
New Class Adaptation via Instance Generation
in One-Pass Class Incremental Learning

Yue Zhu1, Kai-Ming Ting2, Zhi-Hua Zhou1
1National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

2School of Engineering and Information Technology, Federation University, Australia
Email: 1{zhuy, zhouzh}@lamda.nju.edu.cn 2kaiming.ting@federation.edu.au

Abstract—One pass learning updates a model with only a single
scan of the dataset, without storing historical data. Previous
studies focus on classification tasks with a fixed class set, and
will perform poorly in an open dynamic environment when new
classes emerge in a data stream. The performance degrades
because the classifier needs to receive a sufficient number of
instances from new classes to establish a good model. This can
take a long period of time. In order to reduce this period to
deal with any-time prediction task, we introduce a framework to
handle emerging new classes called One-Pass Class Incremental
Learning (OPCIL). The central issue in OPCIL is: how to
effectively adapt a classifier of existing classes to incorporate
emerging new classes. We call it the new class adaptation issue,
and propose a new approach to address it, which requires only
one new class instance. The key is to generate pseudo instances
which are optimized to satisfy properties that produce a good
discriminative classifier. We provide the necessary properties
and optimization procedures required to address this issue.
Experiments validate the effectiveness of this approach.

I. INTRODUCTION

In an open dynamic environment, new instances arrive
successively, where new classes may emerge at any time.
Class incremental learning [2], [9], [12] is a learning paradigm
designed for this kind of dynamic environment where classes
appear incrementally. It focuses on enabling a learning system
to incorporate instances of previously unseen classes in a
continuous training process as new instances emerge. Most
existing studies on class incremental learning require multiple
scans of a training set. In real applications with limited
resources (e.g., storage, energy consumption, etc. in mobile
applications), it is imperative that a satisfying performance can
be produced with a minimum number of scans. Therefore, an
ideal solution is one that each instance needs to be scanned
only once, and it is discarded and not stored for future
training—one-pass learning.

In contrast to the traditional batch learning paradigm which
generates a model based on the entire training data, one-
pass learning [6], [17] deals with one instance at each time
step without accessing any historical data. This enables an
efficient strategy to build a large-scale learning system that
would otherwise be computationally infeasible using the entire
dataset. However, existing one-pass learning methods [1], [4],
[6], [7], [14], [17] assume that the class set is fixed; thus they
cannot handle class incremental learning in a data stream.

In this work, we extend both one-pass learning and class
incremental learning to create One-Pass Class Incremental

Learning (OPCIL). The new learning framework enables any-
time predictions as new classes emerge in data streams. No
existing methods in one-pass learning or class incremental
learning are able to perform effective any-time predictions
under the stated scenario, as far as we know.

A naive extension of one-pass learning to address the above-
mentioned issue is to enlarge the model for the new class with
random initialization. This method will degrade the accuracy
substantially every time a new class emerges, and can stay
low for an extended period of time until a sufficient number
of instances from the new class are received. As a result,
in order to produce a robust learning system, dealing with
any-time prediction tasks, the central issue in OPCIL is to
adapt the previously updated classifier for existing classes to
incorporate emerging new classes under a stringent condition
that all historical data are unavailable at all times. We call it
the new class adaptation issue.

In this paper, we propose an effective method to the new
class adaptation issue in OPCIL to maintain a robust learning
system for any-time predictions. Having only one instance
when a new class first appears, the key is to generate pseudo
instances which are optimized to satisfy properties that pro-
duce a good performing discriminative classifier.

The contribution of this work is summarized as follows:
1) Introducing a new type of learning called one-pass class

incremental learning (OPCIL);
2) Identifying the central issue in OPCIL, i.e., how to

effectively adapt an existing classifier to incorporate a
new class when the new class first appears in a stream.

3) Proposing an effective method to address the new class
adaptation issue by generating pseudo instances which
are optimized to satisfy properties that produce a good
performing discriminative classifier using one observed
instance only.

