Peeking into the On-Demand Economy¶
Ming Yin
Doctor
Microsoft Research New York City
Abstract: Today, an increasing number of digital and mobile technologies have emerged to match customers, in almost real time, with a potentially global pool of self-employed labor, leading to the rise of the on-demand economy, which has brought about dramatic changes in our society. It creates new business models and new dynamics of labor allocation. It enables new models of computation, that is, human-in-the-loop computing. And it leads to new forms of knowledge creation—people all over the world are contributing to scientific studies in dozens of fields, either by making scientific observations as amateur scientists or by participating in online experiments as subjects. Despite its already significant impacts, the on-demand economy has still been considered as a black-box approach to soliciting labor from a crowd of on-demand workers. Little is known about these workers and their aggregated behavior. In this talk, using the on-demand crowdsourcing platforms as an example, I present my attempts and findings on opening up this black box with a combination of experimental and computational approaches, with focuses on understanding who the on-demand workers are, how to model their unique working behavior, and how to improve their work experience.
Bio: Ming Yin is currently a postdoctoral researcher at Microsoft Research New York City. Starting in Fall 2018, she will join Purdue University as an Assistant Professor in the Department of Computer Science. Ming’s primary research interests lie in the interdisciplinary area of social computing and crowdsourcing. Her research has contributed to better understanding human behavior in social computing and crowdsourcing systems through large-scale online behavior experiments, as well as incorporating the empirical insights from the behavioral data into developing models, algorithms, and interfaces to facilitate the design towards better systems.
More broadly, her research connects to the fields of applied artificial intelligence and machine learning, computational social science, human-computer interaction and behavioral economics. Ming’s work is published in top venues like WWW, CHI, AAAI and IJCAI. Ming is named as a Siebel Scholar (Class of 2017), and she has received Best Paper Honorable Mention at the ACM Conference on Human Factors in Computing Systems (CHI’16). Ming completed her PhD at Harvard University under the supervision of Professor Yiling Chen, and she has interned at Microsoft Research (New York City Lab and New England Lab), PARC, and Xerox Research previously.