
Multi-Label Learning with Emerging New Labels

Yue Zhu1, Kai-Ming Ting2, Zhi-Hua Zhou1
1National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

2School of Engineering and Information Technology, Federation University, Australia
Email: 1{zhuy, zhouzh}@lamda.nju.edu.cn 2kaiming.ting@federation.edu.au

Abstract—Multi-label learning is widely applied in many
tasks, where an object possesses multiple concepts with each
represented by a class label. Previous studies on multi-label
learning have focused on a fixed set of class labels, i.e., the class
label set of test data is the same as that in the training set.
In many applications, however, the environment is open and
new concepts may emerge with previously unseen instances.
In order to maintain good predictive performance in this
environment, a multi-label learning method must have the
ability to detect and classify those instances with emerging new
labels. To this end, we propose a new approach called Multi-
label learning with Emerging New Labels (MuENL). It builds
models with three functions: classify instances on currently
known labels, detect the emergence of a new label in new
instances, and construct a new classifier for each new label
that works collaboratively with the classifier for known labels.
Our empirical evaluation shows the effectiveness of MuENL.

Keywords-multi-label learning; incremental learning; emerg-
ing new labels; learnware

I. INTRODUCTION

In traditional supervised learning, one instance is associ-
ated with a single label; whereas in many applications, one
instance may possess multiple labels. Multi-label learning
is the learning paradigm to handle this kind of data, and
has attracted much attention in recent years [13]. Previous
studies of multi-label learning have focused on a fixed set of
class labels. That is, they assume that the test data have the
same set of class labels as that of the training data. In many
real-world data mining tasks, however, the environment is
open. Previously unseen instances may emerge with new
labels together with currently known labels.

A learning system in an open environment should be
reusable and adaptive to the changing environment [14]. For
a dynamic multi-label learning system, a pre-trained multi-
label model shall be revised as new instances emerge; and
new models are established for emerging new labels only.
These demands are non-trivial, and no existing research in
the literature can deal with them, as far as we know.

To meet these additional demands, we propose a novel
Multi-label learning with Emerging New Labels (MuENL)
approach to address the dynamic multi-label learning prob-
lem. MuENL consists of three components: (1) A multi-
label classifier for known labels; (2) A detector of emerging
new labels; and (3) Update the models by enlarging the set

of known labels to include a new label when a sufficient
number of instances of it has been detected.

The most challenging part in MuENL is to detect instances
with any new label. Since we do not have any prior knowl-
edge of the new label and it almost always co-occurs with
some known labels, it is impossible to separate instances
with new labels only from those with the known labels only.

Moreover, because the detection might not be perfect, the
error will accumulate as more and more new labels emerge
in a data stream. Thus, the environment demands robust
models for new labels in order to maintain high performance
in detection and prediction continuously in the data stream.

To meet all the above challenges, the MuENL approach
(1) optimizes the pairwise label ranking together with the
classification loss on the known labels, (2) builds a specially
designed detector based on both the input features and pre-
dicted value attributes, and (3) constructs a robust classifier
for the new label.

The contribution of this work is summarized as follows:
• Formalizing the dynamic multi-label learning problem—
a multi-label training set with known labels is available
initially before the data stream begins. Each newly arrived
instance in the data stream may be associated with multiple
known labels and possibly new label(s).

• Proposing the MuENL approach to address the dynamic
multi-label learning problem, incorporating a novel detector
and a robust classifier for new labels.
The central idea of this paper is to regard instances with

emerging new labels as outliers to the norm—instances of
known labels seen thus far. This admits outlier detection
methods to be used in the dynamic multi-label learning
problem. We show that the idea works in practice.

II. RELATED WORK

Multi-label learning can be divided into three main cat-
egories based on the order of label correlations [13]. For
the first-order strategy [1], none of the label correlations are
considered. For the second-order strategy [4], pairwise label
relations are taken into account. For the high-order strategy
[8], a label is assumed to be influenced by all other labels.
All the above multi-label learning approaches assume that
the class label set is fixed, and do not admit new labels. As
such, they cannot handle the dynamic multi-label learning
problem we investigated in this paper.

