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Recent Advances

The Triumph of %
Deep

GitHub Copilot X: The Al-
powered developer experience

pull r

ChatGPT: New Al chatbot has
everyone talking to it

® 7 December 2022

GETTY IMAGES

AlphaFold is an AI system developed
by DeepMind that predicts a
protein’s 3D structure from its amino
acid sequence. It regularly achieves
accuracy competitive with
experiment.

DeepMind and EMBL’s European Bioinformatics
Institute (EMBL-EBI) have partnered to create
AlphaFold DB to make these predictions freely
available to the scientific community. The latest
database release contains over 200 million entries,
providing broad coverage of UniProt (the standard
repository of protein sequences and annotations). We
provide individual downloads for the human proteome
and for the proteomes of 47 other key organisms

important in research and global health. We also

provide a download for the manually curated subset (QBI3HT: May protect the malaria parasite against attack by the immune system.
. . Mean pLDDT 85.57.

of UniProt (Swiss-Prot). °



Recent Advances in Al

User What is funny about this image? Describe it panel by panel. @ OpenAl & . StableDiffusion @
@OpenAl * @ai diffusion
“A photo of an astronaut riding a horse” #dalle Onjshage ¥

alartwork #aigenerated

detailed prompt in image description

Source: hmmm (Reddit)

GPT-4 Theimage shows a package for a "Lightning Cable" adapter with three panels.

Panel 1: A smartphone with a VGA connector (a large, blue, 15-pin connector typically
used for computer monitors) plugged into its charging port.

Panel 2: The package for the "Lightning Cable" adapter with a picture of a VGA
connector on it.

Panel 3: A close-up of the VGA connector with a small Lightning connector (used for
charging iPhones and other Apple devices) at the end.

The humor in this image comes from the absurdity of plugging a large, outdated VGA
connector into a small, modern smartphone charging port.




Recent Advances in Al

VY O Meta Al TS ~ Tune-A-Video

Uriel Singer et al. Make-A-Video: Text-to-Video Generation without Text-Video Data. ICLR 2023.
Jay Zhangjie Wu et al. Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation. ICCV 2023.
Fu-Yun Wang et al. Gen-L-Video: Multi-Text to Long Video Generation via Temporal Co-Denoising. CoRR 2023.



Can Al Manage Multiple Tasks Like Human?




Human do Continual Learning

Continual learning is the constant development of increasingly complex behaviors;
the process of building more complicated skills on top of those already developed.

MARK B. RING. CHILD: A First Step Towards Continual Learning. Machine Learning 1997.



Real World APPs Require Continual Learning

How long ago was your last update?

As of my knowledge cut-off date in September 2021, I'm unable to access real-time updates
or information beyond that time. Therefore, | may not have the most current information or

recent updates. Feel free to ask about information available up until that date!

News will occur, and chatbot needs updating




Real World APPs Require Continual Learning

New scenes will emerge, and self-driving vehicles need updating.



Real World APPs Require Continual Learning

Robot needs to learn new skills



Real World APPs Require Continual Learning

Face recognition system needs to
authenticate new users




Real World APPs Require Continual Learning
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Social network faces new relationships

Yuanning Cui et al. Lifelong Embedding Learning and Transfer for Growing Knowledge Graphs. AAAI 2023.



Problem Definition

* Continual Learning (a.k.a. incremental learning/lifelong learning)
refers to the scenario where the model needs to be continually

updated with new data.

*Data comes in the stream format, which cannot be held for storage
Or privacy 1ssues.

Zhiyuan Chen, Bing Liu. Lifelong Machine Learning. Morgan & Claypool 2018.



Problem Definition

» Given a sequence of tasks (X, Y") drawn from distribution D*

* During the training process of task T, we have limited or no access
to former data (X', Y"),t<T

* Goal: minimize the expected risk of all seen tasks
T
minz Extqyty [€(F (X 0), Y]
t=1
The specific setting counts on the definition of “task” (X*,Y*")

Matthias De Lange et al. 4 continual learning survey: Defying forgetting in classification tasks. TPAMI 2021.



Problem Definition

* Class-Incremental Learning (CIL): classifty among all seen classes
= Task-Incremental Learning (TIL): classify among each (given) task

* Domain-Incremental Learning (DIL): classity among all distributions

Class-Incremental Learning Task-Incremental Learning Domain-Incremental Learning

Task 1 Task 2

Train 9 o (
Test 5=

|
|

I

SN /
: Y

|

|

Bird or Dog?  Tiger or Fish ?

Bird or Dog or Tiger or Fish?

