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Machine Learning

* Machine Learning has achieved great success in recent years.
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Hi, can you introduce yourself to us?

@ I'm ChatGPT, an Al language model developed by OpenAl. How can |
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Machine Learning

* A standard pipeline for machine learning deployments.
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* Learning as optimization: using ERM to learn the model

m

min S 4(x: 2;) learning the model based on the (offline)
XeA — training dataset S = {z1,...,2m}

Peng Zhao (Nanjing University)




Online Learning

 In many applications, data are coming in an online fashion

* Online learning/optimization

- update the model in an iterated optimization fashion

- need to have guarantees for the online update

Peng Zhao (Nanjing University) 6



Online Convex Optimization (OCO)

* View online learning as a game between learner and environment.

Ateachroundt=1,2,...,7T":

- the learner submits x; € X C R?

- at the same time, environments decide a convex loss function f;

- the learner suffers f;(x;) and receives gradient information

* Regret: online prediction as good as the best offline model

T T
Reg, =) fi(x) —min) fi(x)
t=1 t=1

The learner’s excess loss compared to the best offline model in hindsight.

Peng Zhao (Nanjing University)



Online Convex Optimization (OCO)

* Regret: online prediction as good as the best offline model
T T
Reg =) fi(x) —min} fi(x)
t=1 t=1

* There are plenty of prior efforts for regret minimization.

» Online Gradient Descent (OGD)
X1 = I [x¢ — 0V fe(x4)]

where Il v |-| denotes the Euclidean projection onto feasible domain X.

» Other frameworks include online mirror descent and FTRL.

Peng Zhao (Nanjing University)
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OCQO: classic methods

* Classic Methods: require knowing the function curvature and
obtain worst-case regret guarantees

Function type Algorithm Regret

convex Online Gradient Descent with 7; ~ % OKT)
A-strongly convex | Online Gradient Descent withn, = 55 | O(logT)
a-exp-concave Online Newton Step with «a O(dlogT)

Recent studies explore two levels of adaptivity.

* High-Level: adaptive to unknown function curvatures

* Low-Level: adaptive to unknown niceness of environments

Peng Zhao (Nanjing University)
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OCO: high-level adaptivity

* High-Level: adaptive to unknown function curvatures

Universal method aims to develop a single algorithm for different families:
(i) agnostic to the specific function curvature;
(i) while achieving the same regret as if they were known.

universal algorithm

N\
exp- strongly
concave convex

:> An algorithm achieves O(+/T), O(dlogT), and O(logT) regret for convex/
exp-concave/str. convex functions, respectively.

Peng Zhao (Nanjing University) 11



OCO: low-level adaptivity

* Low-Level: adaptive to unknown niceness of environments

Problem-dependent method aims to develop more adaptive bounds:
(i) regret guarantee can be substantially improved for easy environments;
(ii) while can simultaneously safeguard the worst-case minimax rate.

Gradient variation' w0l
I o(T)
2
Vi = E sup [|[Vfi(x) = Vi 1(x)]] 00 :
XEX B O(VT) |
measure the cumulative variations in gradients 0 w a0

j‘> Improved regret of O(v/Vr), O(dlog Vr), and O(log Vr) can be attained for convex/
exp-concave/str. convex functions, respectively (using different algorithms).

Peng Zhao (Nanjing University) 12



Guiding Question

Is it possible to design an algorithm with two-level adaptivity?

i.e., universal to function curvature, and adaptive to gradient variations

OCO: high-level adaptivity

* High-Level: adaptive to unknown function curvatures

Universal method aims to develop a single algorithm for different families:
(i) agnostic to the specific function curvature;
(ii) while achieving the same regret as if they were known.

universal algorithm

exp- strongly
concave convex

An algorithm achieves O(v/T), O(dlogT), and O(logT) regret for convex/
exp-concave /str. convex functions, respectively.

Peng Zhao (Nanjing University)

Peng Zhao (Nanjing University)

OCO: low-level adaptivity

* Low-Level: adaptive to unknown niceness of environments

Problem-dependent method aims to develop more adaptive bounds:
(i) regret guarantee can be substantially improved for easy environments;
(ii) while can simultaneously safeguard the worst-case minimax rate.

