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Abstract

Multi-view learning has been an important learning paradigm where data come from mul-
tiple channels or appear in multiple modalities. Many approaches have been developed in
this field, and have achieved better performance than single-view ones. Those approaches,
however, always work on small-size datasets with low dimensionality, owing to their high
computational cost. In recent years, it has been witnessed that many applications in-
volve large-scale multi-view data, e.g., hundreds of hours of video (including visual, audio
and text views) is uploaded to YouTube every minute, bringing a big challenge to previ-
ous multi-view algorithms. This work concentrates on the large-scale multi-view learning
for classification and proposes the One-Pass Multi-View (OPMV) framework which goes
through the training data only once without storing the entire training examples. This
approach jointly optimizes the composite objective functions with consistency linear con-
straints for different views. We verify, both theoretically and empirically, the effectiveness
of the proposed algorithm.

Keywords: Classification; multi-view learning; one-pass; variable linear equality con-
straints.

1. Introduction

Nowadays, a tremendous quantity of data is continuously generated from various views. For
example, hundreds of hours of video is uploaded to YouTube every minute, which appears
in multiple modalities or views, namely visual, audio and text views; a large number of
bilingual news are reported every day, with the description in each language as a view;
numerous academic papers are published with text content and citation links, which can
also be regarded as multiple views.

Multi-view learning has been an important learning paradigm to handle such tasks with
different views (represented as different feature vectors), and many approaches (Blum and
Mitchell, 1998; Guo, 2013; Guo and Xiao, 2012; Li et al., 2014; White et al., 2012) have been
proposed. For example, in web-page classification, co-training (Blum and Mitchell, 1998)
achieves a better performance than single-view approaches by combinative label propagation
over the text-content view and the page-link view (Wang and Zhou, 2010); in cross language
text categorization, SCMV (Guo and Xiao, 2012) outperforms single-view approaches, by
taking advantage of the common latent subspace on different language view.
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The exploitation of the cross view latent relationship always accompanies with high
computational cost, and most previous approaches work on small-size datasets of low di-
mensionality, e.g., training examples are usually fewer than 5,000 and the number of features
is no more than 1,000. However, in recent years, it has been witnessed that many real appli-
cations involve large scale multi-view data, video, webpages, bilingual news, to name but a
few, where a large volume of data comes in a short time period, making it infeasible to store
the entire dataset in memory before an optimization procedure is applied. Therefore, it is
a challenge for previous approaches to tackle the tasks of the large-scale multi-view data.
To the best of our knowledge, this is the first work to explore such large-scale multi-view
learning problems.

In this paper, we propose the one-pass multi-view framework for large-scale multi-view
classifications. We address this problem by jointly optimizing the composite objective func-
tions for different views, where the consistency constraints are expressed with linear equali-
ties for different views. This framework can be viewed as a generalization of online ADMM
optimization, and the main difference is that the traditional online ADMM considers the
invariable linear constraints, whereas we have to consider the variable constraints according
to the pass of training data, so as to keep the classifiers’ consistency. We present a regret
bound under such setting. Besides, we conduct extensive empirical studies on 27 datasets
to show the effectiveness and efficiency of our approach. Details of the experiments are
exhibited in Section 6.

2. Related Work

Multi-view learning has been an important learning paradigm during the past decade. Blum
and Mitchell (Blum and Mitchell, 1998) introduced the famous co-training, whose basic idea
is to train a classifier on each view in an alternative manner. Theoretical analysis shows that
co-training succeeds if two sufficient and redundant views are conditionally independent to
each other. Then this condition was relaxed by ε-expansion (Balcan et al., 2005). Further,
Wang and Zhou (Wang and Zhou, 2010) presented a sufficient and necessary condition for
co-training. Besides, many variants have been developed for multi-view learning (Nigam
and Ghani, 2000; Wang and Zhou, 2007, 2010).

Another popular paradigm for multi-view learning is to capture the cross-view relation-
ship by a common subspace. The basic assumption is that different views of the identi-
cal example should be close to each other after mapping into a common latent subspace
(Chaudhuri et al., 2009; Guo, 2013; Guo and Xiao, 2012; White et al., 2012; Li et al., 2014).
Therefore, the cross-view relationships are explored to deal with various multi-view tasks,
and improve the performance in practice. Xu et al. (Xu et al., 2013) gave an extensive
review on multi-view learning. It is noteworthy that most previous multi-view approaches
work only on small-size datasets with low dimensionality, which makes it difficult to handle
large-scale and high-dimensional multi-view tasks.