Bird or Dog ?

van de Ven, Tuytelaars, Tolias. Three types of incremental learning. NMI 2022.



Class-Incremental Learning (CIL)

- Observed class labels are increasing {Y‘}c{y**1}

- Class distributions are changing P(Y*) # P(Y**1)

- Input distribution is changing P(X*) # P(Xt*1)
*Incrementally learn new classes to build a unified classifier

Class-Incremental Learning

Test

Bird or Dog or Tiger or Fish?



Task-Incremental Learning (TIL)

» Training target is changing from task to task {UY‘} # {Y**'}
- Input distribution is changing P(X*") # P(X'*1)
* The task id (¢) is known during testing

= An easier setting compared to CIL

Task-Incremental Learning

Bird or Dog ?  Tiger or Fish ?



Domain-Incremental Learning (DIL)

= Class labels are constant {Y¢} = {Yt+1}
« Class distributions are constant P(Y?) = P(Yt*1)
- Input distribution is changing P(X*) # P(Xt*1)

Domain-Incremental Learning

Bird or Dog ?



Data split in CIL/TIL

= Denote the total number of classes as C and the total number of
tasks as N, there are two policies for class spilts:

= Training from scratch (TFS) < Equally divide C classes into N tasks

= Training from half (TFH) = Train C/2 classes in the first stage, and equally
divide the other classes into the rest (N-1) tasks.

Class Class Class Class Class Class Class Class
1-20 21-40 41-60 61-80 81-100 1-50 51-75 76-100

TFS, 5 tasks TFH, 3 tasks



Benchmarks datasets in CIL/TIL

= Image classification
= CIFAR100 [Rebuffi et al., CVPR’17]

*ImageNet1000/ImageNet100 [Rebuffi et al., CVPR'17]
= MINIST [Lopez-Paz et al., NIPS'17] OQA0 ;7\ 2 A 333
=etc GoeQ I 4 2272 333
QYO 4]/ 222 3 33
=NLP

*Named-entity recognition: CoNLL-03, OntoNotes [Monaikul et al., AAAT'21]

= Intent classification: CLINC150, HWU64, BANKINGY77 [Varshney et al., ACL'22]
= Classification: Stackoverflow, FewRel [Varshney et al., ACL'22]

“etc

Da-Wei Zhou et al. Deep Class-Incremental Learning: A Survey. CoRR 2023.
Zixuan Ke, Bing Liu. Continual Learning of Natural Language Processing Tasks: A Survey. CoRR 2022.



Data split in DIL

* Denote the total number of classes as C and the total number of
tasks as N, each training task is combined of the C classes from a

different domain:

4 N 7 N O N N
Class Class Class Class
1-C 1-C 1-C 1-C
Domain 1 Domain 2 Domain 3 Domain 4
NG NG N\ o\ Y




Benchmark datasets in DIL

*Image classification
- MNIST-permutation [van de Ven et al., NMI'22]
=CDDB [Wang et al., NeurIPS'22]

* CORe50 [Wang et al., NeurIPS'22]
= DomainNet [Wang et al., NeurIPS'22]
=etc

*NLP

*Paraphrase: Quora, Twitter and Wiki data [Li et al., NAACL'22]

*Dialogue state tracking: TaskMaster, Schema Guided Dialogue, MultiWoZ
[Madotto et al., EMNLP’21]

*Question answering: AGNews, DBPedia, Yahoo [Wang et al., EMNLP20]
=etc

Da-Wei Zhou et al. Deep Class-Incremental Learning: A Survey. CoRR 2023.
Zixuan Ke, Bing Liu. Continual Learning of Natural Language Processing Tasks: A Survey. CoRR 2022.



Relationship with other topics

Task 1 ask 2 Task
BF O :
T;n T;n T;n

oeI

A\

Multi-task Learning
Transtfer Learning
Meta-Learning

Test Set 1

EL




Multi-task Learning

Task 1 Task 2
i - L Rz

-

» Get all data at once
» Offline training




Transfer Learning

Source Target
Tm_in T;n
» Only two stages
: : » Do not care source performance
Test

Test Set




Meta-Learning

Task 1 Task

Tram

Gl

Tes

V

Test Set

Meta-Train Meta-Test

» Oftline training
» Do not care meta-train performance



Applications of Continual Learning

e

2
ey

Obiject Detection
[Yang et al. CVPR’22]

= e BAOBB |-
1 Kuowieage Oportion_| cu(s;:::‘ ::‘f:i.:i;o,, =
Semantic Segmentation Re-ID Diffusion
[Zhang et al. NeurlPS'22] [Pu et al. CVPR21] [Smith et al. CoRR'23]

Binbin Yang et al. Continual Object Detection via Prototypical Task Correlation Guided Gating Mechanism. CVPR 2022.
Bowen Zhang et al. SegViT: Semantic Segmentation with Plain Vision Transformers. NeurIPS 2022.

