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ABSTRACT
This paper introduces the first generic version of data depen-
dent dissimilarity and shows that it provides a better closest
match than distance measures for three existing algorithms
in clustering, anomaly detection and multi-label classifica-
tion. For each algorithm, we show that by simply replacing
the distance measure with the data dependent dissimilari-
ty measure, it overcomes a key weakness of the otherwise
unchanged algorithm.

Keywords
Data dependent dissimilarity; distance measure; distance-
based neighbourhood; probability-mass-based neighbourhood;
k nearest neighbours.

1. INTRODUCTION AND MOTIVATION
Many data mining algorithms rely on a distance measure

to provide the closest match between a test instance and in-
stances in a database in order to find its nearest neighbours.
The distance calculation is the core process that has been
applied to all aspects of data mining tasks, including density
estimation, clustering, anomaly detection and classification.

Despite its widespread applications, research in psychol-
ogy has pointed out since 1970’s that distance measures do
not possess the key property of dissimilarity as judged by
humans [12, 20], i.e., the characteristic where two instances
in a dense region are less similar to each other than two in-
stances of the same interpoint distance in a sparse region.
Researchers have suggested that this data dependent dissim-
ilarity is a better measure than the data independent geo-
metric model based distance measure in psychological tests
[12]. For example, two Caucasians will be judged as less
similar when compared in Europe (where there are many
Caucasians) than in Asia (where there are few Caucasians
and many Asians.)
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We introduce a data dependent dissimilarity which has
the above-mentioned characteristic, and we provide concrete
evidence that it is a better measure than standard distance
measures for three existing algorithms which rely on dis-
tance. Using probability mass rather than distance as the
means to find the closest match neighbourhood heralds a
fundamental change of perspective.

The neighbourhood of an instance has been used for dif-
ferent functions in various data mining tasks. Table 1 shows
the key functions and key weaknesses of three existing algo-
rithms relying on distance measure. It is instructive to see
that a mere replacement of distance with the data dependen-
t dissimilarity in these algorithms changes the perspective.
The corresponding ‘new’ functions are described in the last
column of Table 1. Although the rest of the procedures in
each algorithm are unchanged, it overcomes the key weak-
nesses of these algorithms.

This paper makes the following contributions:

1. A generic data dependent dissimilarity, named mass-
based dissimilarity, is proposed to allow for different
implementations.

2. Deriving a new neighbourhood function from the data
dependent dissimilarity and showing that it can re-
place an existing neighbourhood density function to
overcome a key weakness in density-based clustering,
i.e., its inability to find all clusters of varying densities.

3. Through our empirical evaluation, we demonstrate that
the data dependent dissimilarity provides a better clos-
est match than distance measure for k-nearest neigh-
bour algorithms in anomaly detection and multi-label
classification tasks.

The remainder of the paper is organised as follows. Sec-
tion 2 introduces the related work. Sections 3 and 4 present
the proposed dissimilarity and the new neighbourhood func-
tion. Section 5 describes an existing similarity which is a
special case of the proposed dissimilarity. Section 6 intro-
duces how the dissimilarity can be applied to three exist-
ing algorithms. Section 7 presents the empirical evaluation
results. A discussion of related issues and conclusions are
provided in the last two sections.

——————————————————————–
Software download: The source code of mass-based dissimilarity

can be obtained at https://sourceforge.net/projects/mass-based-

dissimilarity/.



Table 1: Key functions and key weaknesses of algorithms that rely on distance in three tasks and their
replacement functions due to mass-based dissimilarity. Details of kNN and MLkNN are provided in Section 6.
Algorithm Key function Key weakness Replacement function
Density-based
clustering

Identify core points which have
high density using distance-based
neighbourhood estimation

Inability to find all clusters
of varying densities

Identify core points which have high
probability mass using probability
mass-based neighbourhood estimation

kNN anomaly
detector

Identify anomalies as points with
the longest distance to the kth n-
earest neighbours

Inability to detect local
anomalies

Identify anomalies as points having the
highest probability mass of the kth
lowest probability mass neighbours

Multi-label
kNN classifier
(MLkNN)

Estimate class-conditioned likeli-
hoods using a frequency estimate
based on k nearest neighbours

Poor likelihood estimation
in cases where the local
neighbourhood covers re-
gions of varied density

Estimate class-conditioned likelihoods
using a frequency estimate based on k
lowest probability mass neighbours

2. RELATED WORK
Psychologists since 1970’s have expressed their concern-

s on the use of geometric model for dissimilarity measure
[12, 20]. The psychological tests they have conducted have
clearly shown that the dissimilarity between two instances,
as judged by humans, is influenced by the context of mea-
surements and other instances in proximity. It is suggested
that a dissimilarity measure which is akin to human’s judged
dissimilarity is one that interprets two instances in a dense
region to be less similar than two instances of equal inter-
point distance but located in a less dense region [12].

The first version of data dependent similarity [2], which
has the characteristic prescribed by psychologists above, has
been shown to provide a more effective match than distance
measures in nearest neighbour search for k nearest neigh-
bour classifiers and information retrieval. It is named mp-
dissimilarity and defined in the same form as the `p-norm,
except that the dissimilarity in dimension i is probability
mass in a region P (Ri(x, y)) rather than distance |xi − yi|.
Region Ri(x, y) is defined as an interval from min(xi, yi)−δ
to max(xi, yi)+δ, where δ is some small constant value.This
implementation requires a search to find all instances in the
region, and is not efficient.

