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Abstract. Long-tailed object detection faces great challenges because
of its extremely imbalanced class distribution. Recent methods mainly
focus on the classification bias and its loss function design, while ignoring
the subtle influence of the regression branch. This paper shows that
the regression bias exists and does adversely and seriously impact the
detection accuracy. While existing methods fail to handle the regression
bias, the class-specific regression head for rare classes is hypothesized to
be the main cause of it in this paper. As a result, three kinds of viable
solutions to cater for the rare categories are proposed, including adding a
class-agnostic branch, clustering heads and merging heads. The proposed
methods brings in consistent and significant improvements over existing
long-tailed detection methods, especially in rare and common classes.
The proposed method achieves state-of-the-art performance in the large
vocabulary LVIS dataset with different backbones and architectures. It
generalizes well to more difficult evaluation metrics, relatively balanced
datasets, and the mask branch. This is the first attempt to reveal and
explore rectifying of the regression bias in long-tailed object detection.

1 Introduction

Long-tailed object detection draws great attention [12] for its practical utility
recently. Numerous efforts [1,7,34,35,37] have been made to tackle this challeng-
ing task, such as re-weighting [33,35,37], over-sampling [11,12,39], and balanced
grouping [19, 24]. These methods are proposed to prevent the tail classes from
being overwhelmed due to discouraging gradients [33, 37], inferior predicting
scores [11,24] or insufficient samples [11,28].

Long-tailed detection often involves both classification and regression heads.
While almost all existing methods focus on mitigating the classification bias
(e.g ., adjusting the classification structure in detection branches), little or no
attention has been paid to the regression branch. We will show in this paper that
the regression bias has significant adverse effects in long-tailed object detection,
but previous methods failed to identify this important issue.
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Fig. 1: 1a shows the RCNN regression train loss of frequent, common and rare cate-
gories. 1b shows the RPN regression loss. 1c shows distribution of per class mean object
scales in LVIS1.0. ‘delta’ in 1c is the negative of difference between train and validation
set sizes for different classes.

Fig. 1 clearly showcases this issue. For different methods (EQLv2 [33], See-
Saw [35], ECM [7] and CrossEntropy CE [12]) trained on the LVIS1.0 [12]
dataset, we plot the regression branch’s losses for the final detection RCNN
head in Fig. 1a. It is clear that the regression losses of rare categories are signif-
icantly higher than those of frequent and common categories, which inevitably
will lead to poor regression results (and hence detection results) for rare classes.
We name this finding as the regression bias, but existing long-tailed detection
methods all fail to deal with or even identify this issue.

To further demonstrate the importance of regression, we calculate the class-
wise mean scale of GT (groundtruth) boxes in LVIS train and validation sets,
as well as their differences (cf . Fig. 1c). The scale shift of rare classes is much
larger than that of frequent classes. Since regression is highly correlated with box
scale [30], it is thus inherently difficult for a rare class to learn a good bounding
box regressor with both few samples and large scale shift. In short, it is crucial
to properly handle the regression bias in long-tailed object detection.

Our solution to rectify the regression bias is motivated by Fig. 1b. We find
that the regression loss in RPN is balanced where rare, common and frequent
categories have almost the same regression loss, which is almost immune to the
regression bias when comparing Fig. 1b with Fig. 1a.

The key difference between RPN and RCNN regression is that the former
is class-agnostic (i.e., all classes share the same regression parameters), while
the latter is class-specific. Then, one natural question arises: Can class-agnostic
head improve a tail class’s generalization ability and handle the regression bias?
Our hypothesis is that rare classes do favor class-agnostic regression heads.

Our hypothesis is supported by experiments in Table 1, where we compared
class-specific and -agnostic regression heads in RCNN. By replacing the classifi-
cation head with groundtruth class labels, experiments in Table 1 disentangled
the impact of the classification head and focus on the regression heads. It is
clear that the class-agnostic head possesses substantial advantages: APb

r (for
rare) surges from 0.7 to 54.6, even surpassing APb

f (for frequent classes)! How-
ever, the agnostic head will bring a small drop in frequent classes (e.g ., from 40.7
to 40.0 in APb

f ). The final version of our conjecture is: the rare (and possibly
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common) classes indeed favor class-agnostic regression, while the frequent classes
prefers a class-specific regression, and there should be a trade-off between the
two to optimize for all three types of categories.