Online learning has been an efficient strategy to build large-scale learning systems, whose
study could be traced back to the 1950’s of Perceptron algorithm (Rosenblatt, 1958). It
has attracted much attention during the past years (Cesa-Bianchi and Lugosi, 2006; Hazan
et al., 2007). Many first-order optimization approaches have been complemented in an
online style. For example, the online composite objective mirror descent (COMID) (Duchi
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et al., 2010) can be viewed as an extension of mirror descent (Beck and Teboulle, 2003),
while online regularized dual averaging (RDA) (Xiao, 2010) is generalized from the dual
averaging technique (Nesterov, 2009). All those methods work on the single view, and
cannot be directly applied to the multi-view learning exploring the cross view relationship.

Another relevant approach is the Alternating Direction Method of Multipliers (ADMM),
first introduced by Gabay and Mercier (Gabay and Mercier, 1976). In practice, ADMM
shows many excellent properties such as easy applicability (Boyd et al., 2011; Yogatama and
Smith, 2014), convenient distributed implementation (Boyd et al., 2011; Zhang and Kwok,
2014), good performance, etc. Wang and Banerjee (Wang and Banerjee, 2012) presented
the first online ADMM, and some variants have been presented in (Ouyang et al., 2013;
Suzuki, 2013; Zhong and Kwok, 2014). All those approaches focus on the optimization
under invariable linear constraints.

3. Preliminaries

In multi-view learning, each instance x is described with several different disjoint spaces
of features. Without loss of generality, we focus on a two-view setting for the sake of
simplicity in this work. Specifically, let X = X 1 × X 2 be the instance space where X 1 and
X 2 are two view spaces, and Y = {+1,−1} denotes the label space. Suppose that D is an
unknown (underlying) distribution over X × Y, and what we observe is a training sample
Sn = {(x1

1,x
2
1; y1), (x1

2,x
2
2; y2), . . . , (x1

n,x
2
n; yn)} where each example is drawn independently

and identically (i.i.d.) from the distribution D.
Let H1 and H2 be the function space for each view, respectively. For notational simplic-

ity, we denote by [n] = {1, 2, . . . , n} for integer n > 0. In this work, all vectors are assumed
to be in a finite dimensional inner product space under the inner product 〈·, ·〉. For two
vectors u and v of identical size, let u ⊗ v denote their outer product matrix, and let the
symbol > denote the transpose operation on vectors and matrices.

Given the training sample Sn, the goal for multi-view learning is to select two functions
h1 ∈ H1 and h2 ∈ H2 so as to minimize the empirical 0/1 loss as follows:

min
h1∈H1,h2∈H2

n∑
i=1

I[h1(x1
i ) 6= yi] + I[h2(x2

i ) 6= yi]

under the constraints
h1(x1

i ) = h2(x2
i ) for i ∈ [n].

Here I[·] denotes the indicator function which returns 1 if the argument is true; and 0
otherwise. The constraints h1(x1

i ) = h2(x2
i ) are also called consistency constraints.

Note that the above formulation is a general formulation for multi-view classification, in
which the indicator function (i.e., 0/1 loss) is non-convex and discontinuous, thus the direct
optimization often leads to NP-hard problems. In practice, we consider some surrogate
losses ` (such as hinge loss, exponential loss) that can be optimized efficiently. For simplicity,
we study the linear function space, i.e.,

H1 = {w1 : ‖w1‖ ≤ B} and H2 = {w2 : ‖w2‖ ≤ B},
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and our approach can be generalized to non-linear classifiers. Therefore, the optimization
problem can be rewritten as

min
w1∈H1,w2∈H2

n∑
i=1

`(〈w1,x1
i 〉, yi) + `(〈w2,x2

i 〉, yi)

s.t. sign(〈w1,x1
i 〉) = sign(〈w2,x2

i 〉) for i ∈ [n],

(1)

where sign(〈w1,x1
i 〉) and sign(〈w2,x2

i 〉) denote the predicted labels in different views, re-
spectively.

4. One-Pass Multi-view Framework

Due to the sign(.) function in the consistency constraints

sign(〈w1,x1
i 〉) = sign(〈w2,x2

i 〉) for i ∈ [n],

it is difficult to design an efficient algorithm to optimize the formulation given by Eqn. (1).
For computation, we take the consistency constraints as

〈w1,x1
i 〉 = 〈w2,x2

i 〉 for i ∈ [n].