This paper presents a general definition of data depen-
dent dissimilarity in which mp-dissimilarity [2] is a special
case. The proposed implementation is efficient and robust
for more applications.

A recent definition of mass estimation [7] is the basis of
the proposed dissimilarity. We effectively extend from the
mass estimation of one point to a dissimilarity measure of
two points.

Based on information theory, Lin [14] suggests a proba-
bilistic measure of similarity in ordinal domain as follows:

sim(oa, ob) =
2× log

∑max(a,b)

j=min(a,b) P (oj)

logP (oa) + logP (ob)

where oj is an ordinal random variable.
Like most distance measures, Lin’s measure [14] yields

a constant maximum value for self similarity; and it has
the opposite characteristic of the judged dissimilarity, i.e.,
two instances are more similar in a dense region than two
instances of equal interpoint distance in a sparse region.

Another existing data dependent dissimilarity is shared
nearest neighbour (SNN) which has been investigated in
clustering only thus far [9, 11]. A detailed discussion of
the relationship between SNN and the proposed mass-based
dissimilarity is devoted in Section 5.

3. MASS-BASED DISSIMILARITY
Geometric model based measures solely depend on geo-

metric positions to derive their distance measures. Instead,
a data dependent dissimilarity mainly depends on data dis-
tribution, i.e., the probability mass of the (smallest) region
covering the two instances. We use the terms: probability
mass or mass or probability, interchangeably hereafter; and
name the proposed measure: mass-based dissimilarity.

Let D be a data sample from pdf (probability density
function) F ; and H ∈ H(D) be a hierarchical partitioning
model of the space into non-overlapping and non-empty re-
gions. The definitions for the domain of Rd, where d is the
number of dimensions, are given as follows.

Definition 1. R(x, y|H;D) is the smallest local region cov-
ering x and y wrt H and D is defined as:

R(x, y|H;D) = arg min
r⊂H s.t.{x,y}∈r

∑
z∈D

1(z ∈ r) (1)

where 1(·) is an indicator function.

Definition 2. Mass-based dissimilarity of x and y wrt D
and F is defined as the expected probability of R(x, y|H;D):

m(x, y|D,F ) = EH(D)[PF (R(x, y|H;D))] (2)

where PF (·) is the probability wrt F ; and the expectation is
taken over all models in H(D).

In practice, the mass-based dissimilarity would be esti-
mated from a finite number of models Hi ∈ H(D), i =
1, . . . , t as follows:

me(x, y|D) =
1

t

t∑
i=1

P̃ (R(x, y|Hi;D)) (3)

where P̃ (R) = 1
|D|

∑
z∈D 1(z ∈ R).

Note that R(x, y|H;D) is the smallest local region cover-
ing x and y, it is analogous to the shortest distance between
x and y used in the geometric model. Hereafter D is dropped
in the notations when the context is clear.

3.1 Self-dissimilarity
One key difference of the mass-based dissimilarity is self-

dissimilarity. Unlike self-dissimilarity of other measures (which
usually take a constant value equal to the minimum dissim-
ilarity or 0 in [0,1]), me(x, x) is not a constant and ranges
over [0,1], depending on the data distribution and the par-
titioning strategy used.



Table 2: me versus `p. ∂(·, ·) is a dissimilarity function.

me(x, y) = 0 when both x and y are in an empty region.

∂(x, x) ∂(x, y), ∀y 6= x Properties
me [0,1] [0,1] ∀x 6= y,me(x, x) ≤ me(x, y)

∃x 6= y;x 6= z,me(x, x) > me(z, y)
`p 0 (0,1] ∀x; y 6= z, `p(x, x) < `p(z, y)

(a) True density distribution (b) Distribution of me(x, x|D)

Figure 1: (a) A true density distribution; (b)
me(x, x|D) based on Random Trees (level=8), where
D has 1500 instances randomly sampled from (a)

The differences between me and `p are shown in Table 2.
The reasons of the two properties of me are given below:

• ∀x 6= y,me(x, x) ≤ me(x, y): because R(x, x|H) ⊆
R(x, y|H).

• ∃x 6= y;x 6= z,me(x, x) > me(z, y): As the mass dis-
tribution of me(x, x) is not a constant1; if x is in the
region that includes the maximum mass point, then
its mass value will be larger than the dissimilarity of
some points which are close to the fringe or have the
minimum mass values.

The distribution of the self-dissimilarity is equivalent to
mass distribution [18], and its properties depend on the mod-
els H used:

• Half-space is used to define R. Here me(x, y|D) re-
duces to half-space mass [7] if x = y. The mass distri-
bution is always concave within the area bounded by
the data, irrespective of the density distribution of the
given data set [7].

• Random Trees: Here me(x, y|D) reduces to level-h
mass estimation [19] if x = y. An example is shown in
Figure 1(b).

3.2 Model used to define a region
Though there are many methods to implement a mod-

el to define regions for mass estimation [19], we employ a
method based on completely random trees2 to implement
mass-based dissimilarity in this paper.

We use a recursive partitioning scheme called iForest (iso-
lation Forest) [15] to define regions. Though iForest was ini-
tially designed for anomaly detection [15], it has been shown
that it is a special case of mass estimation [19].
1Note that mass distribution is not uniform even for a uni-
formly distributed pdf. See [7, 18] for details.
2Note that the random trees are not RandomForests [5] be-
cause the trees are completely random, built without class
labels and any attribute selection criterion.