Nan Pu et al. Lifelong Person Re-Identification via Adaptive Knowledge Accumulation. CVPR 2021.

James Seale Smith et al. Continual Diffusion: Continual Customization of Text-to-Image Diffusion with C-LoRA. CoRR 2023.



Expected capabilities of continual learning

= Target: obtain the knowledge of all tasks seen so far

Task 1 ask 2 Task

How about finetuning the

current model with new data?



Catastrophic forgetting

A

e I E?”Tiger\”/

I Pl‘ediCt Bird Dog Fish Tiger
A

. I I E? ”FishX

Bird Dog Fish Tiger

New task

» Continual learning of new tasks will erase the semantic
information of former tasks when learning new tasks.



Catastrophic forgetting

= “the process of learning a new set of patterns suddenly and completely
erased a network’s knowledge of what it had already learned” [French 1999]

+ [McCloskey and Cohen, 1989] identifies catastrophic forgetting phenomena:

0.08
4 N ) +
1+1 1+2 e
2+1 242 0.06 4 Ones Problems
3+1 3+2 £ . .
149 041 :. - Learning new task results in
112 g:i F forgetting of old task!
= 02
K / K / 0.02
One’s problem  Two’s problem Twes Prodlems
D.mn ‘t-; 5-1:‘:} 11+1I5 13_2]] 21'215

Leaming Trials on Twos Problems

Robert M. French. Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences 1999.
Michael McCloskey, Neal J. Cohen. Catastrophic interference in connectionist networks: The sequential learning problem.
Psychology of Learning and Motivation 1989.



Catastrophic forgetting

S

* In continual learning, the model is expected to
learn without forgetting.

=Stability: the ability to maintain old knowledge
Plasticity: the ability to learn new knowledge

Stability Plasticity

Stephen Grossberg. Studies of Mind and Brain Neural Principles of Learning, Perception, Development, Cognition, and Motor Control 1982.
G A Carpenter, S Grossberg. ART 2: self-organization of stable category recognition codes for analog input patterns. Pattern Recognition by
Self-Organizing Neural Networks 1987.



Catastrophic forgetting in Neuroscience

= Synaptic plasticity, the ability of neurons to
modify their connections, is involved in
brain network remodeling following
different types of brain damage.

1 um

* Dendritic spines are the major loci of
synaptic plasticity and are considered as
possible structural correlates of memory. \

Spine head

Spine neck

Observation: important parts in the network can be frozen or
regularized to resist forgetting

Mario Stampanoni Bassi et al. Synaptic Plasticity Shapes Brain Connectivity: Implications for Network Topology. International Journal of Molecular Sciences 2019.
Akiko Hayashi-Takagi et al. Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 2015.



Catastrophic forgetting in Neuroscience

*Complementary Learning Systems Hipr tex
» Hippocampus for fast learning . e
| -
> Neocortex for slow learning M e
. . Fas S Gese  MING
» Hippocampus consolidates knowledge of ired
in neocortex by “replay” inf ) e
>
Amygdala d

Observation: former knowledge can be recovered by experience replay

German 1. Parisi et al. Continual Lifelong Learning with Neural Networks: A Review. Neural Networks 2019.

James L McClelland et al. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of
connectionist models of learning and memory. Psychological Review 1995.



Evaluation metrics in Continual Learning

- Splitting the data into T tasks, denote a; ; as the accuracy of task j
after learning task i.

a [e [e- ce ter_q ter
[r aiy ayn ayp -1 ayT
[r az 1 daz» e ar -1 aa.r
frr—1 | dr—1 dr-12 ... dr_17-1__4r_\T
[rr ar.| ar? e ar,r-1 ar.t

= Accuracy ACC = % [_1 ar; > average accuracy of all tasks after the

last incremental stage

Arslan Chaudhry et al. Riemannian walk for incremental learning: Understanding forgetting and intransigence. ECCV 2018.



