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Abstract

Most self-supervised learning (SSL) methods often work
on curated datasets where the object-centric assumption
holds. This assumption breaks down in uncurated images.
Existing scene image SSL methods try to find the two views
from original scene images that are well matched or dense,
which is both complex and computationally heavy. This pa-
per proposes a conceptually different pipeline: first find re-
gions that are coarse objects (with adequate objectness),
crop them out as pseudo object-centric images, then any
SSL method can be directly applied as in a real object-
centric dataset. That is, coarse crops benefits scene images
SSL. A novel cropping strategy that produces coarse object
box is proposed. The new pipeline and cropping strategy
successfully learn quality features from uncurated datasets
without ImageNet. Experiments show that our pipeline out-
performs existing SSL methods (MoCo-v2, DenseCL and
MAE) on classification, detection and segmentation tasks.
We further conduct extensively ablations to verify that: 1)
the pipeline do not rely on pretrained models; 2) the crop-
ping strategy is better than existing object discovery meth-
ods; 3) our method is not sensitive to hyperparameters and
data augmentations.

1. Introduction

Self-supervised learning (SSL) of visual representation
has boosted the accuracy of various downstream tasks such
as image classification [38] and object detection [37]. Re-
cently, contrastive learning based SSL methods have be-
come a popular paradigm. Representative methods in this
family, such as MoCo [6], BYOL [15] and SwAV [4], are
based on the so-called object-centric assumption: the im-
ages used for SSL are supposed to be object-centric, and
hence two different views augmented from the same im-
age will share similar visual semantics. This assumption
holds true in object-centric (also called curated) datasets

Image-Crop GT-Crop Grid-Crop

(a) (b) (c)

Figure 1. Three strategies for cropping pseudo object-centric im-
ages, using the entire image (a), groundtruth (b), and regular grid
(c), respectively. This figure is best viewed in color.

like ImageNet [38], in which objects are usually centered
and occupy large areas. But, for downstream tasks like de-
tection and segmentation, it simply breaks down. The im-
ages in such scene (or multi-object, or uncurated) datasets,
e.g., VOC [13] and COCO [27], often contain many (small)
objects per image. Hence, it is a natural requirement that
we need new methods to handle SSL with scene images. In
this paper, we aim to design a SSL method that works di-
rectly on scene images, without relying on object-centric
datasets like ImageNet. In SSL pretraining facing uncu-
rated datasets, previous efforts are generally based on dense
comparison, such as DenseCL [43], Self-EMD [28] and
ReSim [46]. They [28, 47, 22, 1] introduce region-level or
feature-level pretext tasks, with dedicated pipelines to for-
mulate the loss functions. Another line of work [44, 48]
(e.g., SoCo [44]) try to find pairs of precise boxes with sim-
ilar semantics from images to apply the InfoNCE loss [35],
but they involve heavy matching procedures [48] on top
of box generation (e.g., selective search [40]). Besides,
their downstream improvements are modest (e.g., consid-
ering SoCo pretrained on MS-COCO [27]).

One common characteristic of these prior arts is that they
need manually matched pairs on dense feature level or im-
age level, and they generate the views directly from the raw
input image. The input image is uncurated, but the gener-
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Table 1. Downstream tasks’ results using different cropping strate-
gies for object-centric SSL pretraining on VOC2007. All models
(ResNet50) were pretrained for 800 epochs on the trainval set us-
ing BYOL or MoCo-v2. AP bbox

50 evaluates object detection accu-
racy, and mAP and mAP l are for multi-label classification with
end-to-end finetuning and linear evaluation, respectively.

Method Cropping APbbox
50 mAP mAPl

BYOL

Image-Crop 63.3 63.0 39.8
GT-Crop 66.9 69.2 33.1
Grid-Crop 68.1 70.3 41.6
Our-Crop 69.5 70.7 42.5

MoCo-v2

Image-Crop 61.8 62.2 26.9
GT-Crop 62.3 66.2 28.7
Grid-Crop 65.6 67.7 37.2
Our-Crop 67.2 69.6 44.9

ated views are assumed to be good matches for each other
and correspond to objects. This assumption is tremendously
difficult to entertain. Besides, it is believed that the (un-
available) GT-box/GT-mask could lead to the best pretrained
features (as shown in previous SSL method [22]). The use-
fulness of coarse boxes (which contain partial objects) to
SSL pretraining, however, remains unexplored.

In this paper, we propose a completely different scene
image SSL paradigm without matching boxes, and for the
first time argue that coarse object boxes are comparable to
GT boxes for SSL pretraining. Our method can be summa-
rized as follows: we first crop a few (e.g., 5) boxes from
each uncurated image, only requiring the cropped boxes
to coarsely contain objects (e.g., do contain object(s), but
not necessarily a single or a full object); then, the cropped
boxes are treated as pseudo object-centric images, which
are directly fed to existing object-centric SSL methods (like
MoCo-v2 or BYOL), and the two views are extracted from
the same pseudo object-centric image for SSL learning.

Our approach is motivated by the following simple ex-
periment. We consider 3 different cropping strategies as
in Fig. 1. ‘Image-Crop’ treats the entire input image as
the only crop. ‘GT-Crop’ utilizes the groundtruth bounding
box annotations, and each bounding box becomes a crop.
‘Grid-Crop’ splits the input image into 2 rows, with each
row being split into 3 or 2 crops with equal size. These
crops form pseudo object-centric images with dramatically
different crop quality, where ‘GT’ is perfect but ‘Grid’ is
almost random in objectness. By pretraining an SSL model
using these pseudo images to initialize downstream models,
Table 1 shows their object detection and multi-label recog-
nition accuracy on the VOC2007 dataset (more details in
Sec. 3). The results demonstrate that all cropping strategies
(after SSL) are beneficial to downstream tasks. More impor-
tantly, the almost random ‘Grid’ crop is even consistently
better than the ‘GT’ strategy. The ‘Grid’ crops indeed con-
tain objects, but the objects may be partial or multiple, i.e.,
only coarsely contain objects. Hence, we hypothesize that

Table 2. Empirical analysis of cropping strategies. ‘Objectness’ is
the average ratio of object pixels within each crop. We selected
a best padding ratio for ‘GTpad-Crop’ and generated ‘Poor-Crop’
objectness around 20%. Models were pretrained with BYOL. We
used the pixel-level groundtruth annotations only in calculating the
objectness.