Thus, we have

min
w1∈H1,w2∈H2

n∑
i=1

`(〈w1,x1
i 〉, yi) + `(〈w2,x2

i 〉, yi) : 〈w1,x1
i 〉 = 〈w2,x2

i 〉 for i ∈ [n]. (2)

To efficiently deal with the large scale multi-view tasks, we develop an online learning al-
gorithm to optimize Eqn. (2), which goes through the dataset only once. Let (x1

t ,x
2
t ; yt) ∈

Sn denote the labeled example passes in the iteration t ∈ [T ] , where T denotes the to-
tal number of iterations, and it will be equal to the number of training examples in our
experiments. The optimization task for the iteration t can be cast as follows:

min
w1∈H1,w2∈H2

φt(w
1) + ψt(w

2) : 〈w1,x1
t 〉 = 〈w2,x2

t 〉 (3)

where φt(w
1) = `(〈w1,x1

t 〉, yt) + λΩ(w1), ψt(w
2) = `(〈w2,x2

t 〉, yt) + λΩ(w2), λ > 0 and Ω
is a regularization.

Notice that the formulation given by Eqn. (3) is a composite objective function with
linear equality constraints. It is similar to but different from the online ADMM formulation.
The main difference is that the linear coefficients in the constraints are fixed all the time in
the online ADMM, whereas those in our consistency constraints vary as training data pass
one by one; therefore, our formulation given by Eqn. (3) can be viewed as a generization of
the online ADMM framework.

Specifically in this work, we consider the L2 norm regularization, i.e., Ω(w1) = ‖w1‖22
and Ω(w2) = ‖w2‖22. In our experiments, we select hinge loss as our surrogate loss `. The
augmented Lagrangian for Eqn. (3) is given by

Lt(w
1,w2, ut) = φt(w

1) + ψt(w
2) + ut(〈w1,x1

t 〉 − 〈w2,x2
t 〉) +

ρ

2

(
〈w1,x1

t 〉 − 〈w2,x2
t 〉
)2
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where w1 and w2 are the primal variables, ut is the dual variable, ρ (ρ > 0) is the penalty
parameter. By introducing αt = ut/ρ, we have 1

Lt(w
1,w2, αt) = φt(w

1) + ψt(w
2)− α2

t +
ρ

2
(〈w1,x1

t 〉 − 〈w2,x2
t 〉+ αt)

2.

For computational simplicity, we linearize φt(w
1) as

φt(w
1) = φt(w

1
t ) + 〈∇φt(w1

t ),w1 −w1
t 〉,

where ∇φt(w1
t ) denotes the gradient of φt(w

1) at w1 = w1
t . We update w1

t+1 in each
iteration t by

w1
t+1←arg min

w1
〈∇φt(w1

t ),w1〉+
1

η
BΨ(w1,w1

t ) +
ρ

2

(
〈w1,x1

t 〉 − 〈w2
t ,x

2
t 〉+ αt

)2
, (4)

where Bregman divergence BΨ is introduced to control the distance between w1
t and w1

t+1,
and η is the learning rate. Throughout this work, we consider the Euclidean distance, i.e.,
BΨ(w1,w1

t ) = 1
2‖w

1 −w1
t ‖22.

To solve the minimization problem in Eqn. (4), w1
t+1 can be calculated as

w1
t+1 ←

(1

η
I + ρx1

t ⊗ x1
t

)−1
×
(1

η
w1

t −∇φt(w1
t ) + ρ(〈w2

t ,x
2
t 〉 − αt)x

1
t

)
, (5)

where I is an identical matrix of size d1×d1 and d1 is the dimensionality of X 1. This update
involves an inverse operation of a d1 × d1 matrix, which will take high computational cost
and memory space when the dimensionality goes large.

Incorporating the Sherman–Morrison formula (Sherman and Morrison, 1950) into the
previous analysis, we update w1

t+1 as 2

w1
t+1 ← ηv1

t − β1
tw

1
t , (6)

where

v1
t = −∇φt(w1

t ) +
1

η
w1

t + ρ(〈w2
t ,x

2
t 〉 − αt)x

1
t (7)

β1
t =

ρη2〈x1
t ,v

1
t 〉

1 + ρη〈x1
t ,x

1
t 〉
. (8)

From Eqn. (6), it is noteworthy that we do not need to calculate and store the d1×d1 matrix
(I/η+ρx1

t⊗x1
t )
−1 in Eqn. (5), thus our algorithm can be directly applied to high-dimensional

datasets.
In a similar manner, we can update w2

t+1 as

w2
t+1 ← ηv2

t − β2
tw

2
t , (9)

1. This is the scaled augmented Lagrangian.

2. In the Eqn. (6), v
1(2)
t and β

1(2)
t are middle results for the update, where v

1(2)
t is a vector and β

1(2)
t is a

number. Besides, the parameter λ is in φ (ψ) in v
1(2)
t .
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Algorithm 1 The One-Pass Multi-View (OPMV) Approach

Input: The regularization parameter λ > 0, the penalty parameter ρ > 0, the learning rate
η > 0, and the training sample.
Output: Two classifiers w1 and w2.
Initialize: w1

0 = 0, w2
0 = 0 and α0 = 0.