There are several other lines of related works. Learning
with emerging new classes [11], [18] focuses on discovering
emerging novel classes in a data stream; one-class learning
[8], [13], [15] aims to build a classification model from a
training set which mainly consists of positive class only; one-
shot learning [5], [10] focuses on learning from very few
training examples. All these works can handle new classes, but
they have to access historical data several passes. In contrast,
our work focuses on new class adaptation problem in one-pass
learning setting, in which the classifier is updated immediately



Algorithm 1: OPCIL
Input: Data stream: {xt,yt}Tt=1; number of existing classes at

time step: t = 0 - K0

Output: Weight W̃t for prediction
Initialize: Y0={1, · · · ,K0}, W̃0 with random initialization,

t = 1;
1 repeat
2 Receive a labeled instance (xt, yt);
3 Update center C for each class;
4 x̃t ← [xt; 1];
5 if yt /∈ Yt−1 then // yt is a new class
6 Kt ← Kt−1 + 1;
7 Yt ← Yt−1 ∪ {Kt};
8 W̃ ← GPI(W̃t−1, C);
9 else // yt is an existing known class

10 Kt ← Kt−1;
11 Yt ← Yt−1;
12 W̃ ← W̃t−1;

13 W̃t ← SGDUpdate(x̃t, yt, W̃ ) 1 ;
14 t← t+ 1;
15 until t = T ;

after a training instance is observed in the data stream and no
historical data are accessible.

The rest of this paper is organized as follows: Section II
describes the OPCIL framework and the new class adaptation
issue; Section III provides the proposed method; experimental
results are presented in Sections IV and V; and the conclusions
are provided in the last section.

II. ONE-PASS CLASS INCREMENTAL LEARNING

A. Framework

Let X = Rd be the instance space, and Yt = {1, 2, · · · ,Kt}
be the class set, where Kt is the number of classes at time t.

In the context of one-pass class incremental learning, we
are given a sequence ST = {(xt, yt)}Tt=1, where xt ∈ X
is the instance observed at time t; and yt ∈ Yt is the class
label of xt. If yt /∈ Yt−1, then xt belongs to a new class
yt = Kt = Kt−1 + 1, and the class set will be augmented
with Kt: Yt = {1, 2, · · · ,Kt−1,Kt}; otherwise, Kt = Kt−1.

The goal for one-pass class incremental learning is to learn
a mapping ft : X → Yt, so as to minimize the loss over the
sequence ST :

∑T
t=1 I(ft(xt) 6= yt), where I(·) is an indicator

function which returns 1 when the argument is true, and returns
0 otherwise; and ft predicts the labels of unseen instances.

Because 0-1 loss is hard to optimize, the softmax transfor-
mation of a linear function for an instance xt is considered
instead in practice:

gk(xt,Wt,bt)=
exp(w>t,kxt+bt,k)∑Kt
j=1exp(w

>
t,jxt+bt,j)

, k∈{1, · · · ,Kt}, (1)

where Wt = [wt,1, · · · ,wt,Kt
] ∈ Rd×Kt is the linear weight

matrix, bt = [b1, · · · , bKt ]
> is the bias vector.

1The general form for SGDUpdate is: W̃t ← W̃ − ηt∇W̃ , where ηt is
the learning rate. It may slightly differ in different SGD approaches.

The learning becomes minimizing the following log loss
function as a surrogate:

`(xt, yt,Wt, bt) = −
Kt∑
k=1

I(yt = k) ln gk(xt,Wt, bt);

and the prediction function is

f(xt,Wt, bt)=argmax
k

gk(xt,Wt, bt), k∈{1, · · · ,Kt};

In order to simplify both the optimization and the description,
we add an additional dimension to each instance x̃t = [xt; 1],
and let W̃t = [Wt; b

>
t ]. Then, the bias term in gk, f and ` can

be dropped by applying x̃t and W̃t.
The optimization is typically conducted using stochastic

gradient descent (SGD) 2. The gradient of `(x̃t, yt, W̃t) w.r.t.
W̃t is given by ∇W̃t

= −x̃t(eyt
◦ (1 − g))>, where eyt

is
the unit vector whose yt-th element is 1, the other elements
are 0; “◦” is the element-wise product; 1 is an all-one vector;
and g = [g1(x̃t, W̃t), · · · , gk(x̃t, W̃t)]

> 3.
The framework of One-Pass Class Incremental Learning

(OPCIL) is summarized in Algorithm 1.