The implementation can be divided into two steps. There
are two input parameters to this procedure. They are: t
- the number of iT rees (isolation Trees); and ψ - the sub-
sampling size used to build each iT ree. The height limit h
of each iT ree is automatically set by ψ : h = dlog2ψe.

The first step is to build an iForest consisting of t iT rees
as the partitioning structure R. Each iT ree is built inde-
pendently using a subset D ⊂ D, where |D| = ψ. A ran-
domly selected split is employed at each internal node of an
iT ree to partition the sample set at the node into two non-
empty subsets until every point is isolated or the maximum
tree height h is reached. In the experiments described in
Section 7, we perform axis-parallel split at each node of an
iT ree to build iForest. The details of the axis-parallel split
iT ree building process can be found in the Appendix.

After an iForest is built, all instances in D are traversed
through each tree in order to record the mass of each node.

The second step is the evaluation step. Test points x
and y are parsed through each iT ree to calculate the sum
of mass of the lowest nodes containing both x and y, i.e.,∑
i |R(x, y|Hi)|. Finally, me(x, y) is the mean of these mass

values over t iT rees as defined below:

me(x, y) =
1

t

t∑
i=1

|R(x, y|Hi)|
|D| (4)

4. µ-NEIGHBOURHOOD MASS
We introduce a new function: µ-neighbourhood mass,

which denotes the number of points in a region defined by
the mass-based dissimilarity, is defined as follows:

Mµ(x) = #{y ∈ D | me(x, y) ≤ µ}

Like ε-neighbourhood density3, µ-neighbourhood mass pro-
duces an estimate based on a region defined by a dissimilar-
ity measure. However, the region is defined by the expected
probability mass (instead of distance.) Like ε, the parame-
ter µ controls the size of the region: large (small) µ defines
a large (small) region.

Figures 2(a) and 2(b) compare ε-neighbourhood with µ-
neighbourhood on a dataset having three areas of different
densities. Note that the volume of the region defined by µ-
neighbourhood mass depends on data distribution—small in
dense area and large in sparse area, shown as areas A, B and
C in Figure 2(b). Note that the overall shape is not sym-
metrical. In contrast, ε-neighbourhood forms a region which
is independent of data distribution with constant volume, in
addition to regular and symmetrical shape.

Figure 3(a) shows that a µ-neighbourhood region becomes
symmetrical only in the case of a uniform density distribu-
tion. Figure 3 shows that the shape depends on the imple-
mentation: axis-parallel and non axis-parallel random trees
yield diamond and spherical shapes, respectively.

A conceptual comparison between the two neighbourhood
functions is given in Table 3. In order to obtain non-zeroMµ,
µ must be set higher than maxz∈Dme(z, z). In other words,
µ-neighbourhood mass employs mass distribution (i.e., the
distribution of self-dissimilarity) as the reference.

For the purpose of clustering, mass can be used in a similar
way as density to identify core points, i.e., instances having
high mass values are core points; and those having low mass
values are noise.
3As used in DBSCAN [10].



Table 3: µ-neighbourhood mass versus ε-neighbourhood density
µ-neighbourhood mass ε-neighbourhood density

Definition Mµ(x) = #{y ∈ D | me(x, y) ≤ µ} Nε(x) = #{y ∈ D | `p(x, y) ≤ ε}
Mµ(x) = 0 if me(x, x) > µ ∀x; 0 < ε ≤ 1, Nε(x) ≥ 1
Mµ(x) ≥ 0 if me(x, x) ≤ µ

Region me(x, x) is the reference; not symmetrical; volume unfixed Distance from x; symmetrical; constant volume

(a) True density distribution (b) ε-neighbourhood density (c) µ-neighbourhood mass (d) σ-neighbourhood mass

Figure 4: Density distribution of a “hard distribution” and its estimations using ε-neighbourhood density
(ε = 0.03), µ-neighbourhood mass based on iForest (level=8 and µ = 0.2) and σ-neighbourhood mass based on
SNN (k = 200 and σ = 0.3) from a sample of 1500 instances of (a).

(a) ε-neighbourhood region (b) µ-neighbourhood region

Figure 2: (a) and (b) show the two regions de-
fined by ε-neighbourhood density (ε = 0.25) and
µ-neighbourhood mass (µ = 0.55), respectively, on
a dataset having three areas of different densities,
with reference to the red point (0.5,0.5). The blue-
coloured dots denotes the points and the dark-
coloured dots denotes the points within the region
defined by the ε- or µ-neighbourhood estimator.

(a) µ-neighbourhood region-A (b) µ-neighbourhood region-B

Figure 3: (a) and (b) show the two regions de-
fined by µ-neighbourhood mass (µ = 0.55) using axis-
parallel iForest and non axis-parallel iForest, respec-
tively, on a dataset with uniform density distribu-
tion with reference to the red point (0.5,0.5).

The next subsection describes a characteristic of µ-neigh-
bourhood mass which makes it a better candidate than ε-
neighbourhood density to identify core points, especially in
a dataset which has clusters of varying densities.

4.1 Characteristic of µ-neighbourhood mass
One interesting characteristic of µ-neighbourhood mass is

that valleys of a data distribution can be constrained within
a small range of mass values by setting an appropriate µ,
where a valley is the area surrounding a local minimum in
the distribution. This characteristic is especially important
in clustering algorithms which rely on a global threshold
to identify core points before grouping the core points into
separate clusters. Having all the valleys close to a small
mass value, a global threshold slightly larger than this value
will identify the majority of the core points of all clusters,
irrespective of the densities of the clusters.