Process:

1: for t = 0, 1, · · · , T − 1 do
2: Receive a training example (x1

t ,x
2
t , yt);

3: Update the first classifier w1
t+1 by Eqns. (6)-(8);

4: Update the second classifier w2
t+1 by Eqns. (9)-(11);

5: Update the dual variable, by Eqn. (12).
6: end for
7: w1 = w1

T and w2 = w2
T .

with

v2
t = −∇ψt(w

2
t ) +

1

η
w2

t + ρ(〈w1
t+1,x

1
t 〉+ αt)x

2
t (10)

β2
t =

ρη2〈x2
t ,v

2
t 〉

1 + ρη〈x2
t ,x

2
t 〉
. (11)

Finally, let the gradient of the scaled augmented Lagrange w.r.t. αt equal to 0, we derive
the update rule for αt+1 as

αt+1←αt + 〈w1
t+1,x

1
t 〉 − 〈w2

t+1,x
2
t 〉. (12)

Algorithm 1 highlights the key steps of the proposed One-Pass Multi-View (OPMV ) al-
gorithm. We initialize α0 = 0, w1

0 = 0 and w2
0 = 0, where the sizes of w1

0 and w2
0 are d1

(dimensionality of X1) and d2 (dimensionality of X2), respectively. We update w1
t+1, w2

t+1

and αt+1 in iteration and finally output w1
T and w2

T . In the test stage, we predict the label
for a new example (x1

new,x
2
new) as y = sign(〈w1

T ,x
1
new〉+ 〈w2

T ,x
2
new〉).

5. Theoretical Study

It is necessary to introduce another lemma as follows:

Lemma 1 Let f(w) be a convex function. For any scalar r > 0 and any vector u, let

w∗ = arg min
w

f(w) + r‖w − u‖22.

For any subgradient g ∈ ∂f(w∗), we have

〈g,w∗ −w〉 ≤ r(‖w − u‖22 − ‖w −w∗‖22 − ‖u−w∗‖22).

412



One-Pass Multi-View Learning

Proof For convex function f(w), the optimal solution of w∗ gives

〈g + 2r(w∗ − u),w −w∗〉 ≥ 0.

Combining with

2〈w∗ − u,w∗ −w〉 = ‖w −w∗‖22 + ‖u−w∗‖22 − ‖w − u‖22,

we complete the proof.

We assume classifiers and subgradients are all bounded for each iteration t ∈ [T ], i.e.,

Assumption 1 ‖x1
t ‖ ≤ B0 and ‖x2

t ‖ ≤ B0,

Assumption 2 ‖wi
t‖ ≤ B1 and ‖wi

∗‖ ≤ B1 with i ∈ {1, 2},

Assumption 3 ‖∇φt(w1
t )‖ ≤ B2 and ‖∇ψt(w

2
t )‖ ≤ B2.

We now give our main result for regret bounds as follows:

Theorem 2 Let the sequences {w1
t ,w

2
t , αt} be generated by Algorithm 1. Then, we have

T∑
t=1

φt(w
1
t )+ψt(w

2
t )− min

(w1
∗,w

2
∗)∈R

T∑
t=1

φt(w
1
∗)+ψt(w

2
∗) ≤ (B1 +B2 +4B2

0B
2
1)T 1/2 +4B0B

2
1/T,

by setting ρ = T−3/2 and η = T−1/2, under Assumptions 1-3. Here

R = {(w1
∗,w

2
∗) : sign(〈w1

∗,x
1
t 〉) = sign(〈w2

∗,x
2
t 〉) for t ∈ [T ]}.

Proof Since w1
t+1 is an optimal solution of Eqn. (4), it holds that, from Lemma 2〈

∇φt(w1
t ) + ρ(〈w1

t+1,x
1
t 〉 − 〈w2

t ,x
2
t 〉+ αt)x

1
t ,w

1
t+1 −w1

∗
〉

≤
(
‖w1
∗ −w1

t ‖22 − ‖w1
∗ −w1

t+1‖22 − ‖w1
t+1 −w1

t ‖22
)
/2η.

For a convex function φt, we have

φt(w
1
t )− φt(w1

∗) ≤ 〈∇φt(w1
t ),w1

t −w1
∗〉.