B. New Class Adaptation

Under the constraint that all historical data are unavailable
at all times, the central issue in OPCIL is defined as follows:

Definition 1. New class adaptation in OPCIL aims to adapt
a classifier of known classes to a good performing classifier
for both the known classes and the new class, using only one
instance of the new class.

Because there is no access to historical data and there is
only a single instance from the emerging new class, it appears
to be a mission impossible to upgrade to a good performing
model for all classes. Fortunately, two types of information
are available:

1) Centers of existing classes. In one-pass learning setting,
each class center maintains the first-moment information
of historical data for each class; and it is easy to update
as new instances are observed. Let Ct = [ct,1, · · · , ct,Kt

]
be the center vector estimated for all K classes at time
t 4. In order to estimate ct,k, we maintain a counter
nt,k for each class k. If yt = k, nt,k = nt−1,k + 1,
otherwise nt,k = nt−1,k; then the center is updated as
ct,k = (ct−1,k × nt−1,k + xt)/nt,k.

2) Current classification model for existing classes (W̃t−1).
This model is updated as instances of existing classes are
observed in the data stream.

The next section describes the proposed method which
makes use of these two pieces of information to update the
existing model when a new class emerges.

2Specifically, the implementation used in this paper is ADAGRAD [3].
3To simplify the notation, we drop the arguments for g hereafter, i.e., gi

represents gi(x̃t, W̃t).
4Note that ct,Kt is instantiated with the new instance xt when a new class

emerges at time t.



III. LEARNING TO GENERATE PSEUDO INSTANCES (GPI)

To address the new class adaptation issue, we propose a
learning to Generate Pseudo Instances (GPI) approach such
that the generated instances can be used effectively to upgrade
the current classifier of existing classes to a classifier for both
the existing classes and the new class. This process learns a
good performing classifier W̃ (Line 8 in Algorithm 1) from
the only instance of a new class when it first appears.

Specifically, W̃ is initialized based on the class centers,
including the currently observed instance of the new class, and
the current classifier of existing classes W̃t−1. The initializa-
tion of W̃ is done as follows: 1) generate pseudo instances
for both new and existing classes; 2) train a classifier based
on the generated instances to produce W̃ .

Then, W̃ is used to adapt the current classifier W̃t−1 for
existing classes to incorporate the new class. This is done
iteratively by generating pseudo instances for all classes and
updating W̃ to further refine the model. The pseudo instance
generation process is the key contribution of this paper.

A. Initialization of W̃

The initialization process of upgrading the current model
W̃t−1 to incorporate the new class involves generating pseudo
instances for existing classes and the new class. They are
described in the following two subsections.

A1) Pseudo Instance Generation for Existing Classes

A pseudo instance of an existing class must have three
properties in order to produce a good discriminative model.
The properties are defined in the following paragraphs.

Property 1. A pseudo instance x̂ of class i with respect to
class j shall be in the class i region bordering class j region.

Note that we have no access to all historical data; but we
have access to the class centers C and the current classifi-
cation model W̃ . To produce pseudo instances which have
Property 1, we propose to simultaneously minimize (i) the
distance between pseudo instance (x̂) and the center of class
j (cj): ‖x̂−cj‖2; and (ii) log loss in class i: −ln(gi) 5:

min
x̂
−ln(gi) +

λ

2
‖x̂− cj‖2, (2)

where λ is the trade off parameter.
Optimizing Eqn. (2) via gradient descent produces (inter-

mediate) pseudo instances which will gradually approach the
decision boundary between i and j.

However, Property 1 is not sufficient because it only takes
the current classifier into consideration without the knowledge
of the new class. It can produce instances which are well inside
the region of the new class rather than at the boundary.

The second property is proposed to tightly bound the region
of each class.

Property 2. Pseudo instances of class i must be within a fixed
distance from its class center ci.

5We focus on x̂ for class i, and omit constant terms in the original log loss

This property can be acquired by having a bounded norm
constraint:

‖x̂− ci‖2 ≤ δ2, (3)

where δ is a threshold.
In addition, pseudo instances should cover a large area along

the decision boundary. Thus the third property is required and
it is given as follows.

Property 3. Pseudo instances of class i must be highly
disperse around the region of class i.

The dispersion of two pseudo instances x̂1 and x̂2, gener-
ated for class i (centered at ci), is measured by the angle (θ)
between x̂1 − ci and x̂2 − ci:

disci
(x̂1, x̂2) = 1− (x̂1 − ci)

>(x̂2 − ci)

‖x̂1 − ci‖ · ‖x̂2 − ci‖
.