Cropping APbbox
50 mAP mAPl Objectness

GT-Crop 66.9 69.2 33.1 100.0%
GTpad-Crop 69.7 72.3 40.2 48.2%

Poor-Crop 60.4 62.2 21.4 20.1%
Image-Crop 63.3 63.0 39.8 36.4%
Grid-Crop 68.1 70.3 41.6 39.8%
Our-Crop 69.5 70.7 42.5 52.6%

we do not need precisely cropped images as views, nor do
we need matched crops. Instead, crops with coarse objects
are what we want. Treating these crops as pseudo object-
centric images and then generate two views from the same
pseudo image is both much simpler and more beneficial.

We have then calculated the objectness of the crops, and
consider two new crops: ‘Poor-Crop’ (low objectness re-
gions) and ‘GTpad-Crop’ (GT boxes with padding). As
shown in Table 2 (cf. the visualization in Fig. 5), too
low objectness (‘Poor-Crop’) is detrimental for SSL, while
too high objectness (‘GT-Crop’) leads to suboptimal re-
sults compared with medium objectness (‘GTpad-Crop’ and
‘Our-Crop’). These results again support our hypothesis:
objectness should not be too high, and coarse crops are
enough. On the other hand, a filtering algorithm is re-
quired to filter away crops with low objectness. For exam-
ple, roughly 40% of the crops in ‘Grid-Crop’ have lower
than 20% objectness (see appendix for more details), which
hinders the model from learning quality representation.

Consequently, we propose a novel crop generation and
filtering method to obtain bounding boxes with adequate
objectness, and demonstrate its superiority over existing
unsupervised object discovery methods from both qualita-
tive and quantitative results. The effectiveness of our new
pipeline and the cropping strategy are extensively verified
on uncurated datasets like MS-COCO and VOC for detec-
tion, segmentation and classification, and are further studied
by abundant ablations. Our contributions can be summa-
rized as:

1. We conduct an empirical study to argue that cropping
benefits scene images SSL—just treat these local crops
as pseudo object-centric images.

2. We verify that we do not need precisely matched boxes
for scene SSL pretraining, and propose a novel box
generation and filtering strategy to obtain crops with
coarse objectness (i.e., ‘Our-Crop’).

3. Feeding the cropped pseudo images to existing SSL
methods (e.g., BYOL, DenseCL or MAE), we achieve
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consistent improvements on VOC and MS-COCO for
recognition, detection and segmentation. Note that we
do not rely on the ImageNet pretraining data.

2. Related Work
SSL on object-centric images. Self-supervised learn-

ing has become a powerful tool to learn good representa-
tions from unlabeled data [7, 8]. In particular, contrastive
SSL methods [21, 29, 25, 30] become the most popular
and have largely boosted the performance of various down-
stream tasks. Previous works formulated the InfoNCE [35]
loss using contrastive predictive coding, and InfoMin [39]
argued that the mutual information of two views should be
reduced as long as the task-relevant information are kept in-
tact. Recent studies based on bootstrapping [15, 49], mem-
ory bank [6, 47, 1, 22] and online learning [4] tried to pull
positive pairs closer while pushing negative pairs apart. The
underline assumption of these methods is that two positive
views generated from the same object-centric image should
share similar content, which may cease to be true in un-
curated datasets. [14] attempted to apply SSL in the wild,
and [41] tried to improve SSL of scene images by introduc-
ing constrained multi-crop [4]. Still, a specialized method
for uncurated scene images is of high importance.

SSL on uncurated scene images. Recent works [43, 52,
28, 48] started to focus on the usage of uncurated datasets
like MS-COCO [27], aiming to get better representation for
dense prediction tasks. DenseCL [43], MaskCo [52], Self-
EMD [28] tried to form positive pairs with dense features.
But, they need manually matched pairs from feature level or
image level, which can be difficult to entertain, especially in
scene images with multiple different objects.

Another SSL paradigm [48, 44, 22] resorted to exter-
nal unsupervised object discovery methods such as selec-
tive search [40] to obtain precise object boxes in scene im-
ages. They tried to learn a good representation based on the
global image and local object parts. These methods usu-
ally involved complex filtering algorithms like K-Nearest
Neighbors [48], so as to select object bounding boxes as
precisely as possible. They assumed that the more precise
the object proposals, the better the SSL. In this paper, how-
ever, we call into question the validity of this assumption.
Instead, we argue that bounding boxes that are only roughly
objects (with adequate objectness) are enough, and we need
to crop them as pseudo object-centric images. Then, we ad-
vocate that the two positive views need to be cropped within
the same one such pseudo image, not from two original in-
put images.

A recent work that is close to ours is [32], which try to
obtain views from object-aware boxes. However, we clarify
that Our-Crop and [32] is much different. First, [32] di-
rectly rely on existing object discovery methods (some even
need groundtruth annotations), while our cropping strategy

is done in a fully unsupervised manner. More importantly,
quantitative analysis of how different quality (objectness,
cf. Table 1-2) of boxes affect pretraining are not told in
their paper, while we found perfect GT are not possibly the
best and argued coarse is enough. Technically, they are very
different, too: they add extra augment like dilation, shift-
ing to the BING boxes, adjust many augmentation parame-
ters, and adopt different projection heads, while we directly
fed our pseudo-images into SSL without any modification.
In a word, our pipeline, cropping strategy and the analysis
shares minimal similarity with that of [32].

3. Method
We first briefly introduce the formulation of two SSL

methods for object-centric images, as they are both our
baseline and component techniques. Then, we present the
overall pipeline of the proposed method in detail. Finally,
we present the key component of our pipeline: a novel crop-
ping strategy to generate pseudo object-centric images.