Table 1: Results on LVIS1.0 based on the CE baseline. We trained a Mask-RCNN R50-
FPN detector [14] with class-specific (the default setting) and class-agnostic regression
heads in the RCNN head. Please note that during test, the predicted proposals were
provided groundtruth (GT) classification results.

Reg. Head GT AP APb APb
r APb

c APb
f

Specific no 18.7 19.7 0.3 16.5 31.7
yes 37.2 39.8 34.1 41.3 40.7

Agnostic no 18.0 19.3 0.7 15.5 31.5
yes 38.4 45.6 54.6 47.0 40.0

Accordingly, we design three different methods to fully rectify the regression
bias, including adding a class-agnostic head, clustering similar heads, or merging
heads. All three methods bring in positive effects (cf . Table 2), which verifies
that rectifying regression bias is indeed crucial. We choose to adopt ‘adding
a class-agnostic head’ in our main experiment for its simplicity, which leads
to consistent and significant improvements over previous long-tailed detection
pipeline, and has achieved state-of-the-art performance with various backbones
and architectures. Moreover, our method shows robust generalization ability (cf .
Tables 5-8) under varying settings, including different datasets (COCO/COCO-
LT [36]), different evaluation metrics and even adapts to the mask branch design.
Furthermore, visualizations show that the proposed method leads to more accu-
rate bounding box predictions (cf . Fig. 4) and indeed alleviates the regression
bias (cf . Fig. 5). In summary, our contributions are:

1. For the first time, we reveal and successfully handle the regression bias in
long-tailed object detection.

2. We propose three remedies to alleviate this bias, all of which produce con-
sistent improvements over existing methods.

3. Our method achieves state-of-the-art results on LVIS as well as generalizing
across datasets, metrics and even the mask branch. Visualizations qualita-
tively verify our hypothesis, too.

2 Related Work

Vast number of pipelines and techniques have been invented in the field of gen-
eral purpose object detection. Although most of these detectors can possibly be
adapted to balanced detection datasets [25], they can nevertheless hardly handle
extremely long-tailed distribution. Dedicated methods are hence required.
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Modern long-tailed learning methods aim to solve two important tasks: image
classification [31] and object detection/segmentation [12,30].

The first task, long-tailed image classification [26], is well explored and dis-
plays great diversity in terms of specific methods [3,29], training pipelines [20,44],
post-hoc analysis [22,27] and network architecture [16,23,38]. Early attempts in
this family focused on the details of re-weighting [3] or re-sampling [8] techniques
to provide a relatively balanced (data) distribution for tail classes. Later on, the
decoupling pipeline [20] for long-tailed learning becomes popular, paving the way
for various successors [43,44]. This decoupled paradigm are based on the insight
that instance sampling is beneficial for representation, while the classifier needs
to be calibrated to alleviate its bias. Some works try to unify long-tailed learn-
ing with theoretical analysis [22, 27], which involves label distribution [29] and
generalization bound [27]. Most recent methods are much more diverse in ideas:
they involve knowledge distillation [16,38,46], self-supervised learning [23,45] or
statistical approach [10] to better handle long-tailed recognition.

The combination of long-tailed learning and object detection or instance seg-
mentation proves to be more challenging [12], because the class distribution in
LVIS [12] is extremely imbalanced and naively applying common object detec-
tion techniques leads to un-satisfactory results [18, 24, 34, 35, 37]. Dominating
solutions in this area are re-sampling [12,39] and re-weighting [17,21,33,35,37].
There are variants of them that adopt balanced grouping [24], class incremental
learning [19], augmented feature sampling [11, 36] or extra data source [41]. A
common characteristic of these long-tailed detection methods is that they only
focus on the classification task, and ignore the subtle influence of the regression
branch. In this paper, we thoroughly explore the previously unvisited regression
bias in long-tailed object detection, and propose a simple yet novel method to
tackle long-tailed object detection.

In [36], there is an experiment with similar design as ours in Table 1. But,
we emphasize that they are fundamentally different. On one hand, conclusions
in [36] is that ‘performance drop in LVIS is mainly caused by the proposal classi-
fication [36]’, and hence they focused on classification. On the other hand, their
class agnostic-head is a supplementary to support their classification hypothesis,
while our design and experiments lead to a novel finding: the regression bias.

