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Recent Advances in AI

Uriel Singer et al. Make-A-Video: Text-to-Video Generation without Text-Video Data. ICLR 2023.
Jay Zhangjie Wu et al. Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation. ICCV 2023.

Fu-Yun Wang et al. Gen-L-Video: Multi-Text to Long Video Generation via Temporal Co-Denoising. CoRR 2023.  



Can AI Manage Multiple Tasks Like Human? 



Human do Continual Learning

Continual learning is the constant development of increasingly complex behaviors; 
the process of building more complicated skills on top of those already developed.

MARK B. RING. CHILD: A First Step Towards Continual Learning. Machine Learning 1997.



Real World APPs Require Continual Learning

News will occur, and chatbot needs updating



Real World APPs Require Continual Learning

Close-word training

……

Real-world Application

New scenes will emerge, and self-driving vehicles need updating.



Real World APPs Require Continual Learning

Robot needs to learn new skills



Real World APPs Require Continual Learning

Face recognition system needs to 
authenticate new users



Real World APPs Require Continual Learning

Social network faces new relationships

Yuanning Cui et al. Lifelong Embedding Learning and Transfer for Growing Knowledge Graphs. AAAI 2023.



Problem Definition

▪Continual Learning (a.k.a. incremental learning/lifelong learning) 
refers to the scenario where the model needs to be continually 
updated with new data. 
▪Data comes in the stream format, which cannot be held for storage 
or privacy issues.

Zhiyuan Chen, Bing Liu. Lifelong Machine Learning. Morgan & Claypool 2018.



Problem Definition

▪Given a sequence of tasks (𝒳𝒳𝑡𝑡 ,𝒴𝒴𝑡𝑡) drawn from distribution 𝒟𝒟𝑡𝑡

▪During the training process of task 𝒯𝒯, we have limited or no access 
to former data (𝒳𝒳𝑡𝑡 ,𝒴𝒴𝑡𝑡), t < 𝒯𝒯
▪Goal: minimize the expected risk of all seen tasks

min�
𝑡𝑡=1

𝒯𝒯

𝔼𝔼(𝒳𝒳𝑡𝑡,𝒴𝒴𝑡𝑡) [ℓ 𝑓𝑓(𝒳𝒳𝑡𝑡;𝜃𝜃 ,𝒴𝒴𝑡𝑡]

Matthias De Lange et al. A continual learning survey: Defying forgetting in classification tasks. TPAMI 2021.

The specific setting counts on the definition of “task” (𝒳𝒳𝑡𝑡 ,𝒴𝒴𝑡𝑡)



Problem Definition

▪Class-Incremental Learning (CIL): classify among all seen classes
▪Task-Incremental Learning (TIL): classify among each (given) task
▪Domain-Incremental Learning (DIL): classify among all distributions

van de Ven, Tuytelaars, Tolias. Three types of incremental learning. NMI 2022.



Class-Incremental Learning (CIL)

▪Observed class labels are increasing {𝒴𝒴𝑡𝑡}⊂{𝒴𝒴𝑡𝑡+1}
▪Class distributions are changing 𝑃𝑃(𝒴𝒴𝑡𝑡) ≠ 𝑃𝑃 𝒴𝒴𝑡𝑡+1

▪ Input distribution is changing 𝑃𝑃(𝒳𝒳𝑡𝑡) ≠ 𝑃𝑃 𝒳𝒳𝑡𝑡+1

▪ Incrementally learn new classes to build a unified classifier



Task-Incremental Learning (TIL)

▪Training target is changing from task to task {𝒴𝒴𝑡𝑡} ≠ {𝒴𝒴𝑡𝑡+1}
▪ Input distribution is changing 𝑃𝑃(𝒳𝒳𝑡𝑡) ≠ 𝑃𝑃 𝒳𝒳𝑡𝑡+1

▪The task id (𝒕𝒕) is known during testing
▪An easier setting compared to CIL



Domain-Incremental Learning (DIL)

▪Class labels are constant 𝒴𝒴𝑡𝑡 = {𝒴𝒴𝑡𝑡+1}
▪Class distributions are constant 𝑃𝑃 𝒴𝒴𝑡𝑡 = 𝑃𝑃 𝒴𝒴𝑡𝑡+1

▪ Input distribution is changing 𝑃𝑃(𝒳𝒳𝑡𝑡) ≠ 𝑃𝑃 𝒳𝒳𝑡𝑡+1



Data split in CIL/TIL

▪Denote the total number of classes as C and the total number of 
tasks as N, there are two policies for class spilts:
▪Training from scratch (TFS)  Equally divide C classes into N tasks
▪Training from half (TFH)  Train C/2 classes in the first stage, and equally 
divide the other classes into the rest (N-1) tasks.