3.1. MoCo-v2 and BYOL

Both MoCo-v2 and BYOL implicitly follow the object-
centric assumption, but in practice we can feed any type
of images (e.g., uncurated ones) to them. MoCo-v2 [6] is
based on the InfoNCE [35] loss:

Lq = − log
exp (q · k+/τ)

exp (q · k+/τ) +
∑

k−
exp (q · k−/τ)

, (1)

where τ is the temperature, and q is the encoded query that
computes the loss over one positive key k+ and many neg-
atives k−. Note that q and k+ are two views generated from
the same image by different data augmentations.

BYOL [15] devises an online network θ and a slow mov-
ing averaged target network ξ, which was inspired by sev-
eral earlier reinforcement learning methods [16]. The loss
function of BYOL is designed to only pull positive views
together:

Lθ,ξ =

∥∥∥∥∥ qθ
∥qθ∥

−
z′ξ
∥z′ξ∥

∥∥∥∥∥
2

2

= 2

(
1−

⟨qθ, z′ξ⟩
||qθ|| · ||z′ξ||

)
, (2)

in which qθ and z′ξ are feature representations for the online
and the target network, respectively. Note that qθ and z′ξ are
also two views generated from the same image. Many recent
work [28, 48, 52] have followed BYOL for its efficacy.

3.2. A new pipeline for SSL with scene images

It is easy to accept that two views generated out of the
same object-centric image share enough semantic similar-
ity. But, as suggested by previous work [43, 52, 48], two
views generated from one non-object-centric image poten-
tially have insufficient semantic overlap and will lead to
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suboptimal accuracy in downstream tasks. Hence, we argue
that instead of following the commonly used strategy to find
semantically or visually matched object regions as the two
views, it is better to crop out regions that coarsely contain
objects (i.e., with adequate objectness) as pseudo object-
centric images, then generate two views from the same one
such pseudo image. The two views generated in this manner
are naturally similar to each other, and will contain coarse
object information, too.

The proposed pipeline is as follows:

1. Given a scene image dataset like COCO, use any
object-centric SSL methods to learn a backbone model
(the ϕ(·) shown in Fig. 2) by simply pretending these
images as object-centric ones (though Table 11 proved
that this backbone learning stage is not necessary).

2. For each uncurated image, use our proposed cropping
strategy and this backbone model ϕ(·) to find a few
(e.g., 5) crops that coarsely contain objects: filter away
crops with low objectness and the remaining ones con-
tain adequate objectness. These crops are treated as
pseudo object-centric images.

3. Feed these pseudo object-centric images to any object-
centric SSL method to train a randomly initialized
backbone model from scratch (that is, we do not in-
herit the weights of ϕ(·) from stage 1) so as to finish
unsupervised visual representation learning with uncu-
rated images.

Our pipeline (and its feasibility) is motivated by the ex-
periments in Table 1, in which we tried 3 cropping strategies
and 2 SSL methods (BYOL and MoCo-v2) on VOC2007.
Following [3], we set batch size to 256, and trained 800
epochs on VOC2007 trainval [13]. For the downstream
tasks, we trained Faster R-CNN [37] for object detection
and finetuned multi-label classification models.

As shown in Table 1, directly cropping two views from
the uncurated images (‘Image-Crop’) works fairly poorly,
since it has a big chance to generate two views contain-
ing different semantics. ‘GT-Crop’ is much better, show-
ing the importance of cropping two views from objects lo-
cally. What is surprising is that cropping two views from
one fixed-grid pseudo image (‘Grid-Crop’) achieves even
higher mAP than ‘GT’! In fact, the five pseudo images of
‘Grid’ contain random contents and are at best coarse ob-
jects, which suggests that we do not need precise object lo-
cations in a cropping strategy. Then, it is natural to hypoth-
esize that constructing two views within one locally cropped
image with coarse object(s) is the key—we do not need pre-
cise object cropping, and it is both easier and better than
finding matching regions as the views [43, 22, 48] either
from the image-level or the feature-level.

Meanwhile, as Table 2 suggests, the pseudo images in
‘Grid’ are too coarse such that a large proportion of them
have extremely low quality (about 40% of the crops in
‘Grid’ have lower than 20% objectness), and may contain
no objects at all (e.g., the one contains only grass in Fig. 1).
The diversity of the boxes is not guaranteed, either. These
drawbacks necessitate a novel strategy that filters away
cropped pseudo images with low objectness scores and to
make the cropped pseudo images diverse (e.g., it is harmful
if all 5 crops are around one same region).

3.3. Generating coarse object crops

The proposed cropping strategy (Fig. 2) differs from pre-
vious unsupervised object discovery methods [40, 9, 53],
since these object discovery methods focus on cropping
highly accurate objects (as later verified in Fig. 3), which
may not suit SSL pretraining well (as indicated by Table 2
and compared in Table 13). Instead, we argue that crops
that coarsely contain objects are enough. As Fig. 2 illus-
trates, we compute both the per-pixel objectness score and
a set of predefined anchors, then filter the anchors with the
objectness scores.

Anchor generation. We borrow the anchors from object
detection [37, 19], since it does not need a real forward pass
and is highly efficient. Besides, the diversity of the anchors
are guaranteed, as shown by the detection literature. For
an image I with height H and width W , a feature tensor
x ∈ Rd×h×w would be obtained if it were to be sent to the
backbone network, where d, w and h are the dimensional-
ity, height and width of the feature tensor, respectively. For
each spatial location out of the h × w in the feature ten-
sor, we predefine 12 anchors with four different sizes (32,
64, 128, 256) and three aspect ratios (0.5, 1.0, 2.0). Then
the spatial coordinates of these anchors are mapped from
the feature space back into the image space according to
the down-sampling ratio H/h. Thus, a total of 12× h× w
anchor boxes are generated for an image.