Incremental learning is critical for the tasks where fre-
quent data update is involved or when it is desirable not to
re-train the model from scratch. According to [15] , there are
roughly three major incremental learning settings, i.e., ex-
ample incremental learning (E-IL) [9], where new instances
arrive after the learning system has been trained; attribute
incremental learning (A-IL) [12], where new attributes may
appear; and class incremental learning (C-IL) [2], [6], where
the class label set may be enlarged.

The dynamic multi-label learning setting with emerging
new labels is a combination of E-IL and C-IL, where a new
instance may be associated with multiple new labels that
co-occur with known labels. A straightforward approach to
adapt C-IL under our setting is to transform the multi-label
learning into the multi-class learning by converting each pos-
sible label combination into a class [11]. Unfortunately, this
approach has two severe limitations. First, a new class may
not correspond to a new label, but an unseen combination
of known labels. Second, when the label set is large, the
number of possible classes is huge. This leads to a difficult
training problem, i.e., having an extremely small number of
positive instances for most classes. As a result, it cannot be
applied in practice.

When a part of the dynamic multi-label learning problem
is converted to be an outlier detection problem, many
existing methods can be applied; but not in a straightforward
manner. For example, OC-SVM [10] learns a boundary for
instances with known labels, and decides instances outside
the boundary as outliers; iForest [7] predicts instances
located in a sparse region as outliers. However, under the
multi-label setting, a new label may co-occur with known
labels, which makes it difficult to separate instances with
new labels only from instances with known labels only.

Recently, Fu [3] has proposed a transductive multi-label
zero-shot learning. This work extends the idea of [2] of
identifying new class by the exploitation of unlabeled data.
It is under a transductive setting, i.e., all test instances are
observed during the training and all the names of new labels
are assumed to be known. As a result, it cannot be applied
in our setting—new instances successively arrive, and we do
not know when one or more new labels may occur or the
total number of new labels may occur in one time period.

III. THE MUENL APPROACH

Our dynamic multi-label learning problem faces the fol-
lowing challenges: (A) detecting instances with both new
and known labels; (B) building a robust model for the new
label. In this section, we propose MuENL to handle the
dynamic multi-label learning problem with emerging new
labels, addressing the two challenges. Specifically, MuENL
consists of three components: (i) A multi-label classifier for
the known labels; (ii) a detector of emerging new labels; (iii)
update of current models, including construction of a robust

model for the new label recently detected, and update of the
current multi-label classifier and the detector.

The performance of the detector is essential in maintaining
an accurate predictive model in the dynamic multi-label
learning environment. The new label detection problem is
not only an unsupervised learning problem, but the new label
can be masked by known labels because both the new and
known labels are associated with an instance. No research
has been conducted in the current literature, as far as we
known. We design a new detector which can detect new
labels with high accuracy.

Even with an accurate detector, the accumulated errors
over time in the data stream can seriously compromise the
performance of the predictive model, if it cannot tolerate
the accumulated errors over time. Thus, it is imperative to
design a robust model for the new label.

A. Problem Formulation

Let X denote the feature space and define X0 =
[x−n+1, · · · ,x−1,x0]

⊤ ∈ X as the initially observed n
labeled instances. New instances successively arrive, and let
Xt = [Xt−1;x

⊤
t], t ∈ {1, 2, · · · , T}, denote all the instances

observed thus far at time t, where xt denotes the unlabeled
new instance emerging at time t.

Let Y0 = {c1, c2, · · · cl} be the known class label set of
length l initially at t = 0. When the new label is to be
converted to known label, Yt=Yt−1∪{ca}; otherwise Yt=
Yt−1, where ca is the new label at time t with a = |Yt−1|+1.
Let Y0 = [y−n+1, · · · ,y−1,y0]∈{−1, 1}l×n be the known
label matrix of X0, and yt∈{−1, 1}|Yt| be the label vector
of the newly arrived instance xt. Notice that none of the
elements in yt are observed, since xt is unlabeled.

The dynamic multi-label learning problem is defined as:
Definition 1. Dynamic Multi-Label Learning: Given
Xt and Y0, the task is to learn a function set Ht =
[ht,1, ht,2, · · · , ht,|Yt|], where ht,i : X → {−1, 1}|Yt| repre-
sents the model for class label ci at time t ∈ {1, 2, · · · , T}.
For each xt, the models produce ŷt = Ht(xt) which is the
predicted label vector, where xt may be associated with new
labels to co-occur with known labels.