The larger the angle is between x̂1−ci and x̂2−ci, the larger
dispersion will be between x̂1 and x̂2.

We adopt a greedy strategy to generate pseudo instances
for each class i, so as to maximize the pairwise dispersion.
Let Pi = {x̂1, · · · , x̂m} be m pseudo instances generated for
class i thus far. A new pseudo instance x̂ for the same class,
which maximizes the dispersion, is formulated as follows:

min
x̂

1

m

∑
x̂′∈Pi

(x̂− ci)
>(x̂′ − ci)

‖x̂− ci‖ · ‖x̂′ − ci‖
. (4)

According to [16], under the bounded norm constraint Eqn. (3),
minimizing Eqn. (4) can be relaxed to

min
x̂

1

2m

∑
x̂′∈Pi

‖x̂− ci + x̂′ − ci‖2. (5)

Combining Eqns. (2), (3) and (5), we have our optimization
formulation for generating pseudo instances for class i, given the
class center cj and previously generated instances Pi of size m:

min
x̂
−ln(gi) +

λ

2
‖x̂− cj‖2 +

1

2m

∑
x̂′∈Pi

‖x̂+ x̂′ − 2ci‖2

s.t. ‖x̂− ci‖2 ≤ δ2. (6)

The third term 1
m

∑
x̂′∈Pi

‖x̂+ x̂′−2ci‖2 is set to 0, when Pi is
empty, to avoid the division-by-zero error.

To optimize Eqn. (6), the gradient descent is applied. We define

L=−ln(gi)+
λ

2
‖x̂− cj‖2+

1

2m

∑
x̂′∈Pi

‖x̂+ x̂′ − 2ci‖2, (7)

then the gradient w.r.t. L is given by

∇x̂ = −(1− gi)wi + λ(x̂− cj) +
1

m

∑
x̂′∈Pi

(x̂+ x̂′ − 2ci),

where wi=W̃1:d,i is the first d rows of the i-th column of W̃ . The
update rule for x̂ is x̂← x̂− η∇x̂, where η is the learning rate.

After x̂ is updated, we check whether the constraint specified in
Eqn. (3) is satisfied. If ‖x̂− ci‖2 > δ2, we project x̂ on the surface
of the ball with center ci having radius δ:

x̂← x̂− ci
‖x̂− ci‖

δ + ci. (8)



A2) Pseudo Instance Generation for the New Class
Having seen only the first instance of the new class, no knowledge

of its decision boundary is available. As a result, Property 1, which
is valid for existing classes only, cannot be applied. The replacement
property is given as follows:

Property 4. Each pseudo instance of a new class j is predicted to
belong to any of the existing classes i 6= j with the highest uncertainty
by the model W̃t−1 for all existing classes i = 1, . . . ,K.

Entropy is a measure that quantifies the amount of uncertainty.
Maximizing the entropy will obtain the largest uncertainty.

Note that gk, in Eqn. (1), has a probabilistic interpretation: it is
the probability that x̂ is classified to class k: p(y= k|x̂)= gk. The
joint probability is given by p(y=k, x̂)=p(y=k|x̂)p(x̂). The joint
entropy can then be given as:

H(x̂, y) = −
K∑

k=1

p(y = k, x̂) ln(p(y = k, x̂))

= −p(x̂) ln(p(x̂))
K∑

k=1

gk − p(x̂)
K∑

k=1

gk ln(gk), (9)

where K is the number of existing classes.
Because

∑K
k=1 gk = 1 and p(x̂) is an unknown constant, maxi-

mizing Eqn. (9) w.r.t. x̂ is equivalent to minimizing
∑K

k=1 gkln(gk).
Because Properties 2 and 3 are still valid for the new class, the

optimization can be done similarly by simply replacing the first term
in Eqn. (6) with

∑K
k=1 gklngk. We therefore have the optimization

formulation for the new class as follows:

min
x̂

K∑
k=1

gkln(gk)+
λ

2
‖x̂−cj‖2+

1

2m

∑
x̂′∈Pi

‖x̂+x̂′−2ci‖2

s.t. ‖x̂− ci‖2 ≤ δ2. (10)

Define L′ as

L′=
K∑

k=1

gkln(gk)+
λ

2
‖x̂−cj‖2+

1

2m

∑
x̂′∈Pi

‖x̂+x̂′−2ci‖2.