Class
1-20

Class
21-40

Class
41-60

Class
61-80

Class
81-100

TFS, 5 tasks

Class
1-50

Class
51-75

Class
76-100

TFH, 3 tasks



▪ Image classification
▪CIFAR100 [Rebuffi et al., CVPR’17]

▪ImageNet1000/ImageNet100 [Rebuffi et al., CVPR’17]

▪MNIST [Lopez-Paz et al., NIPS’17]

▪etc

▪NLP
▪Named-entity recognition: CoNLL-03, OntoNotes [Monaikul et al., AAAI’21]

▪Intent classification: CLINC150, HWU64, BANKING77 [Varshney et al., ACL’22]

▪Classification: Stackoverflow, FewRel [Varshney et al., ACL’22]

▪etc

Benchmarks datasets in CIL/TIL

Da-Wei Zhou et al. Deep Class-Incremental Learning: A Survey. CoRR 2023.
Zixuan Ke, Bing Liu. Continual Learning of Natural Language Processing Tasks: A Survey. CoRR 2022.  



Data split in DIL

▪Denote the total number of classes as C and the total number of 
tasks as N, each training task is combined of the C classes from a 
different domain:

Class
1-C

Domain 1

Class
1-C

Domain 2

Class
1-C

Domain 3

Class
1-C

Domain 4



Benchmark datasets in DIL

▪ Image classification
▪MNIST-permutation [van de Ven et al., NMI’22]

▪CDDB [Wang et al., NeurIPS’22]

▪CORe50 [Wang et al., NeurIPS’22]

▪DomainNet [Wang et al., NeurIPS’22]

▪etc
▪NLP
▪Paraphrase: Quora, Twitter and Wiki data [Li et al., NAACL’22]

▪Dialogue state tracking: TaskMaster, Schema Guided Dialogue, MultiWoZ
[Madotto et al., EMNLP’21]

▪Question answering: AGNews, DBPedia, Yahoo [Wang et al., EMNLP’20]

▪etc
Da-Wei Zhou et al. Deep Class-Incremental Learning: A Survey. CoRR 2023.

Zixuan Ke, Bing Liu. Continual Learning of Natural Language Processing Tasks: A Survey. CoRR 2022.  



Relationship with other topics

Task 1 Task 3Task 2

Model

Test Set 1 Test Set 2

Train

Model

Train

Model

Test Set 3

Train

Multi-task Learning
Transfer Learning

Meta-Learning
…



Multi-task Learning
Task 1 Task 3Task 2

Test Set

Train

 Get all data at once
 Offline training



Transfer Learning
Source Target

Test Set

Train

 Only two stages
 Do not care source performance

Train

Transfer

Test



Meta-Learning
Task 1 Task 3Task 2

Train

 Offline training
 Do not care meta-train performance

Meta-Train 

Task

Test Meta-Test

Train

Test Set



Applications of Continual Learning

Object Detection
[Yang et al. CVPR’22]

Semantic Segmentation
[Zhang et al. NeurIPS’22]

Re-ID
[Pu et al. CVPR’21]

Diffusion
[Smith et al. CoRR’23]

Binbin Yang et al. Continual Object Detection via Prototypical Task Correlation Guided Gating Mechanism. CVPR 2022.
Bowen Zhang et al. SegViT: Semantic Segmentation with Plain Vision Transformers. NeurIPS 2022.  

Nan Pu et al. Lifelong Person Re-Identification via Adaptive Knowledge Accumulation. CVPR 2021.
James Seale Smith et al. Continual Diffusion: Continual Customization of Text-to-Image Diffusion with C-LoRA. CoRR 2023. 



▪Target: obtain the knowledge of all tasks seen so far

Expected capabilities of continual learning

Task 1 Task 3Task 2

Model

Test Set 1 Test Set 2

Train

Model

Train

Model

Test Set 3

Train

Task 1

Model

Train

Task 2

Model

Train

How about finetuning the 
current model with new data? 



Catastrophic forgetting

Task 1 Task 2

Model Model

Train Train Bird Dog Fish

“Tiger”
Tiger

Bird Dog Fish

“Fish”
Tiger

New task

Old task

Predict

 Continual learning of new tasks will erase the semantic 
information of former tasks when learning new tasks.



Catastrophic forgetting

▪“the process of learning a new set of patterns suddenly and completely 
erased a network’s knowledge of what it had already learned” [French 1999] 

▪ [McCloskey and Cohen, 1989] identifies catastrophic forgetting phenomena:

Robert M. French. Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences 1999.
Michael McCloskey, Neal J. Cohen. Catastrophic interference in connectionist networks: The sequential learning problem. 