Combining with the previous two inequalities, we have

ρ(〈w1
t+1,x

1
t 〉 − 〈w2

t ,x
2
t 〉+ αt)〈x1

t ,w
1
t+1 −w1

∗〉+ φt(w
1
t )− φt(w1

∗)

≤ 〈∇φt(w1
t ),w1

t −w1
t+1〉+

(
‖w1
∗ −w1

t ‖22 − ‖w1
∗ −w1

t+1‖22 − ‖w1
t+1 −w1

t ‖22
)
/2η.

From Young’s inequality, we have

〈∇φt(w1
t ),w1

t −w1
t+1〉 ≤ η‖∇φt(w1

t )‖22/2 + ‖w1
t −w1

t+1‖22/2η.
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This derives that

ρ(〈w1
t+1,x

1
t 〉 − 〈w2

t ,x
2
t 〉+ αt)〈x1

t ,w
1
t+1 −w1

∗〉+ φt(w
1
t )− φt(w1

∗)

≤ η‖∇φt(w1
t )‖22/2 +

(
‖w1
∗ −w1

t ‖22 − ‖w1
∗ −w1

t+1‖22
)
/2η. (13)

In a similar manner, we can prove that

ρ(〈w2
t+1,x

2
t 〉 − 〈w1

t+1,x
1
t 〉 − αt)〈x2

t ,w
2
t+1 −w2

∗〉+ ψt(w
2
t )− ψt(w

2
∗)

≤ η‖∇ψt(w
2
t )‖22/2 +

(
‖w2
∗ −w2

t ‖22 − ‖w2
∗ −w2

t+1‖22
)
/2η. (14)

Summing over t = 0, 1, . . . , T − 1, incorporating with Eqns. (13) and (14), we will get

T−1∑
t=0

φt(w
1
t ) + ψt(w

2
t )− φt(w1

∗)− ψt(w
2
∗)

≤ 1

2η

(
‖w2

T ‖+ ‖w1
T ‖
)

+
η

2

T−1∑
t=0

(
‖∇φt(w1

t )‖22 + ‖∇ψt(w
2
t )‖22

)
+ρ

T−1∑
t=0

〈w2
t −w2

t+1〉〈x1
t ,w

1
t+1 −w1

∗〉+ ρ
T−1∑
t=0

αt+1(〈x2
t ,w

2
t+1 −w2

∗〉 − 〈x1
t ,w

1
t+1 −w1

∗〉).

From Eqn. (12), we have

αt =

t−1∑
i=1

〈w1
i+1,x

1
i 〉 − 〈w2

i+1,x
2
i 〉,

which yields that |αt| ≤ 2(t− 1)B0B1. Therefore, we have

T−1∑
t=0

φt(w
1
t ) + ψt(w

2
t ) − φt(w

1
∗) − ψt(w

2
∗) ≤ B1/η + ηTB2 + ρ(4TB0B

2
1 + 4T 2B2

0B
2
1).

By setting ρ = T−3/2 and η = T−1/2 we complete the proof as desired.

6. Experiments

6.1. Datasets

We conduct our experiments on 27 real datasets in multi-view learning, including Cora
(McCallum et al., 2000), IMDB (Bisson and Grimal, 2012), News Group (Hussain et al., 2010)
and Reuter (Amini et al., 2009). Those datasets have been well-investigated by previous
researchers. The multi-class datasets Cora, IMDB and Reuter have been transformed into
binary ones by randomly partitioning classes into two groups, where each group contains
similar number of examples. The detail of the datasets are summarized in Table 1.
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Table 1: Detail description of datasets: let n be the number of examples, and d1 and d2

denote the dimensionality of the first and second view, respectively.

Dataset n d1 d2 Dataset n d1 d2 Dataset n d1 d2

Rt.EN-FR 18,758 21,531 24,892 Rt.GR-FR 29,953 34,279 24,892 Rt.SP-GR 12,342 11,547 34,262
Rt.EN-GR 18,758 21,531 34,215 Rt.GR-IT 29,953 34,279 15,505 Rt.SP-IT 12,342 11,547 15,500
Rt.EN-IT 18,758 21,531 15,506 Rt.GR-SP 29,953 34,279 11,547 Cora 2,708 2,708 1,433
Rt.EN-SP 18,758 21,531 11,547 Rt.IT-EN 24,039 15,506 21,517 IMDB 617 1,878 1,398
Rt.FR-EN 26,648 24,893 21,531 Rt.IT-FR 24,039 15,506 24,892 NG.M2 500 2,000 2,000
Rt.FR-GR 26,648 24,893 34,287 Rt.IT-GR 24,039 15,506 34,278 NG.M5 500 2,000 2,000
Rt.FR-IT 26,648 24,893 15,503 Rt.IT-SP 24,039 15,506 11,547 NG.M10 500 2,000 2,000
Rt.FR-SP 26,648 24,893 11,547 Rt.SP-EN 12,342 11,547 21,530 NG.NG1 400 2,000 2,000
Rt.GR-EN 29,953 34,279 21,531 Rt.SP-FR 12,342 11,547 24,892 NG.NG2 1,000 2,000 2,000