3 Method

Now we elaborate three different remedies to alleviate the regression bias, and
start from the background on long-tailed object detection.

3.1 Preliminaries

We take Faster-RCNN [14] as an example. For a scene image I, it is first fed
into a backbone network ϕ(·) (e.g ., ResNet [15]) to get the image feature f ∈
Rd×w×h: f = ϕ(I), with dimensionality, width and height denoted as d, w, h,
respectively. A region proposal network (RPN) [30] that contains both agnostic
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Fig. 2: Illustration of the regular two-stage detection pipeline and the proposed regres-
sion methods. Previous methods (the left figure) generally focus on the final classifi-
cation branch (the yellow arrow), while we focus on rectifying the regression bias (the
red arrow). The right part shows our three regression methods, including adding an
extra branch W0, clustering regression heads (e.g ., from W1, . . . ,WC to W ′

1,W
′
2) and

merging (e.g ., merging rare categories into one regression head Wrare, cf . Table 2).
In our main experiments, we choose ‘adding an extra branch’ for its simplicity. This
figure needs to be viewed in color.

classification and regression branches is then applied on the feature tensor f to
produce proposals p from pre-defined anchors. The ROIAlign [14] then extracts
proposal features:

p = RPN(f) , fp = ROIAlign(f, p) , (1)

where p represents a large set of proposals, and fp is the set of aligned proposal
features. fp goes into post-process modules (e.g ., NMS [30]) before being sent
to the RCNN head to get the final features set fn: fn = RCNN(fp), which is
fed to classification and regression branches (e.g ., linear layers) to produce the
prediction results.

3.2 Our three remedies for the regression bias

In Faster RCNN, there is a dedicated regression head for each class:

ri = WT
i fn, i = 1, 2, . . . , C , (2)

where ri = (δxi, δyi, δwi, δhi) represents the regression offset for class i, and Wi

is the class-specific regression head (a linear layer). We will now present our
approaches to rectify the regression bias. The existing pipeline and our proposed
methods are shown in Fig. 2.

Extra class-agnostic branch. This is a simple remedy to cope with the
regression bias. Since rare classes favor a class-agnostic head while class-specific
ones are slightly preferable to frequent classes in our hypothesis, we propose to
use both heads. For class i, its regression head changes to:

W ′
i = αW0 + (1− α)Wi , (3)
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Table 2: Our three different methods to alleviate the regression bias. In 2a, we add
an extra class-agnostic regression head during training and testing, where the shared
class-agonistic head and the class-specific head are combined using a weight α. In 2b,
we perform regression head clustering according to the number of instances (‘n’) or
mean box scale (‘s’). In 2c, we directly merge the regression heads of rare, common
or frequent classes. The original class-specific heads in 2b and 2c are replaced by the
new heads. Note that ‘base’ means the baseline method, i.e., with only class-specific
regression heads. In 2a, α = 0 is equivalent to the baseline method, and α = 1.0 is
equivalent to merging all r, c, f heads into a single head (i.e., the last row in 2c).

(α)AP APr APb APb
r

0.0 23.7 14.2 24.7 13.4
0.2 24.1 15.8 25.4 15.1
0.5 25.117.527.0 18.0
0.8 24.4 17.0 25.9 16.4
1.0 24.7 16.7 26.7 18.3

(a) class-agnostic head

k n s AP APr APb APb
r

base 23.7 14.2 24.7 13.4
10 ✓ 24.5 14.5 26.3 14.4
10 ✓ 24.2 12.8 26.0 12.6
100 ✓ 24.4 13.0 26.2 12.9
100 ✓25.216.726.916.7

(b) Clustering heads

mergeAP APr APb APb
r

base 23.7 14.2 24.7 13.4
r 25.1 16.3 26.7 16.7
c 25.517.7 27.2 17.2
r, c 25.3 17.1 27.3 18.2

r, c, f 24.7 16.7 26.7 18.3

(c) Merging heads

where W0 is a shared class-agnostic regression head for all classes, and α is a
hyper-parameter to balance class-agnostic and class-specific heads. We empiri-
cally find that this simple change leads to consistent improvements over the the
default class-specific regression head (cf . Table 2a), while simply setting α = 0.5
gives the optimal trade-off.