Psychology of Learning and Motivation 1989.  

1+1
2+1
3+1
1+2
1+3
1+4

1+2
2+2
3+2
2+1
2+3
2+4

One’s problem Two’s problem

Learning new task results in 
forgetting of old task!



Catastrophic forgetting

▪ In continual learning, the model is expected to 
learn without forgetting.
▪Stability: the ability to maintain old knowledge  
▪Plasticity: the ability to learn new knowledge

Stability Plasticity

Stephen Grossberg. Studies of Mind and Brain Neural Principles of Learning, Perception, Development, Cognition, and Motor Control 1982.
G A Carpenter, S Grossberg. ART 2: self-organization of stable category recognition codes for analog input patterns. Pattern Recognition by 

Self-Organizing Neural Networks 1987.  



Catastrophic forgetting in Neuroscience

▪Synaptic plasticity, the ability of neurons to 
modify their connections, is involved in 
brain network remodeling following 
different types of brain damage.
▪Dendritic spines are the major loci of 
synaptic plasticity and are considered as 
possible structural correlates of memory. 

Mario Stampanoni Bassi et al. Synaptic Plasticity Shapes Brain Connectivity: Implications for Network Topology. International Journal of Molecular Sciences 2019.
Akiko Hayashi-Takagi et al. Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 2015.  

Observation: important parts in the network can be frozen or 
regularized to resist forgetting



Catastrophic forgetting in Neuroscience

▪Complementary Learning Systems
Hippocampus for fast learning
Neocortex for slow learning

Hippocampus consolidates knowledge 
in neocortex by “replay”

Observation: former knowledge can be recovered by experience replay

German I. Parisi et al. Continual Lifelong Learning with Neural Networks: A Review. Neural Networks 2019.
James L McClelland et al. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of 

connectionist models of learning and memory. Psychological Review 1995.  



Evaluation metrics in Continual Learning

▪Splitting the data into 𝑇𝑇 tasks, denote 𝑎𝑎𝑖𝑖,𝑗𝑗 as the accuracy of task 𝑗𝑗
after learning task 𝑖𝑖.

▪Accuracy ACC = 1
𝑇𝑇
∑𝑖𝑖=1𝑇𝑇 𝑎𝑎𝑇𝑇,𝑖𝑖  average accuracy of all tasks after the 

last incremental stage
Arslan Chaudhry et al. Riemannian walk for incremental learning: Understanding forgetting and intransigence. ECCV 2018.



Evaluation metrics in Continual Learning

▪Forgetting = 1
𝑇𝑇−1

∑𝑗𝑗=1𝑇𝑇−1 𝑓𝑓𝑇𝑇,𝑗𝑗, 𝑓𝑓𝑘𝑘,𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑙𝑙∈{1,⋯,𝑘𝑘−1}

𝑎𝑎𝑙𝑙,𝑗𝑗 − 𝑎𝑎𝑘𝑘,𝑗𝑗 ,∀𝑗𝑗 < 𝑘𝑘

▪Backward Transfer (BWT) = 1
𝑇𝑇−1

∑𝑗𝑗=1𝑇𝑇−1 𝑎𝑎𝑇𝑇,𝑗𝑗 − 𝑎𝑎𝑗𝑗,𝑗𝑗

▪BWT is (usually) the negative forgetting measure

Gap between best performance 
and last performance

Arslan Chaudhry et al. Riemannian walk for incremental learning: Understanding forgetting and intransigence. ECCV 2018.
David Lopez-Paz, Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. NIPS 2017.



Evaluation metrics in Continual Learning

▪ Intransigence IMj = 𝑎𝑎𝑗𝑗∗ − 𝑎𝑎𝑗𝑗,𝑗𝑗  Gap between offline training and CL

▪Forward Transfer (FWT) = 1
𝑇𝑇−1

∑𝑗𝑗=2𝑇𝑇 𝑎𝑎𝑗𝑗−1,𝑗𝑗 − 𝑎𝑎0,𝑗𝑗  The “zero-shot” 
ability gained from the continual learning process

Arslan Chaudhry et al. Riemannian walk for incremental learning: Understanding forgetting and intransigence. ECCV 2018.
David Lopez-Paz, Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. NIPS 2017.