In contrast, ε-neighbourhood density does not possess this
characteristic as it estimates density distribution and its val-
leys can have huge varying densities. As a result, a clus-
tering algorithm, such as DBSCAN [10] which employs the
ε-neighbourhood density estimator and relies on a global
threshold to identify core points, is unable to detect all clus-
ters of varying densities. This kind of distribution, shown in
Figure 4(a), is called hard distribution because it is hard for
DBSCAN [10] to identify all the clusters in the distribution.

Possessing the above-mentioned characteristic, the hard
distribution (in terms of density) will exhibit as easy dis-
tribution (in terms of mass). Examples of ε-neighbourhood
density and µ-neighbourhood mass are given in Figures 4(b)
and 4(c), respectively.

In summary, µ-neighbourhood mass converts all valleys
of different densities to become valleys of almost equal low
mass by using an appropriate µ, if it exists.

The same applies to peaks, i.e., the difference in mass
between peaks at dense and sparse regions can be reduced to
a smaller value close to zero with an appropriate µ. However,
in the clustering context, it is more important to have valleys
reduced to about the same value so that a global threshold
can be used to easily identify all clusters.



5. RELATION TO SNN SIMILARITY
A measure based on shared nearest neighbours (SNN) in

k nearest neighbours has been proposed for clustering [11]:

“Data points are similar to the extent that they
share the same nearest neighbours; in particu-
lar, two data points are similar to the exten-
t that their respective k nearest neighbour list-
s match. In addition, for this similarity mea-
sure to be valid, it is required that the tested
points themselves belong to the common neigh-
bourhood.”

SNN (dis)similarity has been used to replace the distance
measure in DBSCAN as a way to overcome its inability to
find all clusters of varying densities [9].

Let sk(x, y) = SNN(x, y)/k, where SNN(x, y) is the
number of shared nearest neighbours of k nearest neighbours
of x and y, which include both x and y; SNN(x, y) = 0 if
both x and y are not included.

The neighbourhood function based on the SNN similarity
can be expressed as:

Mσ(x) = #{y ∈ D | sk(x, y) ≥ σ}

Note that Mσ(x), like Mµ(x), cannot be treated as den-
sities as the volume used to compute Mσ for every x is not
a constant. In other words, we reveal that SNN clustering
algorithm is a mass-based method, and not a density-based
method as previously thought [9, 17]. This is despite the fact
that SNN employs the same DBSCAN procedure by simply
replacing the distance measure with the (inverse) SNN sim-
ilarity [9, 17].

Using the same notation, let R(x, y|H) be the (implicit)
region which covers the shared nearest neighbours of x and
y, where H is kNN. SNN(x, y) can be defined as follows:

SNN(x, y) = |R(x, y|H)| (5)

An example of Mσ(x) due to SNN is given in Figure 4(d).
The advantages of using iForest instead of k nearest neigh-

bour to estimate the neighbourhood mass are:

• The SNN similarity matrix is sensitive to the param-
eter of neighbourhood list size k. In contrast, iForest
works well with a default setting.

• SNN clustering [9] has O(k2n2) time complexity or
O(n3) when k =

√
n or larger and n = |D|. Yet, our so-

lution (see Section 6.1) has the same O(n2) time com-
plexity as DBSCAN, except an additional preprocess-
ing to compute the dissimilarity matrix which takes
O(t logψ(ψ + n2)) or O(n2) since ψ � n.

6. APPLICATIONS TO THREE EXISTING
ALGORITHMS RELYING ON DISTANCE

Here we show that the mass-based dissimilarity can sim-
ply replace the distance measure used in existing algorithms
in three tasks: clustering, anomaly detection, and multi-
label classification. The pertinent details are described in
the following three subsections.

6.1 Density-based clustering
DBSCAN [10] is a natural choice not only because it is

a commonly used clustering algorithm, but also it employs

ε-neighbourhood density estimation. Here we convert DB-
SCAN to MBSCAN, i.e., from density based to mass based,
by simply replacing distance measure with mass-based dis-
similarity, leaving the rest of the procedure unchanged. This
effectively changes the use of ε-neighbourhood density esti-
mation to µ-neighbourhood mass estimation, as described
in Section 4. This enables a global threshold to be used to
identify all clusters of varying densities in hard distribution
as shown in Figure 4.

6.2 k-nearest neighbour anomaly detection
Here we use one of the simplest anomaly detector which

is based on kth nearest distance [4]. The anomaly score for
a test instance x is defined as the distance between x and
its kth nearest neighbour. Anomalies are instances which
have the largest scores, i.e., they have the longest distances
to their kth nearest neighbours in a given data set.

This distance-based anomaly detector is used to show that
a simple replacement of the distance measure with the mass-
based dissimilarity can overcome its inability to detect local
anomalies and improve its overall detection performance.

The replacement of `p with me effectively converts the en-
tire operation from distance-based to mass-based. Anoma-
lies are redefined as those which have the highest probability
mass to their kth lowest probability mass neighbours in a
given data set.

The advantage of using mass is that fringes of any clus-
ters with the same structure but different densities will have
about the same probability mass. This enables (local) anoma-
lies of dense clusters to be ranked at similar positions as
anomalies of sparse clusters. The mass-based version is de-
noted as M-kNN 4 to contrast it with kNN.