B. The Approach

Directly estimating Ht in the dynamic learning environ-
ment defined above is extremely hard, since Yt has an
unknown variable, i.e., it is not known whether any new label
is associated with a newly arrived instance xt. In addition,
we assume that the ground truth is not available throughout
the entire data stream. Thus, the ability to accurately identify
the new label when it emerges in xt is critical in not only
predicting their existence, but also in updating models to
maintain the high predictive accuracy of classifiers for the
expanded set of known labels throughout the data stream.

We approach the problem by creating a detection func-
tion for any previously unseen labels, i.e., Ft(xt), which

outputs 1 if xt holds a new label; or -1 otherwise. For
each instance xt in the data stream, the current model is
used to do the prediction, yielding ŷt = Ht(xt), where
Ht=[ht,1, ht,2, · · · , ht,|Yt|,Ft]. After making prediction ŷt

for xt, the model update process begins when both of the
following conditions are satisfied:

1) When Ft(xt) = 1, the newly arrived instance associ-
ated with the new label is added to buffer B.

2) |B| reaches the preset maximum buffer size.
The models are updated using Tt = (Xt,Ht(Xt)) as

shown in line 9 of Algorithm 1. This is the time when the
known label set is expanded by including the new label: Yt=
Yt−1∪{ca}. Note that, when 0< |B|<MAX BUFFER SIZE,
even though the new label has been detected, the data is not
sufficient to train/update a good performing model.

Algorithm 1 MuENL
Input: X0, Y0, {xt, t ∈ {1, 2, · · · , T}}
Output: ŷt for each xt

1: Train H0 with X0 and Y0; build detector F0 on X0; set t = 1;
2: H1 = [H0,F0]; F1 = F0

3: repeat
4: Receive a new instance xt, Xt = [Xt−1;x⊤

t];
5: ŷt = Ht(xt), where Ht = [ht,1, ht,2, · · · , ht,|Yt|,Ft];
6: if Ft(xt) = 1
7: Add xt to B;
8: if |B| = MAX BUFFER SIZE
9: Update Ft+1 and Ht+1 using Tt = (Xt,Ht(Xt));

10: Empty B;
11: The new label is converted to the known label:

Yt = Yt−1 ∪ {ca};
12: end if
13: end if
14: t← t+ 1;
15: Yt = Yt−1; Ft = Ft−1; Ht = Ht−1;
16: until t = T .

Algorithm 1 summarizes the MuENL approach. It has
three key components: (i) the multi-label model (H0 =
[h0,1, · · · , h0,|Y0|]) for the known labels; (ii) the detection
model (Ft) for the new label; (iii) the update of ht,k, k ∈
{1, 2, · · · , |Yt|} and the update of Ft.

In the following three sections, we detail the design of the
multi-label model, the detection model and their updates.

IV. THE MULTI-LABEL MODEL

We use a linear model (wi, bi) for each label i, i.e.,
hi(x) = sign(w⊤

i x+bi). In addition to the ordinary misclas-
sification loss minimization, we also minimize the pairwise
label ranking loss in order to exploit label correlations to
obtain a better performance. To simplify the optimization
process, model (wi, bi) is converted to (wi) by adding an
attribute with value 1 at the end of xk, i.e., fi,k = w⊤

i [xk; 1].
The optimization problem is formulated as follows:

min
wi

|Yt|∑
j=1

n∑
k=1

[1− (yi,k−yj,k)(fi,k − fj,k)]+

+λ1

n∑
k=1

[1− yi,kfi,k]+ +
λ2

2
∥wi∥2,

(1)

where λ1 and λ2 are two trade-off parameters. To solve
Eqn. (1), we first calculate the subgradient of the objective
function; then apply the gradient descend method.

V. NEW LABEL DETECTION

The appearance of a new label may owe to the difference
in feature space or known label patterns or both. Therefore,
we take both feature and label spaces into account: If a new
instance has different characteristics from known instances
in the feature space, it is likely to hold a new label. Also,
in the label space, if a rare co-occurrence of label pattern
appears, a new label is like to occur.