Randomly initialized 
model 𝑎𝑎0,𝑗𝑗

𝑎𝑎0,𝑇𝑇−1 𝑎𝑎0,𝑇𝑇



Evaluation metrics in CIL

▪ In Class-Incremental Learning, apart from the accuracy of the last 
stage, we also consider the average accuracy along each stage

𝐴̅𝐴 = 1
𝑇𝑇
∑𝑖𝑖=1𝑇𝑇 𝐴𝐴𝐴𝐴𝐶𝐶𝑖𝑖

Da-Wei Zhou et al. Deep Class-Incremental Learning: A Survey. CoRR 2023.



Resources for Continual Learning

Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, De-Chuan Zhan. PyCIL: A Python Toolbox for Class-Incremental Learning. SCIENCE CHINA Information Sciences 2023.
Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan, Ziwei Liu. Deep class-incremental learning: A survey. CoRR 2023.

https://github.com/G-U-N/PyCIL

CIFAR-100 Reproduced

Comprehensive ⋅  Benchmark  ⋅  Extendable  ⋅ Maintained  



Resources for Pre-trained Continual Learning

Hai-Long Sun, Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan. PILOT: A Pre-Trained Model-Based Continual Learning Toolbox. CoRR 2023.

https://github.com/sun-hailong/LAMDA-PILOT

CIFAR-100 Reproduced

Comprehensive ⋅  Benchmark  ⋅  Extendable  ⋅ Maintained  
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Taxonomy

Continual Learning

Data-Centric

Model-Centric

Algorithm-Centric

Data Replay

Data Regularization

Parameter Regularization

Dynamic Networks

Knowledge Distillation

Model Rectify

Direct Replay

Generative Replay

Neuron Expansion

Backbone Expansion

Prompt Expansion

Feature Rectify

Logit Rectify

Weight Rectify

Logit Distillation

Feature Distillation

Relational Distillation

Da-Wei Zhou et al. Deep Class-Incremental Learning: A Survey. CoRR 2023.



▪Core Idea: hosting the data to replay former knowledge when 
learning new, or exert regularization terms with former data
▪Data Replay: save a limited number of former instances for rehearsal when 
learning new
▪Data Regularization: regularize the optimization direction of the model with 
restriction of former instances

Data-Centric Methods

Data-Centric

Data Replay

Data Regularization

Direct Replay

Generative Replay



Direct replay

 Saving a fixed-size subset of “old data” to replay 
when learning new knowledge [Robins. Connection 
Science’95] [Rebuffi et al. CVPR’17] 

min
𝜃𝜃

�
𝒙𝒙∈ 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛∪𝒙𝒙𝑜𝑜𝑜𝑜𝑜𝑜

ℓ(𝑓𝑓(𝑥𝑥),𝑦𝑦)

 How to host the exemplar set?

Task 1 Task 2

Exemplar Set Sylvestre-Alvise Rebuffi et al. iCaRL: Incremental Classifier and Representation Learning. CVPR 2017.



Hosting exemplar set

▪How to choose the exemplars [Welling ICML’09]

▪How to maintain a limited number of exemplars as data evolves

Class Center

 Calculate the class center in the embedding 
space, and rank the instances via the 
distance to the center

𝜇𝜇 ←
1
𝑛𝑛
�
𝑥𝑥∈𝑋𝑋

𝜑𝜑(𝑥𝑥)

Max Welling. Herding dynamical weights to learn. ICML 2009.
Sylvestre-Alvise Rebuffi et al. iCaRL: Incremental Classifier and Representation Learning. CVPR 2017.



Hosting exemplar set

▪How to choose the exemplars [Welling ICML’09]

▪How to maintain a limited number of exemplars as data evolves

 Delete the old and include the new ones by 
the distance to the class center

 We keep 8 exemplars in total. 
In the first stage, we have 4 exemplars/class. 
In the second stage, we have 2 exemplars/class

Sylvestre-Alvise Rebuff et al. iCaRL: Incremental Classifier and Representation Learning. CVPR 2017.



Replay with optimizable exemplars

▪Can we optimize the exemplar selection process?

Yaoyao Liu et al. Mnemonics Training: Multi-Class Incremental Learning without Forgetting. CVPR 2020.

 Formulating the selection process as bilevel 
optimization

 Learned exemplars are situated near the 
decision boundary



Memory-Efficient Replay 

▪Exemplars are raw images; can we make the saving process 
memory-efficient?

▪However, corresponding learning algorithms need to be designed to 
overcome the distribution gap

A raw image costs
3*224*224 Bytes

A low-resolution image 
costs 3*32*32 Bytes

An extracted feature 
costs 512 Bytes



Memory-Efficient Replay 

 Learn an extra encoder-decoder to map the 
low-resolution images into raw-images

Hanbin Zhao et al. Memory Efficient Class-Incremental Learning for Image Classification. TNNLS 2021.
Ahmet Iscen et al. Memory-Efficient Incremental Learning Through Feature Adaptation. ECCV 2020.