Clustering heads. This method is motivated by the analysis in Fig. 1c.
Since some categories have similar statistics, we can assign them a shared re-
gression head to improve the generalization ability. We implement it by following
three steps: sorting, grouping and assigning. First, we use the number of instance
or mean box scale to sort the original categories in descending order (C = 1203
in LVIS):

W1, . . . ,WC
sort
=⇒ W s

1 , . . . ,W
s
C . (4)

Then, we cluster them into K groups. During clustering, we do not rely on time-
cost algorithms such as K-means [4] or GMM [40]), but simply put adjacent
classes into one group, and each group has the same number of classes N = C

K :

{(W s
N×i+1,W

s
N×i+2, . . . ,W

s
N×i+N )}K−1

i=0 , (5)

Finally, each group i share one regression head:

Wgi
replace⇐= (W s

N×i+1,W
s
N×i+2, . . . ,W

s
N×i+N ) . (6)

These shared regression matrix are then used for both training and testing. As
shown in Table 2b, clustering heads with similar scale statistics brings robust
improvements over the baseline methods (see more discussion in Sec. 4.4).

Merge heads. This approach has similar motivation to the previous one,
which clusters regression heads, but is even more straightforward. We simply
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group the regression heads in pre-defined clusters. For example, we let all rare
categories share a common regression head Wrare, and the same for common
and frequent classes. Experimental results can be found in Table 2c, where we
try four different combination (note that r, c means merging rare and common
classes all together into one regression head). The results indicate that merging
always leads to performance gains, especially for the rare categories. The most
significant improvements come from merging only the common class (i.e., the
row denoted as ‘c’ in Table 2c, also cf . Sec. 4.4 for discussion on partition shift).

All our proposed remedies improve the accuracy of long-tailed object detec-
tion and instance segmentation, which verifies the importance of rectifying the
regression bias. We will show that all these methods lead to consistent and non-
trivial margin over various existing approaches (cf . Table 3). We then choose
adding a class-agnostic branch (the first approach, cf . Table 2a) to conduct the
rest of our experiments for its simplicity.

Attentive readers might advocate that all proposed three methods are to be
verified on all datasets. However, we argue that this is not necessary and our
choice has its advantages. On one hand, it does not need any dataset statistics,
which is especially appreciated when the number of categories and the data
distribution is unknown. On the other hand, by combining both class-agnostic
and class-specific heads, it fully exploits object priors and per class knowledge:
each type of head has its own merit, as Table 1 shows. Moreover, the validity of
all three methods are already verified in Table 2-3.

4 Experiment

We first combine ‘Class-Agnostic Branch’ (CAB), ‘Clustering Head’ (CH) and
‘Merging Head’ (MH) with existing long-tailed methods (cf . Table 3), then
choose ‘SeeSaw [35] + CAB’ as ‘Our’ to compete with state-of-the-art meth-
ods (cf . Table 4). Although SeeSaw is a lower baseline than ECM [7], it is more
stable in reproducing. Finally, we generalize our methods to various evaluation
metrics, different datasets and the mask branch.

4.1 Experimental settings

Datasets. We use the large vocabulary dataset LVIS1.0 [12] as our main dataset,
which contains 100k training and 20k validation images. Rare (r), common (c)
and frequent (f) classes are defined by how many images they occur [12]: [0, 10]
for rare, [11, 100] for common, and (100, +∞) for frequent, respectively. We also
adopt COCO-LT [25] and COCO2017 [36] to verify the generalization ability of
our approach. COCO2017 is a large object detection dataset, containing 118k
training and 5k validation images. It is relatively balanced in comparison with
LVIS1.0. The COCO-LT dataset is an artificially sampled subset of COCO, with
the same validation set but a long-tailed training set. It has about 99k training
and 5k validation images. Following previous works [36], we partition COCO-LT
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Table 3: Experiments on LVIS1.0. We combine four existing methods with our ap-
proach ‘adding a class-agnostic branch’ (CAB), ‘Clustering Head’ (CH) or ‘Merging
Head’ (MH). We reproduced RFS [12], EQLv2 [33], SeeSaw [35] and ECM [7] using
their official code. For clarity, here we list the object detection metrics APb in the first
four columns while putting the instance segmentation metrics AP in the latter ones.