6.3 Multi-label kNN classification
In multi-label classification tasks, each instance is associ-

ated with several class labels simultaneously. MLkNN [22]
has been proposed to adapt the (single-label) kNN approach
to multi-label problems, which makes a prediction via the
maximum a posteriori rule. The rule is defined as follows.

In the context of multi-label learning, let yi,j ∈ {1, 0} be
the j-th label of the i-th instance, where 1 and 0 indicate
the instance’s association and dissociation, respectively. The
prediction rule of the j-th label for xi is given by [22]:

yi,j =

{
1 if P(yi,j = 1|ci,j)/P(yi,j = 0|ci,j) > 1

0 otherwise
,

where ci,j denotes the number of instances in the neigh-
bourhood (i.e., k nearest neighbours) of xi with the jth-
label, P(yi,j = 1|ci,j) is the posterior probability of yi,j = 1
given that xi has ci,j neighbours with the jth-label; and
P(yi,j = 0|ci,j) is similarly defined.

Bayes theorem yields that P(yi,j = 1|ci,j) ∝ P(yi,j =
1)P(ci,j |yi,j = 1), where P(yi,j = 1) is the prior probabil-
ity of yi,j = 1 and P(ci,j |yi,j = 1) is the likelihood that
xi has ci,j neighbours when yi,j = 1. Both P(yi,j = 1)
and P(ci,j |yi,j = 1) can be estimated via frequency count-
ing on the training set. In the same manner, we can obtain
P(yi,j = 0|ci,j) via P(yi,j = 0) and P(ci,j |yi,j = 0).

4Though there is a fundamental change of perspective, we
have opted to reuse the same name of the original algorithm
to emphasize that the same algorithm is employed with the
exception of dissimilarity measure only.



Getting an effective closest match neighbourhood of a test
instance is of prime importance in MLkNN, which directly
influences the calculation of the likelihood. Thus, the dissim-
ilarity measure employed plays a critical role in this process.
In the original MLkNN, Euclidean distance is applied. The
use of mass-based dissimilarity has the potential to enhance
the nearest neighbour search and leads to a better multi-
label classification result. We denote the version employing
mass-based dissimilarity, M-MLkNN.

7. EMPIRICAL EVALUATION

7.1 Clustering
We evaluated the mass-based version of DBSCAN, named

MBSCAN, and compared it with DBSCAN, SNN [9] and
OPTICS [1]. Note that the only difference among DBSCAN,
SNN and MBSCAN is the dissimilarity matrix, which is pre-
processed and serves as input to these algorithms. We used
iForest with the default setting (i.e., ψ = 256 and t = 100)
[15] to generate the mass-based dissimilarity matrix as the
input for MBSCAN.

Th evaluation is conducted on 2 synthetic and 8 real-world
datasets from UCI Machine Learning Repository [13]. Ta-
ble 4 presents the properties of the datasets.

Table 4: Properties of clustering datasets
Dataset Size Dimensions Clusters

Libras 360 90 15
WDBC 569 30 2
Thyroid 215 5 3
Segment 2310 19 7

Wine 178 13 3
Seeds 210 7 3

Pendig 10992 16 10
Iris 150 4 3
S1 900 2 3
S2 1500 2 3

S1 and S2 are synthetic datasets. S1 is a “hard distribu-
tion” which contains 3 Gaussian clusters N(mean, std) with

means located at (x(1), x(2))=(3.3, 9.3), (8, 5), (12, 12), and
standard deviations std = 3, 3, 8 in each dimension; and each
cluster has 300 instances. S2 is an “easy distribution” which
has 3 Gaussian clusters N(mean, std) with means located

at (x(1), x(2)) = (10, 10), (20, 20), (60, 60), and std = 2, 2, 11
in each dimension; and each cluster has 500 instances. The
density plots of S1 and S2 are shown in Figure 5.

(a) S1: “hard distribution” (b) S2: “easy distribution”

Figure 5: Density distributions of S1 and S2.

We recorded the best F-measure5 of a clustering algorithm
on a dataset. Because iForest is a randomised method, we
reported the average result over 10 trials.

For each clustering algorithm, the search range of either
ε, µ or σ was from the minimum to the maximum value of
pairwise dissimilarity in the given dataset. The search range
of MinPts in DBSCAN, SNN and MBSCAN was in the
range {2, 3, . . . , 10}. The parameter k in SNN was set to the
square root of the data size as suggested by some researchers
[16]. For OPTICS, we searched MinPts to produce the
required hierarchical plots, and then searched threshold ξ6

in the range {0.01, 0.02, . . . , 0.99} to extract clusters from
each plot.

Figure 6 shows the best F-measure of DBSCAN, OPTICS,
SNN and MBSCAN. The counts in the last column of the
table reveal that MBSCAN and SNN performed the best in
5 and 3 datasets, respectively.

Table 5 shows the performance ratio of OPTICS, SNN,
and MBSCAN with reference to DBSCAN. The geometric
mean reveals that MBSCAN enhances DBSCAN the most
by 27%; and SNN enhances DBSCAN by 21%.

Although MBSCAN and SNN have similar F-measures in
many datasets, MBSCAN is significantly better than SNN
in two datasets: S1 and WDBC. For example, MBSCAN
enhances DBSCAN by more than 80% compared with less
than 50% achieved by SNN on S1. Because S1 is a hard dis-
tribution for DBSCAN, this shows that mass-based dissim-
ilarity provides a much better solution than shared nearest
neighbour similarity in finding clusters of varying densities.
Except for S1, WDBC and Thyroid, other datasets appear
to have a lesser degree of hard distribution since their en-
hancements over DBSCAN are less than 40%.