Using this idea, we propose MuENLForest as our de-
tection model F . Similar to the earlier work [5], [8], we
encode the label information into the feature space. Once
the data is encoded, a detector for new labels is built based
on an effective anomaly detection technique using random
trees called iForest [7]. The main differences between
MuENLForest and iForest are listed as follows:
• iForest considers only the feature space, whereas we
encode the label information into the feature space in
MuENLForest, considering both the feature difference
and label relations. Note that the labels of all instances,
arrived after the initial training set, are not available. The
predicted value vectors are used for all these instances in
training a MuENLForest.

• In each node of a tree in iForest, the test attribute
is randomly selected, so as the cut-off value. In contrast,
each node of a tree in MuENLForest is based on a
fixed number of randomly selected attributes. The split is
an outcome of a clustering process based on the selected
attributes.

• When evaluating a test instance, iForest employs the
average path length, the test instance traverses over all
trees, as the anomaly score. A small value suggests that the
test instance is located in a sparse region, which is more
likely to be an outlier. This does not work in the multi-
label setting since instances with new labels may share
the same dense region of instances with some common
known labels. MuENLForest captures the characteristics
in both the feature space and the label patterns. In addition
to growing the trees, a ball is constructed in each leaf
node based on the training instances which fall into the
leaf node. A test instance is predicted to have a new label
if it falls outside the ball; otherwise, it has similar data
characteristics and label patterns as the training instances
used to build MuENLForest.

A. MuENLForest Construction

Recall that the training set at time t > 0 is Tt =
(Xt,Ht(Xt)); and T0=(X0, Y0). MuENLForest consists

1In the case that |S| = 1, the center and the radius of its parent node
are used instead.

Algorithm 2 MuENLTree
Input: Training sample S, current tree height e, maximum tree height em,
number of randomly selected attributes k
Output: MuENLTree
1: if any condition in C is satisfied:
2: A ball1 is built having radius r = maxx∈S(∥x−m∥),

where m = mean(S);
3: return N{N .S ← S,N .m←m,N .r ← r};
4: else
5: Let Q1 be the feature set in S;
6: Let Q2 be the predicted attribute set in S;
7: Randomly select k attributes q1 ⊂ Q1;
8: Randomly select k attributes q2 ⊂ Q2;
9: q = [q1, q2];

10: Cluster centers: {p1,p2} ← Clustering(q, S);
11: Sl = {x ∈ S | ∥xq − p1∥ ≤ ∥xq − p2∥);
12: Sr = {x ∈ S | ∥xq − p1∥ > ∥xq − p2∥);
13: return N {N .S ← S,N .m←m,N .r ← r,

N .q ← q,N .{p1,p2} ← {p1,p2},
N .Nleft ← MuENLTree(Sl, e+ 1, em, k)
N .Nright ← MuENLTree(Sr, e+ 1, em, k)

}
;

14: end if

of g MuENLTrees; and each MuENLTree is built using a
random subset of Tt of size ψ.
Definition 2. MuENLTree is a binary tree consists of
internal nodes and leaf nodes. Each internal node has test:
∥xq−p1∥≤∥xq−p2∥ which splits into two son nodes, where
p1 and p2 are two cluster centers having q attributes and
xq is the q projection of x. Each leaf node defines a ball
covering S (i.e., the set of all training instances falling into
this leaf node) having radius r =maxx∈S∥x−m∥, where
m=mean(S).

To grow a MuENLTree during the training process, the
training set is recursively divided as internal nodes are
constructed until any one of the following conditions (C) is
satisfied: (a) the tree reaches a height limit em; (b) |S| = 1;
(c) all instances in S have the same xq value. Algorithm 2
summarizes the construction of MuENLTree.

B. MuENLForest Detection
Once MuENLForest, i.e., Ft(·), is constructed, it is

ready for prediction. In evaluating a test instance xt in each
MuENLTree, Ft(xt) = 1 if xt falls outside the ball, i.e.,
having a new label. Otherwise, Ft(xt)=−1, i.e., xt has no
new labels. The final output of MuENLForest is decided
via majority vote.

VI. MODEL UPDATE

A. Multi-Label Model Update

When buffer B is full, Ht is to be updated. This update
includes the construction of a new model for the new label,
and the update of the existing multi-label model (without
re-training the model).

Because the detector is not perfect, it may miss some
positive instances with the new label or mistaken some
negative ones to be the positive ones. Thus, we need to
design a robust model for both the new label and the known
labels.