Objectness scores and crops. The key idea to filter the
generated boxes is to assign each box an objectness score.
For simplicity, we generate a shared per-pixel score map,
and the objectness score of a box is the average score of
all pixels within it. Following SCDA [45], an image I ∈
RH×W is first sent to a feature extractor ϕ (the backbone
network) to obtain the feature tensor x ∈ Rd×h×w: x =
ϕ(I; θ), where θ are the backbone’s parameters. Then, a
sum operation is done on the feature dimension to obtain a
corresponding score map A ∈ Rh×w:

Ai,j =
∑
d

xi,j,d , (3)

in which i ∈ {1, 2, ..., h} and j ∈ {1, 2, ..., w}. As pointed
out by SCDA [45], the score map A is indicative of the ob-
jectness at the corresponding position. We then linearly nor-
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𝜙(I; θ)

Backbone

Anchor 

Generator

I

መ𝐴

𝑇(∙)

Figure 2. The proposed cropping strategy. In the top branch, an image I ∈ RH×W×C first passes through a self-supervised pretrained
backbone ϕ(·) (e.g., ResNet-50) to obtain a feature tensor x ∈ Rh×w×d, which is then transformed by T (·) (sum, normalize and resize)
to an objectness score map Â ∈ RH×W (color coded on top of the input image). Second, in the bottom branch, a large number of anchor
boxes with different sizes and aspect ratios are generated. Third, anchors are filtered according to the score map Â. Finally, the top-5
anchors are our selected crops (pseudo object-centric images). Best viewed in color.

malize the score map A to the [0, 1] range and upsample it
to the original image size by bilinear interpolation to get the
final score map Â ∈ RH×W .

Suppose we have generated N anchors in an image,
namely, c1, c2, . . . , cN . We calculate the mean score within
each anchor by using the final score map Â. Specifically, for
a given anchor ck, the score sk for it is:

sk =
1

h′ × w′

y1∑
i=x1

y2∑
j=y1

Âi,j , (4)

where h′ and w′ are the height and width of the anchor ck,
and (x1, y1) and (x2, y2) are the top-left and bottom-right
coordinates of the anchor ck, respectively. The NMS [33]
operation is then applied to merge heavily-overlapped an-
chors. Finally, anchors with the top-5 scores are cropped.

The backbone and the final learning. This box filtering
process needs a feature extractor ϕ to produce an objectness
score map A. Take Table 1 for example, we use MoCo-
v2 and uncurated images (i.e., ‘Image-Crop’) to learn the
backbone ϕ. After all the pseudo object-centric images are
cropped, we randomly initialize a model, and then perform
SSL using any object-centric SSL method and these pseudo
images. As shown in Table 1, ‘Our-Crop’ significantly out-
performs other cropping strategies, showing the effective-
ness of our cropping strategy.

4. Experiments
For almost all of our experiments, we choose MS-

COCO [27] as the pretraining dataset and evaluate the
effectiveness of our cropping strategy on various down-
stream benchmarks: MS-COCO detection and segmenta-
tion, VOC0712 [13] detection, CityScapes [11] segmenta-
tion and 7 small classification [42] datasets. We also explore
the effectiveness of Our-Crop pretrained on truly object-
centric dataset (e.g., ImageNet [38] only in Table 8).

4.1. Experimental settings

Datasets. MS-COCO is a large uncurated dataset.
We use 118k training images to pretrain our backbone
with different self-supervised methods (MoCo-v2, BYOL,
DenseCL and MAE). VOC2007 contains 5,011 trainval and
4,952 test images, while VOC2012 [13] has 11k trainval
images. The Cityscapes dataset is a scene dataset con-
taining 3475 images (2975 for training and 500 for valida-
tion). Since most previous [43, 41] SSL works utilize these
datasets for evaluation, we evaluate the object detection and
instance segmentation tasks on MS-COCO, object detection
and multi-label classification tasks on VOC, and semantic
segmentation on Cityscapes. Besides, we also validate our
effectiveness on various single-label classification datasets,
namely CUB200 [42], Flowers [34], Cars [24], Aircraft [31]
and DTD [10]. On top of that, we explore ImageNet [38]
(128k train images) pretraining to evaluate the generaliza-
tion ability of our cropping strategy.

Training details. We pretrain all models from scratch
for 400 epochs using ResNet50 [20] (except ViT-B [12] for
MAE [17]) as our backbone with synchronized batch nor-
malization [18] during pretraining. Specifically, for MoCo-
v2 [6], batch size and learning rate are 256 and 0.3, respec-
tively. The temperature τ is 0.2, and MLP’s hidden dimen-
sion is 2048. For data augmentation, we follow the default
setting of [6]. For BYOL, we set the batch size as 512 and
follow the base learning rate scheduler of [49, 44]. The
momentum grows from 0.99 to 1 using the cosine sched-
uler, and data augmentation follows the original paper [15].
DenseCL [43] is suitable for uncurated images, which fol-
lows most of the settings from MoCo-v2 except for a dif-
ferent (dense) projection head. For MAE, we strictly follow
its original pre-training settings [17].

For simplicity, we use MoCo-v2 pretrained with ‘Image-
Crop’ as the backbone model ϕ(·) to generate our crops
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Table 3. Downstream results of COCO detection and segmenta-
tion using the Mask R-CNN R50-FPN structure. Models were
pretrained 400 epochs from scratch using BYOL, MoCo-v2 and
DenseCL on MS-COCO with cropped pseudo images (‘our’, 5
crops per image by default). ‘IN’ and ‘CC’ stand for ImageNet
and COCO, respectively. The SSL method SoCo∗ is our repro-
duced result.