The post-hoc Nemenyi test7 reveals that both MBSCAN
and SNN are significantly better than both DBSCAN and
OPTICS. Figure 7 shows the average rank of each algorithm
and its critical difference.

Figure 7: Critical difference (CD) diagram of the
post-hoc Nemenyi test (α = 0.05). The difference
between two algorithms is significant if their CDs
do not overlap.

5Given a clustering result, we calculate the precision score pi
and the recall score ri for each cluster based on the confusion
matrix, and then the overall F-measure is the average over
all clusters: F-measure= 1

m

∑m
i=1

2PiRi
Pi+Ri

.
6Parameter ξ is used to identify downward and upward ar-
eas of a hierarchical plot in order to extract clusters. This
hierarchical extraction method was proposed in the original
OPTICS paper [1].
7This test (after the Friedman test) [8] is conducted to ex-
amine whether the performance difference between any two
algorithms is significant. Firstly, the algorithms were ranked
on each dataset according to their F-measures, where the
best one is rank 1. Then, the post-hoc Nemenyi test is used
to calculate the critical difference value (CD) for each algo-
rithm.



Figure 6: Best F-measures of DBSCAN, OPTIC, SNN and MBSCAN on 10 datasets. The best performer
on each dataset is underlined.

Table 5: Performance ratio of OPTICS, SNN, and MBSCAN with reference to DBSCAN on 10 datasets.
Libras Thyroid Segment WDBC Wine Pendig Seeds Iris S1 S2 Geomean

OPTICS 1.30 1.02 1.19 1.13 1.17 1.03 1.07 .98 1.56 1.04 1.14
SNN 1.05 1.47 1.12 1.17 1.40 1.17 1.19 1.10 1.47 1.06 1.21

MBSCAN 1.13 1.48 1.14 1.43 1.38 1.14 1.19 1.11 1.82 1.06 1.27

7.2 Anomaly detection
In this section, we evaluate M-kNN in two experiments.
We first examined the ability of kNN and M-kNN to detect

local anomalies on a synthetic dataset. The dataset contains
one sparse cluster and one dense cluster, and each cluster
has 500 instances. The instances at the fringes of the dense
cluster are anomalies relative to this cluster only because
they have higher densities than most instances in the sparse
cluster; that is why they are called local anomalies.

(a) kNN (b) M-kNN

Figure 8: The ability to detect local anomalies in the
dense cluster. Contour of the scores of k-nearest
neigbour anomaly detectors using `p and me, with
k = 100 on a synthetic dataset. The lighter the
colour, the higher the anomaly score.

Figure 8 shows the contour of anomaly scores on the dataset.
As expected, kNN is unable to detect local anomalies. Yet,
M-kNN is able to detect all instances at the fringes of the
dense cluster as anomalies. Note that the fringes of both
dense and sparse clusters have similar high scores, allowing
all of them to be identified as anomalies.

In the second experiment, we compared the performance
on 6 real-world benchmark datasets8. The data size, dimen-
sions and percentage of anomalies are shown in Table 6. A
state-of-the-art local anomaly detector named Local Outlier
Factor (LOF) [6] is also used in the comparison.

8Velocity is from http://openscience.us/repo/defect/ck/
and others are from UCI Machine Learning Repository [13].

Table 6: Properties of benchmark datasets
Dataset Size Dimensions % Anomaly
Velocity 229 20 34.06%
Mfeat 410 649 2.44%
BloodDonation 604 4 5.63%
Diabetes 768 8 34.9%
annThyroid 7200 6 7.42%
p53Mutant 10387 5408 0.51%

Figure 9: AUC of kNN, M-kNN and LOF.

We search k from 10% to 50% of the data size and present
the result in terms of AUC (Area Under ROC Curve.)

M-kNN was run over 10 trials using different random seeds
in computing the dissimilarity matrix for each dataset. kNN
yields a deterministic result for a given data set; thus, it is
run once only for each data set.

Comparing their best AUC values in Figure 9, M-kNN
performs equivalent to or better than kNN on every dataset.
M-kNN always outperforms kNN on Velocity and annThy-
roid with any k. On BloodDonation, M-kNN with a high
k value performs better than kNN. Compared with LOF,
M-KNN performs equally or better than kNN on 5 out of 6
datasets in terms of the highest AUC.



Table 8: M-MLkNN versus MLkNN on hamming loss, ranking loss, coverage, one error and average precision.
Each result is an average over 10 trials of 10-fold cross-validation and its standard error. For the first four
performance measures, the lower the better; for the last one, the higher the better.

HammingLoss RankingLoss Coverage OneError AveragePrecision

Birds MLkNN 0.051± 0.001 0.298± 0.004 3.507± 0.084 0.713± 0.017 0.392± 0.010
M-MLkNN 0.046± 0.001 0.167± 0.007 2.008± 0.067 0.473± 0.006 0.600± 0.005

CAL500 MLkNN 0.139± 0.001 0.187± 0.002 132.467± 0.489 0.131± 0.005 0.489± 0.002
M-MLkNN 0.139± 0.001 0.187± 0.001 131.731± 0.538 0.125± 0.005 0.489± 0.001

Emotions MLkNN 0.269± 0.007 0.278± 0.011 2.358± 0.071 0.419± 0.013 0.692± 0.011
M-MLkNN 0.208± 0.004 0.180± 0.005 1.857± 0.025 0.309± 0.008 0.776± 0.006

Enron MLkNN 0.053± 0.000 0.099± 0.001 13.850± 0.095 0.340± 0.013 0.604± 0.005
M-MLkNN 0.052± 0.000 0.094± 0.001 13.477± 0.103 0.288± 0.008 0.640± 0.004

Scene MLkNN 0.175± 0.002 0.198± 0.003 1.065± 0.023 0.338± 0.008 0.774± 0.003
M-MLkNN 0.168± 0.002 0.175± 0.003 0.978± 0.021 0.310± 0.008 0.794± 0.004

Table 7: Properties of multi-label datasets. W is the
average number of labels per instance.