Evaluation metrics in Continual Learning

a [e ter . fer—1 ter
Ir | ap, | an a -1 ayr
Ir as, azn ‘o azr-1 ar
Gap between best performance s I?' . o .
and last performance ] l
Irr-1 | An ar: B 47-1.7-1 | GT-\.T
. 1 T—1 . .
Forgetting = T—1Zj:1 frj frj = le{m.qic_l}(al,j) a, Vj <k
* Backward Transfer (BWT) = —ZT 1 arj—a;;

*BWT is (usually) the negative forgetting measure

Arslan Chaudhry et al. Riemannian walk for incremental learning: Understanding forgetting and intransigence. ECCV 2018.
David Lopez-Paz, Marc’ Aurelio Ranzato. Gradient episodic memory for continual learning. NIPS 2017.



Evaluation metrics in Continual Learning

Randomly initialized

model i j

1ry
Irs

Irr_y

trr

“Intransigence IM; = a; — a;; = Gap between offline training and CL

* Forward Transfer (FWT) = ﬁ ]T-=2 aj_; ; — ag; 2 The “zero-shot”
ability gained from the continual learning process

Arslan Chaudhry et al. Riemannian walk for incremental learning: Understanding forgetting and intransigence. ECCV 2018.
David Lopez-Paz, Marc’ Aurelio Ranzato. Gradient episodic memory for continual learning. NIPS 2017.



Evaluation metrics in CIL

a te ) rer— ter
Ir |_a|_|_| an a)r-1 a\r
Ir az.| azn | a -1 ar
Irr— Laz-m B A7-1.7-1 | ar-1.1
Irr ar,\ ar.2 .o ar,r-1 ar.r

* In Class-Incremental Learning, apart from the accuracy of the last
stage, we also consider the average accuracy along each stage

A= %Zg;l ACC;

Da-Wei Zhou et al. Deep Class-Incremental Learning: A Survey. CoRR 2023.



Resources for Continual Learning

100
Finetune -+BiC GEM | ¢-EWC
Replay WA PodNet -¢-Oracle
80 \\-o—iCaRL DER ~+LwF
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. 60
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3]
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- 20
CIFAR-100 Reproduced
0 T T

0 20 40 60 80 100
Incremental Stage

PyCIL

Comprehensive - Benchmark - Extendable - Maintained

https://github.com/G-U-N/PyCIL

Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, De-Chuan Zhan. PyCIL: A Python Toolbox for Class-Incremental Learning. SCIENCE CHINA Information Sciences 2023.
Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan, Ziwei Liu. Deep class-incremental learning: A survey. CoRR 2023.



Resources for Pre-trained Continual Learning

100
95
90
=)
\
< 8
)
s 80
e
3
é:) 75
70
W Finetune “@MEMO =CODA-Prompt ADAM w/ SSF
65 iCaRL ~Coil “@DualPrompt “@ADAM w/ Finetune
“eSimpleCIL 9-FOSTER @ADAM w/ Adapter F-ADAM w/ VPT-Deep
“@DER 2P >&ADAM w/ VPT-Shallow

D I L O T % 20 40 60 80 100
e Number of Classes
https://github.com/sun-hailong/LAMDA-PILOT

Comprehensive - Benchmark - Extendable - Maintained

Hai-Long Sun, Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan. PILOT: A Pre-Trained Model-Based Continual Learning Toolbox. CoRR 2023.



Outline

* Introduction (20 minutes)
" Problem definition & history of continual learning
* Evaluation metrics & benchmarks in continual learning

= Conventional Continual Learning (125 minutes)
= Approaches for catastrophic forgetting (60 minutes)
* Approaches for forward transfer (65 minutes)

* Continual Learning of Pre-trained Models (45 minutes)
*Challenges and opportunities
» Approaches

* Conclusion and Future Discussion (10 minutes)
" Q& A Session (10 minutes)



Taxonomy

Da-Wei Zhou et al. Deep Class-Incremental Learning: A Survey. CoRR 2023.



Data-Centric Methods

= Core Idea: hosting the data to replay former knowledge when
learning new, or exert reqularization terms with former data

*Data Replay: save a limited number of former instances for rehearsal when
learning new

*Data Regularization: regularize the optimization direction of the model with
restriction of former instances

Data-Centric

Direct Replay
Data Replay {
t: ey Generative Replay

Data Regularization



Direct replay

» Saving a fixed-size subset of “old data” to replay

when learning new knowledge [Robins. Connection
Science’95] [Rebuffi et al. CVPR’17]

6

min ) F(),)

X € XnewYUXpld

- » How to host the exemplar set?

Exem plar Set Sylvestre-Alvise Rebuffi et al. iCaRL: Incremental Classifier and Representation Learning. CVPR 2017.



