
Preserving Locality in Vision Transformers

for Class Incremental Learning

Bowen Zheng1 Da-Wei Zhou1 Han-Jia Ye1 De-Chuan Zhan1

1National Key Laboratory for Novel Software Technology, Nanjing University

July 12th, 2023

1 / 14

https://www.2023.ieeeicme.org/index.php
https://www.nju.edu.cn
https://www.lamda.nju.edu.cn


Contents

Background and Motivation

Locality Degradation

Attention Heat Map Visualization

Quantitative Nonlocality Measure

Locality-Preserving Attention

Experiments

Locality Preserving

Performance

Representation Transferability

Hyperparameter Analysis

Summary

2 / 14



Class Incremental Learning
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Figure 1: Class Incremental Learning (CIL) and Catastrophic Forgetting
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Motivation

• We study an aspect of
vision Transformers used
in CIL, which is Locality .

• Locality means the
model’s ability to capture
local features.

• Locality is not properly
preserved in CIL.
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Figure 2: Locality Degradation
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Locality Degradation
Attention Heat Map Visualization

• Joint: Joint Learning,
where all of the presented
tasks are trained together
at each stage.

• In CIL, locality degrades
as the task goes on,
comparing to joint
learning.
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Figure 3: Attention Heat Map Visualization Examples
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Locality Degradation
Quantitative Nonlocality Measure

• Nonlocality of a layer:
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• For most layers, especially for
deep layers, the nonlocality
increases as the task goes on.

• Joint learning always has less
nonlocality for each layer.
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Figure 4: Nonlocality Measure
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Why the Difference?

• Shallow layers are more
transferable between tasks
than deep layers.

• In the prior experiments,
shallow layers has more
locality.

• The model is losing
task-agnostic information
during incremental learning.
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Figure 5: Transferability and Locality
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Locality-Preserving Attention (LPA)

• We directly introduce the locality into the unnormalized attention score.

• The attention now has two parts, the global attention score A(h) and the
local attention score v⊤

h r.

• The new attention score for each head:

Ã
(h)

= softmax(λhA
(h) + v⊤

h r), (3)

• We assign a weight λh to mix them up, and initialize it to a small value
to control the gradients at the initial steps of the training.
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Experiments
Locality Preserving

• We use LPA to replace each
layer of the vision
transformer.

• The LPA layer successfully
preserves the locality of ViT
during CIL, compared to
prior locality degradation
experiment. 0 2 4 6 8
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Figure 6: Locality Preserving
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Experiments
Performance

Table 1: Performance Results on CIFAR100

Scenarios baseline baseline
w/LPA

DyTox+ DyTox+
w/LPA

B10-10

Last 63.11 65.27 66.79 68.92

Avg 74.74 76.50 77.66 78.74

Fgt 12.52 11.20 15.36 14.30

B5-5

Last 60.23 60.38 62.60 63.99

Avg 72.91 73.14 76.02 77.21

Fgt 12.47 12.45 21.48 20.73

B50-10

Last 66.20 68.52 69.64 69.76

Avg 73.70 74.96 76.00 76.19

Fgt 11.82 10.02 9.464 9.708

B50-5

Last 63.77 65.54 65.70 66.71

Avg 71.86 73.08 73.30 74.27

Fgt 14.84 13.22 15.13 13.57

Table 2: Performance Results on ImageNet100

Scenarios baseline baseline
w/LPA

DyTox+ DyTox+
w/LPA

B10-10

Last 61.02 61.98 65.78 67.54

Avg 72.84 74.81 76.35 77.85

Fgt 14.38 16.16 17.89 17.02

B50-10

Last 68.10 70.74 71.32 71.70

Avg 75.62 76.83 78.08 78.46

Fgt 15.86 13.93 9.42 9.78

B50-5

Last 65.4 67.9 66.38 68.08

Avg 74.54 75.38 75.46 76.26

Fgt 19.75 18.30 16.92 16.31

10 / 14



Experiments
Representation Transferability

• We also investigate the
eigenvalue distribution of
representation’s covariance
matrix.

• With larger eigenvalues, the
representation transfer better
across tasks.

• With LPA, the eigenvalues are
larger, which means there are
more transferable directions
in the learned representation.
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Figure 7: Representation Transferability
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Experiments
λ Initialization

• λ is the weight for the global
part of the attention.

• The best region is around
0.02.
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Figure 8: Analysis on λ Initialization
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Experiments
Number of LPA Layers

• We replace the attention
layers one by one from the
shallow layers to deep layers.

• With more locality-preserved
attention layers, the
performance of incremental
learning can be steadily
improved.

0 1 2 3 4 5
number of LPA layers

74.75
75.00
75.25
75.50
75.75
76.00
76.25
76.50

Av
er

ag
e 

Ac
cu

ra
cy

Figure 9: Analysis on Number of LPA Layers
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Summary

• We discover the locality degradation in ViTs for CIL, and illustrate it
with visualizations and quantitative nonlocality measure.

• We attribute this phenomenon to losing task-agnostic information
during CIL.

• We propose LPA to preserve the locality in CIL.

• We performed experiments to verify the preserved locality and improved
performance and transferability.

Thank you for listening!
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