Dataset Size Dimensions Labels W
Birds 645 260 19 1.014
CAL500 502 68 174 26.044
Emotions 593 72 6 1.869
Enron 1702 1001 53 3.378
Scene 2407 294 6 1.074

7.3 Multi-label classification
In this section, we compare the original distance-based

MLkNN[22] with the mass-based version M-MLkNN. The
best k is searched in the range: 1,3,5,10,15 via 5-fold cross-
validation on the training set.

We evaluate their performance in terms of Hamming loss,
ranking loss, coverage, one error and average precision on
five datasets9, commonly used for multi-label classifier eval-
uations. Table 7 shows the properties of these datasets.

The result presented in Table 8 shows that M-MLkNN is
significantly better (by two standard errors) than MLkNN in
four out of the five datasets in terms of all five performance
measures. The improvement of M-MLkNN over MLkNN
is noteworthy (range between 30% and 50%) on the Birds
dataset in terms of the last four measures.

Figure 10: The proportion of k nearest neighbours
having a particular label on the Emotions dataset for
different k. The left and right figures show the pro-
portions for the majority and minority labels (i.e.,
the labels which have the largest and smallest num-
ber of instances), respectively, on the dataset.

The improvement is due to the fact that mass-based dis-
similarity provides a better closest match neighbourhood,
where instances are more likely to hold the same label and

9Source: http://mulan.sourceforge.net/datasets-mlc.html.

the proportion of the majority label is larger. Figure 10
provides an insight into two of the labels individually. Each
of the majority and minority labels (in the dataset) has a
higher proportion in the k nearest neighbours found using
mass-based dissimilarity than that using the distance mea-
sure. In fact, this occurs for every label on this dataset.

Visualisation provides another perspective of the advan-
tage, i.e., how far apart instances are from one another
according to each of the two dissimilarity measures. Here
we performed multidimensional scaling (MDS)10. The MDS
plot based on `2 is shown in Figure 11(a); and the one based
on me is shown in Figure 11(b). It shows that instances of
different labels are easier to separate using me.

(a) MDS using `2 (b) MDS using me

Figure 11: MDS plots using distance matrix
and mass-based dissimilarity matrix on Emotions.
Green and red points represent the positive and neg-
ative instances of the majority label, respectively.

7.4 Evaluation in runtime
The only difference between the `p and me versions of the

algorithms in the above three subsections is the computation
time for dissimilarity matrix. After the matrix is computed
and served as input, the algorithm has the same runtime
regardless of the dissimilarity used to compute the matrix.

Using `p to compute the dissimilarity matrix has O(dn2)
time complexity. me builds iForest and computes the dis-
similarity matrix based on iForest, which yields O(tψlogψ+
n2tlogψ) time complexity. For large datasets, ψ � n, the
time cost is O(n2). The time complexity of SNN similarity
is O(n3) in the worst case when k =

√
n or larger. Table 9

10Multidimensional scaling is a technique for visualising the
information contained in a dissimilarity matrix [21]. An
MDS algorithm aims to place each data point in a p-
dimensional space (p = 2 is used here), while preserving
as much as possible pairwise dissimilarities between them.



gives the time and space complexities of dissimilarity matrix
calculation based on `p, me and SNN .

Table 9: Time and space complexities of dissimilar-
ity matrix calculation based on `p, me and SNN .

Measure Time complexity Space complexity

`p O(dn2) O(dn)
me O(tψlogψ + n2tlogψ) O(tψlogψ + dn)
SNN O(k2n2 + dn2) O(dn+ kn)

Table 10: Runtime of the dissimilarity matrix cal-
culation for the three dissimilarities (in seconds).

Data set Segment annThyroid Pendig p53Mut
(Data size) (2310) (7200) (10992) (10387)

(Dimension) (19) (6) (16) (5408)
`p 5 42 110 8182
me 31 259 600 548
SNN 26 243 573 9141

Table 10 shows the runtime of the dissimilarity matrix
calculation for the three dissimilarities on four real-world
datasets. In small dimensional datasets, me has almost the
same runtime as SNN , but takes longer to compute than
`p due to the use of iForest. However, in large and high
dimensional datasets such as p53Mutant, me is much faster
than both `p and SNN because it is independent of the
data dimensionality, i.e., each split node of a tree chooses
one attribute randomly up to the certain height limit only.

8. DISCUSSION
Concepts. Dissimilarity measures are assumed to be a

metric or a pseudo-metric as a necessary criterion for all
data mining tasks. This work shows for the first time that
this assumption is incorrect in three tasks.

We show that distance measures are the source of key
weaknesses in three existing algorithms, highlighted in Ta-
ble 1. Having recognised the source issue and created an
effective alternative to distance measure, the solution be-
comes simple—merely replacing the distance measure with
the data dependent dissimilarity; the otherwise unchanged
algorithm can now overcome its weakness.