Hosting exemplar set

* How to choose the exemplars [welling IcML09]

[ ) ° ®
° ®
o ¢ o ¢ ® o
: ed . o
® 9 o *‘
o )
o o Class Center °
A, . -
Q. @ o ® ®
* ® o © o
°° ’
[ o )
° o ¢

~N

» Calculate the class center in the embedding
space, and rank the instances via the
distance to the center

U e %2 @(x)

Max Welling. Herding dynamical weights to learn. ICML 2009.

Sylvestre-Alvise Rebuffi et al. iCaRL: Incremental Classifier and Representation Learning. CVPR 2017.



Hosting exemplar set

* How to maintain a limited number of exemplars as data evolves

® » Delete the old and include the new ones by

I the distance to the class center
@ .
» We keep 8 exemplars in total.
° In the first stage, we have 4 exemplars/class.
® e ® ° . In the second stage, we have 2 exemplars/class

Sylvestre-Alvise Rebuff et al. iCaRL: Incremental Classifier and Representation Learning. CVPR 2017.



Replay with optimizable exemplars

*Can we optimize the exemplar selection process?

Early phase (50 classes used, 5 classes visualized in color):

i _ - » Formulating the selection process as bilevel
w . _JaB8 v.‘.. ; - .h' X . . .
il N W > o optimization
- A ot - s ' _
Late phase (100 classes used, 5 classes visualized in color): 1%1111 ‘CC(GE‘ 80:?:_ 1 Y Dz)
...;: e ol a5 s.t. £y = argmin L, (0;-1(£p:i—1); E0iim2 U Di—q),
e et | Wi it Fosics
l'__-.l_.‘.' ‘ '% AR . ..':' = :."- sl . .=" ll.,“ _.__‘.,.,... .I
L » Learned exemplars are situated near the
random (baseline) herding (related) mnemonics (ours)

decision boundary

Yaoyao Liu et al. Mnemonics Training: Multi-Class Incremental Learning without Forgetting. CVPR 2020.



Memory-Efficient Replay

- Exemplars are raw images; can we make the saving process
memory-efficient?

A raw image costs A low-resolution image An extracted feature
3*224*224 Bytes costs 3*32*32 Bytes costs 512 Bytes

* However, corresponding learning algorithms need to be designed to
overcome the distribution gap



Memory-Efficient Replay

» Learn an extra encoder-decoder to map the » Learn an extra adaptation lay to
low-resolution images into raw-images map old features into new features

________________

—————————————————————————————————————————————————————————————————

! “' !
W W ‘ il || ﬁ ' Old model Previous Task
E(A ) | E(A )' ) features Memory
; E(R ) : t E( R1 E(R ) : i E(R E(R) New Class M0|g | B Classification
ﬁ”j’ij — @ +— images __-ccoorer MOl onesir e e .
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E F l—' Write ' \ h4 \
: | ! Trai Distillation Train AdFQtte Apol T Feature
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: (41,4 i : (A ,A2) U : (ApA ) v Classhjcat\’ﬂn New model NePt PpPly Me mory Classifier
i : : i | . S/ features A Ad = d N » | H
| ] i 4 ! e New £ 5 | .
RN il \ | t I Model
LWl | ) 4 i ! i .
| Al i |
| i I E R I CR ) Y
| I By I |Bea ! T
| ! | | | - 1 |t PR
| I I
| i 1® = || ,
| i i |
___________________________________________________________________

Hanbin Zhao et al. Memory Efficient Class-Incremental Learning for Image Classification. TNNLS 2021.
Ahmet Iscen et al. Memory-Efficient Incremental Learning Through Feature Adaptation. ECCV 2020.



Feature Replay

* Modelling the distribution of former classes as Gaussian distribution

,-*"% old prototypes
frozen .- »  (one per class) A/(O’ D
I;EW classesk old prototype v
OW Q O noise
— l : o
+ <—

'

augmented‘brntutype

Fei Zhu et al. Prototype augmentation and self-supervision for incremental learning. CVPR 2021.



Generative Replay

= Can we utilize generative models to learn the distributions of old
classes, so that we have inexhaustible exemplars

Scholar,

4 » The model (Scholar) is combined of a generator G and
Scholar, . go .
- a classification model C
Scholars 1 .
— » In each new task, utilize the generated old instances
- and current task instances to train a new G and new C

Scholary



Generative Replay

» We can combine various kinds of generative models...