Method Data Detection Segmentation
APbbox APbbox

50 APbbox
75 APseg APseg

50 APseg
75

Supervised IN 38.9 59.6 42.7 35.4 56.5 38.1

ReSim-C4 [46] IN 39.3 59.7 43.1 35.7 56.7 38.1
LEWELM [23] IN 40.0 59.8 43.7 36.1 57.0 38.7
SimCLR [5] CC 37.0 56.8 40.3 33.7 53.8 36.1
Self-EMD [28] CC 39.3 60.1 42.8 - - -
SoCo∗ [44] CC 39.1 59.1 42.7 35.4 56.0 37.8

MoCo-v2 CC 38.2 58.0 41.9 34.7 55.1 37.2
MoCo-v2our CC 39.3 59.1 42.7 35.6 56.4 38.0

DenseCL CC 39.3 58.9 42.9 35.4 56.0 37.8
DenseCLour CC 39.9 59.8 43.5 35.9 56.8 38.5

BYOL CC 38.8 58.5 42.2 35.0 55.9 38.1
BYOLour CC 40.2 60.4 43.9 36.4 57.3 39.0

(5 per image, cf. Fig. 2 for a full illustration) on the MS-
COCO dataset. We then train MoCo-v2, BYOL, DenseCL
and MAE from scratch by generating two views from one of
these crops (pseudo images), referred to as ‘MoCo-v2our’,
‘BYOLour’, ‘DenseCLour’ or ‘MAEour’, respectively.

Downstream finetuning. After the MoCo-v2, BYOL,
DenseCL or MAE model is pretrained on our cropped
pseudo object-centric images, we finetune them for the MS-
COCO object detection or instance segmentation, VOC de-
tection and Cityscapes segmentation tasks. Specifically, we
finetune for 90k iterations on MS-COCO using Mask R-
CNN R50-FPN and Mask R-CNN R50-C4, and finetune for
24k iterations on the VOC07+12 trainval set using Faster
R-CNN R50-C4. On Cityscapes, we finetune for 40k iter-
ations using PSANet. The learning rate and batch size are
0.02 and 16, respectively. We strictly follow the settings in
ViTDet [26] for MAE pretrained models. Following pre-
vious works [15, 50], we adopt AP (average precision) for
detection and instance segmentation, and adopt mAP (mean
average precision) for multi-label classification. The mIoU
(mean IoU), mAcc (mean accuracy) and aAcc are used for
semantic segmentation. We take 3 runs on VOC detection
and CityScapes segmentation tasks since these results have
larger variances. All our experiments were conducted us-
ing PyTorch [36] and we used 8 GeForce RTX 3090 for our
experiments. More details can be found in the appendix.

4.2. COCO detection and segmentation.

ResNet models. We first evaluate on MS-COCO ob-
ject detection and instance segmentation using ResNet-50
as backbone. The results of MoCo-v2 and BYOL pre-
trained models using the Mask R-CNN R50-FPN structure

Table 4. Downstream results on COCO with Mask R-CNN R50-
C4. All models were pretrained on MS-COCO for 400 epochs.

Method Data Detection Segmentation
APbbox APbbox

50 APbbox
75 APseg APseg

50 APseg
75

Supervised IN 38.1 58.1 41.1 33.2 54.8 35.0

BYOL CC 36.9 56.7 39.4 32.4 53.5 34.3
BYOLour CC 37.9 57.8 40.7 33.1 54.3 35.2

MoCo-v2 CC 37.3 56.7 40.4 32.8 53.5 34.9
MoCo-v2our CC 38.1 57.4 41.4 33.4 54.2 35.8

DenseCL CC 38.3 57.9 41.4 33.5 54.4 35.7
DenseCLour CC 39.3 58.8 42.4 34.3 55.6 36.6

Table 5. ViT-Base pretrained (800ep) on COCO with MAE [17],
and finetuned on COCO using Mask RCNN FPN (‘Mask’) and
Cascade RCNN FPN (‘Cas.’) according to ViTDet [26].

Method Detector Detection Segmentation
APbbox APbbox

50 APbbox
75 APseg APseg

50 APseg
75

Random Mask 27.8 45.4 29.4 26.0 43.0 27.0
MAE Mask 38.0 57.8 41.1 34.6 55.0 37.0
MAEour Mask 43.2 63.8 47.5 39.0 60.8 41.8

Random Cas. 31.9 47.0 34.1 28.0 44.7 29.8
MAE Cas. 41.7 58.8 45.1 36.3 56.2 39.1
MAEour Cas. 46.4 64.2 50.4 40.3 61.8 43.8

are in Table 3. Specifically, our method has 1.4%, 1.1%
and 0.6% APbbox gains over the BYOL, MoCo-v2, and
DenseCL baseline, respectively. Our method also achieves
state-of-the-art performance within self-supervised training
methods on uncurated images (i.e., ImageNet free). It out-
performs ReSim [46] and SoCo [44] consistently. It also
surpasses its supervised counterpart by 1.3% APbbox and
1.0% APseg for detection and segmentation, respectively.
We also tested our method using the Mask R-CNN R50-
C4 structure. As shown in Table 4, our cropping strat-
egy has roughly 1% APbbox gain consistently when com-
pared with the baseline MoCo-v2, BYOL and DenseCL
(i.e., ‘Image-Crop’). More importantly, DenseCL with our
cropping strategy has surpassed supervised pretraining by a
large margin (1.2% APbbox and 1.1% APseg for detection
and segmentation, respectively).

ViT structure with MAE. Since our cropping strategy
is orthogonal to SSL methods, we now validate its adapt-
ability to the non-contrastive SSL method MAE [17]. We
pretrain ViT-B on COCO with original image and Our-Crop
(‘our’) using MAE for 800 epochs and finetune COCO de-
tection. Our cropping strategy surpasses the original Image-
Crop by a significant margin for both Mask RCNN and Cas-
cade RCNN [2] detectors, as Table 5 shows. We argue that
decoupling original image to a set of image patches (Our-
Crop) could relieve the difficulty of the MAE’s reconstruc-
tion, since the pixels in one of these pseudo object-centric
images will have higher correlation to each other that jointly
describe a certain object content.

6



Table 6. Transfer learning of VOC0712 object detection using
Faster-RCNN R50-C4 and CityScapes (‘City’) segmentation using
PSANet [51]. Our models were pretrained using original image
and ‘Our-Crop’ (our) on MS-COCO for the default 400 epochs.