The result of not recognising the source issue can often
lead to a solution which is more complicated than necessary
and may not resolve the issue completely. An example is
the inability of density-based clustering to find all cluster-
s of varying densities. This issue is well-known and many
suggestions have focused on density-based solutions [1, 9].
The fact that the ε-neighbourhood density estimator em-
ployed relies on distance measure, which is the source of the
weakness, has been overlooked.

It is interesting to note that one of the existing solution-
s, i.e., SNN clustering has been incorrectly designated as
density-based [9, 17] thus far. Our analysis in Section 5 has
revealed that when replacing SNN (dis)similarity with the
distance measure in ε-neighbourhood density estimator, the
result is a mass estimator, not a density estimator.

Viewed from the conceptual perspective, simply changing
the distance measure to a data dependent measure converts
a density-based algorithm to a mass-based algorithm.
µ-neighbourhood mass can be viewed as a more general

version of ε-neighbourhood density. However, the shape of
ε-neighbourhood density region is fixed while the shape of

µ-neighbourhood mass region depends on data distribution.
We provide an example in Figure 3 that µ-neighbourhood
mass has a regular shape region like ε-neighbourhood esti-
mator in uniform density distribution only.

Implementations. An efficient implementation of mp

dissimilarity [2] employs a fixed-width one-dimensional his-
togram [3]. It partitions each attribute space into a fixed-
number of cells independently, and the dissimilarity of any
two instances is the total number of instances in the cells
between the two instances in each attribute. In the exper-
iments we have done in clustering and anomaly detection
tasks, we found that using mp with this implementation per-
forms better than using distance on most datasets. However,
their overall results are worse than those using me with the
iForest implementation.

The use of iForest can be viewed as estimating probabili-
ty from multiple variable-size multi-dimensional histograms.

Parameter ψ in iForest, used in the µ-neighbourhood esti-
mator, is a smoothing parameter similar to k in a k-nearest
neighbour density estimator. High ψ yields large trees which
are sensitive to local variations in data distribution—similar
effect of setting small k.

Since the default setting of iForest (ψ = 256 and t = 100)
can be used to provide good performance on many dataset-
s, the implementation of mass-based dissimilarity based on
iForest does not create additional limitations, i.e., each ex-
isting algorithm, which has been transformed with the mass-
based dissimilarity, has the same time complexity and the
same number of parameters as in the original algorithm.

The generic formulation of mass-based dissimilarity al-
lows different implementations, including different variants
of iForest; and mp dissimilarity [2] and SNN (dis)similarity
are its special cases—all of them possess the characteristic
of judged dissimilarity as prescribed by psychologists [12].

It is possible to use SNN in the contexts of kNN anoma-
ly detection and MLkNN. However, its use has two issues.
First, there are two k parameters as kNN is employed sepa-
rately in the dissimilarity matrix calculation and the decision
making process. Second, the high time complexity shown in
Table 9 makes it prohibitive in large datasets.

Note that a mass-based neighbourhood function can be
implemented using distance measure, as in the case of SNN .
But, it is not only an indirect way to estimate mass but also
an expensive one, as mentioned in Section 5.

Our implementation of data-dependent dissimilarity using
trees opens up new research directions that worth investi-
gating. kNN-based methods are traditionally regarded as
distance-based methods; they become tree-based methods,
though still employ dissimilarity measures, as we have shown
here. The distinction between tree-based and distance-based
methods are not clear-cut any more. Tree-based methods
are usually thought to be less amenable than distance-based
methods in dealing with high-dimensional datasets, espe-
cially when they consists of mostly relevant attributes. This
research raises the question whether this is still true when
data-dependent dissimilarity is used.

9. CONCLUDING REMARKS
We introduce a generic mass-based dissimilarity which

is readily applied to existing algorithms in different tasks.
The data dependent dissimilarity implemented with iForest
overcomes key weaknesses of three existing algorithms that
rely on distance, and effectively improves their task-specific



performance on density-based clustering, kNN anomaly de-
tection and multi-label classification.

These existing algorithms are transformed by simply re-
placing the distance measure with the mass-based dissimi-
larity, leaving the rest of the procedures unchanged.

As the transformation heralds a fundamental change of
perspective in finding the closest match neighbourhood, the
converted algorithms are more aptly called lowest probabil-
ity mass neighbour algorithms than nearest neighbour algo-
rithms, since the lowest mass represents the least dissimilar.

In the future, we will further explore other implementa-
tions of data dependent dissimilarity and investigate their
influence in different data mining tasks.
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Appendix: Algorithm for random trees
iForest consists of t iT rees, each built independently using
a subset D, sampled without replacement from D, where
|D| = ψ. The maximum tree height h = dlog2ψe. Note that
the parameter e in iT ree is initialised to 0 at the beginning
of the tree building process.

Algorithm 1 iT ree(X, e, h)

Input: X - input data; e - current height; h - height limit.
Output: an iT ree.
1: if e > h OR |X| 6 1 then
2: return exNode{Size← |X|};
3: else
4: Randomly select an attribute q;
5: Randomly select a split point p between min and
max values of attribute q in X;

6: Xl ← filter(X, q < p), Xr ← filter(X, q > p);
7: return inNode{ Left ← iT ree(Xl, e+ 1, h),

Right← iT ree(Xr, e+ 1, h),
SplitAttr ← q, SplitV alue← p};

8: end if