ConvNet
Task n-1

\ 4

Current Task \
* Encode z\with p(z) ' Decode z with p(z) E E F--g
:|, New Scholar Synthesized Data - Past Task

Y Encode x 8% o
[ 4} with polz]x) Decode x with
Current | 1 Generator Memory | | Memory Po(zlx) ' “
— Codes | ¥
. Decu e z with Decode z with T i(:: o (Cawifier Sz () e B kg e
b(zlx) aulzls) ] i N, e :
n+l, 2 2
(‘mles E . E ConvNet | i \ o OO
@) ® - &

Replay \

\ 4

Task n
Generator Real Data - Current Task [ S
— L — o

0ld Scholar . Codes

ini Buffer
(b) Training Generator Buffer

GAN VQ-VAE Deep Inversion Diffusion
[Shin et al. NIPS’17] [Jiang et al. CVPRW’21] [Smith et al. ICCV’21] [Gao et al. ICML'23]

Hanul Shin et al. Continual learning with deep generative replay. NIPS 2017.

Jian Jiang et al. IB-DRR - Incremental Learning with Information-Back Discrete Representation Replay. CVPRW 2021.
James Smith et al. Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning. ICCV 2021.

Rui Gao et al. DDGR: Continual Learning with Deep Diffusion-based Generative Replay. ICML 2023.



Data Regularization

*Data replay directly rehearsals the instances during training, aiming
to lower the loss of both old and new instances.

* Can we achieve this goal from another perspective?

minimizeg L(fo(x),y)
s.t. £(fo, M) < €(fy ', My) forallk <t

Training loss of the current task Maintaining the loss of former tasks
Obtaining the new knowledge ' ’ ’ ' Remembering the old knowledge

David Lopez-Paz, Marc’ Aurelio Ranzato. Gradient episodic memory for continual learning. NIPS 2017.



Data Regularization

* Ensuring the loss of former tasks not increase

minimizeg L(fo(x),y)
s.t. £(fo, M) < €(fg~ ", My) forallk <t

* Making the angle between losses to be acute

(9, 9r): = ady %(Hx)’y ),a{)(fg’em")> >0, forallk <t

* Projecting the gradient if violated

1
e ~ 12
minimize 5 lg—4I5

S.t. (g,9x) =0, forallk <t

» QP problem

David Lopez-Paz, Marc’ Aurelio Ranzato. Gradient episodic memory for continual learning. NIPS 2017.



Data Regularization

* Relaxing t-1 restrictions

minimizeg L(fo(x),y)
s.t. (fo, M) < €(fg~ 1 My) forallk <t

¥

minimizeg 2(fy(x),y)
s.t. 2(fg, M) < €(fi7 M) M = Upe My

= A random batch in exemplar set as the regularization is enough

1
minimize§§ lg—4gl5, G Grer =0 » No need for QP

Arslan Chaudhry et al. Efficient Lifelong Learning with A-GEM. ICLR 2019.



Summary of Data-Centric Methods

Data replay is simple yet effective!

*Data replay shall encounter overfitting [verwimp et al. ICCV21]

* The performance of generative replay is restricted by generative models

= Generative models also suffer from catastrophic forgetting [(wu et al. NeurPs'18]

= Saving exemplars may encounter privacy or storage issues

Data-Centric

Direct Replay
Data Replay {
t: Py Generative Replay

Data Regularization

Eli Verwimp et al. Rehearsal revealed: The limits and merits of revisiting samples in continual learning. ICCV 2021.
Chenshen Wu et al. Memory replay gans: learning to generate images from new categories without forgetting. NeurIPS 2018.



Algorithm-Centric Methods

= Core Idea: design training mechanisms to prevent the forgetting of
old model

*Knowledge Distillation: build the mapping between old and new model to
reflect the semantic information of old classes in the updated model

*Model Rectify: rectify the inductive bias of the incremental model to reflect the
universal classifier

Algorithm-Centric Logit Distillation
— Knowledge Distillation Feature Distillation
Relational Distillation

p— Feature Rectify
— Model Rectify > Logit Rectify

—p Weight Rectify



Knowledge Distillation in CL

* Knowledge distillation [Hinton CorrR'15] 1S proposed to transfer the
knowledge between the teacher model to the student

= Can we build the “teaching” process to resist forgetting?

Teacher Model

Geoffrey Hinton et al. Distilling the knowledge in a neural network. CoRR 2015.



Logit Distillation

= To resist forgetting in the learning process, we can treat the model
after the previous stage as the teacher to teach the current model.

= To reflect the former knowledge in the updated model

» Logit Distillation [Li et al. TPAMI'17]

min £ + 2 SIM (feold(xnew);fenew(xnew))

On
Xnew

”Learning new” “Remembering old”

Zhizhong Li et al. Learning without forgetting. ECCV 2016.