Method +Our APb APb
r APb

c APb
f AP APr APc APf

RFS [12]

base 24.7 13.4 23.1 31.4 23.7 14.2 22.9 29.3
CAB 27.0 18.0 25.3 32.9 25.1 17.5 23.9 29.7
CH 26.9 17.2 25.5 33.0 25.2 16.7 24.3 29.8
MH 27.3 18.2 25.8 32.8 25.3 17.1 24.5 29.8

EQLv2 [33]

base 26.0 16.1 24.0 32.5 25.2 17.4 24.1 29.9
CAB 28.1 20.4 26.3 33.5 26.0 19.5 24.9 30.2
CH 27.3 18.2 25.8 33.1 25.7 17.7 24.8 30.2
MH 27.1 17.3 25.7 33.2 25.6 17.5 24.7 30.2

SeeSaw [35]

base 27.3 18.2 26.5 32.3 26.9 19.6 26.8 30.5
CAB 28.9 19.9 28.3 33.6 27.7 20.2 27.3 31.3
CH 29.1 19.8 28.9 33.4 27.8 20.6 27.7 31.1
MH 28.5 18.4 28.4 33.7 27.4 19.8 27.4 31.0

ECM [7]

base 27.7 17.7 26.6 33.1 27.2 19.6 26.6 31.3
CAB 29.1 18.4 28.9 33.9 27.8 19.1 28.0 31.8
CH 28.7 18.0 28.3 33.7 27.8 19.6 27.7 31.6
MH 28.6 18.6 28.2 33.5 27.7 19.8 27.7 31.5

into 4 evaluation subsets according to the number of training instances per class,
with bins of [1, 20), [20, 400), [400, 8000) and [8000, -), respectively.

Training details. We reproduce four different methods as our baselines,
including RFS [12], EQLv2 [33], SeeSaw [35] and ECM [7], following their default
experiment settings. We employ MMDetection [5] as our detection framework
to conduct our experiment, and train detection models of Faster-RCNN, Mask-
RCNN and Cascade R-CNN for 1x or 2x scheduler (except Swin-Transformer
based detectors), following previous works [7, 17]. The batch size and learning
rate are set as 16 and 0.02, and the data augmentation strictly follows previous
long-tailed detection methods [7, 33, 35]. During training, we use FP16 mixed
precision training and the warmup strategy to stabilize the learning process. For
the evaluation metrics, we adopt AP and APb for instance segmentation and
object detection, respectively, and adopt APb

1, APb
2, APb

3 and APb
4 on COCO-

LT, corresponding to its 4 different subsets. With the suggested practice in LVIS
official website, we run all our experiment 3 times on 8 RTX3090 GPUs to
reduce the variance. Please refer to our supplementary material for more detailed
information.

4.2 LVIS detection and segmentation

Consistent improvements. we first evaluate the effectiveness of our method on
the LVIS1.0 dataset by combing the proposed approach ‘adding a class-agnostic
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Table 4: Comparison with state-of-the-art methods on the LVIS1.0 dataset. The re-
sults of ‘Our’ means our proposed CAB regression method combined with the SeeSaw
loss (‘SeeSaw + CAB’, cf . Sec. 4). We show the metrics of instance segmentation AP
and object detection APb. The results with a † are copied from [7], while others are
reproduced by us using their official released code.

Architect Backbone Method AP APr APf APc APb

Mask-RCNN [14] R50-FPN

CE 18.7 0.4 16.5 29.3 19.7
RFS [13] 23.7 14.2 22.9 29.3 24.7
BSCE [29] 24.4 15.7 23.6 29.1 25.5
EQLv2 [33] 25.2 17.4 24.1 29.9 26.0
ECM [7]† 27.4 19.7 27.0 31.1 27.9
ECM 27.2 19.6 26.6 31.3 27.7
SeeSaw [35] 26.9 19.6 26.8 30.5 27.3
ROG [42] 26.9 20.1 26.8 30.0 27.2
Our 27.7 20.2 27.3 31.3 28.9

Mask-RCNN [14] R101-FPN

CE [7]† 25.5 16.6 24.5 30.6 26.6
EQLv2 [33]† 27.2 20.6 25.9 31.4 27.9
ECM [7]† 28.7 21.9 27.9 32.3 29.4
ECM 28.6 20.9 28.3 32.2 29.3
SeeSaw [35] 28.2 20.3 28.1 31.8 29.0
Our 29.0 21.0 28.9 32.4 30.7