 Learn an extra adaptation lay to 
map old features into new features



Feature Replay

▪Modelling the distribution of former classes as Gaussian distribution

Fei Zhu et al. Prototype augmentation and self-supervision for incremental learning. CVPR 2021.



Generative Replay

▪Can we utilize generative models to learn the distributions of old 
classes, so that we have inexhaustible exemplars

 The model (Scholar) is combined of a generator G and 
a classification model C

 In each new task, utilize the generated old instances 
and current task instances to train a new G and new C



Generative Replay

 We can combine various kinds of generative models…

GAN
[Shin et al. NIPS’17]

VQ-VAE
[Jiang et al. CVPRW’21]

Deep Inversion
[Smith et al. ICCV’21]

Diffusion
[Gao et al. ICML’23]

Hanul Shin et al. Continual learning with deep generative replay. NIPS 2017.
Jian Jiang et al. IB-DRR - Incremental Learning with Information-Back Discrete Representation Replay. CVPRW 2021.  

James Smith et al. Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning. ICCV 2021.
Rui Gao et al. DDGR: Continual Learning with Deep Diffusion-based Generative Replay. ICML 2023. 



Data Regularization

▪Data replay directly rehearsals the instances during training, aiming 
to lower the loss of both old and new instances.
▪Can we achieve this goal from another perspective?

minimize𝜃𝜃 ℓ 𝑓𝑓𝜃𝜃(𝑥𝑥),𝑦𝑦
𝑠𝑠. 𝑡𝑡. ℓ 𝑓𝑓𝜃𝜃 ,ℳ𝑘𝑘 ≤ ℓ 𝑓𝑓𝜃𝜃

𝑡𝑡−1,ℳ𝑘𝑘 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 < 𝑡𝑡

Training loss of the current task
Obtaining the new knowledge

Maintaining the loss of former tasks
Remembering the old knowledge

David Lopez-Paz, Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. NIPS 2017.



Data Regularization

▪Ensuring the loss of former tasks not increase

▪Making the angle between losses to be acute

▪Projecting the gradient if violated

minimize𝜃𝜃 ℓ 𝑓𝑓𝜃𝜃(𝑥𝑥),𝑦𝑦
𝑠𝑠. 𝑡𝑡. ℓ 𝑓𝑓𝜃𝜃 ,ℳ𝑘𝑘 ≤ ℓ 𝑓𝑓𝜃𝜃

𝑡𝑡−1,ℳ𝑘𝑘 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 < 𝑡𝑡

David Lopez-Paz, Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. NIPS 2017.

𝑔𝑔,𝑔𝑔𝑘𝑘 : =
𝜕𝜕ℓ 𝑓𝑓𝜃𝜃(𝑥𝑥),𝑦𝑦

𝜕𝜕𝜃𝜃
,
𝜕𝜕ℓ 𝑓𝑓𝜃𝜃 ,ℳ𝑘𝑘

𝜕𝜕𝜃𝜃 ≥ 0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 < 𝑡𝑡

minimize �𝑔𝑔
1
2 ∥ 𝑔𝑔 − �𝑔𝑔 ∥22

𝑠𝑠. 𝑡𝑡. �𝑔𝑔,𝑔𝑔𝑘𝑘 ≥ 0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 < 𝑡𝑡
QP problem



Data Regularization

▪Relaxing t-1 restrictions

▪A random batch in exemplar set as the regularization is enough

Arslan Chaudhry et al. Efficient Lifelong Learning with A-GEM. ICLR 2019.

minimize𝜃𝜃 ℓ 𝑓𝑓𝜃𝜃(𝑥𝑥),𝑦𝑦
𝑠𝑠. 𝑡𝑡. ℓ 𝑓𝑓𝜃𝜃 ,ℳ𝑘𝑘 ≤ ℓ 𝑓𝑓𝜃𝜃

𝑡𝑡−1,ℳ𝑘𝑘 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 < 𝑡𝑡

ℳ = ∪𝑘𝑘<𝑡𝑡ℳ𝑘𝑘

minimize𝜃𝜃 ℓ 𝑓𝑓𝜃𝜃(𝑥𝑥),𝑦𝑦
𝑠𝑠. 𝑡𝑡. ℓ 𝑓𝑓𝜃𝜃 ,ℳ ≤ ℓ 𝑓𝑓𝜃𝜃

𝑡𝑡−1,ℳ

minimize �𝑔𝑔
1
2 ∥ 𝑔𝑔 − �𝑔𝑔 ∥22 , �𝑔𝑔⊤𝑔𝑔ref ≥ 0 No need for QP



Summary of Data-Centric Methods

▪Data replay is simple yet effective!
▪Data replay shall encounter overfitting [Verwimp et al. ICCV’21]