When an instance with a new label appears, the influence
of the new label shall be taken into consideration in the train-
ing of a new model and the updating of the existing model.
To achieve this goal, we apply an iterative optimization
strategy, i.e., the multi-label model is fixed while learning a
robust model ht,a for the new label; and the learned ht,a is
fixed while updating the existing multi-label model.

Let XB be the instances collected in the buffer and XU

be the set of instances with (predicted) known labels only
since the last model update. Let d = [d1, d2, · · · , dm]⊤ be
the indicator vector of [XB ;XU], where m is the number of
instances in [XB ;XU]; and dk = 1 if xk ∈ [XB ;XU] holds
a new label; dk = 0 otherwise. Note that d is to be learned
simultaneously with the classifier, which corresponds to the
potential assignment of the new label.

In order to obtain a robust model, we propose MuENLMNL
to simultaneously learn the indicator d and model wa for
the new label ca. Similar to the strategy described in Section
IV that optimizes both the misclassification loss and the
pairwise label ranking loss, the optimization problem of
building model wa for new label ca is cast as follows:

min
wa,d

|Yt|−1∑
j=1

m∑
k=1

[1− (2dk−1−yj,k)(fi,k − fj,k)]+

+λ1

m∑
i=1

[1− (2dk−1)fi,k]++
λ2

2
∥wa∥2+

λ3

2
∥d∥2,

s.t. dk ∈ {0, 1}, k ∈ {1, 2, · · · ,m},

where yj,k = ht,j(xk) and λ1, λ2, λ3 are three parameters.
The above optimization problem is a NP-Hard problem,

thus we relax the constraint from dk ∈ {0, 1} to dk ∈ [0, 1].
The process optimizes d and wa alternatively. Specifically,
we calculate the subgradient of the objective function and
perform the gradient descend. After each update, we project
d to [0, 1]: d← min(1, [d]+), to satisfy the box constrain.

In order to achieve a faster convergence and a good result,
we adopt a warm start strategy. For the first iteration, we
employ XB as positive instances and [X0;XU] as negative
instances to train a linear multi-label model. For the follow-
ing iterations, the optimization begins with the optimization
result obtained in the last iteration.

Updating the existing multi-label model considers both
the detected new label and corresponding learned model. It
updates the model in a way similar to Eqn. (1) in Section IV.

B. Detection Model Update

To give preference to recent data, we apply a weighted
sampling strategy, where recent data has a higher weight
than older data. Specifically, a weight is associated with each
instance, i.e., v. Each newly arrived instance has an initial
weight of 1.0. Each time the buffer is full, update v ←
0.8v, thus the weight of older instances will diminish as
time progress.

Figure 1. Example: MuENL’s performance when there are 5 new labels.

VII. EXPERIMENTAL SETUP

A. Configuration
To evaluate the predictive performance of MuENL, we

use 5 multi-label benchmark datasets (“Birds”, “CAL500”,
“Emotions”, “Enron” and “Yeast”)2. A data stream is
simulated by generating the initial set of labeled data (i.e.,
(X0, Y0)) and individual unlabeled instances xt arrive pro-
gressively.

Figure 1 shows an example simulation of a data stream
using the Yeast dataset, where 5 new labels (A to E) are
observed in different time periods. At t0, only the initial
training set with known labels (Y0) are observed; and a
multi-label model is trained using this training set. Then,
instances with possibly new label A begins to appear in
the t0 − t2 period. At t1, which denotes that the buffer (of
instances having detected with the new label) is full, MuENL
updates the multi-label model ([ht,1, · · · , ht,|Yt|]) for the
expanded known label set {Y0, A}; and also updates the
detection model (Ft) for the next new label (B).

A commonly used multi-label performance metric “av-
erage precision” is applied in the evaluation, which is the
larger the better. It is interesting to note that the overall
predictive performance does not degenerate much with the
successive appearance of new labels, as shown in Figure 1,
after 900 time steps with 5 consecutive new labels.

The experiment is conducted based on the simulation
described above, except only three new labels are used
instead of five new labels because of space limitation. The
predictive performance is measured at t1, . . . , t6 ; and two
evaluations are made: (i) Yt-evaluation, where it measures
the performance in the dynamic learning environment as in
the simulation; (ii) Y0-evaluation, where it assesses how well
MuENL works on the initial label set Y0 only throughout the
entire period.