The optimization of Eqn. (10) can also be conducted by the gradient
descend. The gradient of L′ w.r.t. x̂ is given by

∇′x̂=
K∑

k=1

(1+ln(gk))gk(1−gk)wk+λ(x̂−cj)+
1

m

∑
x̂′∈Pi

(x̂+x̂′−2ci).

B. Iterative Model Update
After training a classifier with generated pseudo instances as

the initialization for W̃ , the decision boundaries are available for
all classes, including the new class. The subsequent process to
refine the model or the decision boundaries is an iterative process
called GPI_update which iterates the following two steps until it
converges (i.e., W̃ does not change):

(i) Generate pseudo instances for all classes based on the centers;
(ii) Update W̃ (obtained in the previous iteration) using the gener-

ated pseudo instances in step (i).
The pseudo instances generation process in step (i) is the same as

that for existing classes in the initialization of W̃ (Section III-A1),
since the decision boundary for the new class has been established.

C. Set λ and δ automatically
We describe how to set λ and δ for Eqn (6) for the existing classes,

and then followed by that for Eqn (6) and Eqn (10) for the new class.
(a) AdapSelectλ for Eqn. (6). Minimizing L(x̂, W̃ , C, Pi, λ) in
Eqn. (7) with an appropriate λ, x̂ will gradually approach the decision
boundary. If λ is too large, the solution will cross the boundary. The

Algorithm 2: GPI
Input: current weight: W̃t−1; class centers: C; the number of

pseudo instances for each class pair: m.
Output: Weight W̃t for prediction

1 W̃ ← GPI_init(W̃t−1, C,m);
2 repeat
3 W̃ ← GPI_update(W̃ , C,m);
4 until convergence;

Algorithm 3: GPI_init
Input: current weight: W̃t−1; class centers: C; the number of

pseudo instances for each class pair: m.
Output: Weight W̃

1 for i = 1 : K do
2 Pi ← ∅;
3 for j ∈ {1, · · · ,K} \ {i} do
4 for k = 1 : m do
5 λi,j ← AdapSelectλ;
6 δi,j ← AdapSelectδ;
7 x̂←solve Eqn.(6), with λ=λi,j , δ= 1

2
‖cK+1−cj‖;

8 add x̂ to Pi;

9 λi,K+1 ← min{λi,j , j = 1, · · · ,K};
10 δi,K+1 ← min{δi,j , j = 1, · · · ,K} ∪ { 1

2
‖ci − cK+1‖};

11 for k = 1 : m do
12 x̂←solve Eqn. (6), with λ = λi,K+1, δ = δi,K+1;
13 add x̂ to Pi;

14 PK+1 ← ∅;
15 for j = 1 : K do
16 for k = 1 : m do
17 x̂←solve Eqn. (10), with λ = 1, δ = 1

2
‖cK+1 − cj‖;

18 add x̂ to PK+1;

19 Randomly initialize wK+1, then w̃K+1 = [wK+1; 1],
W̃init = [W̃t−1, w̃K+1];

20 Build training set T : Pi labeled as class i, i∈{1, · · · ,K+1};
21 W̃ ← train a classifier, given T and initial W̃init.

automatic process begins by setting λ initially to a large value (say,
λ = 4); and then check whether the optimized solution x̂ is correctly
classified. If x̂ is classified as another class, λ is reduced by half.
We repeat this process, until an appropriate λ is found.
(b) AdapSelectδ. The idea to set δ automatically for Eqn. (6) is
similar to that of setting λ, i.e., it aims to generate pseudo instances
which are correctly classified by the classifier. If δ is too large, due to
the bounded norm constraint in Eqn. (6), the generated instances may
be located within the region of another class. Given x̂, if ‖x̂−ci‖ >
δ, then x̂ is projected via Eqn. (8). After the projection, if x̂ is still
mistaken for another class by the classifier, then δ is reduced by half.
We repeat this process, until an appropriate δ is found.