Cascade R-CNN [2] Swin-T
ECM [7] 34.1 24.0 34.9 38.0 37.6
SeeSaw [35] 34.2 24.6 34.7 37.8 37.8
Our 34.6 24.7 35.3 38.1 38.2

Cascade R-CNN [2] Swin-B ECM [7]† 39.7 33.5 40.6 41.4 43.6
Our 39.9 34.6 40.7 41.2 44.2

branch’ (CAB) with existing long-tailed object detection methods. Since our
main focus is on bounding box regression, we list the object detection results in
early columns and segmentation results in later ones. As shown in Table 3, using
CAB leads to consistent APb and AP improvement over existing classification-
based methods, surpassing all of them with large margins. For object detection,
Our CAB benefits the rare class a lot, with an increase of 4.6 APb and 4.3
APb on RFS and EQLv2. The same is true for instance segmentation, where a
growing trend can be observed on all metrics, showing that CAB is also beneficial
for later mask pixel predictions. Interestingly, the method ‘RFS+CAB’ (which
uses a CE loss) can almost achieve the same object detection accuracy as the
SeeSaw method, and surpasses EQLv2 for about 1 APb. We thus conjecture
that: besides merely focusing on classification, our regression methods can serve
as strong alternatives that also strongly boost long-tailed detection accuracy.

Comparison with SOTA. We then compare our method with state-of-the-
art methods using different object detection framework (Mask-RCNN, Cascade
R-CNN) and backbones (ResNet-50, ResNet-101, Swin-T and Swin-B). Note
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Table 5: More evaluation metrics in LVIS1.0 dataset with a 1x scheduler using Mask
RCNN. APfixed

boundary and APfixed
bbox are two newly proposed challenging metrics [6, 9].

Method AP APb APfixed
boundary APfixed

bbox

BAGS [24] 23.1 23.7 - 26.2
EQLv2 [33] 23.9 24.0 20.3 25.9
SeeSaw [35] 25.2 25.4 19.8 26.5
ECM [7] 26.3 26.7 21.4 27.4

Our 26.9 28.0 22.1 28.2

that ‘Our’ means ‘SeeSaw + CAB’. For fair comparison, we reproduce majority
of existing methods using their official released code unless specialized symbols
(e.g ., †) appears after a method’s name. As can be seen in Table 4, our method
achieves the overall highest accuracy in AP and APb. For ResNet series models,
our regression technique easily surpass the best competitor ECM [7], especially
in APb (an increase of 1.2 APb for ResNet-50 and 1.1 APb for ResNet-101).
The advantage also holds for ViT-based object detectors, where we surpassed
the best competitor ECM [7] with both Swin-Tiny and Swin-Base backbone
architectures. Following LVIS’s common practice, we didn’t list APb

r and APb
c

here, but we want to emphasize that the advantage of our regression methods
can be further enlarged when more metrics are listed (cf . Table 3). This is also
true if we replace ‘adding a Class-Agnostic Branch’ (CAB) with the ‘merging
heads’ regression alternative (cf . the best accuracy in Table 2).

4.3 Generalization ability

In this section, we will show the generalization ability of our regression methods
in various aspects, including different evaluation metrics, datasets and its benefits
on the mask branch.

Different metrics. We first explore how different metrics affect our model’s
accuracy. Two additional metrics are APboundary (a more strict metric in instance
segmentation [6]) and APfixed

bbox (constraining 10,000 predicted bounding boxes
per class across the dataset [9]). Object detector that obtain decent results in
traditional metrics may not perform as well in these criterions. As shown in
Table 5, our regression methods adapts well and surpasses all existing methods
on both traditional and these challenging metrics.

The COCO-LT dataset. We also transfer our regression to another long-
tailed dataset: COCO-LT. This is an artificially sampled [36] subset of original
COCO [25]. We calculate the over bounding box metrics APb and more fine-
grained results: APb

1, APb
2 APb

3 and APb
4 (ranging from the rarest to the most

frequent class). As shown in Table 6, our CAB leads to consistent improve-
ments on all metrics (especially for the rarest categories APb

1) under different
repeat-factor-sampling rates, showing the great power of CAB to help the rare



Rectify the Regression Bias 11

Table 6: Experiments on COCO-LT [36]. Following LVIS [12], we use a similar repeat-
factor-sampling (RFS) strategy with different sampling rates (3e-3, 5e-3 and 1e-2).