6.2. Compared Approaches

We compare our OPMV approach with one single-view approach, four state-of-the-art (batch)
multi-view approaches and the batch version of the proposed optimization. It is noteworthy
that all compared methods require to store the entire training data in memory and scan the
training data several times. In contrast, our approaches scan the data only once without
storing of training data. The details of the compared approaches are listed as follows:

• SV : We concatenate two views so as to form a new single view, and then apply SVM
for classification.

• CCAMV : We firstly use CCA to extract the latent common subspace representation and
then perform SVM in the common space for classification.

• CSLMV : We firstly perform the convex subspace learning approach (White et al., 2012)
to find a common space between two views, then SVM is applied in the common space
for classification.

• NMFMV : We apply non-negative matrix factorization (NMF) based approach (Li et al.,
2014) to extract the latent representation and learn the linear classifier by SVM.

• SCMV : We use the SCMV approach proposed in (Guo and Xiao, 2012) for comparison,
which simultaneously learn the subspace projection and the classifier.

• ADMMMV : We implement the batch version optimization for Eqn. (2) by using ADMM.

6.3. Experiment Setting

All experiments are performed with Matlab 7 on a node of computational cluster with 12
cores (2.53GHz each). 5-fold cross-validation is executed on training sets to decide the
learning rate η ∈ 2[−8:8] and the regularization parameters λ ∈ 1e[−16 : 0]. The penalty
parameter ρ is pre-defined as 1 for our OPMV approach. For compared approaches, the
dimensionality of common subspace k ∈ {5, 10, 20, 40, 80} is also tuned by 5-fold cross
validation on the training sets. The performances of all approaches are evaluated by average
accuracy over 10 independent runs.
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Table 2: Comparison of test accuracies (mean ± std.) on datasets Cora, IMDB and News
Group and Reuter. ‘N/A’ means that no result returns after 8 hours. •(◦) indicates
that OPMV is significantly better(worse) than the compared method (paired t-
tests at 95% significance level).

Datasets OPMV SV CCAMV CSLMV NMFMV SCMV ADMMMV

Cora .902±.013 .882±.009• .880±.020• .890±.013• .901±.026 .860±.003• .903±.007
IMDB .602±.003 .593±.003• .598±.003 .587±.010• .607±.005 .586±.004• .618±.003
NG.M2 .940±.026 .935±.017 .880±.061• .946±.014 .941±.022 .890±.040• .945±.017
NG.M5 .933±.030 .936±.014 .940±.046 .940±.035 .911±.044 .924±.049 .942±.024
NG.M10 .877±.038 .849±.039• .862±.042• .866±.032• .861±.043• .856±.037• .871±.028
NG.NG1 .951±.030 .943±.028• .949±.031 .952±.030 .932±.026• .920±.044• .960±.020
NG.NG2 .921±.020 .915±.019 .919±.035 .920±.020 .920±.019• .910±.024• .935±.018
Rt.EN-FR .936±.003 .926±.007• N/A N/A N/A N/A N/A
Rt.EN-GR .933±.004 .923±.005• N/A N/A N/A N/A N/A
Rt.EN-IT .933±.004 .924±.006• N/A N/A N/A N/A N/A
Rt.EN-SP .932±.004 .924±.004• N/A N/A N/A N/A N/A
Rt.FR-EN .905±.004 .891±.003• N/A N/A N/A N/A N/A
Rt.FR-GR .904±.005 .894±.005• N/A N/A N/A N/A N/A
Rt.FR-IT .904±.004 .891±.003• N/A N/A N/A N/A N/A
Rt.FR-SP .903±.004 .888±.003• N/A N/A N/A N/A N/A
Rt.GR-EN .926±.004 .899±.002• N/A N/A N/A N/A N/A
Rt.GR-FR .927±.004 .899±.005• N/A N/A N/A N/A N/A
Rt.GR-IT .923±.004 .903±.004• N/A N/A N/A N/A N/A
Rt.GR-SP .925±.003 .902±.002• N/A N/A N/A N/A N/A
Rt.IT-EN .897±.003 .877±.006• N/A N/A N/A N/A N/A
Rt.IT-FR .898±.003 .877±.005• N/A N/A N/A N/A N/A
Rt.IT-GR .895±.004 .878±.005• N/A N/A N/A N/A N/A
Rt.IT-SP .895±.003 .874±.005• N/A N/A N/A N/A N/A
Rt.SP-EN .953±.004 .922±.007• N/A N/A N/A N/A N/A
Rt.SP-FR .953±.004 .921±.007• N/A N/A N/A N/A N/A
Rt.SP-GR .953±.005 .925±.010• N/A N/A N/A N/A N/A
Rt.SP-IT .952±.003 .919±.079• N/A N/A N/A N/A N/A

