* to reuse historical gradients *universally*

Goal: to ensure an $\mathcal{O}(1)$ meta regret for *exp-concave/strongly convex* functions, and $\mathcal{O}(\sqrt{V_T})$ meta regret for *convex* functions.

Challenge: can only use *separate* parameters to act as the optimism

$$\begin{array}{c} \hline m_{t,i} = \langle \nabla f_{t-1}(\mathbf{x}_{t-1}), \mathbf{x}_t - \mathbf{x}_{t,i} \rangle \end{array} \\ \hline m_{t,i} = 0 \end{array} \begin{array}{c} exp-\\concave\\m_{t,i} = 0 \end{array} \\ \hline m_{t,i} = 0 \end{array} \begin{array}{c} exp-\\concave\\m_{t,i} = 0 \end{array} \\ \hline m_{t,i} = 0 \end{array} \\ \hline m_{t,i} = 0 \end{array} \\ \hline \end{array} \\ \begin{array}{c} exp-\\convex\\convex \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} different \ parameters\\for \ different \ functions\\(not \ universal) \end{array} \\ \hline \end{array} \\ \end{array}$$

• Ingredient I: novel optimism to reuse historical gradients universally

• Ingredient II: *collaboration* in multiple layers to handle the *stability*

Goal: to ensure the stability $\sum_{t=2}^{T} ||\mathbf{x}_t - \mathbf{x}_{t-1}||_2^2$ can be handled by the negative regret within the dynamics of online ensemble.

• **Ingredient II**: *collaboration* in multiple layers to handle the *stability*

Goal: to ensure the stability $\sum_{t=2}^{T} ||\mathbf{x}_t - \mathbf{x}_{t-1}||_2^2$ can be handled by the negative regret within the dynamics of online ensemble.

Algorithm

Algorithm 1 Universal OCO with Gradient-variation Guarantees

Input: Curvature coefficient pool \mathcal{H} , MsMwC-MID number K, base learner number N 1: Initialize: Top layer: \mathcal{A}^{top} — MSMWC-TOP with $\eta_k = (C_0 \cdot 2^k)^{-1}$ and $\widehat{q}_{1,k} = \eta_k^2 / \sum_{k=1}^K \eta_k^2$ Middle layer: $\{\mathcal{A}_k^{\text{mid}}\}_{k \in [K]}$ — MSMWC-MID with step size $2\eta_k$ and $\hat{p}_{1,k,i} = 1/N$ Bottom layer: $\{\mathcal{B}_{k,i}\}_{k \in [K], i \in [N]}$ — base learners as specified in Section 2 2: for t = 1 to T do Receive $\mathbf{x}_{t,k,i}$ from $\mathcal{B}_{k,i}$, obtain $\mathbf{x}_{t,k} = \sum_{i} p_{t,k,i} \mathbf{x}_{t,k,i}$ and submit $\mathbf{x}_{t} = \sum_{k} q_{t,k} \mathbf{x}_{t,k}$ 3: Suffer $f_t(\mathbf{x}_t)$ and observe the gradient information $\nabla f_t(\cdot)$ 4: Construct (ℓ_t, m_t) (3.3) for \mathcal{A}^{top} and $(\ell_{t,k}, m_{t,k})$ (3.4) for $\mathcal{A}_k^{\text{mid}}$ 5: \mathcal{A}^{top} updates to \boldsymbol{q}_{t+1} and $\mathcal{A}_k^{\text{mid}}$ updates to $\boldsymbol{p}_{t+1,k}$ 6: **Multi-Gradient Feedback Model:** 7: $\triangleright \mathcal{O}(\log^2 T)$ gradient queries Send gradient $\nabla f_t(\cdot)$ to $\mathcal{B}_{k,i}$ for update 8: **One-Gradient Feedback Model:** 9: Construct surrogates $h_{t,i}^{\rm sc}(\cdot)$, $h_{t,i}^{\rm exp}(\cdot)$, $h_{t,i}^{\rm c}(\mathbf{x})$ using only $\nabla f_t(\mathbf{x}_t)$ 10: Send the surrogate functions to $\mathcal{B}_{k,i}$ for update ▷ Only *one* gradient query 11:

12: **end for**

Main Result

• The first *universal* algorithm with near-optimal *gradient-variation regret*.