Rate +CAB APb
1 APb

2 APb
3 APb

4 APb

3e-3 2.3 16.9 26.7 30.4 23.5
✓ 6.2 19.1 27.0 30.5 24.4

5e-3 3.6 19.3 26.7 30.6 24.3
✓ 7.5 20.0 27.3 30.7 25.0

1e-2 8.7 20.2 27.8 30.3 25.2
✓ 10.8 21.6 28.0 30.5 25.8

Table 7: Experiments on the (relatively) balanced COCO dataset. We adopted the
Faster RCNN [30] detector and tried three different backbones.

Backbone +CAB AP AP50 AP75 APs APm APl

Res-50 37.3 58.3 40.3 21.7 41.0 48.2
✓ 38.3 58.9 42.1 22.4 41.4 50.4

Res-101 39.4 60.3 43.0 22.9 43.4 51.0
✓ 39.9 60.3 43.6 22.7 43.7 52.8

Res-32x4d 41.0 62.2 44.6 23.9 45.3 52.9
✓ 41.7 62.5 45.4 23.6 45.9 54.8

classes. In fact, this conclusion generally holds true for all sampling rates in our
experiments. We only listed three here for simplicity and clarity.

On balanced training set. Furthermore, we validate how our method
perform on the relatively balanced dataset MS-COCO2017. We adopted Faster
RCNN with three different backbones (ResNet-50, ResNet-101 and ResNext101-
32x4d). Results in Table 7 clearly shows that CAB generalizes well to datasets
with more balanced distributions. Interestingly, CAB boosts metrics of large
and medium objects while shows similar accuracy on small objects. This is pos-
sibly because that small objects occupy over 60% of the total instances while
large objects only consumes roughly 15% [32]. Since CAB is more beneficial to
less-frequent classes, it brings higher gains in large objects than in small ones.

The mask branch. Finally, we apply our CAB to the segmentation branch
to test whether adding an class-agnostic prior is suitable for mask prediction. Ex-
perimental results are in Table 8, where we add a class-agnostic mask prediction
head and combines it with each class-specific mask head. As shown in the table,
our CAB generalizes well to segmentation tasks. Our main experimental results
may be further improved if CAB was applied in both box and mask predictions.
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Table 8: Generalization to mask prediction. We added a class-agnostic mask prediction
branch and combines it with each class-specific mask prediction results.

Branch +CAB AP APr APb APb
r

Box 23.7 14.2 24.7 13.4
✓ 25.1 17.5 27.0 18.0

Mask 23.7 14.2 24.7 13.4
✓ 24.1 14.6 25.0 13.9

4.4 Discussion of our three remedies

Now we further discuss the proposed three methods (CAB, CH and MH) in
detail, hoping to provide a more in-depth understanding of our hypothesis.

Relationship of CAB to the objectness branch. At start, we want to
clarify the differences between our CAB and the objectness branch approach [7,
35] adopted in the classification head. We have argued that although they seem-
ingly share similar structures with ours, they are essentially different. First, the
purpose of objectness branch is to deal with the imbalanced distribution between
foreground and background classification samples [35], while our CAB aim to
tackle the regression bias. Second, unlike classification where each class must pre-
serve its own classifier, the regression heads can be clustered or merged, which
provide more diverse solutions to reduce the regression bias besides CAB (cf .
Table 2). Lastly, the effect of the objectness branch is yet to be proved because
it will decrease the performance of rare classes even when combined with CE
loss [35], while CAB leads to consistent improvements, especially in rare class.

How many clusters are the best? Attentive readers might have questions
why larger clusters K (such as 100) in CH achieve better results in Table 2b for
rare class, since enlarging K means the (useful) class-agnostic information is
reduced. We thus empirically verify that: besides objects numbers per group, the
scale variance could potentially affect the final AP. We test CH with ‘object
scales’ in more K. For each K, we calculate standard deviation of scales in each
group, average, and get representative scale std. The same is done for average
object. As Fig. 3a shows: as K decreases, training objects per group increases,
which benefit rare classes. But, the variation of scales increases a lot, which
makes regression head learning more difficult—imagine one head to fit offsets
that vary a lot, and we also observed higher training loss for smaller K. Hence,
max AP b

r is not at K=1 or 10, but at K=50 in our experiments (cf . Fig. 3b).
Why merging ‘Common’ class is the best?. We observe in Table 2c

that merging common classes leads to the best improvement in APr, which is
somehow counter-intuitive. We conjecture that this is due to the partition shift
of rare, common and frequent in LVIS train and validation sets. In the LVIS1.0
train dataset, the size ranges for frequent, common and rare are [0, 404], [405,
865] and [866, 1202], respectively. While for the validation set, they become
[0, 212], [213, 536] and [537, 1202], respectively (cf . Fig. 1c). Hence, when we
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Fig. 3: The statistics (averaged standard deviation, averaged objects per group) of
different K and its corresponding AP box.