6.4. Experimental Results

The comparison results are summarized in Table 2 and the average running time is shown
in Figure 1. Because none of batch multi-view approaches can return a result after 8 hours
for large datasets Reuter, we randomly select a subset from each Reuter dataset of 3,000
examples with 400 features corresponding to 400 words of highest appearance frequency. For
the sampled datasets (SmallRt for short), the comparison results and average running time
are shown in Table 3 and last column in Figure 1, respectively. As can be seen, experimental
results clearly verify the effectiveness and efficiency of our proposed OPMV approach.

First, our OPMV approach is superior to the single-view approach SV which simply con-
catenates two views into a single view, since the results show that our approach never loses.
This also demonstrates that the exploitation of cross-view relationship, i.e., the consistency
equality constraints for different view in our OPMV approach, is beneficial to improving the
performance for multi-view learning. In addition, our OPMV approach is comparable to the
batch ADMMMV algorithm which requires to store the entire training datasets.

Second, the proposed OPMV approach outperforms CCAMV, CSLMV, NMFMV and SCMV on
small-size datasets, and those methods do not return any result on the large dataset Reuter
after 8 hours. Even for sampled and dimension-reductional dataset Reuter, our OPMV ap-
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Figure 1: Time comparison on Cora, IMDB, NewsGroup and SampledReuter(SmallRt).

proach also achieves better performance as shown in Table 3. The possible reasons are
that i) most previous methods learn the subspace under an un-supervised procedure; ii)
non-convex optimization tends to converge to local minimum solution; and iii) previous
methods are very sensitive to parameters.

Figure 1 shows that the proposed OPMV approach is much faster than state-of-the-art
batch multi-view approaches. For example, on the dataset Cora of 2,708 examples with
dimensionality of 2,708 and 1,433 for two views respectively, our OPMV is 50 times faster
than ADMMMV, 110 times faster than CCAMV, 130 times faster than SCMV, 180 times faster than
NMFMV and even 1,000 times faster than CSLMV. Besides, our OPMV takes less than 4 minutes
on the dataset Reuter, which contains over 10,000 examples with at least 10,000 dimensions
for each view, whereas previous multi-view approaches do not return any result even after
8 hours. Even for the sampled Reuter with size 3,000 and dimensionality 400, our OPMV

approach is more efficient in contrast to compared batch multi-view approaches.

7. Convergence and Parameter Study

This section studies the parameter influence on our proposed approach. Due to the limited
space, only 4 datasets are sampled for exhibition, but a similar phenomenon can be observed
in the other datasets. Figure 2 reveals the iteration influence on OPMV, which suggests the
trend of convergence with the increase of the number of iteration. Particularly, in the first
200 iterations, it converges very fast, where the curve is of a large slope.

There are three parameters in all involved in OPMV approaches, including regularization
parameter λ, learning rate parameter η and penalty parameter ρ. We study respectively
the parameter influence to the learning performance as follows 3.

Figure 3 indicates the influence of λ ranging from 1e−16 to 1, whose x axis is − lg λ
and the result is obtained with fixed η(0.25) and ρ(8). Notice that the datasets are of
high dimensionality, thus both w1 and w2 are large vectors. In this circumstance, large

3. Though the penalty parameter ρ is pre-defined in the experiments, we still try to make a study on the
influence of this parameter.
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Table 3: Comparison of test accuracies (mean ± std.) on sampled datasets Reuter, which
contains 3,000 examples with dimensionality of 400. ‘N/A’ means that no result
returns after 8 hours. •(◦) indicates that OPMV is significantly better(worse)
than the compared method (paired t-tests at 95% significance level).