Both AdapSelectλ and AdapSelectδ examine whether a
generated instance is correctly classified. Note that the pseudo in-
stance generation procedure is related to a class pair. In the initializa-
tion of W̃ , when the class pair involves a new class, AdapSelectλ
and AdapSelectδ cannot be applied, since no decision boundary
is available for the new class. Alternatives are used in the following
two situations:
(a) Generate instances for an existing class i w.r.t. the new class.
First, λ and δ for Eqn. (6) are determined based on AdapSelectλ
and AdapSelectδ mentioned above for all class pairs {(i, j), j ∈
{1, · · · ,K} \ {i}}, where K is the number of existing classes.



Algorithm 4: GPI_update
Input: Initial weight: W̃init; class centers: C; the number of

pseudo instances for each class pair: m.
Output: Weight W̃

1 for i = 1 : K + 1 do
2 Pi ← ∅;
3 for j ∈ {1, · · · ,K + 1} \ {i} do
4 for k = 1 : m do
5 λi,j ← AdapSelectλ;
6 δi,j ← AdapSelectδ;
7 x̂←solve Eqn. (6), with λ = λi,K+1, δ = δi,K+1;
8 add x̂ to Pi;

9 Build training set T : Pi labeled as class i, i∈{1, · · · ,K+1};
10 W̃ ← train a classifier, given T and initial W̃ = W̃init.

Let λi,j and δi,j denote the parameter settings for the pair (i, j).
Then, pseudo instances of an existing class i w.r.t. the new class
is generated via Eqn. (6) using the minimum λi,j and δi,j : λ ←
min{λi,1, · · · , λi,K} and δ ← min{δi,1, · · · , δi,K , 1

2
‖ci−cK+1‖},

where cK+1 (which is the new class instance) is the new class center,
and 1

2
‖ci − cK+1‖ is an estimate that δ is at the midpoint of two

class centers, having no other information.
(b) Generate instances for the new class w.r.t. an existing class.
Here, no adaptive selections could be made for Eqn. (10) since the
decision boundary for the new class is unknown. As a heuristic,
λ = 1 which gives the first and second terms in Eqn. (10) the same
weighting; and δ = 1

2
‖cK+1 − cj‖.

Based on the descriptions in Sections III-A, III-B and III-C,
three procedures are presented: (a) Algorithm 2 summarizes the
entire GPI approach; (b) the initialization of W̃ is in Algorithm 3:
GPI_init; and (c) iterative model update of W̃ is in Algorithm 4:
GPI_update. Only one parameter m which needs to be set. In the
following experiments, m = 1 is used as the default.

IV. EXPERIMENTS ON SYNTHETIC DATA

A. Configuration
Synthetic Data. The 2-dimensional dataset has the following char-
acteristics: Each of the 10 classes has 1,000 instances drawn from a
multivariate normal distribution. Then, 20% instances are randomly
sampled as the test set, and the rest are used for a stream simulation.
Stream Simulation. To simulate a data stream, we randomly select
5 classes as new classes, and shuffle the training data to build a data
stream such that each new class emerges after 1,000 instances are
observed. Only 5 existing classes appear in the first 1000 instances,
labeled as section 1-1000. Then, Classes 6-10 appear successively as
new classes in the next 5000 instances in sections 1001-6000. In the
section 6001-8000, there are no other new classes.
Evaluation. To evaluate any-time predictions, the accuracy of the
classifier is assessed using the test set in each time step, after the
classifier has been updated. All instances in the test set which contains
all known classes are used in the assessment.
Baseline. We compare OPCIL-GPI with OPCIL-Rnd, where
OPCIL-GPI uses GPI to obtain the classifier to incorporate a new
class (Line 8 in Algorithm 1), and OPCIL-Rnd adopts a random
initialization, so as to illustrate the effectiveness of our approach.
For SGDUpdate in Line 13 Algorithm 1, we adopt ADAGRAD [3].

B. Results
The comparison result of OPCIL-GPI and OPCIL-Rnd is exhib-

ited in Figure. 1. It is a vivid illustration of the cold start phenomenon
exhibited by OPCIL-Rnd, i.e., the accuracy degrades significantly

immediately after a new class emerges. The accuracy recovers to a
good level only after a sufficient number of instances of the new
class have been observed. In contrast, the accuracy degradation of
OPCIL-GPI is more subdued; and notice that the performance gap
between OPCIL-GPI and OPCIL-Rnd is huge in the initial time
steps every time a new class first emerges. The performance gap
can remain large for more than 500 instances in some sections, e.g.,
2001-4000 and 5001-6000.