B. Baselines

We employ two sets of baselines to compare with MuENL:
(i) the state-of-the-art multi-label approaches; (ii) variants of
MuENL having different MuENL components.

State-of-the-art multi-label approaches: We compare
MuENL with BR [1], CLR [4], ECC [8] and PLR, which
are multi-label learning approaches considering the initially
known labels only. BR, CLR, and ECC are first-order, second-
order and high-order multi-label learning approaches, re-

2http://mulan.sourceforge.net/datasets.html

spectively. PLR is the multi-label approach proposed in
Section IV. Further details are listed as follows:
• BR trains a linear classifier for each label independently.
• CLR transforms the multi-label learning problem into the
label ranking problem and incorporates a virtual label to
separate the relevant and irrelevant labels.

• ECC is the ensembled classifier chains. In each chain,
ground truth labels are encoded into the feature space
gradually; thus high order label relations are exploited.

• PLR takes advantage of pairwise label ranking.
Variants of MuENL: To further validate the effectiveness

of each component, we compare MuENL with its variants.
• MuENLIF: Use iForest [7] (instead of MuENLForest)
as the detection model.

• MuENLOC: Use OC-SVM [10] (instead of MuENLForest)
as the detection model.

• MuENLSVM: Use MuENLForest as the detection model,
but use a different classification model: build the model
for the new label via SVM, which takes the instances in the
buffer as positive ones, and the others as negative ones to
train a linear model.

• MuENLOR: Use MuENLForest as the detection model
and assume that the oracle is accessible to provide the
ground truth for model updates. Its performance will be
the upper bound.
For each method under comparison, its parameters are

tuned using the initial training set at t0 via 5-fold cross-
validation. Then, these settings are employed for the rest of
the data stream.

VIII. EXPERIMENTAL RESULTS

A. Compare with Multi-label approaches

Figure 1 is an example plot of Yt-evaluation on the Yeast
dataset having one new label in each time period over 5
periods3. MuENL maintains a good predictive performance
spanning the entire duration from t0 to t10. This is a direct
result of a good detector and a robust classifier in MuENL.

Figure 2 summarizes the comparison with BR, ECC, CLR
and PLR in terms of Yt-evaluation in five datasets. It is
interesting to note that MuENL almost always performs better
than all baselines. Many of the differences are significant.

In terms of Y0-evaluation, MuENL achieves better or
comparable performance in comparison with all baselines
(results are not shown due to space limitation). MuENL can
gain better performance on known labels because pairwise
label ranking is considered.

B. Compare with MuENL variants

Table I presents the Yt-evaluation result.

3Notice that the time when the buffer gets full may be different in
different time periods, and for different detectors in the same time period.
Thus, the duration of one period may vary from one period to another and
from one detector to another.

t 1 t 2 t 3 t 4 t 5 t 6
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Av
era

ge
 Pr

ec
isi

on

(a) Birds
t 1 t 2 t 3 t 4 t 5 t 6

0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6

Av
era

ge
 Pr

ec
isi

on
(b) Cal500

t 1 t 2 t 3 t 4 t 5 t 6
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Av
era

ge
 Pr

ec
isi

on

(c) Emotions
t 1 t 2 t 3 t 4 t 5 t 6

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Av
era

ge
 Pr

ec
isi

on

(d) Enron
t 1 t 2 t 3 t 4 t 5 t 6

0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Av
era

ge
 Pr

ec
isi

on

(e) Yeast
Figure 2. Comparison results with multi-label approaches in Yt-evaluation. t1 − t6 on the horizontal axis are the 6 time points.

Table I
COMPARISON RESULTS WITH MUENL VARIANTS IN Yt-EVALUATION

MuENLIF MuENLOC MuENLSVM MuENLOR MuENL
Birds .60±.05 .63±.03 .60±.04 .69±.03 .67±.02

CAL500 .40±.01 .40±.01 .39±.01 .42±.01 .42±.01
Emotions .70±.03 .62±.04 .63±.03 .78±.03 .76±.03

Enron .48±.03 .49±.03 .45±.02 .52±.02 .52±.02
Yeast .70±.01 .70±.01 .70±.01 .73±.01 .73±.01

Among the four MuENL variants, MuENLOR has the best
performance since it uses the oracle which provides the
ground truth that is not available to other variants.
MuENL obtains a performance comparable with MuENLOR

in many cases. This is a direct result of a good detector and
a robust classifier for both known and new labels.
MuENL achieves a better performance than MuENLSVM

in most cases. This shows that the robust model update
procedure in MuENL works and is essential in maintaining
a good performance in a dynamic learning environment.