Datasets OPMV SV CCAMV CSLMV NMFMV SCMV ADMMMV

Rt.EN-FR .876±.005 .849±.005• .865±.008• N/A .854±.010• .841±.013• .882±.005
Rt.EN-GR .881±.005 .852±.008• .849±.017• N/A .852±.008• .868±.017• .889±.006
Rt.EN-IT .872±.011 .852±.003• .865±.021• N/A .860±.005• .867±.009• .885±.007
Rt.EN-SP .881±.002 .852±.004• .874±.035 N/A .868±.007 .861±.001• .884±.003
Rt.FR-EN .842±.009 .791±.005• .800±.014• N/A .810±.010• .796±.003• .840±.003
Rt.FR-GR .830±.008 .790±.005• .795±.017• N/A .792±.011• .797±.008• .840±.004
Rt.FR-IT .836±.004 .789±.017• .795±.011• N/A .828±.003• .794±.015• .844±.008
Rt.FR-SP .833±.009 .789±.002• .801±.019• N/A .827±.002 .807±.017• .845±.005
Rt.GR-EN .882±.001 .820±.010• .820±.010• N/A .865±.004• .863±.013• .883±.002
Rt.GR-FR .878±.004 .819±.005• .800±.022• N/A .850±.015• .834±.012• .885±.004
Rt.GR-IT .880±.004 .820±.011• .809±.017• N/A .866±.004• .856±.005• .887±.005
Rt.GR-SP .878±.001 .823±.003• .810±.017• N/A .868±.013• .830±.016• .889±.001◦
Rt.IT-EN .831±.004 .791±.009• .800±.015• N/A .800±.009• .794±.010• .839±.003◦
Rt.IT-FR .830±.006 .792±.004• .795±.020• N/A .800±.009• .795±.006• .827±.001
Rt.IT-GR .833±.003 .783±.006• .790±.020• N/A .809±.008• .797±.007• .838±.004
Rt.IT-SP .830±.003 .793±.005• .795±.017• N/A .802±.009• .800±.005• .834±.002
Rt.SP-EN .917±.003 .883±.011• .887±.009• N/A .900±.010• .895±.007• .917±.005
Rt.SP-FR .915±.004 .883±.002• .879±.014• N/A .901±.016• .897±.011• .917±.002
Rt.SP-GR .910±.001 .881±.012• .891±.015• N/A .909±.005 .883±.011• .923±.002◦
Rt.SP-IT .917±.004 .880±.011• .906±.017• N/A .899±.007• .906±.015• .923±.005

Figure 2: Influence of iterations.

regularization parameter λ may dominate the objective function, which may lead to a worse
performance. It can be observed in the Figure 3 that, at the beginning, with the decrease
of λ, the accuracy goes up, and when λ is less than 1e− 4, OPMV is not sensitive to it.
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Figure 3: Influence of regularization parameter λ.

Figure 4: Influence of learning rate parameter η.

Figure 4, whose x axis is log2 η, suggests the influence of learning η ranging from 2−8 to
28, under fixed λ(1e−12) and ρ(1). As shown in the Figure 4, OPMV is not sensitive to the
learning rate parameter η.

Figure 5, whose x axis is log2 ρ, indicates the influence of ρ from 2−8 to 28 with fixed
λ(1e−12) and ρ(1). It can be seen that, the accuracy is slightly increasing with ρ increasing
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Figure 5: Influence of penalty parameter ρ.

from 2−8 to 4, but after that the accuracy drops. This is mainly due to the fact that larger
ρ will encourage the classifier outputs on different views to be more similar, but when ρ
goes too large, it may overfit the noisy data where classifier consistency constraint does not
hold and leads to a degenerated performance.

8. Conclusions

Multi-view learning has been an important learning paradigm over the last decade. Many
multi-view approaches have been developed, and almost all of them work on small-size
datasets with low dimensionality. In this paper, we propose the one-pass multi-view ap-
proach OPMV, which scans each example only once without storing the entire training data.
To the best of our knowledge, this is the first work to study on the large-scale multi-view
learning. We address this problem by jointly optimizing composite objective functions for
different views, and the consistency constraints are expressed with linear equalities for dif-
ferent training examples. This framework can be viewed as a generalization of ADMM
optimization, and the main difference is that traditional ADMM only considers equality
constraints with fixed linear coefficients, whereas our constraints vary as training data pass
one by one, so as to keep classifier consistency between multiple views. Theoretically, we
present a regret bound for such setting. Moreover, extensive experiments show that the
proposed OPMV approach achieves better or comparable performance in contrast to state-of-
the-art (batch) multi-view approaches, and is more efficient, e.g., hundreds of times faster
than state-of-the-art batch multi-view approaches. In the future, it is interesting to study
one-pass partial view problem where examples may pass with a missing view in many real
applications.
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