Logit Distillation

= Exemplars can be utilized in the distillation process [Rebuffi et al. CVPR'17]

min €+ > SIM (0, fa, @)

Onew
X € XnewYUXpld

= The target of learning new knowledge can also be formulated by
distilling from an expert model [Hou et al. ECCV'18]

min " SIM (foy 0, for @)+ D SIM (£, (0, fo,, ()

HneW
X € xnew X € xnewux()ld

Sylvestre-Alvise Rebuffi et al. icarl: Incremental classifier and representation learning. CVPR 2017.
Saihui Hou et al. Lifelong learning via progressive distillation and retrospection. ECCV 2018.



Feature Distillation

= Apart from distilling the logits produced by the FC layer, we can
also build the mapping after the embedding module

» Feature Distillation [Hou et al. CVPR’19]

min £ + SIM (flbeold (xnew); C/)enew (xnew))

Onew
Xnew

Forcing the updated model to produce
the same features as the old one

Saihui Hou et al. Learning a unified classifier incrementally via rebalancing. CVPR 2019.



Feature Distillation

= Other feature products can also be distilled

g;glv t+ 2 SIM (.g (¢90ld (xnew)): g(¢9new (xnew)))
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[Dhar et al. CVPR'19] [Kang et al. CVPR’22] [Douillard et al. ECCV’20]
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Prithviraj Dhar et al. Learning without memorizing.. CVPR 2019.

Minsoo Kang et al. Class-incremental learning by knowledge distillation with adaptive feature consolidation. CVPR 2022.
Arthur Douillard et al. Podnet: Pooled outputs distillation for small-tasks incremental learning. ECCV 2020.



Feature Distillation

= Other feature products can also be distilled

g;llul; £+ z SIM (g (¢901d (xnew)): g(¢9new (xnew)))

Xnew
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[Hu et al. CVPR’21] [Simon et al. CVPR’21] [Zhao et al. MM’21]

Xinting Hu et al. Distilling causal effect of data in class-incremental learning. CVPR 2021.
Christian Simon et al. On learning the geodesic path for incremental learning. CVPR 2021.
Hanbin Zhao et al. When video classification meets incremental classes. MM 2021.



Relational Distillation

= Apart from the instance-wise mapping, we can also build the
mapping between a group of instances (G) among different models

Task 1

» Relational Distillation [Gao et al. ECCV’22] [Dong
et al. AAAT'21]

min £ + z SIM (f,14 (), fo 0y (6))

Onew
GEXpewYXold

Forcing the updated model to produce the same
relationship among groups as the old model

Songlin Dong et al. Few-shot class-incremental learning via relation knowledge distillation. AAAI 2021.
Qiankun Gao et al. R-DFCIL: relation-guided representation learning for data-free class incremental learning. ECCV 2022.



Relational Distillation

- Extract triplets as the instance group (x;, x;, x)

* How to reflect the relationship among the instance group?

=

Image
Synthesis

> Matching the angle [Gao et al. ECCV’22] [Dong et al.
AAAT'21]

Data of

New Task f { 5nln,€ _I_ E SIM(LOld (i]k), LneW (ljk))
‘ new

(Cffgt) — J > GEXpewYUXold

.I- f real data flow > 97:“ £7.:e

Songlin Dong et al. Few-shot class-incremental learning via relation knowledge distillation. AAAI 2021.
Qiankun Gao et al. R-DFCIL: relation-guided representation learning for data-free class incremental learning. ECCV 2022.




Relational Distillation

= Other ways to build the relationship?

= We can build the local graph as the instance group

Hebbian graph
[Tao et al. ECCV’20]
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[Liu et al. TNNLS'22] [Tao et al. CVPR’20]

Xiaoyu Tao et al. Topology-preserving class-incremental learning. ECCV 2020.
Yu Liu et al. Model behavior preserving for class-incremental learning. TNNLS 2022.
Xiaoyu Tao et al. Few-shot class-incremental learning. CVPR 2020.



Knowledge distillation in CL

Logit Distillation Feature Distillation
Embedding Embedding Embedding Embedding
(Old) (New) (0ld) (New)
FC Layer @ @m Features i o
, y ey Mappin
Logits 7 \_)g/

Forcing the updated model to produce the same

Relational Distillation
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Embedding Embedding
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Space

“behaviour” as the old one



Model Rectification

*Rectify the “inductive bias” of the incremental model

A
New task Model 2 @
Task 1
1 7ls 77
(<] I |:> nger\/
— — m_ l >
Back p Back Bird Dog Fish Tiger
Propagation ropagation
N 2 Model 2 A
Model 1 Model 2
LA o] | rerg
m_
Old task >

Bird Dog Fish Tiger

Learning new tasks will erase the discriminability of former tasks.
Model tends to predict all instances as the newly learned task.