Figure 1. Comparison results between OPCIL-GPI and OPCIL-Rnd, where
the orange line represents the average accuracy of OPCIL-GPI; and the
blue line shows the average accuracy of OPCIL-Rnd; the shadow area is
the variance on 5 independent runs. Performance drops significantly using
OPCIL-Rnd when new classes appear; whereas this is more subdue using
OPCIL-GPI.

V. EXPERIMENTS ON REAL DATA

A. Configuration
Datasets. We conduct experiments on 10 multi-class benchmark
datasets, i.e., dna, mnist, pendigits, satimage, segment, svmguide4,
usps, vehicle, vowel, wine 6. As in Section IV, we take 80% of the
dataset for training, and the remaining 20% for testing.
Stream Simulation. The simulation is same as that in Section IV,
except that the same time interval between two new classes cannot
be maintained because each real dataset has a limited number of
instances and the number of instances for each class varies from one
class to another. In addition, in order to check whether our approach
is sensitive to the order of classes, we randomly shuffle the class set
in each dataset 5 times. Thus for each dataset, we simulate 5 data
streams with different new classes with different orders; and report
the average result over the 5 data streams.
Evaluation. As in Section IV, we assess the any-time prediction
accuracy of the trained classifier on the current class set Yt at every
time step t in the data stream using the test set. Because a new class
emerges at different time steps in different data streams of the same
dataset, we report (i) the overall accuracy over one entire stream,
averaged over five streams; and (ii) the accuracy at each time step in
which a new class first emerges, averaged over all new classes that
emerge in a data stream and over five streams. We call this measure
First-emergence accuracy.
Contenders. In addition to OPCIL-Rnd, we compare OPCIL-GPI
with two other variants:
• OPCIL-CC uses the class centers only to establish W̃ . CC is

short for building W̃ using Class Centers;
• OPCIL-CCR uses the class centers and randomly generated

instances around centers to build W̃ . CCR is short for building
W̃ using Class Centers and Random points. Specifically, those
randomly generated instances for each class i are limited
within a ball centered at the class center ci having a radius
min{ 1

2
‖ci − cj‖, j ∈ {1, · · · ,Kt}, j 6= i}. For a fair compar-

ison, the number of generated instances for each class is set to
be the same as that used in OPCIL-GPI.

6Those datasets are available on https://www.csie.ntu.edu.tw/ cjlin/libsvmtools
/datasets/multiclass.html. For mnist, we randomly sample 20,000 instances.



B. Results
Figure 2 exhibits the overall performance of all methods using the

performance of OPCIL-Rnd as the base. OPCIL-GPI is the best
performer which is better than Rnd, CC, and CCR in all datasets.
Specifically, it is better than Rnd on 9 of 10 datasets, significantly
better than CC on 9 of 10 datasets, and significantly better than CCR
on 6 of 10 datasets (under paired t-tests at 95% significance level).

Figure 2. Overall accuracy with reference to OPCIL-Rnd. The gray baseline
is OPCIL-Rnd. To simplify notation, prefix “OPCIL” is dropped.

Note that when the time gap between different new classes is large,
the improvement is not obvious (see usps, pendigits, and mnist), since
all those OPCIL algorithms will converge to a similar accuracy given
enough instances; even though each new class model has a different
initialization.

Figure 3. First-emergence accuracy with reference to OPCIL-Rnd.

Figure 3 shows the First-emergence accuracy with reference to
OPCIL-Rnd. OPCIL-GPI achieves much better performance than
OPCIL-Rnd, OPCIL-CC and OPCIL-CCR. It is significantly better
than all other contenders on 9 out of 10 datasets. This validates the
effectiveness of the new class adaptation approach.

To examine whether the performance difference between any
two algorithms is significant, we perform a post-hoc Nemenyi test.
The result shown in Figure 4 reveals that the proposed new class
adaptation with GPI is significantly better than other contenders.