Gradient variation:
T
Vr £ Z sup ||V fe(x) = V fio1(x)]” 400
t—2 xeX
]
measure the cumulative variations in gradients ° w ™

|:> Improved regret of O(v/Vr), O(dlog V), and O(log V) can be attained for convex/
exp-concave/str. convex functions, respectively (using different algorithms).

Peng Zhao (Nanjing University) 11
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Main Result

* We provide an affirmative answer by providing the following result.

Theorem 1 (Yan-Z-Zhou; NeurIPS 2023). Under standard assumptions, our algorithm ensures that
e it achieves O(log Vi) regret for strongly convex functions;

e it achieves O(dlog V) regret for exp-concave functions;

o it achieves O(v/Vr) regret for convex functions.

Here, Vp = 3., sup, ey |V.fe(x) — V. fe_1(x)||? is gradient variation and O(-) omits log Vi factors.

A single algorithm with simultaneously near-optimal gradient-variation
regret bounds for convex/exp-concave/strongly convex functions.

Peng Zhao (Nanjing University) 14



Why Gradient Variation?

* Importance in Theory and Practice:

* Exploiting the niceness of environments, while safequarding the minimax rate

- Vr denotes the variation in gradients that can be much smaller than O(T).

- Gradient-variation regret bounds O(log V), O(dlog V1), and O(v/Vr) can
recover the minimax rate of O(logT"), O(dlog T'), and O(V/T).

* Implications in Games & Stochastic Optimization

- Gradient variation bounds are essential for obtaining fast rates in games.

- Gradient variation can bridge stochastic and adversarial optimization.

Peng Zhao (Nanjing University) 15



Implications: Games

* Gradient Variation in Games: [Syrgkanis et al., NIPS'15]

Example: 'G y-player decision y, = (1/,1/, o)’
Game matrix 4

Rock | Scissors | Paper
0 Rock | (0,0) | (1,-1) | (-1L1)
x-player decision X; = 1;2 Scissors | (=1,1)| (0,0) | (-1,1)
’ Paper |(1,—-1)| (—1,1) (0,0)

Peng Zhao (Nanjing University) 16



Implications: Games

* Gradient Variation in Games: [Syrgkanis et al., NIPS'15]

Online Game Protocol

The environments decide a payoff matrix A

Ateachroundt=1,2,...,T:
- z-player submits x; € Ay and y-player submits y; € Ay

- the z-player suffers loss x, Ay; and receives gradient Ay, the y-player
receives reward x,; Ay, and receives gradient Ax;

Gradient-variation online learning plays an important role in games.

Peng Zhao (Nanjing University) 17



Implications: Games

Deploying gradient-variation algorithm (e.g., online mirror descent with last-round gradient) attains

fi(x) £ x" Ay, . g 1 )
Regh S 1+ ) ([ Ay — Ayi-ald = > lIxe — x4l
fitq (%) = XTAYt—l t=2 t=2
gradient variation_ ﬂnegative stability

Deploying gradient-variation algorithm (e.g., online mirror descent Mt—round gradient) attains:

f(y) = X;r Ay y o T T 2 a 2
Reg; <1+ E :HXt A—x; 1 Al% — E |y — ye—1]3
L 1(y) = XZ—1AY t=2 t=2""" .
gradient variation negative stability

Regret summation is usually related to some global performance measures
in games, such as Nash equilibrium regret and duality gap.

Peng Zhao (Nanjing University) 18



Implications: Games

Deploying gradient-variation algorithm (e.g., online mirror descent with last-round gradient) attains

fi(x) £ x7 Ay, C N > % >
Regt S 1+ Ay — Ay allZ =D lIxe — %1l
A LT
fEi(x)=x Ay t=2 t=2
gradient variation_ ﬂnegative stability

Deploying gradient-variation algorithm (e.g., online mirror descent Mt—round gradient) attains:

f(y) = X;r Ay y o T T 2 a 2
Reg; <1+ E :HXt A—x; 1 Al% — E |y — ye—1]3
L 1(y) = XZ—1AY t=2 t=2""" .
gradient variation negative stability

—> Reg’. + Reg?. < O(1)  which is essential for the O (1) fast rate in games.

Peng Zhao (Nanjing University) 19



Implications: Stochastic Opt.

* Gradient Variation in Stochastic/Adversarial Optimization :
[Sachs et al., NeurIP’S'22]

stochastic optimization f ~ D

How is loss function
f¢ generated?

adversarial optimization { f: }{_1

» The studies on these two fields are previously separate.