The comparisons with MuENLIF and MuENLOC show that
MuENLForest is a better detector in the dynamic multi-
label learning environment.

IX. CONCLUSION

Multi-label learning with emerging new labels is a prac-
tical problem that demands attention. In this work, we
formalize this problem and propose the novel MuENL ap-
proach which consists of three components: (1) a multi-
label classifier for the known labels, (2) a detector for new
labels, and (3) a new classifier for each new label that works
collaboratively with the classifiers for known labels. Because
existing methods only consider a fixed label set, they do
not have the last two components. As a result, they are
significantly less effective than the proposed approach in the
dynamic learning environment, as verified in the empirical
evaluation. The idea of converting part of the problem into
an outlier detection problem has enabled the whole problem
to be solved satisfactorily. The outlier detector we designed
has high detection rate—the key to ensuring a robust model
to maintain high accuracy in data streams.

ACKNOWLEDGMENT

This research was supported by NSFC (61333014), 111
Project (B14020), and the Collaborative Innovation Center
of Novel Software Technology and Industrialization.

REFERENCES

[1] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learn-
ing multi-label scene classification. Pattern Recognition,
37(9):1757–1771, 2004.

[2] Q. Da, Y. Yu, and Z.-H. Zhou. Learning with augmented class
by exploiting unlabeled data. In Proceedings of 28th AAAI
Conference on Artificial Intelligence, pages 1760–1766, 2014.

[3] Y. Fu, Y. Yang, T. Hospedales, T. Xiang, and S. Gong.
Transductive multi-label zero-shot learning. arXiv preprint
arXiv:1503.07790, 2015.

[4] J. Fürnkranz, E. Hüllermeier, E. L. Mencı́a, and K. Brinker.
Multilabel classification via calibrated label ranking. Machine
Learning, 73(2):133–153, 2008.

[5] S.-J. Huang and Z.-H. Zhou. Multi-label learning by exploit-
ing label correlations locally. In Proceedings of 26th AAAI
Conference on Artificial Intelligence, pages 949–955, 2012.

[6] I. Kuzborskij, F. Orabona, and B. Caputo. From n to n+1:
multiclass transfer incremental learning. In Proceedings of
2013 IEEE Conference on Computer Vision and Pattern
Recognition, pages 3358–3365, 2013.

[7] F. Liu, K. M. Ting, and Z.-H. Zhou. Isolation forest. In
Proceedings of 8th IEEE International Conference on Data
Mining, pages 413–422, 2008.

[8] J. Read, B. Pfahringer, G. Holmes, and E. Frank. Classifier
chains for multi-label classification. Machine Learning,
85(3):333–359, 2011.

[9] S. Rüping. Incremental learning with support vector ma-
chines. In Proceedings of the 1st IEEE International Confer-
ence on Data Mining, pages 641–642, 2001.

[10] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola,
and R. C. Williamson. Estimating the support of a high-
dimensional distribution. Neural computation, 13(7):1443–
1471, 2001.

[11] G. Tsoumakas, I. Katakis, and L. Vlahavas. Random k-
labelsets for multilabel classification. IEEE Transactions on
Knowledge and Data Engineering, 23(7):1079–1089, 2011.

[12] V. Vapnik, A. Vashist, and N. Pavlovitch. Learning using
hidden information (learning with teacher). In Proceedings
of International Joint Conference on Neural Networks, pages
3188–3195, 2009.

[13] M.-L. Zhang and Z.-H. Zhou. A review on multi-label
learning algorithms. IEEE Transactions on Knowledge and
Data Engineering, 26(8):1819–1837, 2014.

[14] Z.-H. Zhou. Learnware: On the future of machine learning.
Frontiers of Computer Science, 10(4):589–590, 2016.

[15] Z.-H. Zhou and Z.-Q. Chen. Hybrid decision tree.
Knowledge-Based Systems, 15(8):515–528, 2002.