Figure 4. Critical difference (CD) diagram of the post-hoc Nemenyi test
(α = 0.05) for the comparison results in Figure 3. The difference between
two algorithms is significant if the gap between their ranks is larger than the
CD. There is a line between two algorithms if the rank gap between them is
smaller than the CD.

VI. CONCLUSION

We introduce a new framework to deal with emerging new classes
called One-Pass Class Incremental Learning (OPCIL). It is an
extension of both the one-pass learning and the class incremental

learning to enable any-time predictions as new classes emerge in
data streams. The central issue in OPCIL is how to effectively adapt
a classifier of existing classes to incorporate emerging new classes.
We call it the new class adaptation issue, and propose an effective
method to address it. Having only one instance of the new class, the
key is to generate pseudo instances which are optimized to satisfy
properties that produce a good performing discriminative classifier.
We provide the necessary properties and optimization procedures
required to address this issue. Experiments on synthetic data and
real datasets validate the effectiveness of our approach.

ACKNOWLEDGMENT

This research was supported by the NSFC (61333014) and the 111
Program (B14020), and the Collaborative Innovation Center of Novel
Software Technology and Industrialization.

REFERENCES

[1] N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games.
Cambridge University Press, 2006.

[2] Q. Da, Y. Yu, and Z.-H. Zhou. Learning with augmented class by
exploiting unlabeled data. In Proceedings of the 28th AAAI Conference
on Artificial Intelligence, pages 1760–1766, 2014.

[3] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine
Learning Research, 12(7):2121–2159, 2011.

[4] J. Duchi and Y. Singer. Efficient online and batch learning using forward
backward splitting. Journal of Machine Learning Research, 10:2899–
2934, 2009.

[5] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object cate-
gories. IEEE Transactions on Pattern Analysis and Machine Intelligence,
28(4):594–611, 2006.

[6] W. Gao, R. Jin, S. Zhu, and Z.-H. Zhou. One-pass auc optimization. In
Proceedings of the 30th International Conference on Machine Learning,
pages 906–914, 2013.

[7] E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for
online convex optimization. Machine Learning, 69(2-3):169–192, 2007.

[8] S. S. Khan and M. G. Madden. One-class classification: Taxonomy of
study and review of techniques. The Knowledge Engineering Review,
29(03):345–374, 2014.

[9] I. Kuzborskij, F. Orabona, and B. Caputo. From n to n+ 1: multiclass
transfer incremental learning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3358–3365, 2013.

[10] B. M. Lake, R. Salakhutdinov, J. Gross, and J. B. Tenenbaum. One shot
learning of simple visual concepts. In Proceedings of the 33rd Annual
Conference of the Cognitive Science Society, pages 2568–2573, 2011.

[11] X. Mu, F. Zhu, J. Du, E.-P. Lim, and Z.-H. Zhou. Streaming classifica-
tion with emerging new class by class matrix sketching. In Proceedings
of the 31st AAAI Conference on Artificial Intelligence, pages 2373–2379,
2017.

[12] M. D. Muhlbaier, A. Topalis, and R. Polikar. Learn++ nc: Combining
ensemble of classifiers with dynamically weighted consult-and-vote for
efficient incremental learning of new classes. IEEE Transactions on
Neural Networks, 20(1):152–168, 2009.

[13] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, J. C.
Platt, et al. Support vector method for novelty detection. In Proceedigns
of Advances in Neural Information Processing Systems 12, pages 582–
588, 1999.

[14] S. Shalev-Shwartz. Online learning and online convex optimization.
Foundations and Trends in Machine Learning, 4(2):107–194, 2012.

[15] D. M. Tax and R. P. Duin. Uniform object generation for optimizing
one-class classifiers. Journal of machine learning research, 2(12):155–
173, 2001.

[16] Y. Yu, Y.-F. Li, and Z.-H. Zhou. Diversity regularized machine. In
Proceedings of the 22nd International Joint Conference on Artificial
Intelligence, pages 1603–1608, 2011.

[17] Y. Zhu, W. Gao, and Z.-H. Zhou. One-pass multi-view learning. In
Proceedings of the 6th Asian Conference on Machine Learning, pages
407–422, 2016.

[18] Y. Zhu, K.-M. Ting, and Z.-H. Zhou. Multi-label learning with emerging
new labels. In Proceedings of the 16th IEEE International Conference
on Data Mining, pages 1371–1376, 2016.