▪The performance of generative replay is restricted by generative models
▪Generative models also suffer from catastrophic forgetting [Wu et al. NeurIPS’18]

▪Saving exemplars may encounter privacy or storage issues

Data-Centric

Data Replay

Data Regularization

Direct Replay

Generative Replay

Eli Verwimp et al. Rehearsal revealed: The limits and merits of revisiting samples in continual learning. ICCV 2021.
Chenshen Wu et al. Memory replay gans: learning to generate images from new categories without forgetting. NeurIPS 2018.



▪Core Idea: design training mechanisms to prevent the forgetting of 
old model
▪Knowledge Distillation: build the mapping between old and new model to 
reflect the semantic information of old classes in the updated model
▪Model Rectify: rectify the inductive bias of the incremental model to reflect the 
universal classifier

Algorithm-Centric Methods

Algorithm-Centric

Knowledge Distillation

Model Rectify

Feature Rectify

Logit Rectify

Weight Rectify

Logit Distillation

Feature Distillation

Relational Distillation



Knowledge Distillation in CL

▪Knowledge distillation [Hinton CoRR’15] is proposed to transfer the 
knowledge between the teacher model to the student 
▪Can we build the “teaching” process to resist forgetting?

Geoffrey Hinton et al. Distilling the knowledge in a neural network. CoRR 2015.



Logit Distillation

 Logit Distillation [Li et al. TPAMI’17]

min
𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛

ℓ + �
𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛

𝑆𝑆𝑆𝑆𝑆𝑆 𝑓𝑓𝜽𝜽𝑜𝑜𝑜𝑜𝑜𝑜 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛 ,𝑓𝑓𝜽𝜽𝑛𝑛𝑛𝑛𝑛𝑛 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛

Task 1 Task 2

KD

▪To resist forgetting in the learning process, we can treat the model 
after the previous stage as the teacher to teach the current model.
▪To reflect the former knowledge in the updated model

”Learning new” “Remembering old”

Zhizhong Li et al. Learning without forgetting. ECCV 2016.



Logit Distillation

▪Exemplars can be utilized in the distillation process [Rebuffi et al. CVPR’17]

▪The target of learning new knowledge can also be formulated by 
distilling from an expert model [Hou et al. ECCV’18]

min
𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛

ℓ + �
𝒙𝒙∈𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛∪𝒙𝒙𝑜𝑜𝑜𝑜𝑜𝑜

𝑆𝑆𝑆𝑆𝑆𝑆 𝑓𝑓𝜽𝜽𝑜𝑜𝑜𝑜𝑜𝑜 𝒙𝒙 ,𝑓𝑓𝜽𝜽𝑛𝑛𝑛𝑛𝑛𝑛 𝒙𝒙

min
𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛

�
𝒙𝒙∈ 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛

𝑆𝑆𝑆𝑆𝑆𝑆 𝑓𝑓𝜽𝜽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝒙𝒙 ,𝑓𝑓𝜽𝜽𝑛𝑛𝑛𝑛𝑛𝑛 𝒙𝒙 + �
𝒙𝒙∈𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛∪𝒙𝒙𝑜𝑜𝑜𝑜𝑜𝑜

𝑆𝑆𝑆𝑆𝑆𝑆 𝑓𝑓𝜽𝜽𝑜𝑜𝑜𝑜𝑜𝑜 𝒙𝒙 ,𝑓𝑓𝜽𝜽𝑛𝑛𝑛𝑛𝑛𝑛 𝒙𝒙

Sylvestre-Alvise Rebuffi et al. icarl: Incremental classifier and representation learning. CVPR 2017.
Saihui Hou et al. Lifelong learning via progressive distillation and retrospection. ECCV 2018. 



Feature Distillation

▪Apart from distilling the logits produced by the FC layer, we can 
also build the mapping after the embedding module

 Feature Distillation [Hou et al. CVPR’19]

min
𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛

ℓ + �
𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛

𝑆𝑆𝑆𝑆𝑆𝑆 𝜙𝜙𝜽𝜽𝑜𝑜𝑜𝑜𝑜𝑜 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛 ,𝜙𝜙𝜽𝜽𝑛𝑛𝑛𝑛𝑛𝑛 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛

Task 1 Task 2

KD

Forcing the updated model to produce 
the same features as the old one

Saihui Hou et al. Learning a unified classifier incrementally via rebalancing. CVPR 2019.