» Recent works reveal the essential role of gradient variation, which provides
an important interpolation between stochastic and adversarial optimization.

Peng Zhao (Nanjing University) 20



Implications: Stochastic Opt.

* SEA (Stochastically Extended Adversarial) modelsachs et al, Newrirso2)

Setup: at round t € [T], SEA optimizes minyex f:(x)

f+ is the randomized function sampled from underlying distribution D;: f; ~ D,

F is the expected function of fi: Fi(-) 2 E ForDy LSt (4]

Two crucial complexity measures:

T T
olr 2 ) maxEy o [[VL(x)-VEX|?, Sip2E| ) sup |V F(x) - V(%)
t=1 t=2

stochastic change adversarial change

Peng Zhao (Nanjing University) 21



Implications: Stochastic Opt.

* SEA (Stochastically Extended Adversarial) modelsachs et al, Newrirso2)
Setup: at round t € [T], SEA optimizes minyex f:(x)

f+ is the randomized function sampled from underlying distribution D;: f; ~ D,

F is the expected function of fi: Fi(-) 2 E ForDy LSt (4]

—> SEA model can be solved by deploying gradient-variation algorithm over the
randomized function {f;}]1_,.

V fi(x)=V fio1(x) = [V [i(x) =V E(x)|+[VF(x) =V 1 (%) |+[VFi-1 (%) =V fi—1(x)]

gradient variation stochastic change adversarial change stochastic change

Approximately Vi ~ 0., + 2% .. For stochastic optimization, o7, = ¢°T and

>7., = 0. For adversarial optimization, ¢7.,. = 0 and 7., = V.

Peng Zhao (Nanjing University) 22



Outline

* Our Approach
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Universal Online Learning

[ [ [ ] N
e Basic idea: Online Ensemble x: = > ."  p:x:;

- Py = [Pe1s- - apt,N]T

is the meta weight;

- {x¢.;}{_; is the base decisions of the i-th base learners, i € [N].

for convex
function

for exp-concave
function

Meta Learner

Base Learners

for strongly convex

function

also used in non-stationary online learning (for dynamic/adaptive regret minimization)

Peng Zhao (Nanjing University)
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Universal Online Learning

* Regret decomposition: how to control meta-regret in two layers

T T T
REGy = |:Z ft (Xt) — Z ft (Xt,i*) Z Jt (Xt,z mln Z ft :|
t=1 t=1 t=1

meta regret base regret

* Key idea: exploiting the second-order regret bound on the meta level

[Zhang et al., ICML'22]
T T T
(second-order bound,
2
Z@ta by) — Z by <O Z Tt i e.g., Adapt-ML-Prod)
t=1 t=1 =L [Gaillard et al, COLT’14]

A

T T
by =(V g
:> ! fulbxe), %1, Z V fie(Xe), Xt — Xg0) S \l Z Vfe(Xe), Xe — Xy,i7)
t=1 t=1

é <pt7€t> E

Peng Zhao (Nanjing University) 25




Universal Online Learning

* Regret decomposition: how to control meta-regret in two layers

T T T
REGT = th(Xt)—th(Xt,i*) + th(xtz manft :|
t=1 t=1 t=1

meta regret base regret

* Key idea: exploiting the second-order regret bound on the meta level

A . T g
|:> Ui = (V fi(x¢),%X4,i) Z<Vft(Xt)7Xt — Xt ix) S \l Z Vfi(Xe), Xe — Xy 3% )?
t—1 t=1

Tt = <pt,€t> - Et,z‘

e.g., exp-concave

T T T T
:> th(xt)—z fe(Xe,i+) Z V fi(x¢), X=Xy, ix) Z Vfe(xe), % — %¢.0)° < O(1)
t=1 t=1 t=1

Peng Zhao (Nanjing University) 26



Universal Online Learning

* Regret decomposition: how to control meta-regret in two layers

T T T
REGT = th(Xt)—th(Xt,i*) + th(xtz manft :|
t=1 t=1 t=1

meta regret base regret

* Key idea: exploiting the second-order regret bound on the meta level

A . T g
|:> Ui = (V fi(x¢),%X4,i) Z<Vft(Xt)7Xt — Xt ix) S \l Z Vfi(Xe), Xe — Xy 3% )?
t—1 t=1