Method Data VOC detection City segmentation
AP AP50 AP75 mIoU mAcc aAcc

Supervised IN 53.3 81.0 58.8 77.5 86.5 95.9
Self-EMD [28] CC 53.0 80.0 58.6 - - -

BYOL CC 51.7 80.2 56.4 77.6 86.6 95.8
BYOLour CC 52.1 80.7 56.9 78.1 86.8 96.0

MoCo-v2 CC 53.7 80.0 59.5 76.8 85.7 95.8
MoCo-v2our CC 54.8 81.0 61.2 77.6 85.9 96.0

DenseCL CC 56.0 81.5 62.5 77.6 86.6 96.0
DenseCLour CC 57.2 82.2 63.4 78.6 86.9 96.2

Table 7. Transfer learning results on 7 small classification datasets,
All the models are pretrained on MS-COCO dataset for 400 epochs
with BYOL SSL method using original image and our cropping
strategies (‘our’), respectively.

Method CUB Flowers Cars Aircraft Indoor Pets DTD

BYOL 74.0 92.9 89.7 84.6 70.3 83.8 65.3
BYOLour 75.4 94.5 90.4 85.2 71.0 84.7 66.2

4.3. Transfer Learning

VOC and CityScapes results. We then transfer our
pretrained models to VOC detection using Faster R-CNN
R50-C4. We run MoCo-v2, BYOL and DenseCL with or
without ‘Our-Crop’ during the pretraining stage. As shown
in Table 6, the improvement of our cropping strategy over
MoCo-v2 and BYOL is consistent. Specifically for MoCo-
v2, we get 1.1% and 1.7% gain over its baseline for AP
and AP75, respectively. Our method also surpasses the
ImageNet supervised baseline and the SSL method Self-
EMD [28] by a large margin. Finally, we validate our
cropping method on Cityscapes semantic segmentation. As
shown in Table 6, using ‘Our-Crop’ during the pretraining
stage leads to consistent improvement over 3 SSL base-
line methods, surpassing its supervised counterpart for all
of them.

Classification results. Besides dense prediction tasks,
we also verify the effectiveness of Our-Crop on various
classification benchmarks. The results can be found in Ta-
ble 7, which again clearly demonstrates the adaptability of
our cropping strategy to different downstream tasks.

ImageNet pretraining. Now we further validate on
object-centric images. We first compare Our-Crop with Se-
lective Search [40] (SS) under the SoCo pretraining pipeline
on ImageNet. Number of boxes in SS and ours is 41 and 22
per image, respectively. As shown in Table 8, larger dataset
pretraining boosts downstream performance. Although the
number of crops in Our-Crop is only 22 (about half of that
in SS), SoCoour consistently surpassed SoCoss. We also

Table 8. ImageNet pretraining results. SoCo [44] were pretrained
with its original boxes from selective search (ss) or Our-Crop
(‘our’). BYOL and MoCo-v2 were pretrained for 200 epochs on
ImageNet subset (‘IN100’, with 100 sampled images per class)
using Our-Crop (3 crops per image). All pretrained models were
then finetuned on COCO with Mask R-CNN R50-FPN.

Method Data Detection Segmentation
APbbox APbbox

50 APbbox
75 APseg APseg

50 APseg
75

Supervised IN 38.9 59.6 42.7 35.4 56.5 38.1
SoCoss IN 41.7 62.2 45.7 37.3 59.1 39.9
SoCoour IN 42.0 62.5 46.1 37.5 59.4 40.0

BYOL IN100 37.9 57.4 41.3 34.3 54.5 36.7
BYOLour 38.8 58.5 42.4 35.2 55.7 37.5

MoCo-v2 IN100 36.6 55.7 39.9 33.3 53.0 35.7
MoCo-v2our 37.8 57.3 41.2 34.3 54.5 36.8

DenseCL IN100 37.9 57.4 41.4 34.5 54.5 37.0
DenseCLour 39.1 58.7 42.9 35.4 55.8 38.2

sample 100 images per ImageNet class to form an Ima-
geNet subset (‘IN100’), and adopt our cropping pipeline
(cf. Sec. 3.2) to generate 3 crops per image. As Table 8
shows, training BYOL and MoCo-v2 with Our-Crop is sig-
nificantly better than training with original image on IN100,
demonstrating the flexibility of our cropping pipeline to not
only non-curated datasets (e.g., MS-COCO), but to object-
centric datasets (e.g., ImageNet) as well!

5. Ablations
In this section, we will first explore various components

in our cropping pipeline (Sec. 5.1), then compare with other
box generation methods in Sec. 5.2 to verify of our hypothe-
sis: crops that have coarse objectness scores work the best.
Besides, we do a series of hyper-parameter tuning and visu-
alization in Sec. 5.3 to show the robustness of our method.

5.1. Efficiency and validity analysis

More or less training epochs. Since there are 5
(‘Our-Crop’) crops per image, we explored a 5x baseline
for ‘Image-Crop’. As shown in Table 9, more training
epochs will not increase the accuracy for ‘Image-Crop’, and
that pretraining with ‘Our-Crop’ is consistently better than
‘Image-Crop’ with both 1x and 5x schedule. Besides, we
downscale the pre-training epochs on MS-COCO from the
default 400 to 200 and 100. As shown in Table 10, even
with one fourth (100ep) of the default scheduler, Our-Crop
is still better than Image-Crop. It is also viable for Our-
Crop to adopt half scheduler since 400 and 200 epochs lead
to quite similar results.

Components of Our-Crop. We pretrain BYOL
(Table 11) with Image-Crop (‘baseline’), GTpad-Crop
(‘s2GTpad’), Grid-Crop (‘s2grid’), Multi-Crop (‘s3multi’)
and three variants of Our-Crop (‘s4-s6’). Specifically, ‘s4’
means randomly generated boxes (pseudo-centric crops, 5
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Table 9. More training epochs (2000) of ‘Image-Crop’ pretrained
on COCO, and finetuned on COCO with Mask R-CNN R50-C4.