Feature Distillation

▪Other feature products can also be distilled

min
𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛

ℓ + �
𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛

𝑆𝑆𝑆𝑆𝑆𝑆 𝑔𝑔(𝜙𝜙𝜽𝜽𝑜𝑜𝑜𝑜𝑜𝑜 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛 ),𝑔𝑔(𝜙𝜙𝜽𝜽𝑛𝑛𝑛𝑛𝑛𝑛 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛 )

Attention Map
[Dhar et al. CVPR’19]

Weighted Feature Map
[Kang et al. CVPR’22]

Pooled features
[Douillard et al. ECCV’20]

Prithviraj Dhar et al. Learning without memorizing.. CVPR 2019.
Minsoo Kang et al. Class-incremental learning by knowledge distillation with adaptive feature consolidation. CVPR 2022.

Arthur Douillard et al. Podnet: Pooled outputs distillation for small-tasks incremental learning. ECCV 2020.



Feature Distillation

▪Other feature products can also be distilled

min
𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛

ℓ + �
𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛

𝑆𝑆𝑆𝑆𝑆𝑆 𝑔𝑔(𝜙𝜙𝜽𝜽𝑜𝑜𝑜𝑜𝑜𝑜 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛 ),𝑔𝑔(𝜙𝜙𝜽𝜽𝑛𝑛𝑛𝑛𝑛𝑛 𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛 )

Causal effect
[Hu et al. CVPR’21]

Subspace feature
[Simon et al. CVPR’21]

Spatial & Temporal feature
[Zhao et al. MM’21]

Xinting Hu et al. Distilling causal effect of data in class-incremental learning. CVPR 2021.
Christian Simon et al. On learning the geodesic path for incremental learning. CVPR 2021.

Hanbin Zhao et al. When video classification meets incremental classes. MM 2021.



Relational Distillation

▪Apart from the instance-wise mapping, we can also build the 
mapping between a group of instances (G) among different models

 Relational Distillation [Gao et al. ECCV’22] [Dong 
et al. AAAI’21]

min
𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛

ℓ + �
𝑮𝑮∈𝒙𝒙𝒏𝒏𝒏𝒏𝒏𝒏∪𝒙𝒙𝒐𝒐𝒐𝒐𝒐𝒐

𝑆𝑆𝑆𝑆𝑆𝑆 𝑓𝑓𝜽𝜽𝑜𝑜𝑜𝑜𝑜𝑜 𝑮𝑮 ,𝑓𝑓𝜽𝜽𝑛𝑛𝑛𝑛𝑛𝑛 𝑮𝑮

Task 1 Task 2

KD

(                ) (                )

Forcing the updated model to produce the same 
relationship among groups as the old model

Songlin Dong et al. Few-shot class-incremental learning via relation knowledge distillation. AAAI 2021.
Qiankun Gao et al. R-DFCIL: relation-guided representation learning for data-free class incremental learning. ECCV 2022.



Relational Distillation

▪Extract triplets as the instance group 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑘𝑘
▪How to reflect the relationship among the instance group?

 Matching the angle [Gao et al. ECCV’22] [Dong et al. 
AAAI’21]

min
𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛

ℓ + �
𝑮𝑮∈𝒙𝒙𝒏𝒏𝒏𝒏𝒏𝒏∪𝒙𝒙𝒐𝒐𝒐𝒐𝒐𝒐

𝑆𝑆𝑆𝑆𝑆𝑆 ∠𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖 ,∠𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖

Songlin Dong et al. Few-shot class-incremental learning via relation knowledge distillation. AAAI 2021.
Qiankun Gao et al. R-DFCIL: relation-guided representation learning for data-free class incremental learning. ECCV 2022.



Relational Distillation

▪Other ways to build the relationship?
▪We can build the local graph as the instance group

Hebbian graph
[Tao et al. ECCV’20]

Local neighborhood
[Liu et al. TNNLS’22]

Neuron gas
[Tao et al. CVPR’20]

Xiaoyu Tao et al. Topology-preserving class-incremental learning. ECCV 2020.
Yu Liu et al. Model behavior preserving for class-incremental learning. TNNLS 2022.

Xiaoyu Tao et al. Few-shot class-incremental learning. CVPR 2020.



Knowledge distillation in CL

Forcing the updated model to produce the same “behaviour” as the old one



Model Rectification

▪Rectify the “inductive bias” of the incremental model

Learning new tasks will erase the discriminability of former tasks.
Model tends to predict all instances as the newly learned task.