Tt = <pt,€t> - Et,z‘

e.g., strongly convex

:> th(xt) -

Peng Zhao (Nanjing University) 27
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Universal Online Learning

* Regret decomposition: how to control meta-regret in two layers

T T T
REGT = th(xt)—th(Xt,i*) + th(xtz manft :|
t=1 t=1 t=1

meta regret base regret

* Key idea: exploiting the second-order regret bound on the meta level

A . T g
|:> Ui = (V fi(x¢),%X4,i) Z<Vft(Xt)7Xt — Xt ix) S \l Z Vfi(Xe), Xe — Xy 3% )?
t—1 t=1

Tt = <pt,€t> - Et,z‘

e.g., convex - - . p -
|:> th(xt)_th(Xt,i*) < Z<vft(xt)7xt_xt,i*> N Z(Vft(xt)axt — X+ )° ~

Peng Zhao (Nanjing University) 28



Our Approach

* Multi-layer Online Ensemble

Top L
op HAyEr > Top layer & Middle layer:

a two-layer meta learner

Middle Layer
/ / \ > Bottom layer:
Q O @ Q Q‘O Q @ Bottom Layer basic online ensemble idea

Why three layers? (mostly due to the technical reasons)

Technically, this is due to the simultaneous requirements of second-order bound (for universality)
and negative terms (for gradient variation). So we have to use a two-layer online algorithm
(MsMwC over MSMWC) (Chen-weiLuo, coLT21] @S the meta-learner.

Peng Zhao (Nanjing University) 29



Key Ingredients

* Ingredient I: novel optimism to reuse historical gradients universally

To obtain gradient-variation bounds, we need to reuse historical data,
i.e., optimistic online learning.

Recall meta regret: Zle fe(x¢) — Zle fr(xei+)

we optimize the linearized regret: Zle Py e = Zle (V fi(xe),Xe — Xyg %)

Mﬂ

T
Optimistic-Adapt-ML-Prod: Z reic < O (7 ix — 1104 i

[Wei et al., NIPS'16] t=1 \ t=1 Optlmlsm

Peng Zhao (Nanjing University) 30



Key Ingredients

* Ingredient I: novel optimism to reuse historical gradients universally

Goal: to ensure an (1) meta regret for exp-concavel/strongly convex func-
tions, and O(/V7) meta regret for convex functions.

Challenge: can only use separate parameters to act as the optimism

My ; = <Vft—1(xt—1)axt — Xt,z‘>

different parameters
for different functions
(not universal)

concave

strongly
convex

Peng Zhao (Nanjing University) 31



Key Ingredients

* Ingredient I: novel optimism to reuse historical gradients universally

Our solution:
universal parameter

My =71 = (Vi1 (Xe—1), Xe—1 — Xe—1.4)

R exp-
concave
strongly
convex

(T
Z (V fi(x4),%xs — X¢.5+)°, (exp-concave & strongly convex)
t=1

one parameter for different functions (universal)

T
Zrtz* mtz §<

—1
t Vi + Z Ix; —x,—1||*.  (convex)

\

algorithm stability

Peng Zhao (Nanjing University) 32



Key Ingredients

* Ingredient II: collaboration in multiple layers to handle the stability

Goal: to ensure the stability 3, ||x; — x;_1 |3 can be handled by the negative
regret within the dynamics of online ensemble.

Two layers: al
. 2 S | Z >
[Zhao et al, 2021] H ¢ t 1H2 ~ ”pt pt—lHl - pt,@H t,2 t—1,2
=1
meta stability weighted combination of base stability

- meta stability: handled by negative terms in meta regret
- weighted stability: collaboration among layers, penalizing unstable|base learners

Z<£t+btapt e;+) <X|:>Z£t>pt ) < X — Zzptzbtz+zbtz*

t=1 t=1 1=1

Peng Zhao (Nanjing University) 33



Key Ingredients

* Ingredient II: collaboration in multiple layers to handle the stability

Goal: to ensure the stability ZtTZQ |x¢ — X4 1 Hg can be handled by the negative
regret within the dynamics of online ensemble.

Positive Term: ||x; — x;_1||?