Logit Rectify

*Biased FC layers result in the imbalanced prediction

*We can learn to rescale the logits with a balanced validation set!
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W— conv layers FC layer bias correction — logits

( train,,,, ) new classes
[ I

exemplars

DATA

> LOgit Rectify [Wu et al. CVPR’19] [Belouadah et al.
ICCV’19] [Castro et al. ECCV’18]

; _jaf(r+B, ke,
e = { )y, otherwise
Decrease the logits of new classes
for an unbiased prediction

Yue Wu et al. Large scale incremental learning. CVPR 2019.
Eden Belouadah et al. 712m. Class incremental learning with dual memory. ICCV 2019.
Francisco M Castro et al. End-to-end incremental learning. ECCV 2018.



Weight Rectify

*Biased FC layers result in the imbalanced prediction

* We can directly normalize the FC layers of new classes!

L d: for old cl fe 1 . .
e o.rcu e o ew EEe > Welght ReCtlfy [Zhao et al. CVPR20]
5’;& ?E w CNN feature layers
W FC layer
1d

output nodes cat fish m%del ~ M ean (normold)
ew I NN Whew = M Whew
o By il . ean(normyey)

new
cat fish lion dog model

N - I :[ 1 j Decrease the weight norm of new
tput probabilities
of the test samples _

"R classes for an unbiased prediction

- test

Bowen Zhao et al. Maintaining discrimination and fairness in class incremental learning. CVPR 2020.



Feature Rectify

- Updating the embeddings incrementally results in the feature drift

of former classes

» Feature Rectify [Yu et al. CVPR20]

Mk = Mk + Ay,

Aul = Z sim(x;, ub™) Axt

i

Estimate the drift of old prototypes via
that of new class instances

Lu Yu et al. Semantic drift compensation for class-incremental learning. CVPR 2020.



Summary of Algorithm-Centric Methods

- Knowledge distillation requires saving the old model
- Knowledge distillation requires the competitive ability of old model

* There are various phenomena that lead to inductive bias, and all of
them can be solved via model rectify

* Model rectity helps understand the “why” of forgetting

Algorithm-Centric Logit Distillation
— Knowledge Distillation Feature Distillation
Relational Distillation

p— Feature Rectify

S — Model Rectify — Logit Rectify

S Weight Rectify



Model-Centric Methods

= Core Idea: operate the network structure or estimate parameter
importance to resist forgetting

*Dynamic Networks: adjust the network structure as data evolves to meet the
requirements of streaming data

= Parameter Regularization: regularize the important parameters from being
changed when learning new tasks

Model-Centric — Neuron Expansion

t: Dynamic Networks — Backbone Expansion
Parameter Regularization — Prompt Expansion




Parameter Regularization

* We can estimate the importance of each parameter to the task

" Restricting important parameters from being changing

— Low error for task B == EWC » Parameter Regularization [Kirkpatrick et al. PNAS'17]
== Low error for task A - L2

Q == N0 penalty

min £(f (x),y) + %AZ Qe (677 - 9k)2
K

Maintain the performance by regularizing
important parameters

James Kirkpatrick et al. Overcoming catastrophic forgetting in neural networks. PNAS 2017.



Neuron expansion

* [f some parameters/neurons are important to the task, we can expand
and copy them to maintain the performance [Yoon etal. ICLR 18]

A pipeline of selective retraining, neuron expansion and neuron deletion
It only works under the task-IL setting to activate corresponding neurons.

Jachong Yoon et al. Lifelong learning with dynamically expandable networks. ICLR 2018.



Summary of Model-Centric Methods

= Parameter regularization methods weigh the importance of
parameters, while they shall conflict at different stages

* Dynamic networks require expanding memory budget as data evolves
= We can strike a balance between backbones and restricted memory

= Adding tokens has shown to be an effective way in the era of ViT

Model-Centric S Neuron Expansion

t: Dynamic Networks > Backbone Expansion
Parameter Regularization — Prompt Expansion




Trends of Continual Learning
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Da-Wei Zhou et al. Deep Class-Incremental Learning: A Survey. CoRR 2023.



Thanks!
Q&A

https://www.lamda.nju.edu.cn/zhoudw
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