Task 1

Model 1

Back 
Propagation

Task 2

Model 2

Back 
Propagation

New task

Old task

Predict

Model 2

Model 2

Bird Dog Fish

“Fish”
Tiger

Bird Dog Fish Tiger

“Tiger”



Logit Rectify

▪Biased FC layers result in the imbalanced prediction
▪We can learn to rescale the logits with a balanced validation set!

 Logit Rectify [Wu et al. CVPR’19] [Belouadah et al. 
ICCV’19] [Castro et al. ECCV’18]

𝑓𝑓 𝑥𝑥 𝑘𝑘 = �𝛼𝛼𝛼𝛼 𝑥𝑥 𝑘𝑘 + 𝛽𝛽, 𝑘𝑘 ∈ 𝑌𝑌𝑏𝑏
𝑓𝑓 𝑥𝑥 𝑘𝑘 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Decrease the logits of new classes 
for an unbiased prediction

Yue Wu et al. Large scale incremental learning. CVPR 2019.
Eden Belouadah et al. Il2m: Class incremental learning with dual memory. ICCV 2019.

Francisco M Castro et al. End-to-end incremental learning. ECCV 2018.



Weight Rectify

▪Biased FC layers result in the imbalanced prediction
▪We can directly normalize the FC layers of new classes!

 Weight Rectify [Zhao et al. CVPR’20]

�𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜)
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛)

𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛

Decrease the weight norm of new 
classes for an unbiased prediction

Bowen Zhao et al. Maintaining discrimination and fairness in class incremental learning. CVPR 2020.



Feature Rectify

▪Updating the embeddings incrementally results in the feature drift 
of former classes

 Feature Rectify [Yu et al. CVPR’20]

𝜇𝜇𝑘𝑘𝑡𝑡 = 𝜇𝜇𝑘𝑘𝑡𝑡−1 + Δ𝜇𝜇𝑘𝑘𝑡𝑡

Δ𝜇𝜇𝑘𝑘𝑡𝑡 = �
𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑖𝑖 , 𝜇𝜇𝑘𝑘𝑡𝑡−1 Δ𝑥𝑥i𝑡𝑡

Estimate the drift of old prototypes via 
that of new class instances

Lu Yu et al. Semantic drift compensation for class-incremental learning. CVPR 2020.



▪Knowledge distillation requires saving the old model
▪Knowledge distillation requires the competitive ability of old model
▪There are various phenomena that lead to inductive bias, and all of 
them can be solved via model rectify 
▪Model rectify helps understand the “why” of forgetting

Summary of Algorithm-Centric Methods

Algorithm-Centric

Knowledge Distillation

Model Rectify

Feature Rectify

Logit Rectify

Weight Rectify

Logit Distillation

Feature Distillation

Relational Distillation



▪Core Idea: operate the network structure or estimate parameter 
importance to resist forgetting
▪Dynamic Networks: adjust the network structure as data evolves to meet the 
requirements of streaming data
▪Parameter Regularization: regularize the important parameters from being 
changed when learning new tasks

Model-Centric Methods

Model-Centric

Parameter Regularization

Dynamic Networks

Neuron Expansion

Backbone Expansion

Prompt Expansion



Parameter Regularization

▪We can estimate the importance of each parameter to the task
▪Restricting important parameters from being changing 

 Parameter Regularization [Kirkpatrick et al. PNAS’17]

min ℓ(𝑓𝑓(𝐱𝐱),𝑦𝑦) +
1
2
𝜆𝜆�

𝑘𝑘

Ω𝑘𝑘 𝜃𝜃𝑘𝑘𝑏𝑏−1 − 𝜃𝜃𝑘𝑘
2

Maintain the performance by regularizing 
important parameters

James Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS 2017.



Neuron expansion

▪ If some parameters/neurons are important to the task, we can expand 
and copy them  to maintain the performance [Yoon et al. ICLR’18]

A pipeline of selective retraining, neuron expansion and neuron deletion
It only works under the task-IL setting to activate corresponding neurons.

Jaehong Yoon et al. Lifelong learning with dynamically expandable networks. ICLR 2018.



▪Parameter regularization methods weigh the importance of 
parameters, while they shall conflict at different stages
▪Dynamic networks require expanding memory budget as data evolves
▪We can strike a balance between backbones and restricted memory
▪Adding tokens has shown to be an effective way in the era of ViT

Summary of Model-Centric Methods

Model-Centric

Parameter Regularization

Dynamic Networks

Neuron Expansion

Backbone Expansion

Prompt Expansion



Trends of Continual Learning

Da-Wei Zhou et al. Deep Class-Incremental Learning: A Survey. CoRR 2023.



Thanks!
Q & A 

https://www.lamda.nju.edu.cn/zhoudw
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