Three layers: e el
Y 2 2

2
—q,_ ekl X — Xe—1,k |7 FAL X kr — X1 o ||
X, — E :K X ”Lc,lt_lulz kz::l Top Layer
t— k=1 9tk Xtk canceled by MSMWC-TOP -~ .
canceled by—ZfZ1 qt, kbt

N
Xtk = Zizl Pt k,iXt ki

N
e =i e 7 D Pk il Xehe i = X ke il
N i=1

~ . Middle Layer
canceled by MSMwC-MID ~ ~~ o
canceled by—Zﬁ\]:1 Dt k>, ibe k> i
A e — L2
+ A2 ”Xt,k*,z* Xt—1,k*,i* || Bottom Layer

A principled way to control algorithmic stability in multi-layer structures.

Peng Zhao (Nanjing University)
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Algorithm

Algorithm 1 Universal OCO with Gradient-variation Guarantees

Input: Curvature coefficient pool H, MSMwC-MID number K, base learner number N

1: Initialize: Top layer: AP — MSMWC-ToP with 7, = (Cp - 2¥)" Y and Gy, = 02/ S 1, 72
Middle layer: {A}"}cix] — MSMWC-MID with step size 27, and Py ; = 1/N
Bottom layer: { By, ; }re(k].ic[n] — base learners as specified in Section 2

2: fort =1to 7 do

3:  Receive x; j ; from By, ;, obtain x; p, = ) . Pt k.iX¢ ki and submit X, = ) |, g pX¢ k

4:  Suffer ft(xt) and observe the gradient information V fe(+)

5. Construct (£;, m;) (3.3) for AP and (£; i, My 1) (3.4) for A

6: A"Pupdates to q;11 and AM¢ updates to ps i1k

7:  Multi-Gradient Feedback Model:

3

: Send gradient V f;(-) to By_; for update > O(log® T) gradient queries
9:  One-Gradient Feedback Model:
10: Construct surrogates 73 (-), by} (+), h ;(x) using only V f; ()
11: Send the surrogate functions to By, ; for update > Only one gradient query
12: end for

Peng Zhao (Nanjing University) 35



Main Result

* The first universal algorithm with near-optimal gradient-variation regret.

Theorem 1 (Yan-Z-Zhou; NeurIPS 2023). Under standard assumptions, our algorithm enjoys
e it achieves O(log Vi) regret for strongly convex functions;

e it achieves O(dlog V) regret for exp-concave functions;

o it achieves O(v/Vr) regret for convex functions.

Here, Vp = 3., sup, ey |V.fe(x) — V. fe_1(x)||? is gradient variation and O(-) omits log Vi factors.

Immediate implications to game theory and SEA model.

Peng Zhao (Nanjing University) 36



Result for SEA

* Stochastically Extended Adversarial (SEA) isachs et al, Neurps22)

Interpolation between stochastic and adversarial online convex optimization

Two crucial complexity measures:

T T
ot = Z{(ﬂea%EwatH|Vft(X)—VFt(X)H2L Sir £ E ;igg IVFi(x) - VFtl(X)2]

stochastic change adversarial change

Theorem 2. Under standard assumptions, our algorithm obtains O((o2 . +32 .. ) log(o%.+
>2.7)) regret for strongly convex functions, O(dlog(o%.+37.7)) regret for exp-concave

functions and O(+/(02.,. + $2...)) regret for convex functions.

Peng Zhao (Nanjing University) 37



Result for Games

* Min-Max Optimization

min ma X
min y€3f;cf( ,Y)

Consider two aspects:

(i) curvatures: f is bilinear/strongly convex-concave

(ii) honest: all players run the same algo; dishonest: otherwise (some may disobey)

Theorem 3. Under standard assumptions, for bilinear and strongly convex-concave games,

our algorithm enjoys O(1) regret summation in the honest case, @(ﬁ) and O(logT)
bounds respectively in the dishonest case.

Peng Zhao (Nanjing University) 38



Conclusion

 Consider two-level adaptivity for online convex optimization.

* Universal online learning with Gradient-Variation Regret

 deploying a single algorithm to achieve multiple (near-)optimal guarantees for
different function families

* using multi-layer online ensemble with carefully designed optimism and corrections
to achieve the desired gradient-variation regret

* Gradient-variation regret is useful for game theory and stochastic opt.

* Open problems
* Is the three-layer ensembling structure necessary?
* How to achieve the strictly optimal result for convex functions?

* How to extend to more challenging adaptive/dynamic regret minimization?

Peng Zhao (Nanjing University) 39
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