Arch Epochs Detection Segmentation
APbbox APbbox

50 APbbox
75 APseg APseg

50 APseg
75

BYOL 400 36.9 56.7 39.4 32.4 53.5 34.3
BYOL 2000 36.1 56.3 38.4 31.7 52.6 33.3
BYOLour 400 37.9 57.8 40.7 33.1 54.3 35.2

MoCo-v2 400 37.3 56.7 40.4 32.8 53.5 34.9
MoCo-v2 2000 37.4 56.6 40.3 32.8 53.3 34.8
MoCo-v2our 400 38.1 57.4 41.4 33.4 54.2 35.8

Table 10. Less pre-training epochs of BYOL and MoCo-v2 with
‘Our-Crop’ on COCO and finetuned with Mask R-CNN R50-FPN.

Crop types Epochs Schedule BYOL MoCo-v2
APbbox APseg APbbox APseg

Image-Crop 400 1.0x 38.8 35.0 38.2 34.7

Our-Crop
100 0.25x 39.2 35.4 38.5 34.9
200 0.5x 40.1 36.2 39.2 35.5
400 1.0x 40.2 36.4 39.3 35.6

Table 11. Comparison of different cropping strategies illustrated
in Fig. 1 and the analysis of 3 components (stages) in our crop-
ping pipeline. We consider Image-Crop (‘s0’), GTpad-Crop
(‘s1GTpad’), Grid-Crop (‘s2grid’), Multi-Crop [4, 41] (‘s3multi’)
and three strategies (‘s4-s6’) of Our-Crop. The three stages are
detailed in Sec. 3.2, which means learning backbone weights for
SCDA scores (cf. Fig. 2), anchors generation & filtering, and the
final SSL learning with pseudo object-centric images, respectively.

Strategy Stage1 Stage2 Stage3 GT box APbbox APseg

different cropping
s0 38.8 35.0
s1GTpad ✓ ✓ 39.6 35.9
s2grid ✓ 39.0 35.2
s3multi ✓ 39.5 35.7

our cropping
s4 ✓ 39.1 35.5
s5 ✓ ✓ 40.0 36.2
s6 ✓ ✓ ✓ 40.2 36.4

per image) for SSL learning, ‘s5’ using randomly initialized
network weights for box filtering, and ‘s6’ is the default
Our-Crop pipeline. It is clear that ‘s1GTpad’ and ‘s2grid’
both surpassed baseline, showing that cropping is the key
(generating views from local object contents). And our
cropping pipeline is effective than the pure multi-crop strat-
egy. However, GTpad (39.6% APbbox) is still inferior to
Our-Crop (40.2% APbbox), suggesting groundtruth bound-
ing boxes are not necessarily the most important informa-
tion in SSL. Surprisingly, we can also obtain similar results
without ‘Stage1’ pretraining (the strategy ‘s5’), showing
that our cropping strategy does not rely on pretrained SSL
model!

Table 12. Compare with other box generation methods (Selective
Search ‘ss’ and EdgeBox ‘edge’) on MS-COCO object detection
and segmentation. All models were SSL pretrained on MS-COCO
using BYOL and MoCo-v2 for 400 epochs.

Method Detection Segmentation
APbbox APbbox

50 APbbox
75 APseg APseg

50 APseg
75

BYOL 38.8 58.5 42.2 35.0 55.9 38.1
BYOLss 39.3 59.4 42.9 35.6 56.3 38.3
BYOLedge 39.6 59.8 43.6 35.9 56.7 38.5
BYOLour 40.2 60.4 43.9 36.4 57.3 39.0

MoCo 38.2 58.0 41.9 34.7 55.1 37.2
MoCoss 38.1 57.4 41.7 34.3 54.4 36.9
MoCoedge 38.5 58.2 42.0 35.0 55.4 37.5
MoCoour 39.3 59.1 42.7 35.6 56.4 38.0

Table 13. Compare with other box generation methods on
VOC2007 detection and multi-label classification tasks. Models
were SSL pretrained on the VOC2007 trainval set.

Method Crop types APbbox
50 mAPl

BYOL

Image-Crop 63.3 39.8
Selective search 68.0 36.1
EdgeBox 68.1 30.5
Our-Crop 69.5 42.5

MoCo-v2

Image-Crop 61.8 26.9
Selective search 66.4 39.7
EdgeBox 67.0 43.3
Our-Crop 67.2 44.9

5.2. Comparing with existing object discovery
methods

Quantitative comparison. We also compare our crop-
ping strategy with two unsupervised object discovery meth-
ods, selective search [40] (SS) and EdgeBox [53]. We use
them to generate 5 top boxes for each image (because we
have 5 crops in ‘Our-Crop’), and then crop them out as
pseudo images. We first pretrain all models on the MS-
COCO dataset. As can be seen in Table 12, all cropping
strategy (EdgeBox, SS and Our) lead to consistent improve-
ment over the Image-Crop baseline, showing local object
contents suits SSL better. Besides, our cropping strategy
achieves the highest results among all of them. The same is
true for VOC pretraining results (shown in Table 13), which
clearly demonstrate the superiority of our cropping strategy
over selective search and EdgeBox. Meanwhile, it is obvi-
ous that generating two views from a cropped pseudo image
(SS and EdgeBox) significantly outperforms ‘Image-Crop’.
This observation further shows that our pipeline is effective:
it’s better to obtain two views from a cropped pseudo image
rather than from the entire scene images.