Fig. 4: Visualizations of detection results before (in the left of each group) and after
(in the right) using our CAB. We adopted RFS [12] as the baseline in LVIS1.0 and
combine it with our CAB regression method. In comparison, the proposed method is
good at detecting missing objects, filtering duplicated objects away, as well as rectifying
bounding box predictions. This figure needs to be viewed in color.

use training set statistics to merge the common class, a large portion of rare
categories in the validation set are also potentially merged, thus contributing to
the validation improvement on both APr and APc.

4.5 Visualization and ablation

Flatten distribution. We first plot the RCNN regression loss of each category
before and after combining with our regression CAB. The baseline methods we
choose are EQLv2 and CE. As shown in Fig. 5, the regression loss for rare has
seen a noticeable drop after adding our CAB, and the overall loss distribution
has become much more balanced, too. We thus believe that the pipeline of our
regression remedies can relieve the regression bias, further verifying that our
hypothesis in Sec. 1 in indeed valid.

More accurate box/mask. We then calculate AP50-AP95 of boxes and
masks to find whether our CAB behaves well on stricter IoU thresholds. As
show in Fig. 5c-5d, adding CAB achieves consistent accuracy gains over all IoU
thresholds for both box and mask prediction, and is especially helpful for those
hard IoU threshold (e.g ., AP75-90) in box evaluation (cf . Fig. 5c). Since a higher
threshold requires more precise box prediction, these results have shown that our
regression methods is capable of producing precise boxes with better quality.
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Fig. 5: The loss distribution shift before and after combining with our CAB (Fig. 5a,
5b), and AP improvement of combining our CAB with baseline in LVIS (Fig. 5c, 5d).

Qualitative results. Last but not least, we provide example detection im-
ages sampled from the LVIS1.0 validation dataset. For simplicity, we choose
RFS [12] with CE loss as baseline and combine it with our CAB method. As
shown in Fig. 4, both baseline and our CAB detect most of the objects in an
image, but CAB generally caters for more details. For example, CAB can help
discover missed boxes, like the cabinet in the lower left images. It is also clearly
illustrated that CAB helps filter duplicate boxes away in the final predictions
(e.g ., the pictures with elephant and cow with grass background). Since CAB
brings in better predictions, duplicate boxes will have larger overlap that may be
suppressed by NMS (non-maximum suppression). If we zoom this figure (cf . the
last colum in Fig. 4), we will find that CAB is capable of rectifying the predicted
boxes, and this can empirically explain why our CAB achieves much better AP
under higher and more difficult IoU thresholds (cf . Fig. 5c).

5 Conclusions and Limitations

In this paper, we discovered that the regression bias (imbalanced regression loss
distribution on the RCNN head) exists in long-tailed object detection, and ad-
versely affects detection results. We thus proposed three remedies for rectifying
the regression bias. The proposed method significantly boosts the performance
of rare class APb, and achieves state-of-the-art results. We also generalize our re-
gression methods to balanced dataset, different evaluation metrics and the mask
branch. Finally, visualizations show that our method indeed produces better
predicted bounding boxes.

As for the limitations, it remains unclear why the boosted accuracy become
lower when the baseline are higher (e.g ., the improvement of CAB on ECM is
lower than that on RFS, cf . Table 3). This may relate to the upper bound a
backbone model can achieve. Since large network generally better fit the dataset
(cf . Table 4), the performance a ResNet-50 can achieve is limited. We thus call
for involving larger vision models on the LVIS dataset to better handle the long-
tailed object detection problem. Besides involving stronger vision backbones, we
will try to testify the adaptability of the proposed methods when different pre-
training information is integrated into the backbone network (e.g. self-supervised
learning), which is left as our future work.
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