Theorem 1 (Yan-Z-Zhou; NeurIPS 2023). *Under standard assumptions, our algorithm enjoys*

- *it achieves* $O(\log V_T)$ *regret for strongly convex functions;*
- *it achieves* $O(d \log V_T)$ *regret for exp-concave functions;*
- *it achieves* $\widehat{\mathcal{O}}(\sqrt{V_T})$ *regret for convex functions.*

Here, $V_T = \sum_{t=2}^T \sup_{\mathbf{x} \in \mathcal{X}} \|\nabla f_t(\mathbf{x}) - \nabla f_{t-1}(\mathbf{x})\|^2$ is gradient variation and $\widehat{\mathcal{O}}(\cdot)$ omits $\log V_T$ factors.

Immediate implications to game theory and SEA model.

Result for SEA

• Stochastically Extended Adversarial (SEA) [Sachs et al., NeurIPS'22]

Interpolation between stochastic and adversarial online convex optimization

Theorem 2. Under standard assumptions, our algorithm obtains $\mathcal{O}((\sigma_{\max}^2 + \Sigma_{\max}^2) \log(\sigma_{1:T}^2 + \Sigma_{1:T}^2))$ regret for strongly convex functions, $\mathcal{O}(d \log(\sigma_{1:T}^2 + \Sigma_{1:T}^2))$ regret for exp-concave functions and $\widehat{\mathcal{O}}(\sqrt{(\sigma_{1:T}^2 + \Sigma_{1:T}^2)})$ regret for convex functions.

Result for Games

Min-Max Optimization

Consider two aspects:

- (i) curvatures: *f* is bilinear/strongly convex-concave
- (ii) honest: all players run the same algo; dishonest: otherwise (some may disobey)

 $\min_{\mathbf{x}\in\mathcal{X}}\max_{\mathbf{y}\in\mathcal{Y}}f(\mathbf{x},\mathbf{y})$

Theorem 3. Under standard assumptions, for bilinear and strongly convex-concave games, our algorithm enjoys $\mathcal{O}(1)$ regret summation in the honest case, $\widehat{\mathcal{O}}(\sqrt{T})$ and $\mathcal{O}(\log T)$ bounds respectively in the dishonest case.

Conclusion

- Consider two-level adaptivity for online convex optimization.
- Universal online learning with Gradient-Variation Regret
 - deploying a single algorithm to achieve multiple (near-)optimal guarantees for different function families
 - using multi-layer online ensemble with carefully designed optimism and corrections to achieve the desired gradient-variation regret
 - Gradient-variation regret is useful for game theory and stochastic opt.
- Open problems
 - Is the three-layer ensembling structure necessary?
 - How to achieve the strictly optimal result for convex functions?
 - How to extend to more challenging adaptive/dynamic regret minimization?

Peng Zhao (Nanjing University)

Collaborators

Yu-Hu Yan (NJU)

Yu-Jie Zhang (U Tokyo)

Lijun Zhang (NJU)

Zhi-Hua Zhou (NJU)

Yu-Jie is actively finding the postdoc opportunity!

References

Y.-H. Yan, P. Zhao, and Z.-H. Zhou. Universal online learning with gradient variations: A multi-layer online ensemble approach. NeurIPS 2023. (major ref)

- P. Zhao, Y.-J. Zhang, L. Zhang, and Z.-H. Zhou. Adaptivity and non-stationarity: Problem-dependent dynamic regret for online convex optimization. ArXiv preprint: 2112.14368, 2021.
- L. Zhang, G. Wang, J. Yi, and T. Yang. A simple yet universal strategy for online convex optimization. ICML 2022.
- L. Chen, H. Luo, and C. Wei. Impossible tuning made possible: A new expert algorithm and its applications. COLT 2021.

References

V. Syrgkanis, A. Agarwal, H. Luo, and R. E. Schapire. Fast convergence of regularized learning in games. NIPS 2015.

- P. Gaillard, G. Stoltz, and T. van Erven. A second-order bound with excess losses. COLT 2014.
- S. Sachs, H. Hadiji, T. van Erven, and C. Guzmán. Between stochastic and adversarial online convex optimization: Improved regret bounds via smoothness. NeurIPS 2022.
- C. Wei, Y. Hong, and C. Lu. Tracking the best expert in non-stationary stochastic environments. NIPS 2016.