Why Our-Crop is better? We then dig deeper into the
phenomenon demonstrated in Tables 12 and 13, that is, why
our cropping strategy is better than existing object discov-
ery methods?. We analyze this question from the object-
ness aspect. Since previous findings in Table 2 suggest that
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Figure 3. Objectness scores of object crops generated by our
method and other object discovery methods. ‘Our-B’ and ‘Our-
M’ means the backbone weights (used for box filtering, cf. Fig. 2)
are obtained with BYOL and MoCo-v2 pretraining methods, re-
spectively.

boxes with too high (precise crop) or too low (poor crop)
objectness score are both detrimental for SSL pretraining,
we calculate the ratio of boxes that fall into each cate-
gory: Poor-Crop (objectness score < 20%), Precise-Crop
(objectness score > 80%) and Coarse-Crop (the remain-
ing) for EdgeBox, Selective Search and Our-Crop. Fig. 3
shows the result on MS-COCO and VOC2007, where ‘B’
and ‘M’ stands for crops filtered with BYOL and MoCo-v2
pretrained backbone, respectively. It is clear that existing
object discovery seek highly accurate objects since their ra-
tio of ‘Precise’ box are both higher that our cropping strat-
egy. These results support that our conjecture in Sec. 3.3
and our motivation in Sec. 1 are valid: crops with either
too high or too low objectness scores are sub-optimal, and
coarse crops are generally better for SSL.

5.3. Hyper-parameter & Visualization

Number of crops. Now we study how our single hyper-
parameter (number of crops per image, denoted as N ) in-
fluences SSL quality. We perform SSL pretraining on the
VOC2007 trainval set, then finetune on VOC multi-label
recognition and object detection benchmarks. As shown
in Table 14, it consistently improves as N grows larger.
When N = 1, our strategy performs fairly poorly, since
N = 1 means the only pseudo image contains merely a
small part of an uncurated image and the global context has
been lost. Bigger N can guarantee enough objects of inter-
est and indeed boost finetuning accuracy. However, it also
means higher training cost after pseudo images have been
cropped out. Due to constraints on our computing power,
we chose N = 5 in our experiments.

Augmentation sensitivity. Since the pseudo object-
centric images (the proposed Our-Crop) might already con-
tain object of interest, we now validate whether the most
important SSL data augmentation RandomResizedCrop is
necessary for Our-Crop. We adopt ResNet-50 models pre-
trained on VOC2007 trainval with Image-Crop and Our-
Crop, and separately remove the RandomResizedCrop op-
eration for each pipeline. The VOC07 downstream ob-
ject detection results can be found in Table 15. It is ob-

Table 14. Object detection and multi-label classification results
with different N (number of cropped pseudo object-centric images
per image) pretrained and finetuned on VOC2007.

Method Top-N anchors APbbox
50 mAP mAPl

BYOL

Image-Crop 63.3 63.0 39.8
N = 1 60.7 61.2 31.1
N = 3 67.7 69.3 36.8
N = 5 69.5 70.7 42.5
N = 7 71.5 72.7 48.2

MoCo-v2

Image-Crop 61.8 62.2 26.9
N = 1 60.1 60.2 22.6
N = 3 65.6 68.7 32.4
N = 5 67.2 69.6 44.9
N = 7 69.3 72.1 51.2

Table 15. VOC2007 object detection results. We pretrained BYOL
on VOC2007 trainval with (w/) or without (w/o) the standard Ran-
domResizedCrop augmentation (‘RRC-aug’) on original image
(‘Image-Crop’) or the pseudo-centric images (Our-Crop).

Method Crop types RRC-aug APbbox
50 AP drop

BYOL Image-Crop w/ 63.3 (-0.0)
w/o 54.2 (-9.1)

BYOL Our-Crop w/ 69.5 (-0.0)
w/o 65.0 (-4.5)

Figure 4. Visualization of our objectness score map and the
cropped boxes on COCO (1st row) and VOC (2nd row) images.
The backbone that generates the objectness scores were pretrained
using MoCo-v2 on COCO & VOC ‘Image-Crop’, respectively.
Best viewed in color.

vious that models pretrained with Our-Crop (4.5% APbbox
50

drop) is less sensitive to that with Image-Crop (9.1% APbbox
50

drop). Our-Crop without RandomResizedCrop even sur-
passes Image-Crop with this augmentation by 1.7% APbbox

50 !
Visualization. At last, we randomly sampled a few im-

ages from the VOC2007 trainval set and the MS-COCO
train2017 set, then calculated their normalized score maps
Â (cf. Fig 2). The left image of each pair is the normalized
map Â, while the right one shows the final generated coarse
cropping boxes with top five scores. Note that the score
maps are color coded (red and blue are high and low scores,
respectively). As can be seen in Fig 4, our normalized score
map effectively captures objects, and filters out unnecessary
background. These attention maps again demonstrate the
power of current SSL methods: an SSL pretrained model’s
weights are already indicative of objects [3].

We also plot the relation between objectness of each
cropping strategy and its corresponding results in Fig. 5
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Figure 5. Results of VOC07 downstream tasks with different types
of pretraining crops and their (averaged) objectness scores. Mod-
els are SSL pretrained with BYOL on VOC07 trainval.

(also shown in Table 2), which clearly supports our moti-
vation: crops with coarse objects work the best.

6. Conclusions

In this paper, we argued that successfully cropping
coarse objects out benefits self-supervised learning (SSL)
with uncurated scene images. Based on this finding, we de-
signed a novel and efficient crop generation strategy, which
utilizes the unsupervised model weights and anchor gener-
ator to obtain a few coarse crops with varying shapes and
sizes. The crops (pseudo object-centric images) are then
fed into object-centric SSL methods. Experiments on de-
tection and segmentation benchmarks have clearly verified
the effectiveness of our pipeline over other SSL methods on
uncurated scene images. We have also carefully designed
a series of ablations to verify the efficiency and validity of
our cropping strategy from both empirical and theoretical
aspects.

As for the limitations, it remains unclear what’s the best
objectness score (a certain number) of the pseudo-centric
images that benefits SSL pretraining. We argued that mid-
level objectness works better since it contains both objects
and contexts. There might be other statistical metrics be-
sides objectness that could also evaluate the quality of each
cropping strategy. In the future, we will fully explore these
questions that are helpful for various downstream tasks.
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